Surely You’re Using The Sure-Thing Principle!

Sergiu Hart

November 2006
Surely You’re Using
The Sure-Thing Principle!

Sergiu Hart
Center of Rationality,
Dept. of Economics, Dept. of Mathematics
The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart
Robert J. Aumann, Sergiu Hart & Motty Perry

Conditioning and the Sure-Thing Principle

Center for Rationality DP-393, June 2005
Robert J. Aumann, Sergiu Hart & Motty Perry
Conditioning and the Sure-Thing Principle
Center for Rationality DP-393, June 2005

Robert J. Aumann & Sergiu Hart
Agreeing on Decisions
2005
Papers

- Robert J. Aumann, Sergiu Hart & Motty Perry
 Conditioning and the Sure-Thing Principle
 Center for Rationality DP-393, June 2005

- Robert J. Aumann & Sergiu Hart
 Agreeing on Decisions
 2005

The first paper and this presentation are available on my home page

http://www.ma.huji.ac.il/hart
Conditioning and the Sure-Thing Principle

Robert J. Aumann
Sergiu Hart
Motty Perry
Savage’s Sure-Thing Principle

Next election, 2 candidates:
DEMOCRAT, REPUBLICAN
Next election, 2 candidates:
DEMOCRAT, REPUBLICAN

Assume:
- If the DEMOCRAT were to lose (DL),
 I would BUY the property
Savage’s Sure-Thing Principle

Next election, 2 candidates: DEMOCRAT, REPUBLICAN

Assume:

- If the DEMOCRAT were to lose (DL), I would BUY the property
- If the REPUBLICAN were to lose (RL), I would BUY the property
Savage’s Sure-Thing Principle

Next election, 2 candidates:
DEMOCRAT, REPUBLICAN

Assume:
- If the DEMOCRAT were to lose (DL),
 I would BUY the property
- If the REPUBLICAN were to lose (RL),
 I would BUY the property

Either DL or RL must hold
Savage’s Sure-Thing Principle

Next election, 2 candidates: DEMOCRAT, REPUBLICAN

Assume:

- If the DEMOCRAT were to lose (DL), I would BUY the property
- If the REPUBLICAN were to lose (RL), I would BUY the property

Either DL or RL must hold

Conclusion: I should BUY the property
The Sure-Thing Principle

Next election, 3 candidates:
DEMOCRAT, REPUBLICAN, INDEPENDENT
The Sure-Thing Principle

Next election, 3 candidates: DEMOCRAT, REPUBLICAN, INDEPENDENT

Assume:

- If the DEMOCRAT were to lose (DL), I would BUY the property
The Sure-Thing Principle

Next election, 3 candidates: DEMOCRAT, REPUBLICAN, INDEPENDENT

Assume:

- If the DEMOCRAT were to lose (DL), I would BUY the property
- If the REPUBLICAN were to lose (RL), I would BUY the property
The Sure-Thing Principle

Next election, 3 candidates:
DEMOCRAT, REPUBLICAN, INDEPENDENT

Assume:

- If the DEMOCRAT were to lose (DL), I would BUY the property
- If the REPUBLICAN were to lose (RL), I would BUY the property
- Either DL or RL must hold
The Sure-Thing Principle

Next election, 3 candidates:
DEMOCRAT, REPUBLICAN, INDEPENDENT

Assume:
- If the DEMOCRAT were to lose (DL), I would BUY the property
- If the REPUBLICAN were to lose (RL), I would BUY the property

Either DL or RL must hold

Conclusion: I should BUY the property
The Sure-Thing Principle?

Next election, 3 candidates: DEMOCRAT, REPUBLICAN, INDEPENDENT

- Assume:
 - If the DEMOCRAT were to lose (DL), I would BUY the property
 - If the REPUBLICAN were to lose (RL), I would BUY the property

- Either DL or RL must hold

- Conclusion: I should BUY the property?
The Sure-Thing Principle?

Example:
Example:

- I should **buy** the property if and only if the chance that the **INDEPENDENT** wins is > 50%
The Sure-Thing Principle?

