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PART I

Introduction: Dynamics
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Dynamics
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Dynamics

“Learning”
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Dynamics

“Learning”
START: prior beliefs

STEP:
observe
update (Bayes)
optimize (best-reply)

REPEAT
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Dynamics

“Evolution”
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Dynamics

“Evolution”
populations

each individual ↔ fixed action (“gene”)

frequencies of each action in the population
↔ mixed strategy
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Dynamics

“Evolution”
populations

each individual ↔ fixed action (“gene”)

frequencies of each action in the population
↔ mixed strategy

Change:
Selection
higher payoff ⇒ higher frequency
Mutation
random and relatively rare
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Dynamics

“Adaptive Heuristics”
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Dynamics

“Adaptive Heuristics”
“rules of thumb”

myopic

simple

stimulus response, reinforcement

behavioral, experiments

non-Bayesian
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Dynamics

“Adaptive Heuristics”
“rules of thumb”

myopic

simple

stimulus response, reinforcement

behavioral, experiments

non-Bayesian

Example : Fictitious Play
(Play optimally against the empirical distribution
of past play of the other player)
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LearningjHeuristicsjEvolution
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Rationality

--
Rationality

LearningjHeuristicsjEvolution

........
........

........
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Rationality

--
Rationality

LearningjHeuristicsjEvolution

........
........

........

µ

most
of this

talk
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Can simple
adaptive heuristics

lead to
sophisticated

rational behavior ?
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Game

N -person game in strategic (normal) form

Players

i = 1, 2, ..., N
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Players
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For each player i: Actions

si in Si
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Game

N -person game in strategic (normal) form

Players

i = 1, 2, ..., N

For each player i: Actions

si in Si

For each player i: Payoffs (utilities )

ui(s) ≡ ui(s1, s2, ..., sN)
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Dynamics

Dynamics

Time

t = 1, 2, ...
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Dynamics

Dynamics

Time

t = 1, 2, ...

At time t each player i chooses an action

si
t in Si
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PART II

Regret Matching
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Advertisement

DON’T YOU FEEL A PANG OF
REGRET?
47.15%

YIELD

47.15%

17.92% 4.43%
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Don’t wait! Ask your broker today
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Regret Matching

REGRET MATCHING =
Switch next period to a different action
with a probability that is proportional

to the regret for that action

SERGIU HART c© 2004 – p. 15



Regret Matching

REGRET MATCHING =
Switch next period to a different action
with a probability that is proportional

to the regret for that action

REGRET = increase in payoff
had such a change

always been made in the past
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Regret

U = average payoff up to now
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V (k) = average payoff if action k had been
played instead of the current action j
every time in the past that j was played
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Regret

U = average payoff up to now

V (k) = average payoff if action k had been
played instead of the current action j
every time in the past that j was played

R(k) = [V (k) − U ]
+

= regret for action k
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Regret

U = average payoff up to now

V (k) = average payoff if action k had been
played instead of the current action j
every time in the past that j was played

R(k) = [V (k) − U ]
+

= regret for action k

R(k) ≡ Ri
T (j → k) =

[

1

T

∑

t≤T : si
t = j

(

ui(k, s−i
t ) − ui(st)

)

]

+
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Regret Matching

Next period play:

Switch to action k with a probability that is
proportional to the regret R(k) (for k 6= j)

SERGIU HART c© 2004 – p. 17



Regret Matching

Next period play:

Switch to action k with a probability that is
proportional to the regret R(k) (for k 6= j)

Play the same action j of last period with the
remaining probability

SERGIU HART c© 2004 – p. 17



Regret Matching

Next period play:

Switch to action k with a probability that is
proportional to the regret R(k) (for k 6= j)

Play the same action j of last period with the
remaining probability

σ(k) ≡ σi
T+1

(k) = cR(k), for k 6= j

σ(j) ≡ σi
T+1

(j) = 1 −
∑

k 6=j cR(k)
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Regret Matching

Next period play:

Switch to action k with a probability that is
proportional to the regret R(k) (for k 6= j)

Play the same action j of last period with the
remaining probability

σ(k) ≡ σi
T+1

(k) = cR(k), for k 6= j

σ(j) ≡ σi
T+1

(j) = 1 −
∑

k 6=j cR(k)

c = a fixed positive constant (so that the
probability of not switching is > 0)
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Regret Matching Theorem

Theorem
If all players play Regret Matching
then the joint distribution of play

converges to the set of
CORRELATED EQUILIBRIA of the game
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 1

SERGIU HART c© 2004 – p. 19



Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 1

0 0 0

1 0 0
z1
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 2

0 0 1/2

1/2 0 0
z2
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 3

0 0 2/3

1/3 0 0
z3
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Joint Distribution of Play

Joint distribution of play zT =
The relative frequencies that the N -tuples of
actions have been played up to time T

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 10

3/10 0 2/10

1/10 3/10 1/10
z10
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Joint Distribution of Play

Note 1 : The fact that the players randomize
independently at each period does not imply
that the joint distribution is independent !

