

Calibrated Forecasts, Regret Matching, Dynamics and Equilibria

Sergiu Hart

July 2020

ACM SIGecom Test of Time Award 2020

SERGIU HART ⓒ 2020 – p. 1

Calibrated Forecasts, Regret Matching, Dynamics and Equilibria

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il http://www.ma.huji.ac.il/hart

Dean P. Foster and Rakesh V. Vohra "Asymptotic Calibration"

- first version: 1991
- Biometrika 1998

Dean P. Foster and Rakesh V. Vohra "Asymptotic Calibration"

- first version: 1991
- Biometrika 1998
- Sergiu Hart and Andreu Mas-Colell "A Simple Adaptive Procedure Leading to Correlated Equilibrium"
 - first version: 1996
 - *Econometrica* 2000

www.ma.huji.ac.il/hart/publ.html#adapt

Sergiu Hart and Andreu Mas-Colell Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics

World Scientific Publishing 2013

www.ma.huji.ac.il/hart/publ.html#sas

Sergiu Hart and Andreu Mas-Colell Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics

World Scientific Publishing 2013

www.ma.huji.ac.il/hart/publ.html#sas

Wojciech Olszewski
 "Calibration and Expert Testing" in Handbook of Game Theory IV 2015

- Dean Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics"
 - **Games and Economic Behavior 2018**

www.ma.huji.ac.il/hart/publ.html#calib-eq

- Dean Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics"
 - Games and Economic Behavior 2018
 www.ma.huji.ac.il/hart/publ.html#calib-eq

- Dean Foster and Sergiu Hart "Forecast-Hedging and Calibration"
 - **9** 2019

www.ma.huji.ac.il/hart/publ.html#calib-int

The Test of Time

What is the Test of Time?

SERGIU HART (C) 2020 - p. 6

What is the Test of Time?

25 years of work

What is the Test of Time?

• 25 years of work ?

The Test of Time

What is the Test of Time?

- **25 years of work** ?
- 25 minutes of presentation covering 25 years of work !

The True Test of Time

What is the Test of Time?

- **25 years of work** ?
- 25 minutes of presentation covering 25 years of work !

SERGIU HART ⓒ 2020 - p. 7

Forecaster says: "The chance of rain tomorrow is p"

- Forecaster says: "The chance of rain tomorrow is p"
- Forecaster is CALIBRATED if for every p: the proportion of rainy days among those days when the forecast was p equals p (or is close to p in the long run)

-		

CALIBRATION can be guaranteed (no matter what the weather will be)

CALIBRATION can be guaranteed (no matter what the weather will be)

Foster and Vohra 1991 [1998]

CALIBRATION can be guaranteed

(no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

Foster and Vohra 1991 [1998]

CALIBRATION *can be guaranteed* (no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

• Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)

Foster and Vohra 1991 [1998]

CALIBRATION can be guaranteed (no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

• Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)

Foster and Vohra 1991 [1998]
 Hart 1995: proof using Minimax Theorem

FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

● FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts

- FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE δ -calibrated forecasts (without knowing the rainmaker's strategy)

- FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE δ -calibrated forecasts (without knowing the rainmaker's strategy)

-		

CALIBRATION *can be guaranteed* (no matter what the weather will be)

Foster and Vohra 1991 [1998] Hart 1995: proof using Minimax Theorem

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Foster and Vohra 1991 [1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [2000]: proof using Blackwell's Approachability

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Foster and Vohra 1991 [1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure

Calibrated Forecasts

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Foster and Vohra 1991 [1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2019: even simpler

Calibrated Forecasts

CALIBRATION can be guaranteed

(no matter what the weather will be)

BACK-casting (not fore-casting!)