Example:

- I should **buy** the property if and only if the chance that the INDEPENDENT wins is \(> 50\% \)
- \(\text{Prob (DEMOCRAT wins)} = 30\% \)
- \(\text{Prob (REPUBLICAN wins)} = 30\% \)
- \(\text{Prob (INDEPENDENT wins)} = 40\% \)
The Sure-Thing Principle?

Example:

- I should **buy** the property if and only if the chance that the **INDEPENDENT** wins is > 50%
- \(\text{Prob (DEMOCRAT wins)} = 30\% \)
- \(\text{Prob (REPUBLICAN wins)} = 30\% \)
- \(\text{Prob (INDEPENDENT wins)} = 40\% \)

Conclusion: I should **NOT buy** the property
(40% < 50%)
The Sure-Thing Puzzle

\[\text{Prob (INDEPENDENT wins | DEMOCRAT loses)} = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\% \]

so I would buy the property if I knew DL
The Sure-Thing Puzzle

\[\text{Prob (INDEPENDENT wins | DEMOCRAT loses)} = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\% \]

so I would buy the property if I knew DL

\[\text{Prob (INDEPENDENT wins | REPUBLICAN loses)} = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\% \]

so I would buy the property if I knew RL
The Sure-Thing Puzzle

Prob (INDEPENDENT wins | DEMOCRAT loses) = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\%
so I would buy the property if I knew DL

Prob (INDEPENDENT wins | REPUBLICN loses) = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\%
so I would buy the property if I knew RL

Either DL or RL holds, so ??
The Sure-Thing Puzzle

- Prob (INDEPENDENT wins | DEMOCRAT loses) = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\%
 so I would buy the property if I knew DL

- Prob (INDEPENDENT wins | REPUBLICAN loses) = \frac{40\%}{30\% + 40\%} = \frac{4}{7} > 50\%
 so I would buy the property if I knew RL

- Either DL or RL holds, so ? ?

When there are 3 candidates

DL and RL are NOT disjoint events
The Sure-Thing Puzzle

- Prob (INDEPENDENT wins | DEMOCRAT loses) = \[\frac{40\%}{30\%+40\%} = \frac{4}{7} > 50\%\]
 so I would **buy** the property if I knew DL

- Prob (INDEPENDENT wins | REPUBLICN loses) = \[\frac{40\%}{30\%+40\%} = \frac{4}{7} > 50\%\]
 so I would **buy** the property if I knew RL

Either DL or RL holds, so ? ?

When there are 3 candidates

DL and RL are NOT disjoint events

I should **NOT** buy!
Bayes’ Rule

\[\text{Prob}(E | A) = \alpha \]
\[\text{Prob}(E | B) = \alpha \]
Bayes’ Rule

\[\text{Prob} \left(\frac{E}{A} \right) = \alpha \]

\[\text{Prob} \left(\frac{E}{B} \right) = \alpha \]

Conclusion:

\[\text{Prob} \left(\frac{E}{A \cup B} \right) = \alpha \]
Bayes’ Rule

\[\text{Prob} \left(E \mid A \right) = \alpha \]

\[\text{Prob} \left(E \mid B \right) = \alpha \]

\[A \cap B = \phi \]

Conclusion:

\[\text{Prob} \left(E \mid A \cup B \right) = \alpha \]
Bayes’ Rule

\[\text{Prob}(E | A) = \alpha \]
\[\text{Prob}(E | B) = \alpha \]
\[A \cap B = \phi \]

Conclusion:
\[\text{Prob}(E | A \cup B) = \alpha \]

Proof:
\[\text{Prob}(E | A \cup B) \]
Bayes’ Rule

- \(\text{Prob}(E | A) = \alpha \)
- \(\text{Prob}(E | B) = \alpha \)
- \(A \cap B = \emptyset \)

Conclusion:

\[\text{Prob}(E | A \cup B) = \alpha \]

Proof:

\[\text{Prob}(E | A \cup B) = \]
\[\text{Prob}(E | A) \cdot \text{Prob}(A | A \cup B) + \]
\[\text{Prob}(E | B) \cdot \text{Prob}(B | A \cup B) \]
Bayes’ Rule

- \(\text{Prob} \left(E \mid A \right) = \alpha \)
- \(\text{Prob} \left(E \mid B \right) = \alpha \)
- \(A \cap B = \phi \)

