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Inspired by the existing work on correlated equilibria and regret-based dynamics in games, 
we carry out a first exploration of the links between equilibria and dynamics in (exchange) 
economies. The leading equilibrium concept is Walrasian equilibrium, and the dynamics 
(specifically, regret-matching dynamics) apply to trading games that fit the economic 
structure and whose pure Nash equilibria implement the Walrasian outcomes. Interestingly, 
in the case of quasilinear utilities (or “transferable utility”), all the concepts essentially 
coincide, and we get simple deterministic dynamics converging to Walrasian outcomes. 
Connections to sunspot equilibria are also studied.
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1. Introduction

In this paper, inspired by previous work on correlated equilibria and regret-based dynamics in games (see the book 
of Hart and Mas-Colell, 2013), we carry out a first exploration of the link between the leading equilibrium concept for 
(exchange) economies, Walrasian equilibrium, and dynamics. We consider no-regret dynamics in trading games that fit the 
economic structure and have the property that their pure Nash equilibria implement the Walrasian outcomes.

After describing in Section 2 the standard economic model and equilibrium concept, in Section 3 we present the eco-
nomic game we will focus on. It can be thought of as a very stylized representation of the underlying trading mechanism 
that generates the economic outcomes. It involves distinguishing one commodity as a means of payment, and one agent as 
a price controller (“market-maker”). Needless to say, we cannot claim that the game is in any way canonical, but it does 
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capture in a simple way some of the essential features that need to be taken into account: feasibility (i.e., demand equals 
supply) out of equilibrium, price-taking behavior, and prices controlled by players in the game (i.e., no artificial extraneous 
players). And we show that, indeed, its pure Nash equilibria correspond to the Walrasian outcomes.

In Section 4 we proceed to analyze the correlated equilibria of the economic game for general economies. Correlated 
equilibrium (Aumann, 1974) is the generalization of Nash equilibrium that allows for the possibility of noncooperative co-
ordination through (payoff-irrelevant) signaling devices, something that, as the extensive literature on sunspot equilibrium 
(see the review in Shell, 2007) has persuasively argued, is quite relevant and merits careful consideration in economics. Our 
results in this section, however, are mostly negative. We show by examples that, beyond straightforward cases, the corre-
lated equilibria of the game, which may be abundant, do not correspond with natural notions of sunspot equilibria of the 
economy. The difficulty lies in the asymmetric positioning, absent in the specification of the economy, of the distinguished 
agent (the market-maker) in the game.

The picture changes drastically if utilities are quasilinear (and so utility is transferable across traders) and the distin-
guished commodity of the game is the economic numeraire. In Section 7 we show that the set of outcomes generated 
by the correlated equilibria of the game (and even those associated with the more general concept of Hannan equilibria) 
coincides with the set of Walrasian outcomes, and that the same is true, appropriately specified, for the sunspot outcomes. 
We proceed then to analyze regret-based dynamics, by defining deterministic (unconditional-)regret-matching (“DURM”) 
strategies, and showing that they guarantee, if played by all players, convergence of outcomes to the Walrasian outcomes.

Sections 5 and 6 develop game-theoretic tools that yield, as an application, the results of Section 7. Section 5 deals with 
the class of “socially concave games,” introduced by Even-Dar et al. (2009), where correlated equilibria (and Hannan equilib-
ria) yield on average the same outcomes as pure Nash equilibria. Section 6 develops deterministic regret-matching dynamics 
for games with convex action spaces (as is the case for the economic game), and studies their limit “no-regret” behavior.

2. The economic model

There is a finite set N = {1, 2, . . . , n} of agents (or traders) and a finite set M = {1, 2, . . . , m} of commodities. The con-
sumption space of each agent i ∈ N is1

R
M , over which he has a utility function ui : RM →R. We assume the following for 

every agent i ∈ N:

• The utility function ui is concave (and thus continuous).
• The marginal rates of substitution are uniformly bounded: there is a finite K ≥ 1 such that at every x ∈ R

M , if 0 �= p ∈
R

M are supporting prices at x (i.e., ui(x′) ≥ ui(x) implies p · x′ ≥ p · x), then2 p � 0 and 1/K ≤ p�/p�′ ≤ K (and thus ui

is strictly monotonic).

Without loss of generality we may well take the initial endowment of each i ∈ N to be 0 ∈ R
M , and so a consumption vector 

xi ∈ R
M is in fact a net trade vector. Let E denote the economy.

A Walrasian equilibrium (or competitive equilibrium) of E consists of a price vector p ∈ R
M++ and an allocation (xi)i∈N with 

xi ∈ R
M and 

∑
i∈N xi = 0 such that xi is a demand of agent i at p, for every i ∈ N (i.e., p · xi = 0, and p · x′ ≤ 0 implies 

ui(x′) ≤ ui(xi)). It will be convenient to normalize the price vectors so that pm = 1 (where m is the last coordinate of M), 
and thus p̃ ∈ P := {p ∈R

M++ : pm = 1 and 1/K ≤ p�/p�′ ≤ K for all �, �′ ∈ M}.
Throughout this paper we will refer to (x1, . . . , xn, p) ∈ R

M × . . . × R
M × P with 

∑
i∈N xi = 0, i.e., an allocation of the 

goods together with a price vector, as an outcome. Let WEO denote the set of Walrasian Equilibrium Outcomes.

3. A game implementing the Walrasian equilibria

We provide a simple and natural game whose pure Nash equilibria correspond to the Walrasian equilibria of the market. 
Here, “corresponds” means that the outcomes (x1, . . . , xn, p) ∈R

M × . . .×R
M × P are the same. We impose two restrictions 

on ourselves. First, there should be no additional artificial agents (“referees” or “designers”); only the given n economic 
agents play. And second, the game should be “playable,” in the sense that the outcome should always be feasible, out of 
equilibrium as well as at equilibrium.

The game G generated from the given economy E is constructed as follows. We single out one agent, say agent n—call 
him the “market-maker”—and one commodity, say commodity m—call it the “numeraire.” An action of agent i �= n is a con-
sumption vector of the nonnumeraire goods3 yi ∈ R

M−1, and an action of agent i = n is a price vector for the nonnumeraire 
goods q ∈ Q , where Q is the projection of P to its first M − 1 coordinates (i.e., Q := {q ∈ R

M−1++ : 1/K ≤ q� ≤ K and 1/K ≤
q�/q�′ ≤ K for all �, �′ ∈ M\{m}}). An n-tuple of actions a := (y1, . . . , yn−1, q) generates the outcome θ := (x1, . . . , xn; p)

given by

1 This assumption, by abstracting away from issues such as nonnegativity constraints on consumption, allows for simple and general trading mechanisms. 
It may be viewed as replacing stringent constraints with large but finite penalties, and it leads to a more transparent analysis. See however Sections 3.1
and 3.2, where we show ways to deal with such constraints.

2 p � 0 means p� > 0 for all �, i.e., p ∈R
M++ .

3 We write M − 1 rather than the correct M\{m}.
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yn := −
∑
i �=n

yi,

xi := (yi,−q · yi) ∈R
M for all i = 1,2, . . . ,n, (1)

p := (q,1) ∈ P .

Thus 
∑

i∈N xi = 0 and p · xi = 0 for all i ∈ N , and so the allocation of goods outcome is always feasible (this is the “playa-
bility” condition), and every agent’s consumption lies on his budget line for the price vector p. Finally, the payoff functions 
are defined as4

gi(y1, . . . , yn−1,q) := ui(xi) for i �= n, and

gn(y1, . . . , yn−1,q) := un(xn) − sup{un(z) : z ∈ R
M and p · z = 0}.

The interpretation is as follows. Each agent i �= n chooses his consumption of the nonnumeraire goods, and the market-
maker n chooses the prices. The market-maker’s consumption of the regular goods is determined by the other agents: he 
absorbs all the excess demand or supply.5 Every agent “pays” for his consumption with the numeraire good, according to 
the prices determined by the market-maker. The objective of each agent i �= n is to maximize his utility of his consumption 
of all goods (including the numeraire); and that of the market-maker n is to minimize the difference between the maximal 
utility he could have obtained at the prices that he chose and the utility of his actual consumption. In other words, he 
wants to minimize his “dissatisfaction” over his consumption not being optimal at the prices he chose.

Remarks. (a) Game-theoretic discipline imposes, on the one hand, that the allocations resulting from arbitrary play should 
be feasible, and, on the other, that prices should be determined strategically within the game. These two requirements do 
in fact reinforce each other. Because the consumptions of all the different agents cannot be determined independently, we 
may free one agent from the task. This makes him available for the determination of prices.

(b) In their classical existence proof, Arrow and Debreu (1954) postulated a virtual “referee” in charge of prices. This is 
not unlike what we do. The main difference is that we do not use an extra agent: our market-maker, who determines the 
prices, is one of the agents in the economy. This accounts for the difference between the objective of the Arrow–Debreu 
referee (maximize the value of the excess demand) and that of our market-maker (given by gn).