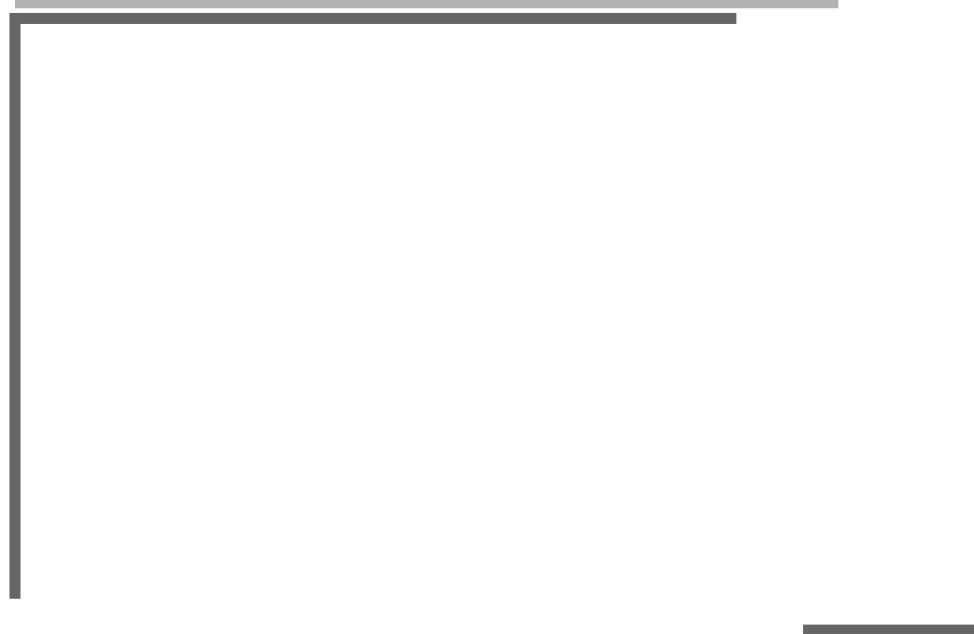
- Foster and Vohra 1991 [1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2019: even simpler

Calibrated Forecasts

CALIBRATION can be guaranteed

(no matter what the weather will be)

BACK-casting (not fore-casting!) FORECAST-HEDGING


- Foster and Vohra 1991 [1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure
- **Foster and Hart 2019: even simpler**

II. Regret Matching

SERGIU HART ⓒ 2020 – p. 12

SERGIU HART (C) 2020 – p. 13

Setup: *n*-person game played repeatedly

Setup: *n*-person game played repeatedly

<u>REGRET MATCHING</u> =

Switch next period to a different action with a probability that is proportional to the regret for that action

Setup: *n*-person game played repeatedly

REGRET MATCHING =

Switch next period to a different action with a probability that is proportional to the regret for that action