Conclusion:

\(\text{Prob} \left(E \mid A \cup B \right) = \alpha \)

Proof:

\[
\text{Prob} \left(E \mid A \cup B \right) = \\
\text{Prob} \left(E \mid A \right) \cdot \text{Prob} \left(A \mid A \cup B \right) + \\
\text{Prob} \left(E \mid B \right) \cdot \text{Prob} \left(B \mid A \cup B \right) = \alpha
\]
The *Logical Sure-Thing Principle* (LSTP):
The *Logical Sure-Thing Principle* (**LSTP**):

p, q, q': propositions
The *Logical Sure-Thing Principle* (LSTP):

\(p, q, q': \) propositions

- Assume:

 \[q \rightarrow p \]

 \[q' \rightarrow p \]
The *Logical Sure-Thing Principle* (LSTP):

$p, q, q':$ propositions

- Assume:
 - $q \rightarrow p$
 - $q' \rightarrow p$

- Conclusion: $q \lor q' \rightarrow p$
Logical Sure-Thing Principle

The **Logical Sure-Thing Principle (LSTP)**:

\[p, q, q': \text{propositions} \]

- Assume:
 - \(q \rightarrow p \)
 - \(q' \rightarrow p \)

- **Conclusion:** \(q \lor q' \rightarrow p \)

... whether \(q \) and \(q' \) are compatible or not.
The **Logical Sure-Thing Principle** (LSTP):

\[p, q, q': \text{ propositions} \]

- **Assume:**
 \[q \rightarrow p \]
 \[q' \rightarrow p \]

- **Conclusion:** \[q \lor q' \rightarrow p \]

... whether \(q \) and \(q' \) are compatible or not.

LSTP is a theorem of Propositional Calculus
The *Logical Sure-Thing Principle* (**LSTP**):
The *Logical Sure-Thing Principle* (LSTP):

\[P, Q, Q' : \text{sets} \]
The *Logical Sure-Thing Principle* (LSTP):

\[P, Q, Q' : \text{sets} \]

Assume:

- \[Q \subset P \]
- \[Q' \subset P \]
The *Logical Sure-Thing Principle* (**LSTP**):

\[P, Q, Q' : \text{sets} \]

- **Assume:**
 - \(Q \subseteq P \)
 - \(Q' \subseteq P \)

- **Conclusion:** \(Q \cup Q' \subseteq P \)
Logical Sure-Thing Principle

The **Logical Sure-Thing Principle** (**LSTP**):

\[P, Q, Q' : \text{sets} \]

- Assume:
 - \[Q \subset P \]
 - \[Q' \subset P \]

- **Conclusion:** \[Q \cup Q' \subset P \]

... whether the sets \(Q \) and \(Q' \) are disjoint or not.
The Sure-Thing Principle of decision theory (STP) is NOT the Sure-Thing Principle of logic (LSTP)!
STP and LSTP

The Sure-Thing Principle of decision theory (STP) IS NOT the Sure-Thing Principle of logic (LSTP)!

- STP is a property of *rational decision-making*
The Sure-Thing Principle of decision theory (STP) is not the Sure-Thing Principle of logic (LSTP)!

- **STP** is a property of *rational decision-making*
- **STP** is not a logical necessity
The Sure-Thing Principle of decision theory (STP) IS NOT the Sure-Thing Principle of logic (LSTP)!

- **STP** is a property of *rational decision-making*
- **STP** is not a logical necessity
- Savage ’54: **STP** is an “extralogical principle”
The Sure-Thing Principle of decision theory (STP) is not the Sure-Thing Principle of logic (LSTP)!

- **STP** is a property of *rational decision-making*
- **STP** is not a logical necessity
- Savage ’54: **STP** is an “extralogical principle”

QUESTION: What is the role of *disjointness* in **STP**?
The probability of a person who tested positive for HIV to survive 5 years is 40%
The probability of a person who tested positive for HIV to survive 5 years is 40%

Your friend tells you that he just tested positive for HIV
Conditional Probability

The probability of a person who tested positive for HIV to survive 5 years is 40%.

Your friend tells you that he just tested positive for HIV.

