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CONCURRENT PROBABILISTIC PROGRAMS, OR:
HOW TO SCHEDULE IF YOU MUST*

SERGIU HARTt AND MICHA SHARIRTt

Abstract. Consider a finite set of processes, such that each one may use randomizations in its course
of execution; these processes are running concurrently, under a fair interleaving schedule. We analyze the
worst-case probability of termination, i.e., program convergence to a specified set of goal states. Several
methods for computing this probability are presented, and characterizations of the special case where it is
identically 1 are derived. Specializations of these characterizations to the case of deterministic and nondeter-
ministic programs, and t.o the case of programs with finite state spaces, are also discussed.
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1. Introduction. This paper continues the study, begun in [HSP], of termination
of concurrent probabilistic programs. The model that we assume is that of a finite set
K of concurrent processes, each of which is allowed to use randomization, i.e., draw
randomly according to probability di.stributions. These processes execute asyn-
chronously, and we can thus consider each process k E K as a discrete Markov chain
(with stationary transition probability matrix pk) on the set I of common execution
states. The overall execution behavior of these processes is described in terms of the
interleaving pattern in which they are scheduled by some imaginary scheduler fT. Each
process k scheduled at a state i can reach more than one subsequent state, so that to
specify fT we need to consider all these transitions simultaneously. We may therefore
represent fT as a tree (referred to as the execution-tree or the transition-tree induced,
by a-) each of whose nodes is labeled by a pair (i, k), where i E I is the state reached
at that node, "and where k E K is the process to be scheduled there next. A node (iI, kI)
will be a son of (i, k) in the tree if there exists a positive transition probability of
reaching i1 from i under ~ single execution step of process k, and if process k1 will
be next scheduled at ib provided that this transition has indeed taken place.

Given such a fT, it induces in a standard manner a probability measure }.La-on the
space of all infinite sequences of states.

We consider here general schedules fT, with the sole restriction that they be fair,
meaning that no process stops being scheduled; i.e., that the }.La--measureof the set of
all tree paths on which each process k E K is scheduled infinitely often is t.

This model is discussed and justified more fully in [HSP]. We note that it coincides
with the model assumed by Lehmann and Rabin in [LR], and also with that used by
Dubins and Savage [DS] in their study of optimal gambling strategies (with the essential
exception that they do not require fairness). It does differ, though, from various other
models used in the literature (cf. [Rat], [Ra2], [RSt], [RS2]). The crucial distinction
lies in the degree to which the imaginary scheduler can base its scheduling decisions
on the outcome of random draws made by the processes, or, more generally, on their
internal states. These more restrictive scheduling models usually correspond to situ-
ations in which the execution time of a single step of a process is independent of its
current state and of the outcome of the random draws it has made. Our model is more
general, and allows for such dependence, thereby being a more realistic model for
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general concurrent or distributed probabilistic execution. Moreover, properties estab-
lished for concurrent probabili~tic programs under our model will continue to hold
under the more restrictive models mentioned above, but not necessarily vice-versa (for
example, Rabin's synchronization algorithm described in [Ral] is shown in [HSP] to
fail in our model).

In the preceding paper [HSP], we have analyzed termination of concurrent prob-
abilistic programs having a finite state space. We have obtained there necessary and
sufficient conditions for such a program to reach (with probability 1) a given set X of
goal states from some initial state, under any fair schedule. These conditions can be
checked mechanically, and are independent of the particular values of nonzero transi-
tion probabilities of the processes involved.

In this paper we generalize and extend these results to programs with infinite state
spaces. As in the case of a single Markov chain, the analysis of program termination
becomes much more complicated in the general case, and becomes dependent upon
the actual values of the nonzero transition probabilities involved. The basic problem
that we treat in this paper is the computation of the function ({)o'n the set of states I,
where, for each i E I, ({)(i) is the minimum probability of program termination starting
at state i, under any fair schedule. We establish various properties and characterizations
of cp,and derive from them several techniques for the calculation of this function. This
theory enables us to gain a better understanding of the structure of the (worst-case)
convergence .of the program towards termination. For example, one can interpret this
convergence process as a game between the program and the scheduler, in which each
move of the program requires the scheduler to schedule one of the processes and the
scheduler responds by scheduling this process eventually, but only after scheduling
some other processes prior to it, in a way which would hurt as much as possible the

\ program's probability to terminate. We sQow that the optimal payoff for the program

in this game is the function ({),provided that the game is long enough, where the length
of such a game is measured by some (i~finite) ordinal.

The various characterizations of ({)are next used to obtain necessary and sufficient
conditions for the special case ({)==1 (i.e. for worst-case almost-sure termination from
any initial state) to hold. Some of these conditions generalize similar conditions given
in the preceding paper [HSP] for programs with finite state spaces. These characteriz-
ations of program termination are next sp.ecialized to the case in which the processes
are deterministic or nondeterministic. 1 Some of these characterizations are shown to
reduce to the conditions given by Lehmann, Pnueli and Stavi[LSP] for the termination
of nondeterministic programs, while others are new. Finally, the special case of
probabilistic programs with finite state spaces is reconsidered from the viewpoint of
the general theory developed in this paper, enabling us to obtain the decomposition
of the state space described in [HSP] in a different manner. The results of this paper
are exemplified on several running example programs. The techniques developed in
this paper can be immediately interpreted as (sound and complete) proof methods for
almost sure program termination.

This paper is organized as follows: Section 2 presents the notations and terminology
used in the paper, and begins the analysis of ({)by establishing some more elementary

properties of this function. Section 3 develops the main technical tools for the analysis

1 A nondeterministic program is one where each execution step of any of its processes may lead from
a state i E I to several succeeding states, but where there is no probability distribution associated with these
states; instead, each of these succeeding states must be considered as being potentially the sole successor
of i. Such a program is said to terminate if every execution sequence terminat.es.

j
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and characterizations of cp,and obtains cp as the limit of a certain transfinite sequence
of functions. Section 4 gives further characterizations of cpoSection 5 treats the special
case cp==1 (i.e. of almost-sure worst-case termination), and derives various characteriz-
ations of this property. Section 6 specializes the preceding results to the case of
deterministic and nondeterministic programs. The new characterization of termination
of such programs is also given a direct proof. Section 7 treats the special case of
probabilistic programs with finite state spaces. Some concluding remarks are presented
in § 8.

2. Preliminaries. In this section we present our model of probabilistic concurrent
programs in more precise terms, introduce some notations, and establish several
preliminary properties of the worst-case termination probabil~ty of the program.

A concurrent probabilistic program consists of a finite set K of processes acting
on a state space 1; each i E 1 is a common execution state of the processes, and is
specified by the program location at each process, by the values of all variables-shared
and private-etc. Each k E K can be regarded as a stationary discrete Markov chain
on 1. (This extra restriction of discreteness, which is quite adequate for actual programs,
simplifies the analysis considerably, by avoiding the technical difficulties of treating
non O"-additive measures, which would be otherwise necessary as in Dubins and Savage
[DS].) Under this assumption, each process k E K is specified in terms of its transition
probability matrix p\ that is, for each i,j E 1, P~j is the probability of reachi~g state
j from state i in a single (indivisible) execution step of process k. The nonnegative
matrix pk is stochastic: for each i, P~j > 0 for at most countably many j, and LjEl P~j = 1.

As already stated, program execution is assumed to consist of interleaving execu-
tion steps of the processes, each executing in its turn one indivisible step. Let i E 1 be
an initial execution state. Let H (i) denote the set of all finite execution histories sta:r;ting
at i; formally,

H(i)={i}X(Qo 1").

An (infinite) schedule 0" starting at i is simply defined as a function 0":H (i) ~ K, that
is, for each finite history hE H(i), O"(h) is the next process to perform an execution
step, given that execution has proceeded so far through the states in h. The set of all
schedules starting at i will be denoted by ~ (i).' To each such schedule 0" there
corresponds an execution tree, defined inductively as follows. Each node of this tree
is labelled by a pair (j, k) where j is the current execution state, and k the next process
to be scheduled in this node. The root of the tree is labelled by (i, O"(i)). For each
node v in the tree, let hE H(i) be the sequence of states along the path from the root
to v, let j be the last state in h, and let k = 0"( h ); then v is labelled by (j, k), and its
sons are nodes labelled by (j', 0"(h, j')), (where (h, j') is the concatenation of j' to h)
for j' E 1 such that pfj' > O.

