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1. INTRODUCTION

Let {ft}tET be a collection of real functions defined on the non-negative

orthant of a Euclidean space (say, R~), which is parametrized by an arbitrary

(measurable) space T. Let a in R~ be fixed, and choose t1,tZ"" ,tm in T.
We consider then the following optimization problem:

m
Maximize k.L ft. (xi)

1=1 1

1
m

subject to - L x. = a
m i=l 1

nand xiER+ for all 1 ~ i ~ m.

Assume now that tl ,tz"" are actually independently drawn from T according

to a fixed distribution ~. As m increases, we obtain better and better sam-
ples of T, and the optimal value of the above problem should converge to the
optimal value of the limit (variational) problem, namely,

Maximize
IT

ft(~(t))d~(t)

subject to
J

x(t)d~(t) = a and ~(t)ER: for all
T'V

tn.

This is the Law of Large Numbers we are seeking.

The purpose of this paper is to prove it using the least necessary assumptions.
In particular, we are able to dispose of any topological structure (i.e., re-
lations on ft's for "close" values of t) and also of the condition of

Aumann & Perles [3] (which guarantees the existence of an optimal solution to the
variational problem, by "compactifying" it in the appropriate sense). This is
done in Section 4.

In order to prove our results, we first obtain in Section I. a complete charac-
terization of the approximate solutions to the variational problem, which is of
independent interest. Section Z contains the precise mathematical model and
assumptions we use.

The problem we study here arises in many applications, especially in the so-
called "allocation processes". E.g., T is a set of economic agents and ft
is the production function of t (for n inputs and one output)~ or, ft is the
utility function of trader t (for n coll1T1odities); or, t is "time", and so
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on. ror a recent application of the Law of Large Numbers we obtain here, the
reader is refefred to Groves & Hart [5J. Moreover, in some instances in the
study of games and economies with a continuum of participants, one may be able
to obtai n results by our methods without usi n9 the Aumann & Perl es [3J conditi on
(e.g., in value theory, cf. Aumann & Shapley [4J and others). For a generaliza-
tion of the Law of Large Numbers (to "random sets", or correspondences), see the
forthcoming paper of Artstein & Hart.

2. THE MODEL

We start with some notations. The n-dimensional Euclidean space will be denoted

by Rn, its non-negative and positive orthants by R: and (R:)O,' respectively.
Superscripts will denote coordinates; for x and y in Rn, the scalar product

n ..
x.y is L

xlyl.
i =1non R+, this

be its Borel

n .
L Ix

1
I

i =1
norm is a linear function). Given a topological space

a-field (generated by all open'subsets of X).

As a convenient norm, we will use ~x~= (note that

X, B(X) will

The mathematical model of our problem is as follows. (T,C,v) is a fixed prob-
ability space, which we decompose into its non-atomic part TO and a countable

number o~ atoms T1 (cf. Hildenbrand [7J, 0.1(12)). f(.,.) is a real function

on R: x T, satisfying the following assumptions:

(2.1 )

(2.2)

f is (B(R:) Q C)-measurable.

There exist a real constant cl and an integrable real function ~2
on T such that f(x,t)?- c111x~ + ~2(t), for all x E R: and

p-a.e. t E T.

(cl and ~2 may be negative).

Note that (2.1) implies the measurability of f(~(t),t) whenever ~: T + R:
is measurable; if !$ is integrable, then Jf(~(t),t)dv(t) is well defined
(possibly, equal to +00). In the various economic models, both assumptions.
are usually satisfied. Note that (2.2) holds in each of the following cases:

f is non-negative; f(.,t) is a non-decreasing function on R: for all t E T, and

f(O,t) is integrable; inf{f(x,t)!XER:J is integrable; and others.

We can now define the "optimum function" F. For every a in n
R+,

F(a) = sup {fTf(~(t),t)dv(t)
I fT0(t)dv(t) = a, ~(t) E R:

for all t E T}

In view of (2.1) and (2.2), F(a) is either finite or +00.