What is your probability for his surviving 5 years?
Conditional Probability

- The probability of a person who tested positive for HIV to survive 5 years is 40%.
- Your friend tells you that he just tested positive for HIV.

What is your probability for his surviving 5 years?

ANSWER: 40%
Conditional Probability

- The probability of a person who tested positive for HIV to survive 5 years is 40%
- Your friend tells you that he just tested positive for HIV

What is your probability for his surviving 5 years?

ANSWER: 40%

you know that he tested positive for HIV
Conditional Probability

The probability of a person who tested positive for HIV to survive 5 years is 40%.

Your friend tells you that he just tested positive for HIV.

What is your probability for his surviving 5 years?

ANSWER: 40%

you know that he tested positive for HIV

and

you know that he told you so
Conditional Probability

Conditioning should be done on:

- The information you have obtained
Conditional Probability

Conditioning should be done on:

- The information you have obtained
- The way the information was obtained

and
Conditional Probability

Conditioning should be done on:

- The information you have obtained

 ("event" E)

 and

- The way the information was obtained

 ("signal" s)
Conditional Probability

Conditioning should be done on:

- The information you have obtained

 \(\text{"event" } E \)

 and

- The way the information was obtained

 \(\text{"signal" } s \)

\[E = \text{your friend tested positive} \]
\[s = \text{your friend told you that he tested positive} \]
Conditional Probability

- The signal s implies the information E (s is sufficient for E)

- E = your friend tested positive
- s = your friend told you that he tested positive
Conditional Probability

- The signal s implies the information E (s is sufficient for E)

- Conditioning on E should be done only when s is necessary and sufficient for E

- $E = \text{your friend tested positive}$

- $s = \text{your friend told you that he tested positive}$
Conditional Probability

- The signal s implies the information E (s is sufficient for E)

- Conditioning on E should be done only when s is necessary and sufficient for E

For example, when you are the lab technician:

s if and only if E

$E = $ your friend tested positive

$s = $ your friend told you that he tested positive
Set of *states* of the world: Ω
Epistemological Model

- Set of states of the world: Ω
- Event: $E \subset \Omega$
Epistemological Model

- Set of *states* of the world: Ω
- *Event*: $E \subset \Omega$
- *Information* of the DECISION MAKER (DM): A partition \mathcal{K} of Ω
Epistemological Model

- Set of states of the world: Ω
- Event: $E \subset \Omega$

Information of the DECISION MAKER (DM):
A partition \mathcal{K} of Ω

- Atom of \mathcal{K}: information set or ken
Epistemological Model

- Set of *states* of the world: Ω
- *Event*: $E \subset \Omega$
- *Information* of the DECISION MAKER (DM):
 A partition \mathcal{K} of Ω
 - Atom of \mathcal{K}: *information set* or *ken*
 - When the true state is $\omega \in \Omega$, DM knows only that the true state is in that ken $K(\omega) \in \mathcal{K}$ to which ω belongs

ken = “the range of perception, understanding, or knowledge” (Merriam-Webster)
Epistemological Model

Equivalently:

A *signalling function* $\sigma : \Omega \rightarrow S$
Equivalently:

- A *signalling function* $\sigma : \Omega \rightarrow S$
- The kens are $\sigma^{-1}(s) = \{\omega : \sigma(\omega) = s\}$ for $s \in S$
Epistemological Model

Equivalently:

- A signalling function \(\sigma : \Omega \rightarrow S \)
- The kens are \(\sigma^{-1}(s) = \{ \omega : \sigma(\omega) = s \} \)
 for \(s \in S \)
- DM knows \(E \) when the signal \(s \) implies \(E \):
 \[\sigma^{-1}(s) \subseteq E \]
Equivalently:

A signalling function \(\sigma : \Omega \rightarrow S \)

The kens are \(\sigma^{-1}(s) = \{ \omega : \sigma(\omega) = s \} \) for \(s \in S \)

DM *knows* \(E \) when the signal \(s \) implies \(E \):

\[\sigma^{-1}(s) \subseteq E \]

Conditioning: on the signal \(s \)

\[\text{Prob}(A \mid \sigma^{-1}(s)) \] or \[\text{Prob}(A \mid K(\omega)) \]
Epistemological Model