Let H*(i) denote the set of all infinite execution histories starting at i, that is,

H*(i) = {I} x J':ta (where 100= Jt 1).

Each schedule 0" E ~ (i) induces a probability measure ILcr on the cylindrical 0"-field

on H*(i), such that for each cylinder (i')1> i2, . . . , in), consisting of all histories whose

initial n + 1 states are i, i1>. . . , in,
n-]

ILcr{(i, i1>. . . , in)} = IT P~~is+1'
s=o

where io= i, ks = 0"(io, i], . . . , is). Expectation with respect to ILcrwill be denoted by EfT"
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Let H* = UiEl H*(i). Throughout the paper we will use the following notational
convention: Elements of H*-which we call paths or histories-will be denoted by
7T; for each such 7Tand each n ~ 0, the (n + 1)th state along 7T will be denoted by in,
and the subpath consisting of the first n + 1 states in 7T will be denoted by 7Tn ==
00, it. . . . , il1)' A path 7T is a fair path with respect to a given schedule U if each k E K

appears infinitely often in the sequence {u( 7Tn)}~=O;the schedule U is a fair schedule
if fLu {7T: 7T is fair} = 1. For each i E I we denote

LF(i) = {u E L (i): U is fair}.

Let X c I be a given set of goal states, fixed henceforth, Our aim is to study the
convergence of program execution to states in X; we will therefore assume in the
sequel, without loss of generality, that all states in X are absorbing for each k E K;
i.e., that P~j = 1 for each i E X and each k E K.

The basic problem studied in this paper is that of analyzing and computing the
worst-case probability of the program to reach X (Le., to terminate) when executed
from a given initial state under a fair schedule. To formalize this notion, let Xx 'be the
characteristic function of X (defined on 1); we extend this function to ]{* by putting

Xx(7T)=limn-->ooXx(il1) (recall that 7T=(iI1)n~O)' Since X is absorbing, XX(7T) = 1 if X
is ever reached along 7T, and 0 otherwise. The probability of reaching X under U is
then simply Bu(Xx). The following standard observation, which also establishes the
measurability of the extended Xx, will be quite useful in the sequel: For each n ~ 0
define a "truncated" extension X~) of Xx by putting X~)( 7T) = 1, if X is reached during
the first n steps of 7T, and 0 otherwise. Then Bu(X~») is the probability of reaching X
during the first n steps of u, and we h~ave

lim B()"(X~»)= sup Bu(X~») = Eu(Xx).
n-->oo 11

The worst-case termination probability that we seek is defined, for each initial state
i E I, as

cp(i) = inf Bu(Xx).
uE:I.F(f) ,

We will shortly establish several preliminary properties of the function cp,but first
we introduce additional notations concerning finite portions of program execution.
Let N denote the set of nonnegative integers, and out N=NU{oo}. A stopping time N
is a mapping from H* into N such that if N( 7T)= m then N( 7T')= m for each path 7T'

which coincides with 7T at all steps up to, and including m. In other words, N( 7T)may
depend only on io, it, . . . , iN~i.e., on states visited before this step, but not on future
steps (i.e., on iN+b . . .). A finite subschedule at i E I is a pair T ~ (c:,.,N) where U E L (i),

and where N is a stopping time on H*( i) such that fLu(N < 00) = 1 (this corresponds
to the notion of "policy" of Dubins and Savage [DS]). The intuitive meaning of such
a pair is the initial portion of U up to, and including N; in particular, the actual value
of (J" is relevant only up to the stopping time N. The set of all finite subschedules at i
will be denoted by T( i) (note that the empty subschedule-Le., when N ==a-is
included in T(i)).

In the sequel we will occasionally use the following standard decomposition of
an infinite schedule (J"EL(i): Let N be a stopping time, fLu(N<oo) = 1; then (J"is
equivalent to its initial portion T= ((J",N), followed by the collection of continuation
schedules; that is, for each 7TE H*(i) (with N < 00), the continuation U7TNE L (iN) of
if after the end state iN of T. Note in particular that (J" is fair if and only if each of the
continuations (J"7TNis fair.
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Let a be a real function on 1. Then for each finite subschedule T = (CT,N) E T( i),
the expectation of a with respect to T is defined as

B,(a) = Eer(aON))'

For example, let CTE I 0), and define, for each n:> 0, Tn = (CT,n) E TO) (i.e., with the
stopping time N=n). Then, as already noted, Eer(Xx) =limn-->eo ET,,(Xx). Note also
that ETo(a) = a (i), and that ETI(a) = (pka )0), where k = CT(i).

Having introduced all the required terminology, we begin by establishing a few
elementary properties of the function <po

PROPOSITION 2.1. (a) <p~ 0; <pIx==1.
(b) <p(i)=minkEK (pk<p)(i) for each iE1.

Proof (a) is trivial, since X is absorbing; note also that <p::::1.
(b) To show that <p(i)~(pk<p)(i) for kE K, iE I, use a schedule CTEIF(i) which

starts by scheduling k at i, and then continues so as to approximate <pat each of the
resulting states. For the converse inequality, take a sequence of schedules CTnin "2.F(i)
such that Eern(Xx) converges to <p(i) and such that they all start by scheduling the
same process k E K (since K is finite this is always possible); then it is easily seen
that (pk<p)(i)~<p(i). More details can be found in [HS]. Q.E.D.

Extending standard notations in Markov chain theory, we say that a real function
a on I is subharmonic if a ~ p\:r for each k E K. Similarly a will be called min-harmonic
if a = minkEK pka (note that each min-harmonic function is subharmonic).

In the special case where K contains a single process k, the function <pis harmonic
(i.e., <p= pk<p). Moreover, it is well-known (cL [SPH] for example) that <pis the smallest

nonnegative harmonic function which is 1 on X. This might lead us to conjecture that
for a general (finite) K, <pis also the smallest nonnegative min-harmonic function
which is 1 on X. This, however, is not true in general, as can be seen from the following
simple example: Let 1= {O, 1}, X = {a}, and K = {1, 2}, with the nonzero transition
probabilities p~,o = pi,l = 1. Obviously, any fair execution of this program brings it
into X with certainty, so that <p==1, yet the function 1/1(0)= 1, 1/1(1)= 0 is a smaller
nonnegative min-harmonic function which is 1 on X. The reason for this phenomenon
is that fairness is not directly connected to the min-harmonicity of <poIndeed, let us
define a function 1/1 on I by

I/I(i) = inf Eu(Xx),
UE~ (i)

i E 1.

(i.e., infimum over all schedules, not necessarily fair). Then it can be shown that
PROPOSITION 2.2. 1/1 is the smallest nonnegative min-harmonic function which is 1

on X.
Our next result is a strong form of a "zero-one law" for <p,which generalizes the

zero-one law established in [HSP] for finite. state spaces.
THEOREM 2.3 (zero-one law). inCE! <pO) is either 0 or 1. Moreover, for each i E I

and CTEIF(i) define a sequence {f,.}n~o offunctions on H*(i) by puttingf,.(1T) = <p(in),
1TE H*(i), n ~ O. Then {in} converges /-Ler-a.s. to Xx (extended to H*(i)).

Proof Let i E I and CTE IF( i) be given. The subharmonicity of <pimplies that the
sequence {In} is a submartingale2 on H*(i). Since O-<fn -< 1 for each n ~ 0, it follows
from the (sub )martingale convergence theorem that {In} converges /-Lu-a.s. to a limit
fee. Put Tn = (CT,n), n~ O. Then

Eer(Xx) = ETn(Eu,," (Xx)):> ET"«p) = Eu(fn)

2 i.e., for all n ~ 0, ECT(fn+ll'ITn)~fn, where 'lTnis any history of length n with J..L(T('ITn) > O.
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(since each unn is fair). Letting n ~ 00, we obtain

E<T(Xx) ~ Eo-(/oo) ~ 1 . ,uo-{ 1T: /00 ( 7T) = I}.