At this point it will be useful to introduce some notations (given the fixed
space (T,C,v)): Js~ for Js~(t)d]J(t); J~ for JT~; f(~) for the function (on
T) f(~(t),t), and Jf(~) for Jf(~(t),t)dv(t). "Almost everyw.here" in T is
meant with respect to v.
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In order for F to be a concave function, it is sufficient to assume that all the
functions f(.,t) are concave. However, due to the convexification effect of
integration in the non-atomic part TO of T, we,assume only

(2.3) For every t E Tl' f(.,t) is a concave function on R~.

Proposition 2.4: Assume (2.1), (2.2) and (2.3). Then F is a concave function
non R+.

Proof: Let ~(t) = {(X,a) E R: x R I a < f(x,t)}, then ~

with measurable graph (bX (2.1)). It is easy to check that

{(a,a) E R: x R I ~ < F(a)} = JT~(t)d~(t)

is a correspondence

(see Hildenbrand ([ 7 J, 0.11) for the d~finition of I~).

By Lyapunov's Theorem:(e.g., see Hilden~rand ([7J, 0.11.4, Theorem 3), IT ~ isa
a convex set; since ~(t) is convex for all t E Tl by (2.3), IT~ is convex,
and F is a convex function. 0

Our last assumption is that
interesting results).

(2.5) There is aO in (R~)O such that F(aO) is finite.

Proposition 2.6: Assume (2.1); (2.2), (2.3) and (2.5). Then
nall R+.

F is not infinite (otherwise, there will be no

F is fi nite on

Proof: Otherwise

throughout (Rn)O
+

Remark 2.7: If F is infinite on all (R:)O,
n

R+, then the whole probl~m should
0 and I~ = a imply ~l(t) = 0

boundary of
(s i nce ai, =

F would be an "improper" concave function, hence infinite

(cf. Rockafellar [9], Theorem 7.2), contradicting (2.5). 0

but finite for some a on the
be projected on this subspace

for a.e. t E T).

In the next section (Corollary 3.7), we will see that, in the presence of (2.1)-
(2.3), Assumption (2.5) is equivalent to the stronger requirement (3.6)--which
is also easier to verify in the various models.

Next, we define the notion of a "supporting hyperplane.1I Let g: R: + (-~,+ooJ,

nx E R+ and E ~ o. A vector A E Rn is an E-super-gradient of 9 at x if .

9 (y) ~ 9(x) + A. (y - X) + E ,

for all y in R:. The set of all such A's will be denoted by dEg(X), and

ag(x) ==aog(x) is the set of super-gradients (cf. Rockafellar [9], p. 219).

Proposition 2.8:. Let
n)Ofor every x E (R+

'

g

g

be a concave function from R: to (-oo,+ooJ.

is continuous at x, and ag(x) f 0.

Then,

Proof: Theorems 10.2 and 23.4 in Rockafellar [9J.
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3. APPROXIMATf SOLUTIONS

In this section we give a characterization of all approximate solutions to the
variational problem - namely, those feasible functions that come within ( of
the optimal value. We denote by a f(x,t) the set of (-super-gradients of
f(',t) at x.

(

Theorem 3.1: Assume (2.1), (2.2), (2.3) and (2.5). Let x be an integrable

function from T to R~, with JT~ = a E (R~iO, and let (~O. Then a nec-
essary and sufficient condition for

(3.2) f/(~(t),t)dlJ(t) ~ F(a) - (

is that there exist a A in R: and an integrable function 0 from T to
[0,00),

(3.3)

satisfying

A E a§(t)f(~:(t),t) ,'for, lJ-a.e. t in T ,

and

(3.4) f/(t)d]J(t) ~ E

A particular case is
& Perles [3].