- Equivalently:
 - A signalling function $\sigma : \Omega \rightarrow S$
 - The kens are $\sigma^{-1}(s) = \{\omega : \sigma(\omega) = s\}$ for $s \in S$

- DM knows E when the signal s implies E:
 $$\sigma^{-1}(s) \subset E$$

- Conditioning: on the signal s

 $\text{Prob}(A \mid \sigma^{-1}(s))$ or $\text{Prob}(A \mid K(\omega))$

 (not $P(A \mid E)$ nor $P(A \mid KE)$)
The Sure-Thing Principle

Given a signalling function
The Sure-Thing Principle

Given a signalling function

If the decision maker makes the same decision no matter what signal he gets
The Sure-Thing Principle

Given a signalling function

If the decision maker makes the same decision no matter what signal he gets

Then he can make that same decision without getting any signal
The 3 Candidates

D wins

I wins

R wins
The 3 Candidates

Events: RL, DL
The 3 Candidates

Events: RL, DL

signals: “RL”, “DL”
The 3 Candidates

Events: RL, DL

signals: “RL”, “DL”

NOT disjoint

DISJOINT
Sure-Thing Principle - Summary

One must use *all the information*, including the way the information was received (the signal)
Sure-Thing Principle - Summary

One must use *all the information*, including the way the information was received (the signal)

⇒ *disjointness*
Sure-Thing Principle - Summary

- One must use *all the information*, including the way the information was received (the signal)
 \[\Rightarrow \text{disjointness} \]

- The *Sure-Thing Principle of Decision Theory* is **NOT** the *Sure-Thing Theorem of Logic*
Part II

Agreeing on Decisions

Robert J. Aumann
Sergiu Hart
The Agreement Theorem (Aumann 1976):
The Agreement Theorem (Aumann 1976):

If two people have the same prior
The Agreement Theorem (Aumann 1976):

If two people have the same prior and their posteriors are common knowledge
The Agreement Theorem (Aumann 1976):

If two people have the same prior

and their posteriors are common knowledge

then their posteriors must be equal
The Decision Agreement Theorem
(Cave 1983, Bacharach 1985):
The Decision Agreement Theorem

(Cave 1983, Bacharach 1985):

If two people have the same decision function
The Decision Agreement Theorem
(Cave 1983, Bacharach 1985):

If two people have the same decision function

and their decisions are common knowledge
The Decision Agreement Theorem
(Cave 1983, Bacharach 1985):

If two people have the same decision function

and their decisions are common knowledge

then their decisions must be equal
The Decision Agreement Theorem
(Cave 1983, Bacharach 1985):

If two people have the same decision function
which satisfies the Sure-Thing Principle
and their decisions are common knowledge
then their decisions must be equal
The *Sure-Thing Principle* for a decision function:
The *Sure-Thing Principle* for a decision function:

- If the decision is δ when one knows that A happened, and also when one knows that B happened.
The *Sure-Thing Principle* for a decision function:

- If the decision is δ when one knows that A happened, and also when one knows that B happened

- and A and B are mutually exclusive (disjoint)
Decision Sure-Thing Principle

The *Sure-Thing Principle* for a decision function:

- If the decision is δ when one knows that A happened, and also when one knows that B happened
- and A and B are mutually exclusive (disjoint)
- then the decision is δ when one knows that either A or B happened, without knowing which one
The *Sure-Thing Principle* for a decision function:

- If the decision is δ when one knows that A happened, and also when one knows that B happened
- and A and B are mutually exclusive (disjoint)
- then the decision is δ when one knows that either A or B happened, without knowing which one

$$D(A) = D(B) = \delta \quad \text{and} \quad A \cap B = \emptyset$$

$$\implies D(A \cup B) = \delta$$
A murder has been committed. Alice and Bob ...
Another Detective Story

A murder has been committed. Alice and Bob ...

The Decision Agreement Theorem appears in the lecture notes of Aumann on *Interactive Epistemology* (1989)
Another Detective Story

A murder has been committed. Alice and Bob ...

The Decision Agreement Theorem appears in the lecture notes of Aumann on *Interactive Epistemology* (1989)

... but does not appear in the printed version (*IJGT* 1999)
Another Detective Story

A murder has been committed. Alice and Bob ...