(c) We have adopted an approach that treats the agents asymmetrically: the entire weight of adjusting prices is borne 
by one of the agents. In this sense our approach is in the spirit of the price-adjustment processes led by a referee. But this 
is not the only possible way. Games that are symmetric among the traders and implement Walrasian outcomes have been 
constructed, starting with Hurwicz (1979) and Schmeidler (1980).6 It would certainly be of interest to analyze the issues 
we study here (and in particular the dynamics of Section 6) for these trading games.

The equilibrium concept that we consider for the game G is that of a pure Nash equilibrium. Let PNEO stand for the set of 
Pure Nash Equilibrium Outcomes of G , i.e., the set of outcomes generated (see (1)) by pure Nash equilibria of the game G .

Theorem 1. The set of pure Nash equilibrium outcomes of the game G coincides with the set of Walrasian equilibrium outcomes of the 
economy E : PNEO = WEO.

This readily follows from the lemma below that deals with the special agent n. Note first that gn(y1, . . . , yn−1, q) =
un(yn, −q · yn) − supw∈RL−1 un(w, −q · w) ≤ 0; we will show that, for every yn , the market-maker n can always choose q
in Q so that his payoff is maximal, i.e., 0, and so his consumption xn = (yn, −q · yn) is his demand at the price vector 
p = (q, 1).

Lemma 2. For every y ∈R
M−1 there exists q ∈ Q such that

un(y,−q · y) = sup
w∈RM−1

un(w,−q · w).

Proof. For each real α, put z(α) := (y, α), and let P (α) ⊂ P be the set of supporting prices for agent n at the point z(α); 
i.e., p ∈ P (α) if and only if p · x ≥ p · z(α) for any x in the convex set {x ∈ R

M : un(x) ≥ un(z(α))}. Clearly P (α) is a nonempty 
convex compact set; moreover, the correspondence P (·) is upper-hemicontinuous.7 Put F (α) := {p · z(α) : p ∈ P (α)} ⊂ R; 

4 It may well happen that the payoff of agent n is −∞. To avoid this, one may restrict the supremum to vectors z that lie in some bounded convex set 
containing xn in its interior (see the Proof of Lemma 2 below). Also, see the Remark following the Proof of Theorem 1 for other possible payoff functions gn .

5 Our market-maker is quite similar to Nasdaq market-makers.
6 See also Groves and Ledyard (1987), Hurwicz et al. (1995), and Postlewaite and Wettstein (1983).
7 This is standard. Take αm → α and pm → p with pm ∈ P (αm). Then un(x) ≥ un(z(α)) implies un(x + (ε, . . . , ε)) > un(z(αm)) for ε > 0 and m large 

enough, and hence pm · (x + (ε, . . . , ε)) ≥ pm · z(αm), which in the limit yields p · x ≥ p · z(α).
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then F is also a convex-valued upper-hemicontinuous correspondence. Since p ∈ P (α) implies 1/K ≤ p� ≤ K , it follows that 
all elements of F (α) are negative for small enough α, and positive for large enough α; therefore there is α∗ such that 
0 ∈ F (α∗), which means that there is p∗ = (q∗, 1) ∈ P such that 0 = p∗ · z(α∗) = q∗ · y + α∗ , or α∗ = −q∗ · y. Since p∗ is a 
supporting price at z(α∗) = (y, −q∗ · y), the result follows. Indeed, if there is w such that un(w, −q∗ · w) > un(y, −q∗ · y), 
then un(w, −q∗ · w − ε) > un(y, −q∗ · y) for small enough ε > 0, and then p∗ · (w, −q∗ · w − ε) = −ε < 0 = p∗ · z(α∗), 
a contradiction to p∗ ∈ P (α∗). �
Proof of Theorem 1. Let ( ỹ1, . . . , ỹn−1, ̃q) be a pure Nash equilibrium, with corresponding outcome (x̃1, . . . , ̃xn, p̃). For each 
agent i �= n, the bundle x̃i satisfies p̃ · x̃i = 0 (by definition of x̃i ) and maximizes gi over yi ; hence it maximizes ui over xi

in i’s budget set for the prices p̃. For agent n, the same conclusion is reached using Lemma 2. Altogether, the outcome is 
indeed a Walrasian equilibrium outcome.

Conversely, given a Walrasian equilibrium outcome (x̃1, . . . , ̃xn, p̃), the corresponding actions ( ỹ1, . . . , ỹn−1, ̃q) clearly 
yield a pure Nash equilibrium of the game (for i = n, use Lemma 2). �
Remark. One could replace gn with any other payoff function that satisfies Lemma 2, i.e., the payoff is 0 whenever xn is a 
demand of n at p, and it is < 0 otherwise (for instance, take the minimal expenditure needed for agent n to reach utility 
level un(xn) when the price vector is p).

3.1. Compact action spaces

While the action space Q of agent n is compact, those of the other n − 1 agents are not. It makes sense, and it will 
be important for the dynamic analysis of later sections, to ask if the result of Theorem 1 also holds when the action sets 
of these agents are restricted to a suitable compact box, say B := [−b, b]M−1. Call this game Gb . Without making further 
assumptions on the economy, the answer is negative. As an example, take n = 2 and m = 2, and u1(x) = 2x1 + x2, and 
u2(x) = x1 + x2. It is immediate to see that this economy has no Walrasian equilibrium, whereas every Gb possesses a pure 
Nash equilibrium (the payoff functions are strategically equivalent8 to concave functions and the action sets are convex 
compact sets). This suggests that it is necessary to resort to some assumption of the type that guarantees the existence of 
Walrasian equilibria.

One simple way to do so is as follows (cf.9 O. Hart, 1974). For each agent i, a vector z ∈ R
M is an (improving) recession 

direction if ui(λz) ≥ ui(0) for every10 λ ≥ 0; let C i ⊂ R
M be the closed cone of all recession directions of agent i. Recall that 

a closed cone C is pointed if C\{0} is strictly included in a half-space; equivalently,11 c1, . . . , c J ∈ C satisfy 
∑ J

j=1 c j = 0 if 
and only if c1 = . . . = c j = 0. The assumption is:

(C) There exists a pointed cone C containing the recession directions of all agents, i.e., C i ⊂ C for all i ∈ N .

Roughly speaking, (C) says that there is some degree of commonality among the agents in the directions of improvement.
An individually rational allocation is (x1, . . . , xn) ∈ R

M × . . . ×R
M with 

∑n
i=1 xi = 0 such that ui(xi) ≥ ui(0) for all agents 

i ∈ N . From (C) we readily have:

Lemma 3. Let E satisfy (C). Then there exists b0 > 0 such that any individually rational allocation (x1, . . . , xn) satisfies ||xi|| < b0 for 
all i ∈ N.

Proof. By contradiction: Let (x1
s , . . . , xn

s )s=1,2,... be a sequence of individually rational allocations with μs := ∑n
j=1 ||x j

s || →s

∞. Take an appropriate subsequence so that (1/μs)xi
s converges for each i, say, to zi . Then ui(λzi) ≥ ui(0) for (a sequence of) 

arbitrarily large λ, which implies that zi ∈ C i ⊂ C . But 
∑

i zi = 0 (since 
∑

i xi
s = 0) and not all zi are 0 (since || ∑i zi || = 1), 

contradicting the pointedness of C . �
Corollary 4. Let E satisfy (C). If (x1, . . . , xn) is a Walrasian allocation then ||xi|| < b0 for all i.

Proof. A Walrasian allocation is individually rational.12 �
8 Cf. Section 5.
9 In the context of financial economies, where unbounded consumption sets arise naturally.

10 These are the recession directions at 0; since ui is a concave function, they are the same at every x ∈ R
M ; see Rockafellar (1966, Theorem 2A; and 

1970, Theorem 8.7).
11 Or, there is a vector d such that d · c > 0 for every c ∈ C\{0}.
12 Condition (C) implies existence of Walrasian equilibria. Indeed, restrict the preferences of every agent to a translated orthant that contains the vector 
(−b0, . . . , −b0), where b0 is as in Lemma 3, and apply standard proofs (e.g., Debreu, 1959).
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Corollary 5. Let E satisfy (C). If (x1, . . . , xn, p) is a pure Nash equilibrium outcome of the game G then ||xi|| < b0 for all i. Moreover, 
Gb and G have the same pure Nash equilibria, for every b ≥ b0 .