But for each 'lTEH(i), if X is ever reached along 'IT then/n('IT)=cp(in)=1 for all
sufficiently large n, so that foo( 'IT)= 1. Thus

,uo-{ 'IT: /oo( 'IT) = 1} ~ /L<T{1T: X reached along 'IT} = Eo-(Xx).

Therefore we must have equalities throughout; that is

Eo-(Xx) = Eo-(/oo) = ,uo-{ 'IT: /00 ( 1T), = 1}.

This, however, implies that foo is almost everywhere either 0 or 1, and that /oo('IT)= 1
if and only if X is ever reached along 'IT.The zero-one law is now immediate, because
if ({lis not identically 1, take iEI, UE2.F(i) such that Eo-(Xx)=c<1. Then cp(in)~O
on a set of paths whose /Lo--measure is 1- c> 0, thus there exists states with arbitrarily
small ({l,or infiEI ({l(i) = O. Q.E.D.

As a final preliminary note, we would like to point out that, unlike the case of a
finite state space, the actual values of nonzero transition probabilities of the processes
involved can have significant influence on the termination probabilities cpoThis is
indeed well known even for a single Markov chain. (Consider e.g. the case of a random
walk on the nonnegative integers, where the "leftward" transition probability is p.
Then the probability of converging towards 0 is identically 1 if p ;;::1, and is exponentially
decreasing otherwise; cr. [Ch] for details). Thus, for infinite state spaces there is no
hope to obtain purely combinatorial analysis techniques (as have been developed in
[HSP] for finite state spaces), and more complex techniques are needed. Development
of such techniques is indeed the main purpose of the present paper.

3. 'P.iterates. Direct calculation of the function 'P from its definition is rather
complicated. The purpose of this section is to develop machinery needed for a simpler
calculation and characterization of 'P.Specifically, we will show that 'P is the limit of
a transfinite sequence of iterates of a certain operator. We will call these cp-iterates.

DEFINIT1ON. We define an 9perator Q, and an auxiliary set of operators {QkheK,
on the space of all bounded real functions on I, as follows: For each bounded real
function a on 1, each i E1, and each k E K, put

(Qka)(i)= inf E.r(a),
TET(i,k)

where T( i, k) is defined as

{(O",N+1): O"E2.(i), Nan a.s. finite stopping time with U(1TN)=k}c T(i);

i.e., T( i, k) is the set of all subschedules which start at i, schedule k eventually almost
surely, and stop right after scheduling k. Q is then defined as

(Qa )(i) = max (Q~a)(i).
kEK

Let R be any of the operators Qk or Q; then plainly R is monotone (Le., at ~ a2

implies Ra)::: Raz), RO = 0, and R1 = 1. The following lemma gives two characteriz-
ations of the operators Qk, one of which is constructive while the other is not.

LEMMA 3.1. Let a be a bounded real function on 1. For each k E K, Qka is the
largest subharmonic function which does not exceed pka (i.'e., (1) Qka ~ pka, (2) Qka
is subharmonic, and (3) if f3 ~ pka is subharmonic, then f3 ::::Qka). Furthermore, Qka
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is the limit. (or infimum) of the following nonincreasing sequence of functions:

/31(i) = (pka)(i), iEI,

/3n+1(i) = min { /3n(i), min (pI/3n)( i) }
,

IEK
i E I, n2:1.

Proof. Let /3 be the limit of the nonincreasing sequence {/3n}; then /3 is the largest
sub harmonic function ~pka. The rest follows by noting that, for each n 2: 1

/3n(i) = inf Er(a),
TE Tn (i,k)

where Tn(i, k) consists of those subschedules in T( i, k) which stop after at most n
steps. Q.E.D.

LEMMA 3.2. For each subharmonic function a and each k E K we have

a~Qka~pka.

Proof. By Lemma 3.1, Qka is the 1<irgest sub harmonic function which is <.pka.

Since a itself is subharmonic w~ have a ~ pka, so that a <. Qka. Q.E.D.

DEFINITION.For each ordinal a we define on I real functions 'Ya and 'Y~, k E K,
by the following transfinite inductive process:

k
'Yo = 'Yo = Xx, kEK,

'Y~= sup Qk'Yb for each ordinal a> 0 and k E K,
b<a

'Ya = max 'Y~ for each ordinal a.
kEK

,j'

The functions 'Y~and 'Ya are called the cp-iterates of order a of the program (the reason
for this terminology will be apparent at the end of this section).

Since X is absorbing, QkXx ~ Xx, thus 'Y~::> 'Y~ for each k E K, hence 'Y1::> 'Yo.Also,
by definition, 'Y~~ 'Y~for each pair of ordinals a> b > O. Thus, for each k E K the
transfinite sequence {'Y~}a~O is nondecreasing, and so is the sequence {'Ya}a~O' From
this it follows that 'Y~+1 = Qk'Ya for each ordinal a, and that 'Ya= SUPb<a'Yb for limit
ordinals a.

Since the transfinite sequence {'Ya}a~Ois nondecreasing, and each of its elements
is obviously bounded between 0 and 1, this sequence must converge to a limit function
'Y,and there must exist an ordinal c such that'Yc = 'Y. (Indeed, for each i E I the
transfinite sequence {{'a(i)} is a nondecreasing and bounded sequence of real numbers,
and so must attain its supremum at some ordinal Ci; the required ordinal c is simply
SUPiEl Ci') Obviously Q'Y = Q'Yc = 'Yc+l = 'Yc= 'Y.Moreover, using standard fixpoint argu-
ments, it is easily seen by transfinite induction that y is the smallest fixpoint of Q
which is 2:Xx.

Remarks. (1) To motivate these definitions, it is helpful to consider the following
interpretation of the functions 'Ya and 'Y~: 'Yo(i) is just an indication whether i E X.
'Y~(i) is the smallest probability of reaching X by any subschedule which starts
execution at i, and is forced to schedule k eventually (a.s.). Thus 'Yl(i) is the smallest
probability of reaching X that must be yielded by any subschedule starting at i which
is forced to schedule anyone of the processes at least once. Arguing inductively, 'Yn(i)
is the smallest probability of reaching X that must be yielded by any subschedule
starting at i which has to schedule any sequence of n processes one after the other.
(N ote that this sequence need not be specified in advance; rather the first process k1

,.'","
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to be scheduled is specified, then the second process to be scheduled is specified, but
it may' depend on the state reached after scheduling k" and so on.)

(2) 'Yn (i) can be viewed as the minmax value of a two-person zero-sum game
I'n (i). In this game, the aim of the first player, called "player X," is to reach X during
program execution with the highest possible probability, whereas the aim of the second
player, called "the scheduler," is to prevent the program from reaching X as much as
possible. The game I' n (i) consists of n stages. Each stage starts at some state j E I
(stage 1 starts at i). Player X chooses some k E K, and then the scheduler chooses
some TE T(j, k). The program is then run according to T; when it stops, the next stage
is played. After n such stages, player X receives a payoff of one unit from the scheduler
if a state in X has been reached, and zero otherwise.

This interpretation can be extended to higher-order ordinals. Specifically, for each
ordinal a we define a collection of games f a(i), for each i E I, in the following transfinite
inductive manner:

.

(i) I' o(i) is the "empty" game; player X receives a payoff of 1 from the scheduler
if i E X, and zero otherwise.

(ii) If a is not a limit ordinal, say a = b + 1, player X' first chooses a process k
and then the scheduler chooses a subschedule T E T(i, k), and the program is run
according to T; for each end state j of T, the game continu~s as fb(j).

(iii) If a is a limit ordinal, player X first chooses an ordinal b < a, and then the
game continues as fb(i).