<u>REGRET</u> = increase in payoff

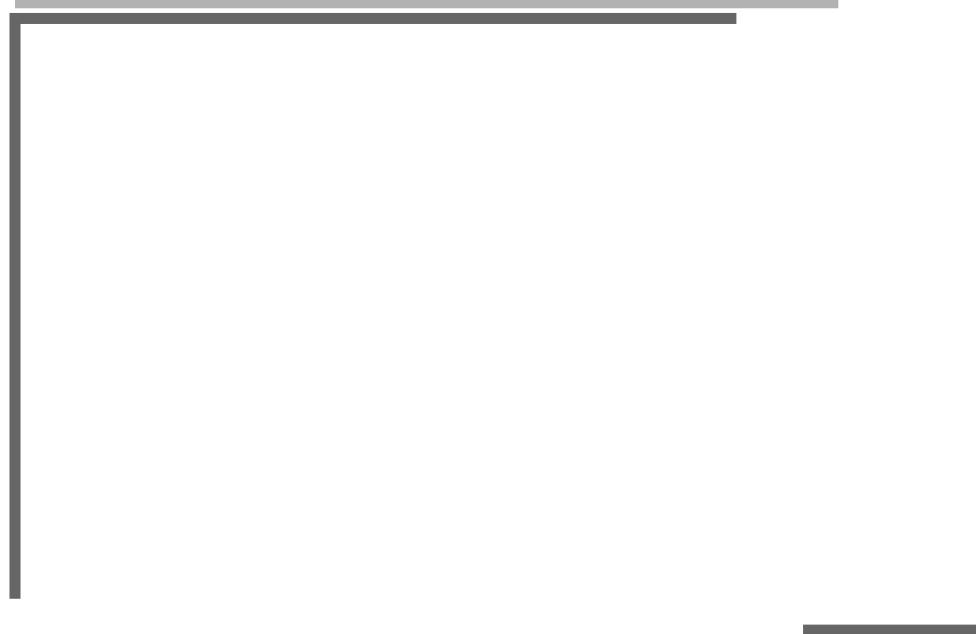
had such a change

always been made in the past

• U = average payoff up to now

Regret

• U = average payoff up to now


V(k) = average payoff if action k had been played instead of the current action j every time in the past that j was played

Regret

• U = average payoff up to now

- V(k) = average payoff if action k had been played instead of the current action j every time in the past that j was played
- $R(k) = [V(k) U]_+ = \text{regret}$ for action k

Regret Matching

Next period play:

• Switch to action k with a probability that is proportional to the regret R(k) (for $k \neq j$)

Regret Matching

Next period play:

- Switch to action k with a probability that is proportional to the regret R(k) (for $k \neq j$)
- Play the same action j of last period with the remaining probability

Regret Matching Result

-		

If all players play Regret Matching then the joint distribution of play converges to the set of CORRELATED EQUILIBRIA of the game

If all players play Regret Matching then the joint distribution of play converges to the set of CORRELATED EQUILIBRIA of the game

Hart and Mas-Colell 1996 [2000]

- Correlated Equilibrium \Leftrightarrow all regrets = 0
- Regret Matching \Rightarrow all regrets $\rightarrow 0$

- Regret Matching \Rightarrow all regrets $\rightarrow 0$
 - Blackwell Approachability
 for payoff vector = regrets
 play: eigenvector of regret matrix

- Regret Matching \implies all regrets $\rightarrow 0$

 - \square \Rightarrow play: **regrets** (transition probabilities)

- Regret Matching \implies all regrets $\rightarrow 0$

 - \Rightarrow play: regrets (transition probabilities) \equiv Regret Matching

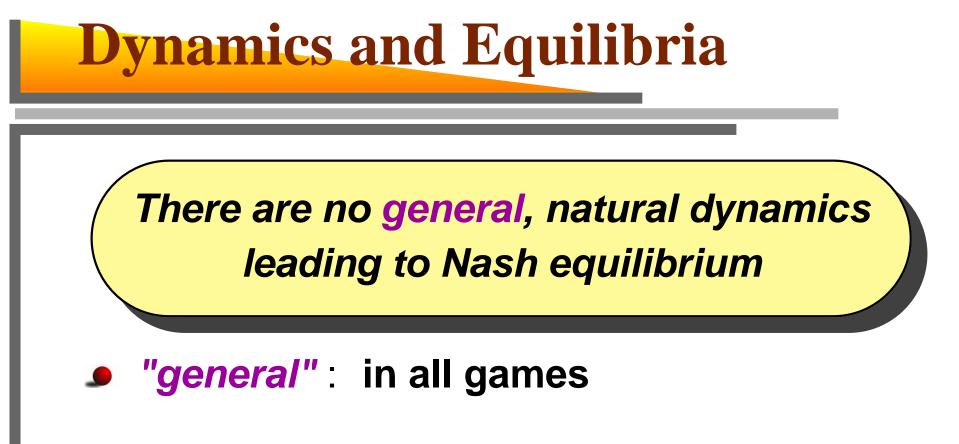
• Correlated Equilibrium \Leftrightarrow all regrets = 0

- Regret Matching \implies all regrets $\rightarrow 0$

 - \Rightarrow play: regrets (transition probabilities) \equiv Regret Matching

simple procedure . . . complex proof

SERGIU HART ⓒ 2020 – p. 18


There are no general, natural dynamics leading to Nash equilibrium

There are no general, natural dynamics leading to Nash equilibrium

general"