Proof. The first statement follows from Theorem 1 and Corollary 4.
Next, any pure Nash equilibrium of G (which, as we have just shown, is feasible in Gb ) is clearly also a pure Nash equilib-

rium of Gb . Conversely, if ( ỹ1, . . . , ỹn−1, ̃q) is a pure Nash equilibrium of Gb with outcome (x1, . . . , xn, p), then ui(xi) ≥ ui(0)

for all i ≤ n − 1 (since choosing yi = 0, which yields xi = 0, is always possible), and also un(xn) ≥ un(0) (by Lemma 2, 
xn is a demand of n at the price vector p). Thus (x1, . . . , xn) is an individually rational allocation, and so, in particular, 
|| ỹi|| ≤ ||xi || < b0 for all i ≤ n − 1 (by Lemma 3). Thus ỹi is an interior maximizer of a concave function (specifically, the 
function ui(yi, −q̃ · yi) of yi ), and so it is in fact a global maximizer; therefore ( ỹ1, . . . , ỹn−1, ̃q) is a pure Nash equilibrium 
of G . �
3.2. Nonnegative consumptions

Up to now we have assumed that the net trade xi of each agent i is unbounded, and therefore so is his consumption. In 
standard economic models it is however usual to have the consumption bounded from below, specifically, to be nonnegative. 
We will show here a way to handle such models.

Let RM+ be the consumption set (and so ui : RM+ → R) and let ei ∈ R
M be the initial endowment of agent13 i, for 

i = 1, . . . , n. We make the following commonly used assumptions for every agent i ∈ N .14

• Each good � = 1, . . . , m is “indispensable”: ui(z) > 0 for all z ∈R
M++ , and ui(z) = 0 for all z ∈ bdRM+ (i.e., to get a positive 

utility one needs all goods).15

• Each good � is “useful”: ui is strictly increasing in all coordinates on RM++ .
• The initial endowments are strictly positive: ei ∈ R

M++ for all i = 1, . . . , n.

Consider the set of individually rational allocations (z1, . . . , zn), i.e., 
∑

i zi = ∑
i ei and ui(zi) ≥ ui(ei) for each i. The 

assumptions above imply that each zi belongs to a compact subset Bi of RM++ (because the set of individually rational 
allocations is closed, 0 ≤ zi ≤ ∑

i ei , and moreover ui(zi) ≥ ui(ei) > 0 implies zi ∈R
M++), and so any function ũi that coincides 

with ui on Bi yields the same Walrasian equilibrium outcomes (which are individually rational). We may therefore take 
the functions ũi for all i to be defined on the whole space RM , and moreover to satisfy the assumptions of Section 2
(specifically, marginal rates of substitution uniformly bounded by some K ).16 Furthermore, there is no need to appeal to 
the cone condition (C) of Section 3.1, since b0 = || ∑i ei || serves as a bound on the individually rational, hence equilibrium, 
outcomes.17 Finally, we translate the origin for each agent i from ei to 0.

One way to view the change from ui to ũi is that crossing the boundary of RM+ incurs an infinite penalty in ui (i.e., it is 
not allowed; equivalently, ui(z) = −∞ for z /∈ R

M+ ), and a finite penalty in ũi ; but this penalty is large enough so that the 
individually rational outcomes are not affected—and so our results hold.

Remark. Concerning playability, we do not know of a way to always ensure zi ≥ 0 out of equilibrium (this is a known issue; 
cf. Hurwicz et al., 1995). Our setup allows this constraint to be violated, albeit at a steep cost.

4. Correlated equilibria and sunspot equilibria

In the previous section we showed that for general economies the pure Nash equilibria of the associated game im-
plement the Walrasian equilibria of the economy. This leads one to ask which economic outcomes would be imple-
mented by the generalization of pure Nash equilibria that allows the possibility of random, payoff-irrelevant signals, 
namely, correlated equilibria (Aumann, 1974). Obviously, there may be other outcomes beside Walrasian equilibria. Since 
payoff-irrelevant signals are involved, the natural candidates are some versions of sunspot equilibria (Cass and Shell, 1991;
Shell, 2007). These are explored in this section.18

13 In this section it is more convenient to deal with consumption vectors zi , rather than with net trades xi = zi − ei as in the previous sections. The 
translation between the two setups is immediate.
14 For instance, Cobb–Douglas utilities satisfy these assumptions.
15 bdRM+ denotes the boundary of RM+ (i.e., all z ∈R

M+ with at least one coordinate equal to 0). The specific utility value of zero that separates RM++ from 
bdRM+ is arbitrary, as adding a constant to the utility does not matter.
16 Define ũi to be the minimum of (the compact set of) the supporting hyperplanes to the graph of ui restricted to Bi . To make the slopes of ũi on the 

boundary of RM+ steeper, one may include also hyperplanes such as h(z) = c�z� with large c� > 0 (so that h lies above ui on Bi ).
17 The recession cone of the original utilities ui is RM+ , and so for appropriate ũi it is close to RM+ —and condition (C) is satisfied.
18 While the Walrasian equilibria and the pure Nash equilibria are ordinal concepts—depending only on the preferences and not on the specific utility 

functions—the mixed Nash equilibria, sunspot equilibria, and correlated equilibria are cardinal concepts which depend on the specific utility functions. Since 
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For the definition of sunspot equilibria that we find natural in our context, we offer some illustrative examples and con-
clude that there is no simple correspondence between sunspot and correlated equilibrium outcomes for general economies. 
However, for the special class of economies with quasilinear utilities (or “transferable utility”) we will see, in Section 7, that 
the situation is quite different.

4.1. Correlated equilibria

We start by recalling the concept of correlated equilibrium (Aumann, 1974). Let G = (N, (Ai)i∈N , (gi)i∈N) be a game in 
strategic form, where N is the set of players, Ai is the set of actions of player i, and gi : A → R is the payoff function of 
player i, where A := �i∈N Ai is the set of action combinations of all players (“action profiles”). The setup consists of:

• The probability space (�, F , P ) of the states of the world.19

• For each player i ∈ N , the signal20 si(ω) ∈ Si that i gets in state ω (which is player i’s information on the state of the 
world; Si is an arbitrary set).

• For each player i ∈ N , the action ai(ω) ∈ Ai that i chooses in state ω, depending on his signal21 si(ω).
• All this constitutes a correlated equilibrium if each player i ∈ N maximizes his expected payoff given his information, i.e.,

ai(ω) ∈ arg max
bi∈Ai

E

[
gi(bi,a−i) | si(ω)

]
(2)

for all22 ω ∈ �.

Equivalently, consider the distribution μ ∈ 
(A) of the random variable a = (ai)i∈N (with values in A). Then μ is the 
distribution of a correlated equilibrium if and only if

ai ∈ arg max
bi∈Ai

Ea−i∼μ−i(·|ai)

[
gi(bi,a−i)

]
= arg max

bi∈Ai

∫
A−i

gi(bi,a−i) dμ(a−i | ai)

for every player i ∈ N and every action ai ∈ Ai , where A−i := � j �=i A j and μ−i(·|ai) ∈ 
(A−i) is the conditional distribution 
of μ given ai .

4.2. Sunspot equilibria

Two general ideas underlie the concept of sunspot equilibrium. First, while the fundamentals of the economy are fixed 
(and known to all agents), the prices may be random. Second, unlike Walrasian equilibria, these prices are not necessarily 
fully known to all agents, who may possess only partial information on the prices.

Formally:

• (�, F , P ) is the probability space of the states of the world.23 In each state of the world ω ∈ � there is a price vector 
p(ω) ∈ P ; let q(ω) ∈R

M−1 denote the price vector for the m − 1 non-numeraire goods, so that p(ω) = (q(ω), 1).
• Each agent i ∈ N gets a “signal” si(ω) on the state of the world (which is agent i’s information on the prices).
• Each agent i ∈ N chooses his consumption yi ∈ R

M−1 of the non-numeraire goods. His consumption of the numeraire 
will be determined by the (possibly unknown) prices: he will have to pay q(ω) · yi . Thus xi(ω) = (yi, −q(ω) · yi) ∈ R

M

will be his consumption vector in state ω. The demand of i in state ω, which we denote by yi(ω), is determined—as a 
function of his information24 si(ω)—so as to maximize his expected utility given his information, i.e.,

yi(ω) ∈ arg max
yi∈RM−1

E

[
ui(yi,−q(ω) · yi) | si(ω)

]
(3)

for all ω ∈ �.

these latter concepts use randomizations, the agents’ utility functions are now viewed as von Neumann–Morgenstern utilities that express risk preferences 
(and so a randomization is evaluated by its expected utility).
19 A common prior is thus assumed.
20 Functions of the state of the world ω, i.e., random variables on �, appear in bold type.
21 Without loss of generality one may assume that (i) ai is determined by si (formally: ai is measurable with respect to si )—otherwise, one may refine 

the signal si —and that (ii) ai = si —otherwise, one may merge signals si after which the decision ai is the same. This is the standard way of presenting a 
correlated equilibrium.
22 All probabilistic statements, including those involving conditioning, should be understood to hold almost everywhere (a.e.).
23 Again, a common prior is assumed.
24 Thus yi is without loss of generality measurable with respect to si (refine si otherwise).
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• All this constitutes a sunspot equilibrium if the market clears, i.e., total demand equals total supply, in all states of the 
world:∑

i∈N

xi(ω) = 0

for all ω ∈ � (this is equivalent to 
∑

i∈N yi(ω) = 0).

Thus, in every state of the world total demand equals total supply—i.e., 
∑

i∈N xi = 0—and every agent’s consumption lies 
on his budget line—i.e., p · xi = 0 for all i.