The definitions (ii) and (iii) imply that after each stage, games with smaller ordinals
are played; since every strictly decreasing sequence of ordinals is finite, it follows that
every play of any of these games is finite, so that fo is reached eventually, and the
payoff is therefore well defined. Moreover, by the definition of the sequence { 'Ya} a;;;;O,

one easily obtains by transfinite induction, that 'Ya(i) is precisely the value of f aU).
Indeed, an B-optimal strategy for.player X is constructed as follows (for each B > 0):
If a = b + 1, player X first chopses k E K for which 'Ya(i) = 'Y~(i), and from each end
state j of the subschedule T E T( i, k) subsequently chosen by the scheduler, he continues
with an B-optimal strategy of fj (b). If a is a limit ordinal, player X first chooses an
ordinal b < a such that 'Ya(i) - 'Yb(i)< B/2, and then continues with an el2-optimal
strategy of f b( i).. As for the scheduler, at the first ordinal b + 1~ a where he is called
upon to move, he chooses T E T(i, k) such that Er( 'Yb)- 8/2 < (Qk'Yb)(i) = 'Y~+I(i), and
then he continues with an B/2-optimal strategy in the corresponding f b(j).

Furthermore, the ordinal c (at which 'Yc+l= 'Ycis fi1:stobtained) is such that the
expected payoff that player X can guarantee in the game f c(i) is the largest possible
among all games {fa (in a""O~uniformly in the initial state i. As we shall see later in
this section, this maximum payoff is exactly q>(i).

(3) Note that if Q were (T-order continuous, Le., if for any nondecreasing sequence
{l1n}of uniformly bounded functions we had

Q( S~Phl1) = s~~ Qhm

then convergence of the 'Ya's would be attained at c = w (the first infinite ordinal) or
earlier. This is indeed so when I is a finite set, since then each such sequence {hl1}
converges uniformly to its supremum, in which case Q is clearly continuous. However,
this does not hold in general, and so higher ordinals may be needed. (A similar
phenomenon is noted by Lehmann, Pnueli and Stavi [LPS] concerning nondeterministic
concurrent programs; see § 6 for a detailed comparison between their technique and
ours.)
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To illustrate the possible discontinuity of Q (and hence the need for higher
ordinals), consider the following example (in which both processes involved are actually
deterministic) .

Example 1. Let K = {I, 2}, and let I = II U I2, where II = N x {I}, 12 = N x{2}, and
X = {CO,I)}. The nonzero transition probabilities are

pI = p2 = 1(n,I),(n-l,l) (n,I),(n,1) , n>O,

pI - p2 - 1(n,2),(n+l,2) - (n,2),(n,1) - , n:>O.

These transitions are displayed in the following diagram:

1,:

I, :

2 2 2

It is easily seen that

'Yn(i,l)= {
O,
1,

i:> n,

i < n,
iEN.

By definition of 1'", we thus have

'Y",(i, 1) = 1, iEN.

On the other hand, 'Yn(i,2)=0 for each i, nEN (to obtain (Q2Yn)(i,2), schedule
process 1 sufficiently many!imes so as to reach a state (j,2) with j 2: n, and then
schedule process 2). Thus

'Y",(i, 2) = 0, iEN.

But 1'",+1= Q'Y",> y",. Indeed, for each (i, 2) E 12 we have

Y"'+I(i, 2) = (Q'Y",)(i, 2) = (Q2y",)(i, 2)= Yw(j, 1) = 1 (where j:> i).

Thus 1""+1==1, and convergence of the qJ-iterates is attained at the ordinal w + 1.
Remarks. (1) In the game-theoretic terminology established earlier, player X

cannot achieve a nonzero payoff in any of the games r n(i, 2), n EN, or even r ",(i, 2),
because if the number of rounds n is fixed in advance, the scheduler will initially
schedule process 1, n + 1 times, and this will prevent player X from reaching Xin n
moves. On the other hand, a payoff of 1 is guaranteed in r w+l0, 2) as follows: Player
X first chooses process 2; no matter what subschedule in T((i, 2), 2) will be chosen
by the scheduler, it will end at some state (j, 1) in II. and the game continues from
there as r

'"
(j, 1). Now player X chooses the ordinal j < w, and this guarantees its entry

into X after j additional moves, by requiring to schedule process 1 in each of these
moves.
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(2) One can easily obtain along similar lines examples where higher and higher
ordinals are needed to attain convergence.

(3) If we take in Example 1, pko,(o,O =! (instead of 1) and pkl)(0,2) =! (instead
of 0), it can be verified that the first ordinal c where Yc= cP==1 is c = CU2.

The main purpose of this section is to prove that Y = cpo The proof of this assertion
is quite involved and will be split into proving both inequalities Y ~ cp and Y;;:;cpoIt
consists of the following sequence of .lemmata. .

LEMMA3.3. Each of the cp-iterates Y~ and Ya is subharmonic.
Proof Lemma 3.1 and the fact that the supremum of subharmonic functions is

subharmonic. Q.E.D.
LEMMA3.4. For each k Ek, Qkcp~ cpo
Proof For each (J"E1,F( i) let N be the first time k is scheduled, and let T =

((J",N + 1) E T( i, k). Then, if (J"7TN+ldenotes the continuation of (J"after the end of T,
we have

E(T(Xx) = Er[E(T" (Xx)] (because N + 1 is a stopping time)
N+l

;;:;Er[CP(iN+l)] (because (J"7TN+1E 1,F(iN+l))

;;:;(Qkcp)(i) (by definition of Qk).

Since this holds for each (J"E !.F(i), we have cp(i)?; (Qkcp)( i). Q.E.D.
PROPOSITION 3.5. cp = Qcp = QKcp, for each k E K.

Proof By the preceding lemma, Qcp = maXkeK Qkcp ~ cp: On the other hand, for
each k E K, Qkcp?; cp by Lemma 3.2, since cp is subharmonic by Proposition
2.1(b). Q.E.D.

LEMMA 3.6. Y ~ cpo

Proof We will show, using transfinite induction, that Ya;2 cp for each ordinal a.
For a = 0, cp;;:;Xx = Yo (see Proposition 2.1 (a)). Assume Yb~ cp for each b < a; then
QkYb ~ Qkcp = cp by the preceding proposition, thus oY~~ cp for each k E K, so that
Ya ~. cpoThus Y = Yc~ cpo Q.E.D.

LEMMA 3.7. cp~ y.
Proof Note that, since Y =maXkeK Qky, we have

(*)
y(i)?; inf Er( y),

re TO,k)
i Eo/, kEK,

(actually, with equality holding for at least one k, although we will not make use of
this fact), Let iE/ be given. Choose 8> 0 and a sequence 8nto such that Ln 8n = 8.
Let {kn}ni5;lbe a fixed sequence of processes in whi'ch each k E K appears infinitely
many times. We will use (*) to construct a fair schedule (J"starting at i by building it
layer-by-layer from subschedules, as follows: Suppose that the first n layers of (J"have
already been constructed, the union of which being some subschedule Tn starting at i
(initially, TO is "empty"). The (n + l)th layer of (J"is defined by appending to Tn at
each of its end nodes j a subschedule PjE T(J, kn+l) such that

y(j) ;;:;Ep/ y) ~ 8n

(such a subschedule exists by (*)). Repeating this process inductively, we obtain the
required (infinite) schedule (J",which is fair by our choice of the sequence {kn}ni5;l'

Let {N"},,i5;o be the increasing sequence of stopping times defined by our construc-
tion; namely-the nth layer (i.e., T,J ends at N" (in particular No ==0). For each n?; 0
define the function

gl1(7T)=Y(7TNJ, 7TE H*(i) ;
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in particular, go= 'YO). By the choice of the subschedules Pj we have

(**) gn ~ Eu(gn+111TNJ - En+1> n>O.

Hence, the sequence of functions {g~}n~O given by

n
1-

"g n = gn - L. Em,
m=1

n;?:O

forms a supermartingale, which is bounded between 1 and -E. Hence it converges
almost surely to a limit g:x" so that {gn} converges almost surely to the function

ee

gee =g:x,+ I Em = g:x,+ E.
m=1

Note that 'Ylx ==1; thus, if X is reached along 1T,then gee(1T)= 1, because for all
sufficiently large n we will have gn (1T) = 1. Hence, by (**),

'Y(i) = gb~ Eu(g:x,) = Eu(gee) - e

~ J.Lu(gee= 1) - e

;?: J.Lu(X is reached) - E

= Eu(Xx) - e::: <p(i) - E.