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
T = 10

3/10 0 2/10

1/10 3/10 1/10
z10
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Joint Distribution of Play

Note 1 : The fact that the players randomize
independently at each period does not imply
that the joint distribution is independent !

Note 2 : Players observe the joint distribution
(the history of play)
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Joint Distribution of Play

Note 1 : The fact that the players randomize
independently at each period does not imply
that the joint distribution is independent !

Note 2 : Players observe the joint distribution
(the history of play)

Note 3 : Players react to the joint distribution
(patterns, “coincidences”, communication,
signals, ...)
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Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium
when the players receive payoff-irrelevant signals
before playing the game (Aumann 1974)
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Examples :
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Examples :
Independent signals
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Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium
when the players receive payoff-irrelevant signals
before playing the game (Aumann 1974)

Examples :
Independent signals ⇔ Nash equilibrium
Public signals (“sunspots”) ⇔
convex combinations of Nash equilibria
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Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium
when the players receive payoff-irrelevant signals
before playing the game (Aumann 1974)

Examples :
Independent signals ⇔ Nash equilibrium
Public signals (“sunspots”) ⇔
convex combinations of Nash equilibria
Butterflies play the Chicken Game
(“Speckled Wood” Pararge aegeria)
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Correlated Equilibria

"Chicken" game

LEAVE STAY

LEAVE 5, 5 3, 6

STAY 6, 3 0, 0
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Correlated Equilibria
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LEAVE STAY

LEAVE 5, 5 3, 6

STAY 6, 3 0, 0

a Nash equilibrium
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Correlated Equilibria

"Chicken" game

LEAVE STAY

LEAVE 5, 5 3, 6

STAY 6, 3 0, 0

another Nash equilibrium i
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Correlated Equilibria

"Chicken" game

LEAVE STAY

LEAVE 5, 5 3, 6

STAY 6, 3 0, 0

L 0 1/2

1/2 0

a (publicly) correlated equilibrium
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Correlated Equilibria

"Chicken" game

LEAVE STAY

LEAVE 5, 5 3, 6

STAY 6, 3 0, 0

L S

L 1/3 1/3

S 1/3 0

another correlated equilibrium

after signal L play LEAVE

after signal S play STAY
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Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium
when the players receive payoff-irrelevant signals
before playing the game (Aumann 1974)

Examples :
Independent signals ⇔ Nash equilibrium
Public signals (“sunspots”) ⇔
convex combinations of Nash equilibria
Butterflies play the Chicken Game
(“Speckled Wood” Pararge aegeria)
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Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium
when the players receive payoff-irrelevant signals
before playing the game (Aumann 1974)

Examples :
Independent signals ⇔ Nash equilibrium
Public signals (“sunspots”) ⇔
convex combinations of Nash equilibria
Butterflies play the Chicken Game
(“Speckled Wood” Pararge aegeria)
Boston Celtics’ front line
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Correlated Equilibrium

Signals (public, correlated) are unavoidable
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Correlated Equilibrium

Signals (public, correlated) are unavoidable

Bayesian Rationality ⇔ Correlated
Equilibrium (Aumann 1987)
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Correlated Equilibrium

Signals (public, correlated) are unavoidable

Bayesian Rationality ⇔ Correlated
Equilibrium (Aumann 1987)

A joint distribution z is a correlated equilibrium

⇔
∑

s−i

u(j, s−i)z(j, s−i) ≥
∑

s−i

u(k, s−i)z(j, s−i)

for all i ∈ N and all j, k ∈ Si
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Regret Matching Theorem [recall]

Theorem
If all players play Regret Matching
then the joint distribution of play

converges to the set of
CORRELATED EQUILIBRIA of the game
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Regret Matching Theorem

CE = set of correlated equilibria

zT = joint distribution of play up to time T

distance(zT , CE) → 0 as T → ∞ (a.s.)

SERGIU HART c© 2004 – p. 25



Regret Matching Theorem

CE = set of correlated equilibria

zT = joint distribution of play up to time T

distance(zT , CE) → 0 as T → ∞ (a.s.)