A Walrasian equilibrium obtains when there is no uncertainty, i.e., when there is a unique state of the world ω (which 
is therefore commonly known, and so the prices are also commonly known). When all agents have full information (i.e., 
si(ω) = ω for all ω and all i), the price vector p(ω) is commonly known in each state of the world ω, and so we get 
a Walrasian equilibrium in each state ω. This sunspot equilibrium therefore yields a convex combination of Walrasian 
equilibria.

As we will see below, in general there exist other sunspot equilibria besides the (convex combinations of) Walrasian 
equilibria; we refer to them as “nontrivial” sunspot equilibria.

Remark. The notion of sunspot equilibrium we use is entirely in the spirit of the very extensive literature on the topic (Cass 
and Shell, 1991; Shell, 2007). In contrast to the latter, which typically considers multi-period economies, we stick to a static 
framework, and adapt the definitions accordingly. Issues of correlation have also been discussed in this literature (see, for 
example, Maskin and Tirole, 1987; Forges and Peck, 1995, and Polemarchakis and Ray, 2006).

4.3. Comparing correlated equilibria and sunspot equilibria

Comparing the sunspot equilibrium condition (3) with the correlated equilibrium condition (2) for the associated game, 
we immediately see that, for every agent i �= n (i.e., all agents except the market-maker), the two conditions coincide: 
both amount to choosing yi ∈ R

M−1 (i.e., the consumption of the non-numeraire goods) so as to maximize the expected 
utility of i given the corresponding conditional distribution of prices. However, the two conditions differ importantly for 
the market-maker n: while in a sunspot equilibrium he behaves exactly like the other agents—choosing his non-numeraire 
consumption yn optimally—in a correlated equilibrium his consumption of the non-numeraire goods is determined by the 
other agents. Instead, he chooses the prices, so as to maximize a suitably specified payoff.

The reason for this difference is that the game must be playable out of equilibrium (a concern that sunspot equilibria do 
not have), which means that the outcome must be feasible for any combination of actions of all agents. This is resolved, in 
our approach, by having the consumption of one of the agents (the market-maker) be determined by the consumptions of 
the other agents.

The examples below will clarify the contrasts between the two concepts.

4.4. Examples

All the examples here have n = 2 agents and m = 2 goods; in the associated game G , agent 2 serves as “market-maker” 
and good 2 serves as “numeraire.”

Example 6. A mixed Nash equilibrium that yields a nontrivial25 sunspot equilibrium.
We seek a Nash equilibrium of the associated game G where agent 1 plays a pure action, say y′ , and agent 2, the 

market-maker, plays a mixed action, say q′ and q′′ , with equal probabilities of 1/2 each.
The allocation of the non-numeraire good (i.e., good 1) is thus y1 = y′ for agent 1 and y2 = −y′ for agent 2. The Nash 

equilibrium conditions are26:

y′ ∈ arg max
y

1

2
g1(y,q′) + 1

2
g1(y,q′′),

q′ ∈ arg max
q≥0

g2(y′,q),

q′′ ∈ arg max
q≥0

g2(y′,q).

Equivalently (for the last two conditions use Lemma 2):

25 I.e., a sunspot equilibrium that is not a convex combination of Walrasian equilibria.
26 In all the examples here the maximizer is in fact unique, and so y′ = arg maxy , etc.
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y′ ∈ arg max
y

1

2
u1(y,−q′ y) + 1

2
u1(y,−q′′ y),

−y′ ∈ arg max
y

u2(y,−q′ y), (4)

−y′ ∈ arg max
y

u2(y,−q′′ y). (5)

These are precisely the conditions for a sunspot equilibrium where agent 1 does not know the price (which has equal 
probability of being q′ = 1 or q′′ = 2), whereas agent 2 knows the price (either q′ or q′′).

In addition, we want neither (y′, −y′, q′) nor (y′, −y′, q′′) to be a pure Nash equilibrium, so that neither outcome will 
be Walrasian; thus

y′ /∈ arg max
y

u1(y,−q′ y),

y′ /∈ arg max
y

u1(y,−q′′ y).

It is easy to find such an example. Take, for instance, y′ = 10, q′ = 1, q′′ = 2, and standard utility functions such as

u1(x1, x2) = 5 log(x1) + 4 log(x2 + 30),

u2(x1, x2) = 2 log(x1 + 30) + log x2,

in the regions, say, (5, −25) ≤ x ≤ (15, −5) for u1, and (−15, 5) ≤ x ≤ (−5, 25) for u2; then extend these utility functions 
to R2 so that they are concave and satisfy the condition of uniformly bounded marginal rates of substitution. The resulting 
consumption vectors, which are x1 = (10, −10) and (10, −20) for agent 1 and x2 = (−10, 10) and (−10, 20) for agent 2, 
belong to the above regions. �
Remark. This example illustrates a general result: a Nash equilibrium where the market-maker plays a strictly mixed ac-
tion is always a sunspot equilibrium, which is moreover nontrivial if the Nash equilibrium is not a mixture of pure Nash 
equilibria.

Example 7. A sunspot equilibrium that cannot be obtained from a correlated equilibrium.
The setup is as in the previous example, but now we require that y2 = −y′ satisfy neither (4) nor (5), but instead satisfy

−y′ ∈ arg max
y

1

2
u2(y,−q′ y) + 1

2
u2(y,−q′′ y).

This yields a sunspot equilibrium where neither agent knows the price q, but only that it equals q′ or q′′ with equal 
probabilities of 1/2 each: indeed, yi maximizes (1/2)ui(y, −q′ y) + (1/2)ui(y, −q′′ y), for both agents i = 1, 2. However, 
if this outcome were obtained in a correlated equilibrium of the associated game, then the market-maker i = 2 would 
know q (as it is his action), but y2 = −y′ (which is constant and thus known) does not maximize either u2(y2, −q′ y2) or 
u2(y2, −q′′ y2). The same holds for agent i = 1, and so neither agent can serve as market-maker.

Specifically, we again use y′ = 10, q′ = 1, and q′′ = 2, and take, for instance,

u1(x1, x2) = 5 log(x1) + 4 log(x2 + 30),

u2(x1, x2) = 7 log(x1 + 30) + 6 log(x2 + 10),

in the regions (5, −25) ≤ x ≤ (15, −5) for u1, and (−15, 5) ≤ x ≤ (−5, 25) for u2, appropriately extended to R2. �
Example 8. A correlated equilibrium that does not yield a sunspot equilibrium.

Here we let y take two values y′ and y′′ , and q take two values q′ and q′′ . We construct a correlated equilibrium 
that puts equal probability of 1/3 on each one of the three points (y′, q′), (y′, q′′), and (y′′, q′). The correlated equilibrium 
conditions are

y′ ∈ arg max
y

(
1

2
g1(y,q′) + 1

2
g1(y,q′′)

)
,

y′′ ∈ arg max
y

g1(y,q′),

q′ ∈ arg max
q≥0

(
1

2
g2(y′,q) + 1

2
g2(y′′,q)

)
,

q′′ ∈ arg max g2(y′,q),

q≥0
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where g1(y, q) = u1(y, −qy) and g2(y, q) = u2(−y, qy) − supw u2(−w, qw) (recall Lemma 2). Moreover, in order not to get 
a sunspot equilibrium, we require that agent 2 (the market-maker) not get his demand, i.e.,

−y′ /∈ arg max
y

(
1

2
u2(y,−q′ y) + 1

2
u2(y,−q′′ y)

)
, (6)

−y′′ /∈ arg max
y

u2(y,−q′ y). (7)

Indeed, the signal of agent 2 in a sunspot equilibrium would have to distinguish between the two states (y′, q′), (y′, q′′)
(where his demand is −y′) and the state (y′′, q′) (where his demand is −y′′), which would have yielded the negations of27

(6) and (7).
Utility functions that satisfy these conditions, for y′ = 20, y′′ = 30, q′ = 5, and q′′ = 9, are

u1(x1, x2) = log(x1 + a) + log(x2 + b),

u2(x1, x2) = log(x1 + c) + log(x2 + d),

where a = 0, b = 300, c ≈ 32.74, and d ≈ −65.35, in the regions (10, −200) ≤ x ≤ (40, −90) for u1 and (−31, 90) ≤ x ≤
(−10, 190) for u2 (computations done using Maple).

The unique Walrasian equilibrium has y1 = −y2 = (bc − ad)/2(b + d) ≈ 10.46 and q = (b + d)/(a + c) ≈ 7.17. �
We point out that all the examples above are robust—small perturbations do not affect them—and have, in the relevant 

regions, standard Cobb–Douglas preferences that are strictly convex and smooth.

5. Socially concave games

Following the study of general economies in the previous section, we will consider the special case of economies with 
quasilinear utilities, where the results turn out to be quite different (see Section 7). To this end, we devote this section and 
the next one to the study of some relevant classes of games with convex action spaces.

