Homework #4

Exercise 1.

Prove that if a tensor is symmetric (antisymmetric) in some basis it is symmetric (antisymmetric) in every basis.

Exercise 2.

Prove that an antisymmetric tensor of type (p,0) or (0,p) with p>n is zero (dimV = n).

Exercise 3.

Prove that

$$dim\Lambda^{p}(V) = \frac{n!}{p!(n-p)!}$$

Exercise 4.

Prove that

1)
$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha + \beta) \land \gamma = \alpha \land \gamma + \beta \land \gamma$$

2)
$$(\alpha + \beta) \wedge \gamma = \alpha \wedge \gamma + \beta \wedge \gamma$$

3) $k(\alpha \wedge \beta) = (k\alpha) \wedge \beta = \alpha \wedge (k\beta)$

4)
$$\alpha \wedge \beta = (-1)^{pq}\beta \wedge \gamma$$

Exercise 5.

Prove that

1)
$$v | (\alpha + \beta) = v | \alpha + v | \beta$$

$$(v+u)\rfloor \alpha = v\rfloor \alpha + u\rfloor \alpha$$

$$3) v \rfloor u \rfloor w = -u \rfloor v \rfloor w$$

4)
$$v \rfloor (\alpha \wedge \beta) = (v \rfloor \alpha) \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge (v \rfloor \beta)$$

Exercise 6.

Prove that for any p-form w

$$\vartheta^a \wedge (e_a | w) = pw$$

$$e_a \rfloor (\vartheta^a \wedge w) = (n-p)w$$