⇔
zT is approximately a correlated equilibrium

(or zT is a correlated approximate equilibrium )
from some time on (for all large enough T )
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Regret Matching Theorem

Proof

zT is a correlated equilibrium
⇔ there is no regret :
Ri

T (j → k) = 0 for all players and all actions
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Regret Matching Theorem

Proof

zT is a correlated equilibrium
⇔ there is no regret :
Ri

T (j → k) = 0 for all players and all actions

Regret Matching
⇒ all regrets converge to 0
(Proof: Blackwell Approachability for the
vector of regrets + approximate eigenvector
probabilities by transition probabilities)
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Regret Matching Theorem

Proof

zT is a correlated equilibrium
⇔ there is no regret :
Ri

T (j → k) = 0 for all players and all actions

Regret Matching
⇒ all regrets converge to 0
(Proof: Blackwell Approachability for the
vector of regrets + approximate eigenvector
probabilities by transition probabilities)

Note: zT converges to the set CE, not to a point

SERGIU HART c© 2004 – p. 26



Remarks

Correlating device: the history of play
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Remarks

Correlating device: the history of play

Other procedures leading to correlated
equilibria:

Foster–Vohra 1997
Calibrated Learning: best-reply to
calibrated forecasts
Fudenberg–Levine 1999
Conditional Smooth Fictitious Play
Eigenvector strategy
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Remarks

Correlating device: the history of play

Other procedures leading to correlated
equilibria:

Foster–Vohra 1997
Calibrated Learning: best-reply to
calibrated forecasts
Fudenberg–Levine 1999
Conditional Smooth Fictitious Play
Eigenvector strategy

Not heuristics!
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Behavioral Aspects

Behavioral aspects of Regret Matching :
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Behavioral aspects of Regret Matching :
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Behavioral Aspects

Behavioral aspects of Regret Matching :

Commonly used rules of behavior
Never change a winning team
The higher would have been the payoff
from another action – the higher the
tendency to switch to it
Small probability of switching (the “status
quo bias")

Stimulus-response, reinforcement

No beliefs (defined directly on actions)
No best-reply (better-reply ?)
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Behavioral Aspects

Similar to models of learning, experimental
and behavioral economics:
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Behavioral Aspects

Similar to models of learning, experimental
and behavioral economics:

Bush–Mosteller 1955
Erev–Roth 1995, 1998
Camerer–Ho 1997, 1998, 1999
...
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Behavioral Aspects

Similar to models of learning, experimental
and behavioral economics:

Bush–Mosteller 1955
Erev–Roth 1995, 1998
Camerer–Ho 1997, 1998, 1999
...

N. Camille et al,
“The Involvement of the Orbitofrontal Cortex
in the Experience of Regret ”
Science May 2004 (304: 1167–1170)
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PART III

Generalized

Regret Matching
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Questions

How special is Regret Matching?
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Questions

How special is Regret Matching?

Why does conditional smooth fictitious play
work?
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Questions

How special is Regret Matching?

Why does conditional smooth fictitious play
work?

Any connections?
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Generalized Regret Matching

Regret Matching = Switching probabilities are
proportional to the regrets : σ(k) = cR(k)
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Generalized Regret Matching

Regret Matching = Switching probabilities are
proportional to the regrets : σ(k) = cR(k)

Generalized Regret Matching = Switching
probabilities are a function of the regrets :

σ(k) = f(R(k))
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Generalized Regret Matching

Regret Matching = Switching probabilities are
proportional to the regrets : σ(k) = cR(k)

Generalized Regret Matching = Switching
probabilities are a function of the regrets :

σ(k) = f(R(k))

f is a sign-preserving function:
f(0) = 0, and x > 0 ⇒ f(x) > 0

f is a Lipschitz continuous function

(in fact, much more general: fk,j, potential)
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Generalized Regret Matching

Theorem
If all players play

Generalized Regret Matching
then the joint distribution of play

converges to the set of
correlated equilibria of the game
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Generalized Regret Matching

Theorem
If all players play

Generalized Regret Matching
then the joint distribution of play

converges to the set of
correlated equilibria of the game

Proof : “Universal” approachability strategies
+ Amotz Cahn, M.Sc. thesis, 2000
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Special Cases

Play probabilities proportional to the
m-th power of the regrets
(f(x) = cxm, for m ≥ 1)
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m = ∞: Positive probability only to actions
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Special Cases

Play probabilities proportional to the
m-th power of the regrets
(f(x) = cxm, for m ≥ 1)

m = 1: Regret Matching

m = ∞: Positive probability only to actions
with maximal regret ⇔
Conditional Fictitious Play

But: Not continuous
Therefore: Smooth Conditional
Fictitious Play
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PART IV

Unknown Game
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Unknown Game

The case of the “Unknown game” :