This section deals with the class of “socially concave games,” introduced by Even-Dar et al. (2009), who showed that in 
these games the time-averages of no-regret dynamics converge to Nash equilibria. The property of socially concave games 
that drives this result is that the expectations of correlated equilibria—and even of the more general Hannan equilibria—are 
pure Nash equilibria; see Theorem 9 below.

Let � = (N, (Ai)i∈N , (gi)i∈N ) be a game strategic form, where N is a finite set of players, and for each player i ∈ N , the 
set Ai of actions of player i is a nonempty convex subset of some Euclidean space, and gi : A → R is the payoff function of 
player i, where A := ∏

i∈N Ai .
The game is called a socially concave game (Even-Dar et al., 2009) if for each player i ∈ N there is λi > 0 such that:

(G1) The function 
∑

i∈N λi gi(a) is a concave function of a ∈ A.
(G2) For every i ∈ N and every ai ∈ Ai , the function gi(ai, a−i) is a convex function of a−i ∈ Ai .

Remarks. (a) (G1) and (G2) imply that gi(ai, a−i) is a concave function of ai (cf. Even-Dar et al., 2009, Lemma 2.2) for 
each i and a−i , since λi gi(ai, a−i) = ∑

j∈N λ j g j(ai, a−i) −∑
j∈N\i λ

j g j(ai, a−i), and so, as a function of ai , it is the difference 
between a concave function (by (G1)) and a convex function (by (G2)), and thus concave; a socially concave game is thus a 
so-called “concave” game (Rosen, 1965).

(b) Two payoff functions gi and ĝi are strategically equivalent if ĝi(a) = γ i gi(a) + φi(a−i) for all a = (ai, a−i) ∈ A, where 
γ i > 0 and φi : A−i → R is an arbitrary function that depends only on the actions of the other players. Replacing gi with 
a strategically equivalent ĝi does not affect the mixed best-reply correspondence and hence any strategic concepts based 
on best replies, such as Nash equilibrium, correlated equilibrium, and Hannan-consistent equilibrium. It also does not affect 
concepts based on payoff differences where the φi terms cancel, such as regrets and regret-based dynamics (see Hart and 
Mas-Colell, 2000, 2013, and Section 6 below). However, replacing the gi -s with strategically equivalent ĝi -s may help satisfy 
the conditions (G1) and (G2) (as we do in Section 7).

A useful generalization of correlated equilibria is that of a Hannan-consistent equilibrium, or Hannan equilibrium for short 
(also known as coarse correlated equilibrium); see Hannan (1957), Moulin and Vial (1978), Hart and Mas-Colell (2000, 2001, 
2003; 2013, Chapters 2, 3, 5), Young (2004): it is a random variable a with values in A, the set of action profiles, that 
satisfies

E

[
gi(a)

]
≥ E

[
gi(bi,a−i)

]
(8)

27 If his signal did not distinguish between (y′, q′) and (y′, q′′) then we would get the negation of (6), and if it did, then we would get both −y′ ∈
arg maxy u2(y, −q′ y) and −y′ ∈ arg maxy u2(y, −q′′ y), which would imply the negation of (6).
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for every player i ∈ N and every action bi ∈ Ai . Thus, no player i can gain by replacing his actions with any constant
action bi ∈ Ai , while the other players make no changes. Clearly, every correlated equilibrium is a Hannan equilibrium (take 
expectation over si in (2)), and the (mixed) Nash equilibria are precisely those Hannan equilibria where the actions are 
independent across the players, i.e., a1, a2, . . . , an are independent random variables. In terms of distributions, let μ ∈ 
(A)

be the distribution of a; then (8) becomes∫
A

gi(a)dμ(a) ≥
∫
A

gi(bi,a−i)dμ(a) =
∫

A−i

gi(bi,a−i)dμ−i(a−i),

where μ−i ∈ 
(A−i) denotes the marginal distribution of μ on A−i ; we refer to μ as a Hannan distribution.
The main property of socially concave games is the following.

Theorem 9. Let � be a socially concave game. Let a be a Hannan equilibrium of �, and let ā := E [a] ∈ A be its expectation. Then ā is 
a pure Nash equilibrium of �, and moreover its payoffs are the same as the (expected) payoffs of a, i.e., for every player i ∈ N we have 
gi (ā) = E 

[
gi(a)

]
.

Proof. Without loss of generality assume that the λi = 1 for all i. Since A is convex, ā ∈ A. Using (G2) implies

E

[
gi(bi,a−i)

]
≥ gi

(
bi,E

[
a−i

])
= gi(bi, ā−i),

and so (8) yields

E

[
gi(a)

]
≥ gi(bi, ā−i). (9)

Taking in particular bi = āi and then summing over all players i ∈ N:∑
i∈N

E

[
gi(a)

]
≥

∑
i∈N

gi(āi, ā−i) =
∑
i∈N

gi (ā) .

Using (G1) implies

∑
i∈N

E

[
gi(a)

]
= E

[∑
i∈N

gi(a)

]
≤

∑
i∈N

gi (E [a]) =
∑
i∈N

gi(ā).

Therefore∑
i∈N

E

[
gi(a)

]
=

∑
i∈N

gi(ā),

and so we must have equalities throughout. Thus gi (ā) = E 
[

gi(a)
]

for every i, and (9) becomes

gi (ā) ≥ gi(bi, ā−i)

for every bi ∈ Ai ; therefore ā is a pure Nash equilibrium of �. �
Remark. Theorem 9 gives the result of Even-Dar et al. (2009)28: for socially concave games, the time-average of any dynamic 
leading to correlated or Hannan equilibria yields a dynamic leading to pure Nash equilibria. In particular, for no-regret 
dynamics, the time-average of the empirical distributions converges to the set of pure Nash equilibria.

Under strict concavity we get also a uniqueness result. A socially concave game � will be called a socially strictly concave 
game if it satisfies (in addition to (G2)) the strict version of (G1):

(G1s) The function 
∑

i∈N λi gi(a) is a strictly concave function of a ∈ A.

Proposition 10. Let � be a socially strictly concave game. If a Hannan equilibrium exists29 then it is unique, and moreover it is the 
unique pure Nash equilibrium (and is thus also the unique mixed Nash equilibrium and the unique correlated equilibrium).

28 In fact, it was motivated by this result.
29 In this section we have not assumed that the action spaces Ai are compact, and so existence of equilibria is not guaranteed.
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Proof. Again assume without loss of generality that λi = 1 for all i. Let a be any Hannan equilibrium, and ā its expectation. 
Theorem 9 yields E 

[∑
i∈N gi(a)

] = ∑
i∈N gi (E [a]); since 

∑
i∈N gi is strictly concave, it follows that a must be a constant, 

and so a ≡ ā (and ā is a pure Nash equilibrium). This holds for any Hannan equilibrium; but the set of Hannan equilibria 
is convex, and so, if it is nonempty, then it must consist of a unique point, namely, a constant a∗ ∈ A. The result follows 
because the Hannan set contains all Nash equilibria and all correlated equilibria. �
6. Deterministic regret-matching dynamics

In this section we consider (unconditional-)regret-matching dynamics (see Hart and Mas-Colell, 2000, Theorem B; 2013, 
Chapter 2), and show that for a suitable class of games with convex action spaces one may replace such stochastic dynamics 
with deterministic ones.30

We consider the following additional assumptions on the strategic game � = (N, (Ai)i∈N , (gi)i∈N ):

(G3) For every i ∈ N , the action set Ai is compact.
(G4) For every i ∈ N and a−i ∈ A−i , the function gi(ai, a−i) is a concave function of ai ∈ Ai .
(G5) For every i ∈ N , the function gi(ai, a−i) is uniformly equicontinuous in ai ; i.e., for every ε > 0 there is δ > 0 such 

that ||ai − bi || < δ implies |gi(ai, a−i) − gi(bi, a−i)| < ε, for all ai, bi ∈ Ai and a−i ∈ A−i .

Remark. If the function gi : Ai × A−i → R can be extended to a function g̃i : C i × A−i → R where C i ⊃ Ai is an open 
convex set, such that g̃i is convex in ai ∈ C i for every fixed a−i ∈ A−i and is bounded in a−i ∈ A−i for every fixed ai ∈ C i , 
then condition (G5) is satisfied, as g̃i is even uniformly equi-Lipschitz (i.e., there is L such that |gi(ai, a−i) − gi(bi, a−i)| ≤
L||ai − bi || for all ai, bi ∈ Ai and a−i ∈ A−i ); see Rockafellar (1970, Theorem 10.6).

Fix a probability measure ν i on Ai that is equivalent to the Lebesgue measure31 (i.e., each one is absolutely continuous 
with respect to the other; we could well take ν i to be the Lebesgue measure itself on Ai , normalized so that the total mass 
is 1). As we will see below, the specific choice of ν i does not matter.

Consider a repeated play of the game �, where at = (ai
t)i∈N is the N-tuple of actions played at time t , for t = 1, 2, . . . . 