Since E was arbitrary, the proof is complete. Q.E.D.
Thus we have shown

THEOREM 3.8. <p = 'Y.

Next, we give an example of explicit calculation of <pas the limit of the <p-iterates.
Example 2. Let 1= N, X = {O},K = {1, 2} such that each process is a random walk

on I (with X absorbing). It turns out that a fair interaction of two random walks,
under the worst kind of schedules, yields essentially the same absorption probabilities
as those yielded by the "worse" of the two walks alone. We exhibit here one simple case:

P I _1. i,i-1 -3,
pI

'+1 = -3
2

1,1 , i;?:l,

pt-I = 1, i;?:1.

It can be inductively shown that the <p-iterates for this program are

( .) -
{

I;n-J /;n,
'Yn-I l - 0,

O<i<n,

i> n,
n:::1,

where 1;;=2i_1, i~O, and

1
'Y",(i)= 'Y"'+1(i)= (j)(i) = 2i, i>O.

, -,y.

Comparison with the iterates 1n and their limit 1", for the case in which only process
1 is activated shows that /"" = 1", but /'n > 1n for each finite n. Thus the fair interleaving
of process 2 with process 1 increases the probability of convergence under any finite
number of fairness constraints, but does not affect the overall (worst-case) convergence
probability.

4. Characterizations of 'P. This section contains the main results of the paper,
Using the machinery developed in §§ 2 ~nd 3, we will derive several characterizations
of (j),which provide a variety of rather simple techniques for its calculation, or for
deriving various properties of this function. Obviously, the most important such
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property is whether cp==1 (i.e., whether the program terminates almost surely from
any initial state). Relaxation of the characterizations of cp given here will enable us to
derive necessary and sufficient conditions for program termination, and these conditions
are presented in § 5.

THEOREM 4.1. (a) cp is the smallest fixpoint of the equation

cp= Qcp

which is ~Xx.
(b) cp is the smallest simultaneous solution of the equations

cp= Qkcp for each k e K,

which is ~Xx.
Proof By Propositions 3.5 and 2.1 (a), cp= Qcp = Qkcp for each k e K, and cp ~ Xx.

To prove (a) we repeat the argument used in the proof of Lemma 3.6. That is, let
t/J~ Xx be such that t/J= Qt/J. Then t/JE;;'Yo, thus t/J= Qt/J~Q'Yo = 'Yt, and by transfinite
induction t/J ~ 'Ya for each ordinal a, thus t/J ~ 'Y = cpo As for (b), note that t/J = Qkt/J for
all k E K implies t/J= Qt/J,and then use (a). Q.E.D.

Next we restate the second assertion of Theorem 4.1 in a manner which makes it
more convenient for actual calculation of cpo

DEFINITION. Let a be a real function on 1. We say that a has property (A) if the
following are satisfied: .

(AI) alx==l;
(A2) a is subharmonic;
(A3) for each k E K the only subharmonic function lying between a and pka is

a itself.
.

(Note that the constant function 1 has property (A).)
THEOREM4.2.cp is the smallest nonnegative function on I having property (A) (i.e.,

ifa~O satisfies (A), then a(i)E;; cp(i) for each ieI).
Proof. By Lemmata 3.1 and 3.2, (A.2) and (A.3) imply a = Qka for all k E K, or

a = Qa. We now use Theorem 4.1. Q.E.D.
Theorem 4.2 suggests the following procedure for computing cp:Take any nonnega-

tive subharmonic function a ~ Xx. For each k E K compute the largest subharmonic
function which is ~ pka, and require that it coincide with a. Find the general solution
of these constraints, and obtain.cp as the smallest such solution. Later on in this section
We will use this procedure to compute cp for several exemplary programs, and show
that this technique is quite feasible in practice.

Put
(A2') a is min-harmonic,

and let property (A') be defined as the conjunction of (AI), (A2') and (A.3). Then
we also have

COROLLARY4.3. cpis the smallest nonnegative function having property (A').
Proof Immediate, since cpitself is min-harmonic, by Proposition 2.I(b), and every

'min-harmonic function is also subharmonic. Q.E.D.
Remark. In carrying out the calculations of the. procedure just outlined, it may

sometimes be more convenient to employ the "I-complement" version of Theorem
4.2; that is, instead of computing cp we compute the function t/J== 1 - cp, which is then
the largest function 31 which is a fixpoint of the equation

t/J(i) = min supEA t/J)
keK TeT(i.k)
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or, alternatively, is the largest function f3 s; 1 having property (B), defined as
(B.l) f3lx ==0;
(B.2) {3 is superharmonic, i.e., {3:::::;pkf3 for each k E K;
(B.3) for each k E K, the only superharmonic function between pk{3 and {3 is f3

itself.
(Again, we can replace (B.2) by (B.2'), namely require that f3 be max-harmonic,

that is f3 = maxkE~ pkf3.)

The usefulness of this complementation lies in the fact that property (B) is
positively homogeneous (i.e., f3 satisfies (B) implies "-.8, satisfies (B) for every A> 0,
where ("-.8)(i)=="- '/30)); note that (A) was not such (due to (A.1)). For example, we
0btain

COROLLARY 4.4.cp ==1 if and only if no bounded function having some positive
entries has property (B). --

Proof Assume .8 satisfies (B) so that "- ==SUPiEI.8(i) < co and is positive. Then
(1/ "-)f3 also satisfies (B) and is ~1. Q.E.D.

We can also give now a second short proof of the Zero-One Law for cp; namely,
that inf;EI cpO) is either 0 or 1 (see Theorem 2.3; however, the original proof is more
elementary). ,

Second proof of the zero-one law (Theorem 2.3). Let I/J= 1- cp and put "- =
SUPiEII/J(i). If 0< "-< 1, then the function t/J'= (1/ "-)I/J is larg~r than I/J,satisfies (B),
and is ~ I-contradicting the fact that I/Jis the largest such function.

Examples. We will now apply the techniques presented in this section to several
programs, to compute the function cp for each of these programs. These examples
include two programs with finite state spaces (whicn had already been analyzed in a
preceding paper [HSP] by different sp'ecial techniques developed there for finite-state
programs), and another program having an infinite state space.

Example 3. Let K = {I, 2}. The following program arises in an analysis of freedom
from lockout in a simple synchronization protocol (cf. [HSP, Example 1] for details).
Using a notation slightly different from that of [HSP], we have I = X U {ib i2, i3, i4},
with nonzero transition probabilities -

P}hX =P7hil = 1,

P l.' P 'l P 2 P 2 I
i2,it= i2.i4= i2,i1= i2,i4= 2,

P}3,i3 = P73,i2 = 1,

P}4,i4= Pt,i3 = 1.

To compute cp,we first write down the form of the general sub harmonic function which
is 1 onX Such a function a= (ab a2, a3, a4) (where at is a shorthand for a(it),
1::: t ~ 4) must satisfy

al ~ 1,

<1 + 1
a2 =2al 2a4,

,

"-'

a3 :::a2,

a4 ~ a3'

Next, we spell out condition (A.3) for such an a: First consider k = 1. It is easily
checked that the function

pIa = (1, !al +!a4, a3, a4)



pi p2

11 12 13 14 Is 16 X i 1 i2 i3 i4 IS i6 X

II
I 1 1 1
'2 '2 '2 '2

12
1 1 1 1
'2 '2 2: 2:

13
1 I 1 1
:2 2: 2: '2

14
1 1 1 1
'2 '2 '2 '2

Is
1 1 12: :2

16
1 1 1'2 '2
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is also subharmonic. Hence we must have a :;::: pi a, i.e.,

0'1:;:::1; I + 1 1+ 1a2:;::: '2al '2a4:;:::
'2 '2a4'

Similarly, for k:;:::2 we have

p2a:;::: (at, ~al +~a4' a2, a3),

which is also seen to be subharmonic. H~nce a:;:::p2a, i.e.,

a2 :;:::a3, a3 :;:::
a4'

Thus we have al :;::: a2:;::: a3:;::: a4:;::: 1. That is, the only-and thus, the smallest-function

s<\tisfying (A) is 'P==1.
Example 4. This example is also taken from CHSP], and arises in the analysis of

another synchronization protocol. Here K:;::: {I, 2}, I:;:::X U {ib .. . , i6}, and the transi-
tion probability matrices are

It is straightforward to check that a general subharmonic function a:;:::(ab . . . , a6)

which is 1 on X must satisfy

al :;::: a2:;::: . . . :;::: a6 ~ 1.