( = o. We then obtain

be chosen independently of
and (3.4) imply A E a F(a); as

E

E R: (not (R:)O) are needed.

essentially2J Theorem 5.1 in Aumann

Furthermore: in the necessity part, A can
~ and E, and such that A E aF(a); (3.3)

for the sufficiency, only (2.1), (2.2) and a

. 0
Corollary 3.5: Assume (2.1), (2.2), (2.3) and (2.5), and let a E: (R~). Then

. F(a) is attained at a non-negative ~ with J~ = a if and only if there is a A

in Rn such that A E af(~(t),t) for lJ-a.e. t in T. Furthermore, A E aF(a),
and only (2.1), (2.2) and a E R: are needed for the "if" .part.

Proof of Theorem 3.1: Sufficiency is easy: integrating the super-gradient inequa-
lity given by (3.3) for y = y(t), we get

J
fly) ~

J
f(!5) + A . (fy - a) + E .

,

Taking the supremum of the left-hand side over all y. with h = a gives (3.2);
and over all integrable ¥ -- it implies A E a(F(a).

To prove necessity, let A E aF(a); the existence of such A is guaranteed by

Proposition 2.8 (here is the only place where a E (R:)O, is used). Define, for
ny E R+ and t E T,

g(y,t) = f(y,t) - f(~(t),t) - A'(Y - ~(t))

~(t) = sup g(y,t) .
nyER+

Since g is (B(R~)gC)-measurable, 0 is ClJ - measurable, where ClJ is the
completion of C with respect to lJ (cf. the Projectlon Theorem in Hildenbrand

and
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[7J, 0.1. (11)). Therefore, cSdiffers from a C-measurab1e function on a set
of ~-measure zero; since we have to prove (3.3) only a.e., we can sssume with-
out loss of generality that cSis C-measurable.

We have to show that (3.4) holds. For every m = 1,2,..., let

/ max {o(t) - ~,o}
§m(t) = {

- if §(t) < 00

m if §(t) = 00

and choose y (t) E R+
n such that

-m

g(Ym(t),t) ~ §m(t)

for a.e. t in T, and ¥m is measurable (we use the Measurable Selection

Theorem - see Hildenbrand [7J, 0...11, Theorem 1). Now, let k = 1,2,..., and
defi ne .

Ym(t)

r
~(t) otherwise.

S
. k.
lnce y lS integrable, A E aF(a), and (3.2) is satisfied, we get

-m

ff(¥~) ~ F(J¥~) ~ F(a) + A-(f¥~ - a)

~.
ff(~) + A-f~~ - ~) + E ,

y~(t)

if II y (t)1I ::; k ,-m

or
f

g (/) ~ E.
,.,m

Theorem, first for

and f~ ~ E.

A repeated application of Lebesgue's Monotone Convergence

k + 00 and then for m + 00, finally gives us fo ~ E
'. ~m

0

We will .next show that (2.5) is actually equivalent to the following (stronger)
assumption3J:

(3.6) There exist a real constant c3 and an integrable real function ~4 on

T such that f(x,t) ~ c3~11 + ~4(t), for all x E R: and ~-a.e. tET.

Corollary 3.7: Assume (2.1), (2.2) and (2.3). Then (2.5) is equivalent to
(3.6) .

n 0
Proof: Assume (2.5), and let a E (R+). Choose E > 0, and find x with

h = a satisfying (3.2). Then (3.3) implies

f(y,t) ~ A-y + [f(~(t),t) - A-~(t) + ~(t)J,
nfor all y E R+ and ~-a.e. t E T. The expression in the square brackets is

integrable (recal,l (2.2) and ff(~)::; F(a) < 00), proving (3.6). The other dir-
ection is trivial. 0

Remark 3.8: Since (2.2) and (3.6) can be joined into:

(3.9) There exist a real constant Co and an integrable real function f on T
such that If(x,t)1 < collxll + ~(t), for all x E R~ and ~-a.e. t E T,
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one may always replace "(2.1), (2.2), (2.3) and (2.5)" with "(2.1), (2.3) and
(3.9). "

It is easy to check that (3.9) is equivalent to:

(3. 10) There exist a real constant c and an integrable function n from T
...

to R:, such that !f(x,t)1 ~cllxll, for all x in R: with

1\xII ~ ~(t), and lJ-a.e. t in T.