For each time period T = 1, 2, . . . , player i ∈ N , and pure action bi ∈ Ai , the unconditional regret32 Ri
T (bi) of bi is given by

Ri
T (bi) :=

[
Di

T (bi)
]
+ , where

Di
T (bi) := 1

T

T∑
t=1

[
gi(bi,a−i

t ) − gi(at)
]
.

We define a simple strategy33 for player i in the repeated play of the game �, which we will call DURM (short for Determin-
istic Unconditional Regret-Matching), as follows: at period 1 or at any period T + 1 where Ri

T (bi) = 0 for ν i -almost every bi , 
play arbitrarily; otherwise, play ai

T +1 ∈ Ai given by

ai
T +1 := 1∫

Ai Ri
T (bi)dν i(bi)

∫
Ai

bi Ri
T (bi)dν i(bi) . (10)

Unconditional regret-matching, a stochastic strategy introduced in Hart and Mas-Colell (2000, (4.2); 2013, Chapter 2)
for games with finite action spaces, plays all the pure actions bi with probabilities that are directly proportional to their 
regrets, i.e., Ri

T (bi)/ 
∑

ai Ri
T (ai). Here, where Ai is a convex set, we replace this random play by its expectation—which yields 

formula (10).

Remark. The specific measure ν i on Ai , as well as the arbitrary choices at T = 1 and when all regrets vanish, do affect the 
sequence of actions played, but do not matter in the limit, where convergence to the Hannan set obtains (see below).34

We now prove that playing DURM makes the regrets vanish in the limit. We start with L2-convergence: let 
∥∥Ri

T

∥∥
2 =(∫

Ai

[
Ri

T (bi)
]2

dν i(bi)
)1/2

be the L2-norm of Ri
T (cf. Hart and Mas-Colell, 2000; 2013, Chapter 2).

30 It would be interesting to study also other classes of dynamics that yield no regret (e.g., see the book of Cesa-Bianchi and Lugosi, 2006, and the 
gradient-ascent method of Zinkevich, 2003). Some of the relevant issues are speed of convergence, robustness, efficiency of computation, and degree of 
naturalness.
31 This is the d-dimensional Lebesgue measure, where d is the dimension of the affine Euclidean space generated by Ai .
32 Also known as external regret.
33 We use the term “action” for the one-shot game, and “strategy” for the repeated game.
34 Changing the probability weights given by ν i is similar, for instance, to duplicating an action in the case of a finite action space.
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Proposition 11. Let the game � satisfy (G3) and (G4). If player i ∈ N plays a DURM strategy then∥∥∥Ri
T

∥∥∥
2
≤ 2M√

T
→T →∞ 0

for any strategies35 of the other players j �= i, where M := supa∈A |gi(a)|.

Proof. We will prove this36 for any pure strategies of N\{i}, from which it immediately follows for mixed strategies too. 
We have

(T + 1)Di
T +1(b

i) = TDi
T (bi) +

[
gi(bi,a−i

T +1) − gi(aT +1)
]

≤ TRi
T (bi) +

[
gi(bi,a−i

T +1) − gi(aT +1)
]
.

Squaring this inequality and noting that 
[

Ri
T +1(b

i)
]2

equals either 
[

Di
T +1(b

i)
]2

or 0, and so 
[

Ri
T +1(b

i)
]2 ≤ [

Di
T +1(b

i)
]2

, 
yields

(T + 1)2
[

Ri
T +1(b

i)
]2 ≤ T 2

[
Ri

T (bi)
]2 + 4M2

+ 2TRi
T (bi)

[
gi(bi,a−i

T +1) − gi(aT +1)
]
.

Integrating over bi ∈ Ai gives

(T + 1)2
∥∥∥Ri

T +1

∥∥∥2

2
≤ T 2

∥∥∥Ri
T

∥∥∥2

2
+ 4M2

+ 2T

∫
Ai

Ri
T (bi)

[
gi(bi,a−i

T +1) − gi(aT +1)
]

dν i(bi). (11)

When Ri
T (·) = 0 (a.s.) the last term vanishes; otherwise, the definition (10) of ai

T +1 as an average of bi -s and the concavity 
of gi(·, a−i

T +1) on Ai imply that

gi(ai
T +1,a−i

T +1) ≥
∫

Ai gi(bi,a−i
T +1)Ri

T (bi)dν i(bi)∫
Ai Ri

T (bi)dν i(bi)
,

and so the last term in (11) is ≤ 0. Therefore, putting ρT := T 2
∥∥Ri

T

∥∥2
2, we have ρT +1 ≤ ρT + 4M2, hence ρT ≤ 4M2T , which 

completes the proof. �
With the additional uniform equicontinuity condition (G5), we obtain uniform convergence of the regrets.37

Theorem 12. Let the game � satisfy (G3), (G4), and (G5). If player i ∈ N plays a DURM strategy, then the regrets Ri
T converge uniformly 

to 0, i.e., maxbi∈Ai Ri
T (bi) →T →∞ 0, for any strategies of the other players j �= i.

Proof. First, note that the uniform equicontinuity of the payoff function gi implies the equicontinuity of the regret func-
tions: if ||bi − ci || < δ then

|Ri
T (bi) − Ri

T (ci)| ≤ |Di
T (bi) − Di

T (ci)| ≤ 1

T

T∑
t=1

|gi(bi,a−i
t ) − gi(ci,a−i

t )| < ε.

Therefore the sequence Ri
T satisfies the conditions of the Arzelà–Ascoli Theorem. If R0 is any limit point of the sequence 

(with respect to uniform convergence), then, by Proposition 11, ||R0||2 = 0, and so R0 = 0 Lebesgue-a.e., hence everywhere 
(since R0 is continuous).38 �
35 The strategies of the players j ∈ N\i may be independent or correlated.
36 This is essentially the proof of no regret via Blackwell (1956) approachability (see Hart and Mas-Colell, 2000, 2001; 2013, Chapters 2 and 3), but with 

randomizations replaced by their expectations.
37 We thank Yishay Mansour for suggesting this result.
38 A more precise analysis shows that the rate of convergence is polynomial in T (for instance, O (T −1/2(d+1)), where d is the dimension of the affine 

space generated by Ai ).
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Given the sequence at ∈ A of played action profiles, for every T ≥ 1 let αT ∈ 
(A) be the distribution that puts proba-
bility 1/T on each one of a1, a2, . . . , aT —this is the empirical distribution of play—and let āT := (1/T ) 

∑T
t=1 at ∈ A denote its 

expectation—this is the time-average play.39

Corollary 13. Let the game � satisfy (G3), (G4), and (G5). If each player plays a DURM strategy then the sequence αT of empirical 
distributions of play converges as T → ∞ to the set of Hannan distributions of �. Moreover, if � is a socially concave game (i.e., it 
satisfies also (G1) and (G2)), then the sequence of time-average plays āT converges as T → ∞ to the set of pure Nash equilibria of �.

Proof. Let α0 ∈ 
(A) be any limit point of the sequence αT , say αT ′ → α0. Therefore Di
T ′ (bi) = ∫

A[gi(bi, a−i) −
gi(a)]dαT ′ (a) → ∫

A[gi(bi, a−i) − gi(a)]dα0(a) (since gi is a continuous function). Theorem 12 implies that this limit, which 
we denote by Di

α0
(bi), is ≤ 0, and so [Di

α0
(bi)]+ = 0: the regrets at α0 vanish for every i ∈ N and bi ∈ Ai . Therefore α0 is a 

Hannan distribution. The “moreover” statement follows from Theorem 9. �
When the game � has a unique Hannan equilibrium, which is therefore also the unique pure Nash equilibrium of �

(see for instance Proposition 10), and the payoffs are strictly concave in one’s own action, we get a stronger result: the 
period-by-period actual play at ∈ A converges to the unique pure Nash equilibrium of the game. Consider the following 
assumption:

(G4s) For every i ∈ N and a−i ∈ A−i , the function gi(ai, a−i) is a strictly concave function of ai ∈ Ai .

To get convergence of the single-period play (rather than the time-average), we need to specify the choice when all 
regrets vanish. Let DURM0 be the variant of DURM with “inertia” that plays the same action as in the previous period, i.e., 
ai

T +1 = ai
T , when Ri

T (·) = 0 (a.s.).

Proposition 14. Let the game � be a socially strictly concave game (i.e., it satisfies (G1s) and (G2)) that also satisfies (G3), (G4s), and 
(G5). If each player plays the DURM0 strategy then the sequence of plays at converges as t → ∞ to the unique pure Nash equilibrium 
of �.