It now follows that (A.3) holds for each such function a, because any function
constant on I - X and lying between a and pi a (resp. p2a) must coincide with a
(since pia (resp. p2a) coincides with a at some of these states). Thus 'P, which is the
smallest nonnegative such function, is Xx. '

Example 5 ("The Two Combs"). I.::et K:;::: {1, 2}, I:;:::X U Z (where Z denotes the
set of signed integers); the nonzero transition probabilities are

P:"n+l
:;:::Pm

P~,n-I :;:::qm

P~,x :;:::p~ :;:::1 - p",

p~,x :;:::q~ :;:::1 - qn,
nEZ.

To avoid degeneracy, we assume that 0 < Pnqn+l< 1 for each n E Z. Denote, for nEZ,

00 n

QnF TI qmoPn:;::: TI Pm,
m=n ,"=-00

Denote by (Cl-) the condition

(C+) TI Pn > 0
11>0

and lim sup qn = 1,
n~oo

and by (C-) the condition

(C-) TI q" > 0
11<0

and liill sup Pn :;::: 1.
n-+-oo
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-- -

PROPOSITION 4.5. (a) If neither (C+) nor (C-) hold, then 'p ==1.
(b) If (C+) holds but (C-) does not hold, then 'Pn= 1 - Pm n E 7L
(c) If (C-) holds but (C+) does not hold, then 'Pn= 1 - Qm n E 7L
(d) If both (C+) and (C-) hold, then 'Pn= 1-max {Pm Qn}, n E 71..

Proof It will be more convenient to work in "1-complement" mode, calculating
IjI==1- 'P,and using property (B). The calculation of IjI proceeds through the following
steps (for details, see [HS]).

(1) If IjIn= 0 for some n E 71.,then I/J==O.

(2) Put IjIl = pllj1, 1/J2= p2ifJ; if I/J==0 then it is impossible to have for some nElL.,

1jI~= IjIn and 1jI~+1= I/Jn+l'
(3) IjIn> 1jI~~ I/Jm> 1jI;" for each m -< n, and IjIn> I/J~~ IjIm> 1jI;" for each m ~ n.

(4) Thus only the following four cases are possible:
/ (a) 1f/=ljIl=1jI2==0;

(b) If/n = 1jI~> If/~ for each n ElL.;
(c) If/n = 1jI~> I/J~for each 11E 71.;
(d) there exists no E 71.such that IjIn= If/~ > If/~ for each n> no, and If/n= I/J~< If/~

for each n < no.
(5) Suppose If/> O. If, for some no E 71.,If/n= If/~ for each n > no,then TI n> noPn > O.

Similarly, if IjIn= If/~ for each n < no, then TIn<no qn > O.
(6) In particular, if TIn>oPn = TIn<o qn = 0, then If/ ==O.
(7) Suppose IjI> O. If, for some no E 71., IjIn= 1jI~ for each n> no, then

lim SUPn~C()Pnqn+l = 1. Similarly, if If/n = I/J~ foreach n < no, then lim SUPn~-C() Pnqn+l = 1.
(8) The following is -a partial converse to (7): Let 0/ > 0 be any max~harmonic

function satisfying o/n = o/~ for each n> no, and suppose lim SUPn~C()Pnqn+l= 1. Then
the unique superharmonic function lying between 0/ and 0/2 is 0/ itself. A similar
statement holds if o/n= I/J~ for each n < no and lim sup Pnqn+l= 1.

(9) In case (b) condition (C+) holds; in case (c) condition (C-) holds; and in
case (d) both conditions (C+) and (C-) hold.

(10) Conversely, if (C+) holds but (C-) does not, then case (b) must occur.
Similarly, if (C-) holds but not (C+), then case (c) must occur.

(11) Finally, if both (C+) and (C-) hold, then case (d) mus( occur. Q.E.D.

5. Verification of program termination. The results developed in the two preceding
sections provide us with methods for calculating the function 'P for any concurrent
probabilistic program. However, in many applications the only question of interest
concerning 'P is whether 'P==1, i.e., whether the program terminates almost surely from
any initial state under any fair schedule. In this section we will present several
characterizations of program termination, the first two of which are straightforward
specializations of the general results of the preceding sections, while the third involves
a somewhat different approach, generalizing that used in [HSP] for finite state spaces.

PROPOSITION5.1.
'P ==1 if and only if no min-harmonicfunction smaller than 1 has

property (A).
Proof See Corollary 4.3.
PROPOSITION 5.2. 'P. 1 if and only if there exist an ordinal c and transfinite sequences

of functions {5~}a;:;;c, k E K, and {5aL;:;;chaving the following properties:
-(1) 8o=5~=Xx, kEK;
(2) 5~ is subharmonic for each a-~ c and each k E K;
(3) 5a ~ maxkEK 5~, a -< c;
(4) 5~+1-<pk5a, kEK, a<c;
(5) 5~ ~ SUPb<a 8~, for limit ordinals a, and k E K;
(6) infiEI5c(i»0.

,.~.
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Proof If cp==1 then the cp-iterates can be taken as the D'S. Conversely, if such
sequences of functions are given, then by transfinite induction oa ~ cpfor each ordinal
a. In particular Oc~ cp,so that inCEl cp(i) > 0, and by the zero-one law (Theorem 2.3)
we must have cp==1. Q.E.D.

Our next characterization' of program termination generalizes one of the charac-
terizations given in [HSPJ for finite-state programs. Intuitively speaking, if the program
does not always terminate, then there must exist some "ergodic structure" of nonter-
minating states, through which an "adversary" fair scheduler can iterate forever without
reaching X. Unlike the case of a finite state space, where such a structure was a single
"K-ergodic" set, ergodicity in general state spaces is a much more complex notion,
and is defined as foll:ows.

DEFINITION. A K-ergodic chain is a nonincreasing sequence {En}n;;;;;!of nonempty
subsets of Xc ==I - X such that

lim sup (QxEJ(i)=O.
n-->co iEE"

m;;;;;}

In other words, let n ~ 1, i E En' m ~ 1 and k E K be given. Then there exists a
subschedule in T( i, k) which reaches Em with probability tending to 1 uniformly as
11-7 co. That is, without losing too much probability, we can'reach any of the sets Em
from any state in Ell after scheduling any required process.

THEOREM 5.3. cp==1 if and only if I - X does not contain any K-ergodic chain.
Before proving this theorem, we need two lemmata.
LEMMA5.4. Let 0> 0, and define D = {i E I: cp(i) ~ 8}. Then cp~ QXD'
Proof Let i E I, k E K, and 0-E I-F( i). For each n ~ 1 define a stopping time Nn

on H"'(i) so that Nn(1T) is the. nth time k has been scheduled along 1T; note that
{NII}II;;;;;!is an increasing sequence of fLu-a.s. finite stopping times, whose limit is +co.
For each n ~ 1 the subschedule 7"n= (0-, Nn) E T(i, k), so that

(QkXD)(i) ~ ET,,(XD) = fLO"{cp(iNJs 5}.

Consider the sequence of functions {fm}m;;;;;u, defined by fm(1T)=cp(im),msO, 1TE
H*(i). By Theorem 2.3 {fm} converges a.s. to a limit foo, such that foo(1T) is 1 if X is
reached, and is otherwise O. Therefore we also have cp(iNJ-:fco a.s. as n-7co, so that

fLO"{fco~ o}~ Jim fLO"{cp(iNJ~ 5}~ (QkXD)(i).
,,-->00

Since 0> 0, we have fco( 1T)~ 0 if and only if foo( 1T)= 1, or, alternatively, if and only
if X is reached along 1T.Thus

.