There are no general, natural dynamics leading to Nash equilibrium

"general": in all games rather than: in specific classes of games

There are no general, natural dynamics leading to Nash equilibrium

There are no general, natural dynamics leading to Nash equilibrium

Ileading to Nash equilibrium

There are no general, natural dynamics leading to Nash equilibrium

"leading to Nash equilibrium": at a Nash equilibrium (or close to it) from some time on

There are no general, natural dynamics leading to Nash equilibrium

There are no general, natural dynamics leading to Nash equilibrium

Inatural

There are no general, natural dynamics leading to Nash equilibrium

Inatural

SERGIU HART (C) 2020 - p. 21

- *"natural"*:
 - adaptive (reacting, improving, ...)

- *"natural"*:
 - adaptive (reacting, improving, ...)
 - simple and efficient

- *"natural"*:
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)

- *"natural"*:
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)

- *"natural"*:
 - adaptive (reacting, improving, ...)
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

- Inatural
 - adaptive
 - simple and efficient:
 - computation (performed at each step)
 - time (how long to reach equilibrium)
 - information (of each player)

There are no general, natural dynamics leading to Nash equilibrium

"natural":

adaptive

simple and efficient:

- computation (performed at each step)
- time (how long to reach equilibrium)
- information (of each player)

There are no general, natural dynamics leading to Nash equilibrium

"natural":

adaptive

simple and efficient:

- computation (performed at each step)
- time (how long to reach equilibrium)
- information (of each player)

Uncoupled Dynamics

Each player knows only his own payoff (utility) function

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

Uncoupled Dynamics

UNCOUPLED DYNAMICS :

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

Hart and Mas-Colell 2003

Uncoupled Dynamics

UNCOUPLED DYNAMICS :

Each player knows only his own payoff (utility) function

(does *not* know the payoff functions of the other players)

(privacy-preserving, decentralized, distributed ...)

Hart and Mas-Colell 2003

- Inatural
 - adaptive
 - simple and efficient:
 - computation
 - 🧕 time
 - information

- Inatural
 - adaptive
 - simple and efficient:
 - computation
 - 🧕 time
 - \square information: uncoupledness \checkmark

- Inatural
 - adaptive
 - simple and efficient:
 - computation
 - 🧕 time
 - information: uncoupledness √

- *"natural"*:
 - adaptive
 - simple and efficient:
 - computation
 - time to reach equilibrium ?
 - information: uncoupledness √

An uncoupled dynamic A distributed computational procedure (Conitzer and Sandholm 2004)

 \Rightarrow **COMMUNICATION COMPLEXITY**

An uncoupled dynamic A distributed computational procedure (Conitzer and Sandholm 2004)

 \Rightarrow COMMUNICATION COMPLEXITY

Hart and Mansour 2010 Babichenko and Rubinstein 2017

IV. Calibration and Dynamics

•		

CALIBRATION cannot be guaranteed when:

CALIBRATION cannot be guaranteed when:

Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")

CALIBRATION cannot be guaranteed when:

- Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")
- Forecaster uses a *deterministic* forecasting procedure

-		

• CONTINUOUS CALIBRATION: combine together the days when the forecast was close to p

CONTINUOUS CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

CONTINUOUS CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

CONTINUOUS CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

Foster and Kakade 2004, 2006 Foster and Hart 2018, 2019

Calibration and Game Dynamics

•		

Calibration and Game Dynamics

General *n*-person game

Calibration and Game Dynamics

General *n*-person game

Players forecast the play in the next period

General *n*-person game

Players forecast the play in the next period

Players choose their actions in *response* to the forecasts

General *n*-person game

- Players *forecast* the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts

General *n*-person game

- Players *forecast* the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts
 - best response

General *n*-person game

- Players forecast the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts
 - best response
- \Rightarrow Long-run play ?