Proof. Let â ∈ A be the unique pure Nash equilibrium, which is also the unique Hannan equilibrium (see Proposition 10). 
Given ε > 0, let δ > 0 be such that all the δ-best replies to â−i are within ε of âi (such a δ exists since the best reply is 
unique—by (G4s)—and the Ai are compact (G3)). Next, Di

T (bi) = ∫
A[gi(bi, a−i) − gi(a)]dαT (a) → gi(bi, ̂a−i) − gi(â) (since 

the distribution αT converges to the Dirac measure on â by Corollary 13, and gi is continuous); moreover, this convergence 
is uniform in bi (by (G5)), and so there is T0 such that Di

T (bi) < [gi(bi, ̂a−i) − gi(â)] + δ for all T ≥ T0, all i ∈ N , and all 
bi ∈ Ai . Therefore Di

T (bi) > 0 implies that gi(bi, ̂a−i) − gi(â) ≥ −δ, and so bi is a δ-best reply to â−i ; hence ||bi − âi || ≤ ε. 
If Ri

T (·) does not vanish (a.s.), then the action ai
T +1 that DURM plays in this case is an average of bi -s with Di

T (bi) > 0

(see (10)), and so it follows that ||ai
T +1 − âi || ≤ ε. Together with the “inertia” condition of DURM0, if Ri

T1
(·) does not vanish 

for some T1 ≥ T0 then we have ||ai
T +1 − âi || < ε for all T ≥ T1. Otherwise Ri

T (·) = 0 (a.s.) for all T ≥ T0, and then the play 
is constant: ai

T +1 = ai
T0

; but the empirical distribution αT converges to 1â , and so we must have ai
T0

= âi , and the proof is 
complete. �
Remarks. (a) The proof above shows that the result holds for any strategies that guarantee uniform convergence of the 
regrets to 0 and that plays only actions that have positive regret when such actions exist.

(b) The results of this section can be extended to the larger class of regret-based strategies (cf. Hart and Mas-Colell, 2001; 
2013, Chapter 3).

6.1. Deterministic conditional-regret dynamics: an impossibility result

The existence of a deterministic strategy that guarantees that the unconditional regret vanishes in the limit may come as 
a surprise, particularly since this is not the case for conditional regret (recall that having no conditional regret corresponds 
to correlated equilibria; see Hart and Mas-Colell, 2000; 2013, Chapter 2). Indeed, let

R̂ i
T (ai → bi) :=

⎡
⎢⎣ 1

T

∑
t≤T :ai

t=ai

[
gi(bi,a−i

t ) − gi(at)
]⎤⎥⎦

+

,

where40 ai, bi ∈ Ai , be the conditional regret of player i from ai to bi ; see Hart and Mas-Colell (2000; 2013, Chapter 2).

39 Thus αT ∈ 
(A) and āT ∈ A.
40 If an action ai has not been played up to time T then R̂ i

T (ai → bi) = 0 for every bi (as the sum is empty).
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Proposition 15. Assume that player i ∈ N does not have a weakly dominant action in the game � (i.e., there is no ai
0 ∈ Ai such that 

gi(ai
0, a

−i) ≥ gi(ai, a−i) for every ai ∈ Ai and a−i ∈ A−i ) and that gi is a continuous function on A. Then for every deterministic 
strategy of i in the repeated play of �, the conditional regrets of i cannot be guaranteed to converge to 0. More precisely: there exists a 
δ > 0 and a (deterministic) strategy of the other players N\{i} such that41∑

ai∈Ai

max
bi∈Ai

R̂ i
T (ai → bi) ≥ δ

for all T ≥ 1.

Proof. For every ai ∈ Ai let F −i(ai) ∈ A−i be such that

max
bi∈Ai

gi(bi, F −i(ai)) > gi(ai, F −i(ai))

(if there were no such F −i(ai) then ai would be a dominant action of i); the continuity of gi and the compactness of Ai

and A−i imply that there is a δ > 0 such that the difference in the above inequality is at least δ for all ai ∈ Ai , i.e.,

max
bi∈Ai

gi(bi, F −i(ai)) − gi(ai, F −i(ai)) ≥ δ.

Let Hi(ai) ∈ Ai be an action of i satisfying this inequality; i.e., for every ai ∈ Ai we have

gi(Hi(ai), F −i(ai)) − gi(ai, F −i(ai)) ≥ δ. (12)

Take a deterministic strategy of player i. Let ai ∈ Ai be the pure action played by player i at time t after some his-
tory ht−1, and let the other players play F −i(ai) after that same history ht−1. Since every time that i plays ai the other 
players play F −i(ai), for every T ≥ t we then get

R̂ i
T (ai → bi) = φi

T (ai)
[

gi(bi, F −i(ai)) − gi(ai, F −i(ai))
]
+ ,

where φi
T (ai) denotes the relative frequency that ai has been played up to time T , and so

max
bi∈Ai

R̂ i
T (ai → bi) ≥ φi

T (ai)δ.

Since 
∑

ai φi
T (ai) = 1 we get 

∑
ai∈Ai maxbi∈Ai R̂ i

T (ai → bi) ≥ δ. �
Remark. When conditional regrets converge to 0, the empirical distribution of play αT ∈ 
(A), which puts weight 1/T
on each one of a1, a2, . . . , aT ∈ A, converges to the set of correlated equilibrium distributions (Hart and Mas-Colell, 2000; 
2013, Chapter 2). By contrast, the strategies above keep the empirical distributions far from being correlated equilibrium 
distributions, for all T ; indeed, having player i replace each “recommendation” ai by Hi(ai) ∈ Ai (see (12)) increases his 
payoff by at least δ.

7. Economies with quasilinear utilities

In this section we consider the special class of economies with quasilinear utilities, i.e., where the utilities of all agents 
are linear in the “numeraire” good (also called economies with transferable utility, as the numeraire can serve to “transfer” 
utility between the agents.)42 Formally, in a quasilinear economy, for every agent i ∈ N there is function vi : RM−1 → R

such that ui(x1, . . . , xm−1, xm) = vi(x1, . . . , xm−1) + xm ∈ R
M−1 for every43 x = (x1, . . . , xm) ∈ R

M . The general definition of a 
Walrasian equilibrium becomes: a price vector q̃ ∈ R

M−1++ for the goods M\{m} (recall that the price of good m is normalized 
to 1) and an allocation ( ỹi)i∈N with ỹi ∈ R

M−1 and 
∑

i∈N ỹi = 0 such that ỹi is a demand of i at q̃, for every i ∈ N , i.e., 
ỹi ∈ arg maxyi∈RM−1

(
vi(y) − q̃ · y

)
.

In the quasilinear case, the payoff functions of the associated game G of Section 3 (with the numeraire m as the special 
good) become

gi(y1, . . . , yn−1,q) := vi(yi) − q · yi for i �= n,

gn(y1, . . . , yn−1,q) := vn(yn) − q · yn − sup
w∈RM−1

{vn(w) − q · w}.

41 The sum is over those ai ∈ Ai that have been played up to time T , since for any other ai the regrets are 0.
42 See Mas-Colell et al. (1995); quasilinearity is a standard hypothesis, particularly in the extensive mechanism design literature.
43 We maintain the basic assumptions of Section 2, and so vi is concave and, for every supporting price vector q ∈ R

M−1, we have 1/K ≤ q� ≤ K and 
1/K ≤ q�/q�′ ≤ K for all 1 ≤ �, �′ ≤ m − 1.
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For our specific game G , a correlated equilibrium is a random variable (y1, . . . , yn−1, q) with values in RM−1 × . . . ×
R

M−1 × Q . Each realization generates an outcome (by (1)), and so we have the induced random outcome (x1, . . . , xn; p), 
which yields the (expected) outcome (E 

[
x1

]
, . . . , E [xn] ; E [p] ). Let CEO be the set of Correlated Equilibrium (expected) Out-

comes of the game G .
It turns out that in the quasilinear case the result of Theorem 1 on the equivalence between the Walrasian and the pure 

Nash equilibrium outcomes becomes much stronger.

Theorem 16. Let E be a quasilinear economy. Then the set of correlated equilibrium outcomes, the set of mixed Nash equilibrium 
outcomes, the set of pure Nash equilibrium outcomes, and the set of Walrasian outcomes, all coincide: CEO = NEO = PNEO = WEO.

We first show that quasilinear economies yield socially concave games. Theorem 9 then implies that the expectation of 
a correlated equilibrium is a pure Nash equilibrium. However, that is not enough: the payoff functions are not linear, and 
so we need to show also that the expected outcome is the same as the outcome of the expected action profile.

Proposition 17. The strategic game G generated from a quasilinear economy E is strategically equivalent to a socially concave game.