E(T(Xx) :;=fL(T{fco ~ o} ~ (QkXD)( i),

from which our assertion follows. Q.E.D.
LEMMA5.5. Let {G,J,,;;;;;!be a nondecreasing sequence of subsets of I, all of which

contain X, and let {E,,},,;;;;;!be a sequence of positive. numbers converging to O.Suppose that

Qxo", (i) ~ E"

for each m, n ~ 1 and each i E G~. Then

cp~ sup QXo",.
m

Proof Put {3==sUPm QXo",. The above assumption concerning {Gn} can be restated
as

Qxo", ~ E,,' Xo~+ 1 .
Xo" = en + (1- en)Xo",
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for each m, n ~ 1. This implies

t32En+(1-En)XG,. M
n ~ 1,

and thus

Qt3 2 Q(En + (1- En)XGJ, n:> 1.

However, it is easily checked that for any scalars a, b> 0 and any nonnegative function
a we have

Q(a+ba)=a+bQa.

Hence,

Qt3 2 En+ (1- cn)QXGM~ Cn+ (1- 8n)t3,

for each n ~ 1. Letting n -? co, we obtain Qf3 ::: 13.But f3 is subharmonic (as a supremum
of subharmonic functions), thus 13 = Qt3 (see Lemmata 3.1 and 3.2), implying 'P2 13
by Theorem 4.1. Q.E.D.

Proof of Theorem 5.3. The theorem is now an easy consequence of the last two
lemmata. For example, if 'P is not identically 1, then, by Lemma 5.4, the collection
{En}n~l is a K-ergodic chain, where

'",

En={iEI: 'P(i)<~}.

The converse statement follows similarly from Lemma 5.5 (for more details, see
[HS]). Q.E.D.

Example 5 revisited. Consider the three cases in the example of "the two combs"
I

in which
'P < 1. It is easily verified that in case (b) the chain E~ = {i: i ~ n}, n:> 1, is

K-ergodic; similarly, in case (c) the chain E~ = {i: i 2 -n}, n ~ 1, is K-ergodic; and
in case (d) both these chain~ are K-ergodic.

Remark In the case of a finite state space, ergodicity is manifested in a single set
(see [HSP]). In an analogous manner, we could have considered here the set E =
{i E I: 'P(i) =O} as a natural candidate forbeing K-ergodic (that is, consider the constant
chain En = E, n ~ 1). There are two problems, however, with this approach, which
make it infeasible for general state spaces. One problem is that E may be empty (as
is indeed the case in Example 5 just considered). Moreover, even if E is not empty,
it may happen that, starting from some i E E, we never reach E again, but instead
reach states j at which 'P(j) is arbitrarily small, but positive. Thus, for general state
spaces ergodicity must be defined in terms of an infinite chain of sets rather than in
terms of a single set. (In the finite case, though, any K-ergodic chain must reduce to
a constant set from a certain index on.) Note that this phenomenon occurs in Markov
chains as well. .

We conclude this section with a further property of 'P.
PROPOSITION 5.6. There exists a nondecreasing sequence {Dn}~=l of subsets of I

such that
(1) 'PIDc==0, where D = U~=l Dn,
(2) 'P = limn~oo QXDM'
Proof Put Dn = {i: 'PO) ~ 1/ n}. Q.E.D.
Note that in the case 'P==1 we can take Dn ==1 for all n. Moreover,
COROLLARY 5.7. If I is a finite set, then there exists DeI such that
(1) 'PIDc==0,
(2)

'P = QXD'
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6. Comparison with the deterministic and the nondeterministic cases. In this section
we consider the special case in which each process is deterministic; programs with
nondeterministic processes are also included, since any such program can be simulated
by a deterministic one involving additional processes. (For example, suppose that one
of the processes k1 makes a nondeterministic choice from some set A of alternatives;
the same behavior can be achieved by introducing a new shared variable v which k1
sets to some value in A prior to making the choice, and by introducing another process
k2 whose only action is to iterate v over the set A. k1then makes its choice deterministi-
cally, depending on the current value of v. Thus the nondeterminism is now transferred
to the scheduler-the final choice depends on how many times k2 has been scheduled
in between.) Thus, by specializing the various equivalent criteria for program termina-
tiondeveloped so far in this paper to the deterministic case, we can obtain similar
criteria for the termination of deterministic (or nondeterministic) concurrent programs.

I As it turns out, the criterion obtained in this way from the characterization of <pas
the limit of the (f)-iterates (Theorem 3.8, Proposition 5.2) essentially coincides with the
known criterion of Lehmann, Pnueli and Stavi [LPS]. On the other hand, specialization
of Theorem 4.2 leads to a new characterization for deterministic and nondeterministic
termination. So as not to make this characterization appear too deep, we provide a
direct non probabilistic proof of its validity. '

We begin by observing that in the deterministic case all transitions have probability
0 or 1, so that each of the operators Qk, k E K, and Q, when applied to a function
which takes only the values 0, 1 (i.e., a characteristic function of some subset of 1)
yields a similar function. Hence each of the (f)-iterates 'Y~, k E K, (resp. 'Ya) is a
characteristic function of the form XG~ (resp. XGJ. Note also that a characteristic
function XA is subharmonic if and only if for each k E K and each i E A the (unique)
k-transition from i is to a state in A, i.e., there are no transitions from states in A to
states outside A. Hence, spelling out the conditions in Proposition 5.2 in terms of
the subsets of I corresponding to the functions appearing there, we obtain the
following.

COROLLARY6.1. A deterministic program terminates if. and only if there exist
transfinite (increasing) sequences {G~}a;;;;O, k E K, and {Ga} a;;;;Oof subsets of I having
the following properties:

(1) Go = G~= X, k E K;
(2) there are no transitions from states in G~ to states outside G~, for each ordinal

a and each k E K ;
(3) Ga = U kEK G~, for each ordinal" a;
(4) for each k E K and each ordinal a, all k-transitions frqm states in G~+l are to

states in Gu;
(5) G~ = U I,<a G~, for each limit ordinal and each k E K;
(6) there exists an ordinal c such that Gc = 1. .

These conditions, however, are merely a rephrasing of the characterization for
termination of "just" programs given by Lehmann, Pnueli and Stavi in [LPS]. To see
this, define a function p from I to the ordinals 'by

pO) = min {a: i E Ga}, i E I,

and a function h: I ~ K which maps each i E Gp(i) to some k E K such that i E G;(i)'
Then it is easily checked that these functions satisfy the conditions in [LPS] for just
termination, i.e.: the "ranking" map p never increases during execution; activating
process h( i) at state i always strictly decreases the value of p; and h remains unchanged
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. as long as p does not decrease. By the remark made in the beginning of this section,
it is easily seen that Corollary 6.1 also applies to nondeterministic (nonprobabilistic)
programs. Thus our Proposition 5.2 generalizes the results of [LPSJ to the probabilistic
case.

Next we specialize Theorem 4.2 to the deterministic case. As noted above, we can
identify subha:r:monic functions with subsets A of I such that there are no transitions
from A to A c. This notion is formalized in the following.

DEFINITION. (a) A cut (10, II) is a partition of I into two disjoint subsets Io, II
with Io U II = I, such that X c II and such that there are no transitions from II to Io.

(b) For each cut (10, II) and each k E K put

I~ = {i E Io: the k-transition from i is into Io}.

(Note that XII is subharmonic and ~Xx, and that pkXlo = XI~') Using these notations,

Theorem 4.2 translates into the following theorem (which merely states that (A.3) does
not hold for any sub harmonic function <1).

THEOREM 6.2. A deterministic program terminates if and only if for each nontrivial
cut (10, II) (i. e., Io ~ 0) there exists kE K and another cut (10, II) such that'

I~~lo~Io'

0'_,

Proof As this result (and its appropriate generalization to the nondeterministic
case) is new, and may be of interest in its own right, we provide here a direct proof
of this characterization, which does not use the probabilistic techniques developed in
this paper.