Each player makes a *calibrated forecast* on the next period play

- Each player makes a *calibrated forecast* on the next period play
- Each player best replies to the forecast

- Each player makes a *calibrated forecast* on the next period play
- Each player best replies to the forecast

⇒ JOINT DISTRIBUTION OF PLAY (\equiv time-averge of play) is a CORRELATED *ε*-EQUILIBRIUM in the long run

- Each player makes a *calibrated forecast* on the next period play
- Each player best replies to the forecast

⇒ JOINT DISTRIBUTION OF PLAY (\equiv time-averge of play) is a CORRELATED *ε*-EQUILIBRIUM in the long run

Foster and Vohra 1997

 All players make a *deterministic continuously calibrated forecast* on the next period play

- All players make a *deterministic continuously calibrated forecast* on the next period play
- Each player best replies to the forecast

- All players make a *deterministic continuously calibrated forecast* on the next period play
- Each player best replies to the forecast
- $\Rightarrow 1 \varepsilon \text{ of the time the play}$ is a NASH ε -EQUILIBRIUM a.s. in the long run

- All players make a *deterministic continuously calibrated forecast* on the next period play
- Each player best replies to the forecast
- $\Rightarrow 1 \varepsilon$ OF THE TIME the play is a NASH ε -EQUILIBRIUM a.s. in the long run

Foster and Kakade 2004, 2006 Foster and Hart 2018, 2019

MINIMAX universe

MINIMAX universe

stochastic forecast-hedging

SERGIU HART ⓒ 2020 - p. 32

MINIMAX universe

stochastic forecast-hedging FIXEDPOINT universe

deterministic forecast-hedging

MINIMAX universe

- stochastic forecast-hedging
- P-procedures

FIXEDPOINT universe

deterministic forecast-hedging

MINIMAX universe

- stochastic forecast-hedging
- P-procedures

- deterministic forecast-hedging
- **PPAD**-procedures

MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration

- deterministic forecast-hedging
- **PPAD**-procedures

MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration

- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration

MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria

FIXEDPOINT universe

- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration

SERGIU HART ⓒ 2020 – p. 32

MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria

- deterministic
 forecast-hedging
- **PPAD**-procedures
- continuous
 calibration
- Nash equilibria

MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria
- time-average

- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration
- Nash equilibria

MINIMAX universe

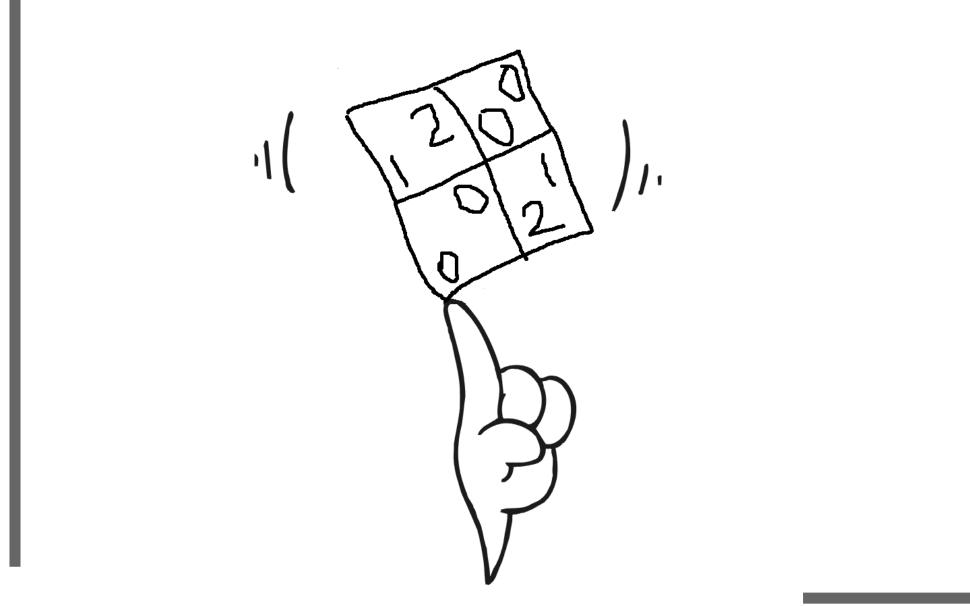
- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria
- time-average