The Decision Agreement Theorem appears in the lecture notes of Aumann on Interactive Epistemology (1989)

... but does not appear in the printed version (IJGT 1999)

Why?
Another Detective Story

A murder has been committed. Alice and Bob ...

The Decision Agreement Theorem appears in the lecture notes of Aumann on *Interactive Epistemology* (1989)

... but does not appear in the printed version (*IJGT* 1999)

Why?

Moses and Nachum (1990)
Another Detective Story

A murder has been committed. Alice and Bob ...

The Decision Agreement Theorem appears in the lecture notes of Aumann on Interactive Epistemology (1989)

... but does not appear in the printed version (IJGT 1999)

Why?

Moses and Nachum (1990):

The union of kens is not a ken!
The union of kens is not a ken:
\textbf{The union of kens is not a ken:}

The union of kens cannot be a ken in the same partition.
The union of kens is not a ken:

- The union of kens cannot be a ken in the same partition
- But can’t one consider other partitions?
Union of Kens

The union of kens is not a ken:

- The *union* of kens **cannot** be a ken in the same partition
- But can’t one consider other partitions?
- **Union of kens** \leftrightarrow **loss of information**
 \leftrightarrow **confusion:**
The union of kens is not a ken:

- The union of kens cannot be a ken in the same partition
- But can’t one consider other partitions?

Union of kens ⇔ loss of information ⇔ confusion:

from: Alice knows A or Alice knows A'
to: Alice knows $\{A$ or $A'\}$
The union of kens is not a ken:

- The union of kens cannot be a ken in the same partition
- But can’t one consider other partitions?

Union of kens \leftrightarrow loss of information
 \leftrightarrow confusion:

 from: Alice knows A or Alice knows A'
 to: Alice knows $\{A \text{ or } A'\}$

Affects also other people:

 from: Bob knows that $\{A$ knows A or A'
 to: Bob knows $\ ?$
The union of kens is not a ken:

- The union of kens cannot be a ken in the same partition
- But can’t one consider other partitions?

- Union of kens \leftrightarrow loss of information \leftrightarrow confusion:
 - from: Alice knows A or Alice knows A'
 - to: Alice knows \{ A or A' \}

- Affects also other people:
 - from: Bob knows that \{ Alice knows A or Alice knows A' \}
 - to: Bob knows ? decides ?
Use the *syntactic approach* (sentences, logic) rather than the *semantic approach* (partitions)
Solution

Use the *syntactic approach* (sentences, logic) rather than the *semantic approach* (partitions)

Formalize and prove syntactically
The *Decision Agreement Theorem*
Solution

Use the **syntactic approach** (sentences, logic) rather than the **semantic approach** (partitions)

- Formulate and prove syntactically
 The **Decision Agreement Theorem**

- Define the **union of kens**
Use the *syntactic approach* (sentences, logic) rather than the *semantic approach* (partitions)

- Formalize and prove syntactically
 The **Decision Agreement Theorem**
- Define the *union of kens* = “ken-fusion”
Use the *syntactic approach* (sentences, logic) rather than the *semantic approach* (partitions)

- Formalize and prove syntactically
 The **Decision Agreement Theorem**

- Define the *union of kens* \(= \text{“ken-fusion”} \) ("confusion")
Two Assumptions

[A1] All knowledge is elementary

- The alphabet is *rich enough* to be able to express everything relevant for the decision — facts and signals
Two Assumptions

[A1] All knowledge is elementary

- The alphabet is *rich enough* to be able to express everything relevant for the decision — facts and signals

- In the 3-candidates example, it must express when exactly the signals “DL” and “RL” are received — otherwise the decision may not be well-defined
Two Assumptions

[A2] *Substantive decisions*

- The decisions depend on *substantive knowledge* only — not on knowledge per se
Two Assumptions

[A2] Substantive decisions

- The decisions depend on substantive knowledge only — not on knowledge per se.
- Knowledge of facts is substantive knowledge; knowledge about knowledge (other’s or one’s own) that does not have factual implications is not relevant to the decision.
[A2] Substantive decisions