In contrast to the "small 0" condition of Aumann & Per1es [3J, we have h�re a
"big 0" condition; thus, we will call (3.10): "f(x,t) = O(lIxl\) as II xii-> 00,
integrab1y in tit.

4. LAW OF LARGE NUMBERS

Let a E R: be fixed. For a finite set of points t1,t2,...,tm in T, consider
- m

{he optimization problem of maximizing.1/m I f(xk,tk) subject to
m 'k=l

11m L xk = a and xk E R: for all k = 1,2,...,m. Now assume that the points
k=l

tk are drawn at random from T, independently and according to the given prob-

ability measure p. As m increases, we get ,a "good sample" of T. The problem
we address here is whether the optimal value of the finite problem converges to
that of the limit prob1em--name1y, F(a). In case f is of "finite type," i.e.,
there are only finitely many distinct functions in {f(.,t)}tET' the answer is

positive, using a straightforward application of the Strong Law of Large Numbers
(T'is decomposed into finitely many subsets, On each one f(.,t) being constant
in t). This can be extended, by making some topological assumptions on T and
f (t and t' are "close" implies f(.,t) and f(.,t') are "c1ose"--e.g., see
Assumption 4 in Arrow & Radner [lJ).

In this section we will show that no additional assumptions (to the basic ones
in Section 2) are needed. We will use again the super-gradient approach and the
results in Section 3. .

We start by describing the model precisely. Let (~,F,P) be a probability
space; since we are interested in almost sure statements, we will assume without

loss of generality that it is complete. Let {Tk}oo be a sequence of indepen-
k=l

dent and identically distributed T-va1ued random variables, and let 1-1 be their
common distribution; namely, Tk is a function from ~. toT that is measur-

able (i.e., Tkl(C)EF for all CEC),and PbTk1=po Given m=1,2,...
and w E ~, let

1 m
1

. m
Fm,w(a) = sup {ill L f(xk,Tk(U»)) I ill

k-_L l
xk = a, xk E R:

k=l

for all k = 1,2,...,m}.

We assume that f satisfies (2.1) and (3.9), but not necessarily (2.3). There-

fore, we define r:R:xT -> R as follows: for tETo' r(.',t) == f(.,t); for

(p-a.e.) tET1' r(.,t) is the concavification4] of f(.,t): Since the number of

atoms is at most countable, measurable mappings ar~ almost everywhere constant

on each atom, and concave functions on R~ are Borel-me?Surable5], it follows



Theorem 4.2: Assume (2.1) and (3.9). Then

(4.3) P ({w E Q I 1im F (a) = F(a) for all
m--

m,w

Moreover, for every compact subset C of n
R+,
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that f may be taken to be (B(R:)QC)-measurab1e. Thus, f satisfies (2.1),
(2.3) and (3.9), and we will denote by F- the optimum function it generates.

/

Remark 4.1: If we replace each atom in T1 by a non-atomic continuum of the
same measure and with the same (identical) f(.,t), the resulting optimum func-
tion will again be F. This follows easily from Lyapunov's Theorem, in a similar
way to our proof of Proposition 2.4. (see Hildenbrand [7], 0.11.4, Corollary to
Theorem 3),

a E R:}) = 1 .

(4.4) sup I F (a) - F(a) I P-a.s.> 0 .
aEC

m,w m--

Remarks: (i) For every a in R:, we have a stron~ Law of Large Numbers: the

sequence {Fm,w(a)};=l converges P-~lmost surely to (~he constant) F(~). Fur-

thermore, the exceptional set is independent of a, and the convergence is uni~
form on, compact sets. ':'(ii) We do not use any concavity assumptions ,(not even (2.3) )--therefore the
limit is r and not F.