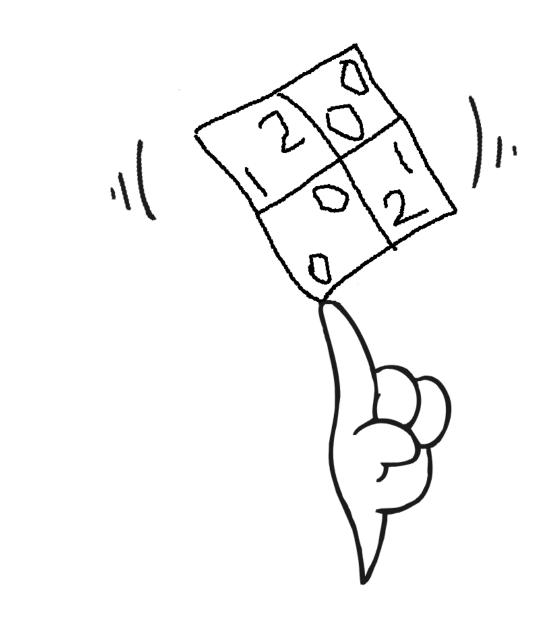
- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration
- Nash equilibria
- period-by-period

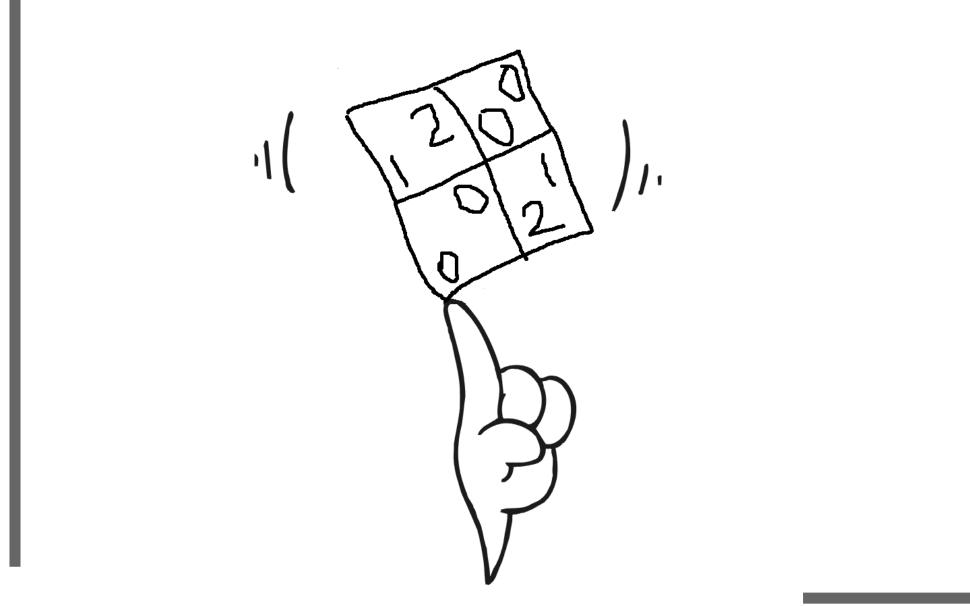
MINIMAX universe

- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria
- time-average
- from some time on

- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration
- Nash equilibria
- period-by-period


MINIMAX universe


- stochastic forecast-hedging
- P-procedures
- classic calibration
- correlated equilibria
- time-average
- from some time on


- deterministic forecast-hedging
- **PPAD**-procedures
- continuous
 calibration
- Nash equilibria
- period-by-period
- most of the time

