Mathematical foundations of relativity Dr. Y. Itin

Homework #2

Exercise 1.
Prove the Lemma used in the derivative of the Euler-Lagrange equation.
If a continuous function f(t) satisfies
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for any continuous function h(t) with h(t;) = h(t2) = 0, then f(t) =

Exercise 2.
Check how change the action functional, the equation of motion and the
energy under the following changes of the Lagrangian

L=f(L), L=CL+GC,
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Exercise 3.
Derive the equation of motion and the energy for the system of two mass
points with the Lagrangian
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Exercise 4.
Prove the identities
rot(grad ¢) =0
div(rot A) =0
rot(rot A) = grad(divA) — AA

Exercise 5.
Prove that
rotA =0 <===> A =grady