Before proving our result, we state the general form of the Strong Law of Large
Numbers we need.

Theorem 4.5 (SLLN) : Let ~be an integrable real function on T.

1. I ~(-r) P-a.s.> f ~(,t)d~(t) .
m k=l - k m-- T-

Then

Proof: Loeve ([8]. 17.3b), or Halmos ([6], §47, Exercise (7)).

The proof of Theorem 4.2 will be in a sequence of Propositions--some of them are
of independent interest. To shorten notation, we will write [...] for the set
{wi...}.

Proposition 4.6: Ass ume ( 2. 1) and (3. 9 ) . Let a E (Rn)O
+

and A E 3F(a). Then

b E .R:] = 1 .P[lim sup F (b), F(a) +~.(b - a) for all
m--

m,w

Proof: Let E > 0, and obtain (for f) x, ~ and 8,
~ and ~ E aF(a) (since f satisfies (2.1), (2.3)
3.1 and Remark 3.8). Using (3.3) for6] t = 'k(w) and

Yl'Y2""'Ym in R:

m
1- Lm

k=l

satisfying (3.2), (3.3),
and (3:9), we use Theorem
averagtng, we get for any

m
f(Yk"k(w)) ,~

kIl
1(~('k(w))"k(w))

hence, for all

1 m 1 m
+ A . - L (Yk-x('k(w))) + m L 8('k(w)),m

k=l - k=l-

(reca 11 that f, r)b E Rn
+
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1
m

1
m

Fm,w
( b) ~ - L H?>h

k
(w) ) ,T

k
(w)) + A. (b - - L ~h

k
(w) ) )

m
k=l

m
k=l

m
+ 1

L ~('rk(w)),
m k=l

Now SLLN applied to the inteqrable functions 1(x), xi
and § gives (see (3.4)) for all b E R~

(for all i = 1,2,...,n)

lim sup F (b) ~ F(a) + A . (b - a) + £ ,
Tn-+«>

m,w

P-a.s. 0

Remark: In particular, this proves that P-a.s.,

lim sup F (a) ~ F(a) ,
Tn-+«>

~,w

which is the result needed in Groves & Hart [5J.

nror a E Rand 0 > 0, let B(a;o) be the open ball of radius

i.e., B(a;o) = {b E Rnilia - bll < A}.

Proposition 4.7: Assume (2.1) and (3.9), and let a E (R~)O.
£ > 0 there is 0 ~ o(a,£) > 0 such that P-a~s.

0 around a;

Then for every

lim inf (i.nf F (b)) > F(a) - £.
m+oo bEB(a;o) m,w

we will make the additional assumption that ]1 is a non-atomic
T = TO and f ~ f). Let Co and ~ be given by (3.9), fix

£1 = £/(4 + 3cO)' By Propositions 2.4 and 2.8, F is continuous

01 > 0, 01 ~ £1 be such that IF(a) - F(b) 1< £1 whenever

Let 0 = °1/(2n), al = a r (0,0,...,0) and a2 =. a-(28,28,...,28);
i i i

thenllb-all<o implies b ~al=a2+0 for all l~i~n. Let x~Osat-

isfy J~ = a2 and Iff(x) - F(a2)! < £1; since lIa - a211= 01' we have

if f(~)-F(a) I < 2£1' Finally, let T' c T be such that ]1(T') > 0,

IIJT,~ 11< £1' IfT,f(?»1 < £1 and 1fT,s! < £1; put T" = T,-T'.