- The decisions depend on substantive knowledge only — not on knowledge per se
- Knowledge of facts is substantive knowledge; knowledge about knowledge (other’s or one’s own) that does not have factual implications is not relevant to the decision
- For example: probabilities
Two Assumptions

[A2] Substantive decisions

- The decisions depend on *substantive knowledge* only — not on knowledge per se.
- Knowledge of facts is substantive knowledge; knowledge about knowledge (other’s or one’s own) that does not have factual implications is not relevant to the decision.
- For example: probabilities
- The book author example
The Model

- \mathcal{X}: the alphabet
- \mathcal{E}, the algebra generated by \mathcal{X}: the elementary formulas
- N: the set of players
The Model

- \mathcal{X}: the *alphabet*
- \mathcal{E}, the algebra generated by \mathcal{X}: the *elementary* formulas
- \mathcal{N}: the set of *players*
- Δ: the set of *decisions*
- $D: \mathcal{E} \rightarrow \Delta$: decision function, the same for all $i \in \mathcal{N}$
The Model

- \mathcal{X}: the alphabet
- \mathcal{E}, the algebra generated by \mathcal{X}: the elementary formulas
- \mathcal{N}: the set of players
- Δ: the set of decisions
- $D: \mathcal{E} \rightarrow \Delta$: decision function, the same for all $i \in \mathcal{N}$

[STP]: If $\vdash \neg (e' \land e'')$ and $D(e') = D(e'') = \delta$ then $D(e' \lor e'') = \delta$
The Model

d_i^δ: a symbol for “the decision of i is δ”
The Model

- \(d_i^\delta \): a symbol for “the decision of \(i \) is \(\delta \)”
- for all \(i \in N \) and \(\delta, \delta' \in \Delta \) with \(\delta \neq \delta' \)

\[\vdash d_i^\delta \Rightarrow \neg d_i^{\delta'} \]

- \(\mathcal{D} = \{ d_i^\delta : i \in N, \delta \in \Delta \} \)
The Model

- d_i^δ: a symbol for “the decision of i is δ”
- for all $i \in N$ and $\delta, \delta' \in \Delta$ with $\delta \neq \delta'$

$$\vdash d_i^\delta \Rightarrow \neg d_i^{\delta'}$$

- $\mathcal{D} = \{d_i^\delta : i \in N, \delta \in \Delta\}$

Apply the universal canonical construction of Aumann (1999) to generate the *syntax* $\mathcal{G}(N, \mathcal{X} \cup \mathcal{D})$
[A1] All knowledge is elementary:

$$\vdash \forall c \in E \, (k_i e \leftrightarrow c)$$

for every $$i \in N$$, $$e \in E$$, and $$m \in N$$
The Model

[A1] All knowledge is elementary:

\[\vdash \forall c \in \mathcal{C} k^m_i (k_i e \iff c) \]

for every \(i \in \mathbb{N}, e \in \mathcal{C}, \) and \(m \in \mathbb{N} \)

[A2] Substantive decisions:

\[\vdash k_i^* e \Rightarrow d_i^D(e) \]

for every \(i \in \mathbb{N} \) and \(e \in \mathcal{C}, \) where

\[k_i^* e := (\forall c \in \mathcal{C}) (k_i c \iff \vdash (e \Rightarrow c)) \]

(i knows exactly e)
The Result

For a formula f, let $c(f)$ denote the list of formulas $\{k^m f : m \in \mathbb{N}\}$ (= “f is *commonly known*”)
For a formula f, let $c(f)$ denote the list of formulas $\{k^m f : m \in \mathbb{N}\}$

($= \text{“} f \text{ is } \text{commonly known} \text{”}$)

The Decision Agreement Theorem

Assume [STP], [A1] and [A2].

Let $i, j \in \mathbb{N}$ and $\delta, \delta' \in \Delta$.
For a formula f, let $c(f)$ denote
the list of formulas $\{k^m f : m \in \mathbb{N}\}$
(= “f is commonly known”)

The Decision Agreement Theorem

Assume [STP], [A1] and [A2].

Let $i, j \in \mathbb{N}$ and $\delta, \delta' \in \Delta$.

Then $c(d_i^\delta \land d_j^\delta')$ implies $\delta = \delta'$.
The End?

Sure-Thing!