Homework #6

Exercise 1.

Consider the antisymmetric tensor F_{ab} (Minkowski tensor of the electromagnetic field). The expression

$$T^a{}_b = F^{am}F_{bm} - \frac{1}{4}\delta^a_b F^{mn}F_{mn}$$

is called the energy-momentum tensor of electromagnetic field. Prove

1)
$$T^a{}_a = 0$$
 $--$ traceless tensor

2)
$$T^{a}_{b} = \frac{1}{2} (F^{am} F_{bm} + \check{F}^{am} \check{F}_{bm}),$$

where $\check{F}_{ab}=\frac{1}{2}\varepsilon_{abmn}F^{mn}.$ Prove that the tensor $T_{ab}=g_{am}T^m{}_b$ is symmetric. Exercise 2.

Let two p-forms P, Q be given. Define a product

$$\{P,Q\} = \frac{1}{p!}g^{i_1j_1}\cdots g^{i_pj_p}P_{i_1\cdots i_p}Q_{i_1\cdots i_p}$$

Prove

$$P \wedge *Q = \{P, Q\} \text{ vol}$$

Exercise 3.

Prove the identities of the Hodge map

$$*^{2} = (-1)^{p(n-p)+i}$$

$$*w_{1} \wedge w_{2} = *w_{2} \wedge w_{1}$$

$$*w \wedge \vartheta^{a} = -g^{ab} * (e_{b} | w)$$

Exercise 4.

Define tensor Riemann in the form

$$R_{abc}{}^d = 2 \partial_{[a} \Gamma^d{}_{b]c} - 2 \Gamma^m{}_{[a|c|} \Gamma^d{}_{b]m} \; , \label{eq:Rabc}$$

where $\Gamma^{p}_{mn} = \Gamma^{p}_{nm}$.

Prove the symmetries for $R_{abcd} = R_{abc}{}^{m} g_{md}$

$$R_{abcd} = R_{[ab]cd}$$

$$R_{[abc]d} = 0$$

$$R_{abcd} = R_{ab[cd]}$$

$$R_{abcd} = R_{cdab}$$

How much independent components does this tensor have?