Proof: First,
measure (i .e.,
£ > 0, and put

on (R:)O; let

Ilb-all~ol'

For P-a.e. w E ~, we have (by SLLN) , for all m large enouqh, K' ~ K' =.
m' m,w

{k ,,; m
I Tk(w) E T'} f 0 (since ]1(T') > 0) and 11m L ?>hk(w)) ~ al (since

k=l
h = a2 « al); denote K" = {l ,2,... ,m}'-K'. For each such m, consider the
following allocation for Fm,w(b) with b E B(a;o) : Yk = ~(Tk(w)) for all

k E K", and the remaining mb - L y is distributed (arbitrarily) among all
kEK"

k

k E K' (here we use b ~ al for all lib - a 11< 0). Using (3.9) for k E K', we
obtain

1 m
Fm

(b) ~
m L f (y k ' Tk

(~))
,w

k=l.'



lim inf ( inf Fm,w(b))
m+oo bEB(a;8)

~ff(;S) - IJT.f(~)1 - cO( sup IIb-a211+IIJ XII) - I
J f IbEB(a;8) T'- T'

/

,I
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~ ff(~) + [~ L f(Yk,T k
(w)) -

J
f(~)]

kEK" T"

J

1 -
- f(~) - Til[cO"mb - L Yk II + L ch k

(w))]
T' kEK" kEK"-

As m + 00, SLLN implies' P-a.s. (recall that Yk = ~(Tk) for k E K")

k L f(Yk,Tk(w)) ->
fT"

f(2))
kEK"

1
L Y ~> f x a f xm kEK" k . T"-

= 2 -
T"" '

1 I f('k(w)) ->
fT, E .m

kEK'

Therefore, we have a.s. in ~

> F(a) - E:l - E:l - E:l - CO(8 + 81 + E:l) - E:l

~ F(a) - E: .

Finally, in the general case when fl has an atomic part, we replace each atom by
a non-atomic continuum. In view of Remark 4.1 and the fact that Fm will not
change (it depends only on the distribution of the functions f(._,t) over tET),
this completes the proof.o

The last two propositions together imply

Corollary 4.8: Assume (2.1) and (3.9), and let a E (R~)O.

there is 8 = 8(a,E:) > 0 such that P-a.s.,
Then for every E:>O

lim sup ( sup jF(a) - F (b)l) < E:

m+oo bEB(a;8) m,w

n ) OProof of Theorem 4.2: Let a E (R+
'

E: > 0, and 8 = 8(a;E:) be given by Coro-

llary 4.8. Propositions 2.4 and 2.8 imply that F is continuous on (R:)O;
therefore, we assume that 8 _also satisfies
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sup IF(a) - F(b)! < 8

bEB(a;o)

Therefore, we obtain P-a.s.

lim sup (sup IF(b) - F (b)l) < 28 .
f11-+<Jo bEB(a;o)

m,w

ri' 0Let C c (R+) be a compact set.
therefore . P~a.s.

It has a finite cover by open balls B(a;o(a,8))

lim sup (sup I~(b) - F (b)l) < 28
f11-+<Jo bEC

m,w

Since E: is arbitrary, (4.4) is proved for this C.
of the boundary R2.

kThe same holds for each R+

As for (4.3), it now follows easily from (4.4) by the a-compactness of R~.

NOTES

0

lJ This work was supported by National Science Foundation Grant SOC75-21820-AOl
at the Institute for Mathematical Studies in the Social Sciences, Stanford Uni-
versity. I acknowledge useful discussions with R.J. Aumann, J. Cave, T. Groves,
A. Mas-Colell, A. Neyman and M. Osborne.

2J Since we do not assume monotonicity, A need not be non-n~gative.
I

3J A similar result has been obtained by Artstein [2J, P.919/,,1
!

4J The concavification 9 of a function 9:R: -> R ~s the smallest concave
function that is greater or equal to 9 throughout R+. \If 9 is bounded

from above by a linear function, then 9 is finite on all \R~ (and bounded by
the same linear function). In our case, this bound is given'-bY.,(3.9) (actually,
(3.6)).

.

5J A concave function on R: is lower-semi-continuous (cf. Rockafellar [9J,
Theorem 10.2).

'6J Although (3.3) holds only for ]J-a.e. t in T, SLLN implies that P-a.s.,
(3.3) is satisfied at t = Tk(w) for all k: = 1,2,... .
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