Proof. Recalling Remark (b) that follows (G1)–(G2) in Section 5, take φn(y1, . . . , yn−1) = −vn(− 
∑

i �=n yi) = −vn(yn) (and 
φi = 0 for i �= n). The resulting functions ĝi are convex in a−i (in fact, linear), and 

∑
i ĝi = ∑

i �=n vi(yi) + infw{q · w − vn(w)}
is concave in (y1, . . . , yn−1, q). �
Proof of Theorem 16. Let a = (y1, . . . , yn−1,q) be a correlated equilibrium of G , with induced random outcome θ =
(x1, . . . , xn, p). Let ā = ( ȳ1, . . . , ȳn−1, ̄q) := E [a] and θ̄ = (x̄1, . . . , ̄xn, p̄) := E [θ ] be the expected action profile and the ex-
pected outcome, respectively. We have to show that θ̄ is a pure Nash equilibrium outcome. Proposition 17 implies that we 
can apply Theorem 9, and thus ā is a pure Nash equilibrium of G , and

gi(ā) = E

[
gi(a)

]
(13)

for all i ∈ N . We will prove that the outcome induced by the expected action ā is precisely the expected outcome θ̄ , and so 
indeed θ̄ ∈ PNEO. The issue is the nonlinearity of the terms q · yi : we have x̄i = E 

[
xi

] = E 
[
(yi,−q · yi)

] = (
ȳi,−E

[
q · yi

])
, 

whereas the consumption of agent i in the outcome induced by ā is ( ȳi, −q̄ · ȳi), and so we have to show that E 
[
q · yi

] =
q̄ · ȳi for all i.

For agents i �= n, (13) is E 
[
vi(yi) − q · yi

] = vi( ȳi) − q̄ · ȳi . Since vi is concave we have E 
[
vi(yi)

] ≤ vi
(
E

[
yi

]) = vi( ȳi), 
and so

E

[
q · yi

]
≤ q̄ · ȳi . (14)

For agent n, we recall Lemma 2. First, we have gn(ā) = 0 (since ā is a Nash equilibrium); and second, we get gn(a) = 0 (a.s.) 
(since gn ≤ 0 and 0 = gn(ā) = E [gn(a)] by (13)). Thus yn is a demand of agent n at q (a.s.), and so, in particular, it is weakly 
preferred to ȳn = E [yn], i.e., vn( ȳn) − q · ȳn ≤ vn(yn) − q · yn . Taking expectation yields vn( ȳn) − q̄ · ȳn ≤ E [vn(yn) − q · yn]. 
The right-hand side is ≤ vn( ȳn) −E [q · yn] by the concavity of vn , and so we obtain the inequality (14) also for i = n.

Summing (14) over all i ∈ N yields E 
[
q · ∑i yi

] ≤ q̄ · ∑
i ȳi = q̄ · E 

[∑
i yi

]
, which is in fact an equality, as both sides 

equal 0 (because 
∑

i yi = 0). This implies that all the inequalities above, in particular (14), become equalities, and so CEO =
PNEO. Together with CEO ⊃ NEO ⊃ PNEO, and then Theorem 1 that gives PNEO = WEO, the proof is complete. �

A similar result holds for sunspot equilibria. The (expected) outcome of a sunspot equilibrium is the expectation of the 
random outcome (x1, . . . , xn; p); i.e., it is the outcome (E 

[
x1

]
, . . . , E [xn] ; E [p] ). Let SEO denote the set of Sunspot Equilib-

rium (expected) Outcomes.

Proposition 18. Let E be a quasilinear economy. Then the set of sunspot equilibrium outcomes coincides with the set of Walrasian 
equilibrium outcomes: SEO = WEO.

Proof. Consider a sunspot equilibrium as in Section 4.2 and an agent i ∈ N . With ȳi := E 
[
yi

]
and q̄ := E [q], the sunspot 

equilibrium condition (3) yields, in particular, E 
[
ui(yi,−q · yi) | si

] ≥ E 
[
ui( ȳi,−q · ȳi) | si

]
, or

E

[
vi(yi) − q · yi | si

]
≥ E

[
vi( ȳi) − q · ȳi | si

]
. (15)

Taking expectation over si gives

E

[
vi(yi)

]
−E

[
q · yi

]
≥ vi( ȳi) − q̄ · ȳi .
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Since vi is concave we have E 
[
vi(yi)

] ≤ vi
(
E

[
yi

]) = vi( ȳi), and so we get

E

[
q · yi

]
≤ q̄ · ȳi . (16)

As in the proof of Theorem 16 (sum over i and recall that 
∑

i yi = 0), we must have equalities all along. In particular (15)
is an equality, and so ȳi is also a maximizer in the sunspot equilibrium condition (3). After taking expectation over q, 
(3) becomes vi( ȳi) − q̄ · ȳi ≥ vi(y) − q̄ · y for all y, and so the outcome corresponding to ( ȳ1, . . . , ȳn−1, ̄q) is indeed a 
Walrasian equilibrium outcome. �

What the proofs above suggest is that while correlated equilibria and sunspot equilibria may entail some randomness, it 
is mostly inessential. Under some standard additional assumptions of strict concavity and smoothness, this randomness is 
completely eliminated and the equilibrium concepts reduce to the unique Walrasian equilibrium.

Proposition 19. Let E be a quasilinear economy, and assume that all the functions vi are strictly concave and differentiable.44 If a 
Walrasian equilibrium exists45 then it is unique, and in this case the associated game G has a unique pure Nash equilibrium, which is 
also the unique correlated equilibrium. Moreover, all sunspot equilibria yield in every state the same allocation of the non-numeraire 
goods and the same conditional expected prices as in the unique Walrasian equilibrium.

Proof. We start with correlated equilibria. In the proof of Theorem 16 we have seen that all inequalities are in fact equal-
ities, and so in particular E 

[
vi(yi)

] = vi
(

ȳi
)

(with ȳi = E 
[
yi

]
); the strict concavity of vi implies that yi must be constant, 

i.e., yi = ȳi . Then q is a supergradient of vn at ȳn , and so the smoothness of vn implies that q is constant, i.e., q = q̄. 
Thus there is no randomness, which means that every correlated equilibrium is a pure Nash equilibrium. Hence there is at 
most one pure Nash equilibrium (otherwise we would have random mixtures of different pure Nash equilibria as correlated 
equilibria). By Theorem 1, this implies also the uniqueness of the Walrasian equilibrium.

For sunspot equilibria, recall the proof of Proposition 18. Again, the equalities we have obtained include E 
[

vi(yi)
] =

vi
(

ȳi
)
, and so the strict concavity of vi implies yi = ȳi . Next, the sunspot equilibrium condition (3) says that E 

[
q|si

]
is a 

supergradient of vi at ȳi , which is unique because vi is a smooth function. Therefore E 
[
q|si

] = q̄. �
Remarks. (a) An example of a nontrivial sunspot equilibrium in the setup of Proposition 19, where ( ȳ1, . . . , ȳn, ̄q) is the 
unique Walrasian equilibrium, is as follows. Let yi = ȳi for all i; let q take the values q′ and q′′ with equal probabilities, 
where q′ �= q′′ satisfy q̄ = (1/2)q′ + (1/2)q′′; and assume no agent gets any information.

(b) In Proposition 19, if there is no Walrasian equilibrium then the proof implies that there are no Nash equilibria, no 
correlated equilibria, and no sunspot equilibria.

(c) All the results in this section apply not only to correlated equilibria, but also to the more general concept of Hannan-
consistent equilibria; indeed, they are all based on Theorem 9 (see Section 5).

We come now to dynamics, where we will use the theory developed in Section 6. We thus need to work with compact 
action spaces, and so we assume that there is a finite bound b0 on the individually rational outcomes. This bound could be 
given by the cone condition (C) in Section 3.1 (see Lemma 3), or by the total initial endowment of the non-numeraire goods 
(by carrying out a construction as in Section 3.2, but restricted to the non-numeraire goods).

Proposition 20. Let E be a quasilinear economy with a bound b0 on the individually rational outcomes. If every agent plays a DURM 
strategy in the game Gb with b ≥ b0 , then the time-average of the action profiles converges to the set of pure Nash equilibria of the 
game, whose outcomes coincide with the set of Walrasian equilibrium outcomes.

Proof. Since Gb satisfies (G1)–(G5) (for (G5), see the remark immediately following it in Section 6), the result follows from 
Corollary 13. �

In the strict case, the actual play also converges to the Walrasian outcome.

Proposition 21. Let E be a quasilinear economy with a bound b0 on the individually rational outcomes, and assume that all the 
functions vi are strictly concave and differentiable. If every agent plays a DURM strategy in the game Gb with b ≥ b0 , then the outcome 
θt obtained at time t converges to the unique Walrasian equilibrium outcome.

Proof. In this case the strict assumptions (G1s) and (G4s) are also satisfied, and we apply Proposition 14. �
44 Weaker conditions may suffice: v1, . . . , vn−1 strictly concave and vn differentiable.
45 We do not assert here the existence of equilibria; to guarantee this one would need some boundedness assumptions, e.g., condition (C) in Section 3.1.
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Remarks. (a) DURM may be replaced by other dynamics that yield no regret in the limit.
(b) Assumption (C) justifies the restriction of our dynamics to a compact set (see Section 3.1; also, Section 3.2). It remains 

an open question whether, under condition (C), unrestricted DURM (where the regrets of all actions—not only those bounded 
by b—are considered) also yields the same results.

(c) It is well known that, informally speaking, exchange economies are well behaved for classes of economies other than 
the quasilinear class—in particular for the gross-substitute class (that is, with a low degree of complementarity), which 
includes the Cobb–Douglas utilities. It would certainly be interesting to study the regret-based dynamics in these classes.
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