Assume first that the condition of the theorem does not hold, Le., that there exists
a nontrivial cut (10,II) such that for each k EK and each set I~ ~ I ~ Io, the pair (I, P)
is nqt a cut, that is, there exist transitions from P to J (these transitions can only be
from states in Io- J). Let i E Io, and let F( i) denote the set of all states in Io (including
i) reachable from i by some finite sequence of process activations. We claim that for
each k E K, F( i) intersects I~. For otherwise, put J = Io - F( i), so that I~ c J ~ 10' By

our assumption there exist transitions from Io - J = F( i) into J, which contradicts the
definition of F(i). This implies that 10 is ergodic, 'Le., that there exists a fair schedule
a which can keep the program in 10 forever. To prove this it suffices to show that for
each i E 10 and each k E K there exists a finite scheduling sequence starting at i and
ending by scheduling k and reaching a state in 10' Since F( i) n I~~ 0, take a finite
sequence of process activations which takes the program from i into some state in
F( i) n I~, and then schedule k, thereby reaching a state in Io.

Next suppose that the condition of the theorem does hold. We will construct a
"ranking" function p from I to the ordinals and an "assistance" function h: I ~ K
which will satisfy the conditions of [LPSJ for program termination,. These functions
will be constructed in the following tninsfinite inductive manner. Put initiallyp!x = 0,
and define hlx in an arbitrary manner. Suppose inductively that p and hhave aready
been defined on some subset M of I such that (L, M) is a cut (where L = MC). By .

the above condition, there exists k E K and another c,ut (1, P) such that L k £J ~ L.
Put H = L-l ~ 0, and define PIH = 1+sup P[M, and hlH = k. Note that since (1, lC)
is a cut, there are no transitionsfrorn H into J, and since H is disjoint from Lk, each
k-transition from H is into M. Repeating this construction transfinitely, we obtain
everywhere-defined functions p and h w~ose properties imply by [LPSJ that the program
terminates. Q.E.D. "

I
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Remark. To obtain the nondeterministic version of Theorem 7.2, define the sets
I~ by

I~ = {i E 10:there exists a k-transition from i into Io},

and leave all other definitions and assertions unchanged.
Example 1 revisited. Let us apply Theorem 6.2 to the deterministic program given

in Example 1, § 3. As is easily checked, a cut (10' It) of I must be one of the following
three types:

'(a) 10=[0, n]x{2}, for some nEN;
(b) 10= N x{2}; .
(c) Io=(Nx{2})U([n,00]x{1}) for some 11~1.

In cases (a) and (b), I~ = 0, so that (1~, (1~)C)= (0, 1) is a cut satisfying the condition
of Theorem 6.2. In case (c), 16= (N x {2}) U ([n + 1, 00]x {I}), so that (16, (16)C) is the
required cut. Thus program termination is ensured by Theorem 6.2.

7. Programs with tinite state space. In a preceding paper [HSP], the special case
of concurrent probabilistic programs with finite state spaces has been analyzed, and
a characterization of almost sure program termination in terms of the existence of a
certain decomposition of the state space has been obtained. In this section we show
how to obtain this characterization from the general theory developed so far in this
paper.

Let us now assume that I is finite, and that 'P == 1. We will obtain a decomposition
of I into (finitely many) disjoint sets {Im}m~o such that the following properties hold
(here we use the notation P~E ==LjEE P~):

(a) Io=X;
(b) for each m ~ 1, each i E 1m and each k E K, if P~l", ~ 0 then P~Im = 1 (where

1m = Us < II! Is) ;
(c) for each m ~ 1 there exists k = kern) E K such that for each i E 1m, P~lm > O.

(This is the decomposition obtained in [HSP].)
To obtain it, we proceed inductively. Initially put 10= X. Suppose la, . . . , Im-t

have already been constructed. Let 1m = U s<mIs and Hm = 1~. If Hm = 0, the decompo-
sition is complete. Otherwise, Xl", oF1 = 'P, thus we cannot have 'P~ Xl"" therefore
QXlm ~ Xl", (indeed, for any a 2: Xx, If Qa ~ a then 'P~ Qa::: a). Thus there exists
k EO:K such that 15== Qt, ~ Xl", Define

c = max 15(j)
jEH,t1

and 1m = {i E Hm: 15(i) = c}.

Note that c> 0, for otherwise I5/H",==0, so that ():5 Xl"" which is impossible.
It can be now seen that conditions (b) and (c) hold for 1m.
Remarks. (1) The converse statement, namely that the existence of such a

decomposition implies that 'P==1, is also easy to establish, e.g., by proving that
minjEI 'P(i) > 0, and using the zero-one law (cf. [HSP] for a detailed proof).

(2) Once the existence of such a decomposition has been established, it can also
be obtained in the following different manner' (for details, see [HS]).

Define an equivalence relation on I so that i,j E I are equivalent if and only if
a (i) = a (j) for every subharmonic function a. The sets 1m, m 2: 0, are then simply the
equivalence classes of this relation. Furthermore, to assign indices to these sets, look
for a sub harmonic function a which assumes distinct values on each of these sets and. ,
order the equivalence classes in decreasing order of the values of a on them. Such a
separating subharmonic function always exists; moreover the decomposition will satisfy
condition (c) if and only if

'P == 1. (Thus, in the finite case there always exists a

I
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decomposition of I into an ordered sequence of sets 1m,m :> 0, which satisfy conditions
(a) and (b); each of these sets either satisfies conditions (c) or else is K-ergodic.)

An open problem is whether the existence of a similar decomposition is equivalent
to 'P==1 in the general (discrete) case as well.

8. Conclusions. In this paper we have analyzed termination of concurrent prob-
abilistic programs having discrete infinite state spaces. Our aim has been to calculate
the worst-case probability of such a program to reach a givenset of terminating states
under an arbitrary but fair scheduling of its processes. We have obtained several
characterizations of the required probability function 'P, which yielded useful tech-
niques for the calculation of this function. Specializing to the case of deterministic (or
nondeterministic) programs, our techniques have been shown to generalize known
techniques for proving termination of such programs, and also to yield new such
techniques. From the point of view of the theory of probability, our results extend the
classical theory of optimal gambling strategies by Dubins and Savage [DS] to the case
where such strategies must be "fair."

The model that we have introduced .in this paper and in the preceding one [HSP]
for the (fair) execution of concurrent probabilistic programs is very general, natural,
and easy to work with, and we believe that it should serve as a standard model for
execution of such programs. A more detailed discussion concerning this model can be
found in [HSP].

.
The techniques developed in the present paper can be immediately interpreted as

sound and complete proof methods for termination of concurrent probabilistic pro-
grams. It would be interesting to generalize these techniques to proof methods for
additional properties of such programs, or, alternatively, to develop temporal prob-
abilistic logics, based upon our techniques, for reasoning about such programs (see,
e.g., [HS2]). One such genenilization can be achieved as follows: Let a be a subharmonic
function defined on 1. For each schedule (]' define EQ(a) as limn-+roE(Q,n)(a) (which
always exists, by the subharmonicity of a). Then we want to compute

'Pa(i) = inf Ecr(a),aE~F(i)

"'-

which generalizes the function 'P=='Pxx studied in this paper. Intuitively, 'Pa(i) is the
smallest "long-term" expected value of a under a fair schedule starting at i. Most of
the theory developed in §§ 3 and 4 can be generalized to the case of a general
subharmonic a.

(An interesting choice for exis where aII-X ==0, alx ~ 0; then 'Pagives the smallest
expected value of a upon termination under fair execution. Thus, appropriate adapta-
tion of the techniques developed in this paper will enable us to derive lower bounds
for the expected value of such functions upon termination; compare with [SPH]).

A final corollary of the results developed in this paper concerns bounded waiting
time (cf. [Ra1] for example). Let us define a round of execution as a portion of the
execution during which each process has been scheduled at least once. We then say
that the program has the (local) bounded waiting time property at some i E I if for each
c > 0 there exists an integer N = N (i, c) such that the probability of reaching X from
i after N rounds under any fair schedule is at least 1- c. The program has the global
bounded w~ting time property if the above holds for all i E I and if N is independent
of i. A simple application of Theorem 3.8 implies the next corollary.

COROLLARY8.1. The program has the local bounded waiting time property at i E I
if and only if /",,(i) = 1. It has the global property if and only if /'",==1 (i.e., if the
convergence ordinal of the program is :::UJ)and /'n i 1 uniformly on I as n i UJ.

"- '

a
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