The player knows only
Its own set of actions
Its own past actions and payoffs
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Unknown Game

The case of the “Unknown game” :

The player knows only
Its own set of actions
Its own past actions and payoffs

The player does not know the game
(other players, actions, payoff functions,
history of other players’ actions and payoffs)
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Proxy Regret

Unknown game ⇒ Unknown regret
(The player does not know what the payoff
would have been if he had played a different
action k)
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Unknown game ⇒ Unknown regret
(The player does not know what the payoff
would have been if he had played a different
action k)

“Proxy Regret” for k: Use the payoffs
received when k has been actually played in
the past
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Proxy Regret

Unknown game ⇒ Unknown regret
(The player does not know what the payoff
would have been if he had played a different
action k)

“Proxy Regret” for k: Use the payoffs
received when k has been actually played in
the past

Theorem . If all players play strategies based
on proxy regret , then the joint distribution of
play converges to the set of correlated
equilibria of the game
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PART V

Uncoupled Dynamics

SERGIU HART c© 2004 – p. 38



Nash Equilibrium

Question:
Adaptive heuristics → Nash equilibria ?
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Nash Equilibrium

Question:
Adaptive heuristics → Nash equilibria ?

In SPECIAL classes of games: YES
Fictitious play, Regret-based, ...

Two-person zero-sum games
Two-person potential games
Supermodular games
...

In GENERAL games: NO

WHY ?
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Uncoupled Dynamics

General dynamic for 2-person games:

ẋ(t) = F ( x(t) , y(t) ; u1 , u2 )

ẏ(t) = G ( x(t) , y(t) ; u1 , u2 )

x(t) ∈ ∆(S1), y(t) ∈ ∆(S2)
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Uncoupled Dynamics

General dynamic for 2-person games:

ẋ(t) = F ( x(t) , y(t) ; u1 , u2 )

ẏ(t) = G ( x(t) , y(t) ; u1 , u2 )

Uncoupled dynamic:

ẋ(t) = F ( x(t) , y(t) ; u1 )

ẏ(t) = G ( x(t) , y(t) ; u2 )

x(t) ∈ ∆(S1), y(t) ∈ ∆(S2)
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Uncoupled Dynamics

“Adaptive” (“rational”) dynamics

(best-reply, better-reply, payoff-improving,
monotonic, fictitious play, regret-based,
replicator dynamics, ...)

are uncoupled
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Uncoupled Dynamics

“Adaptive” (“rational”) dynamics

(best-reply, better-reply, payoff-improving,
monotonic, fictitious play, regret-based,
replicator dynamics, ...)

are uncoupled

Uncoupledness is a natural informational
condition
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Nash-Convergent Dynamics

Consider a family of games , each having a
unique Nash equilibrium
(no “coordination problems”)
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Nash-Convergent Dynamics

Consider a family of games , each having a
unique Nash equilibrium
(no “coordination problems”)

A dynamic is Nash-convergent if it always
converges to the unique Nash equilibrium

Regularity conditions: The unique Nash
equilibrium is a stable rest-point of the
dynamic
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Impossibility

There exist no uncoupled dynamics
which guarantee Nash convergence
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Impossibility

There exist no uncoupled dynamics
which guarantee Nash convergence

There are simple families of games
whose unique Nash equilibrium

is unstable
for every uncoupled dynamic
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Impossibility

“Adaptive” (“rational”) dynamics

(best-reply, better-reply, payoff-improving,
monotonic, fictitious play, regret-based,
replicator dynamics, ...)

are uncoupled
⇒ cannot always converge to Nash
equilibria
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Nash vs Correlated

Correlated equilibria ↔ Uncoupled dynamics
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Nash vs Correlated

Correlated equilibria ↔ Uncoupled dynamics

Nash equilibria ↔ Coupled dynamics

“Law of Conservation of Coordination”

There must be coordination
either in the equilibrium concept

or in the dynamic

SERGIU HART c© 2004 – p. 45



Summary
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Where Do We Go From Here?
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Where Do We Go From Here?

Dynamics and equilibria
Which equilibria?
Which dynamics?

Correlated equilibria: theory and practice
Coordination
Communication
Bounded complexity

Experiments, empirics ↔ Theory

Joint distribution of play
(instead of just the marginals)
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Question

Can simple
adaptive heuristics

lead to
sophisticated

rational behavior ?
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Answer Q

Can simple
adaptive heuristics

lead to
sophisticated

rational behavior ?

YES !

in time ...
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Summary – Macro
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BEHAVIORAL RATIONAL

ADAPTIVE
HEURISTICS
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