Homework #2

### Exercise 1.

Prove the Lemma used in the derivative of the Euler-Lagrange equation. If a continuous function f(t) satisfies

$$\int_{t_1}^{t_2} f(t)h(t)dt = 0$$

for any continuous function h(t) with  $h(t_1) = h(t_2) = 0$ , then f(t) = 0.

# Exercise 2.

Check how change the action functional, the equation of motion and the energy under the following changes of the Lagrangian

$$L = f(\tilde{L}),$$
  $L = C_1 \tilde{L} + C_2$  
$$L = \tilde{L} + \frac{d}{dt} \varphi(x, \dot{x}, t)$$

# Exercise 3.

Derive the equation of motion and the energy for the system of two mass points with the Lagrangian

$$L = \frac{m_1 \dot{x}^2}{2} + \frac{m_2 \dot{y}^2}{2} - \frac{k m_1 m_2}{|x - y|}$$

# Exercise 4.

Prove the identities

$$rot(\operatorname{grad}\varphi) = 0$$
$$\operatorname{div}(\operatorname{rot} A) = 0$$
$$\operatorname{rot}(\operatorname{rot} A) = \operatorname{grad}(\operatorname{div} A) - \triangle A$$

# Exercise 5.

Prove that

$$rot A = 0$$
  $\langle ===>$   $A = grad \varphi$