Comparing Risks by Acceptance and Rejection

Sergiu Hart

September 2009

This version: June 2010
Dean Foster and Sergiu Hart
"An Operational Measure of Riskiness"
www.ma.huji.ac.il/hart/abs/risk.html
Dean Foster and Sergiu Hart
"An Operational Measure of Riskiness"
www.ma.huji.ac.il/hart/abs/risk.html

Dean Foster and Sergiu Hart
"A Reserve-Based Axiomatization of the Measure of Riskiness" (2008)
www.ma.huji.ac.il/hart/abs/risk-ax.html
Sergiu Hart
"A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008)
www.ma.huji.ac.il/hart/abs/risk-as.html
Sergiu Hart
"A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008)
www.ma.huji.ac.il/hart/abs/risk-as.html

Sergiu Hart
"Comparing Risks by Acceptance and Rejection" (2009)
www.ma.huji.ac.il/hart/abs/risk-u.html
Gamble ("Risky Asset")

\[g = \begin{array}{c}
1/2 \\
1/2 \\
\end{array} \quad \begin{array}{c}
\text{+$120} \\
\text{-$100} \\
\end{array} \]
Gamble ("Risky Asset")

\[g = \frac{1}{2} \cdot +$120 + \frac{1}{2} \cdot -$100 \]

Net gains and losses
Gamble ("Risky Asset")

\[g = \begin{cases} \frac{1}{2} & \text{+$120} \\ \frac{1}{2} & \text{-$100} \end{cases} \]

- *Net gains and losses*
- *Positive expectation*
Gamble (“Risky Asset”)

\[g = \frac{1}{2} \cdot +$120 + \frac{1}{2} \cdot -$100 \]

- Net gains and losses
- Positive expectation
- Some losses
Gamble ("Risky Asset")

\[g = \frac{1}{2} + \frac{1}{2} \]

- Net gains and losses
- Positive expectation
- Some losses
- Pure risk (known probabilities)
Comparing Risks
Comparing Risks

Let g and h be gambles
Comparing Risks

Let g and h be gambles

Question:
Comparing Risks

Let g and h be gambles

Question:
When is g LESS RISKY THAN h?
Let g and h be gambles

Question:
When is g LESS RISKY THAN h?

Answer:
Let g and h be gambles

Question:

When is g LESS RISKY THAN h ?

Answer:

When RISK-AVERSE decision-makers are LESS AVERSE to g than to h !
Comparing Risks

“risk-averse decision-makers are LESS AVERSE to g than to h” = ?
Comparing Risks: Take 1

“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is PREFERRED to h
“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is PREFERRED to h

$E[u(w + g)] \geq E[u(w + h)]$

for every (concave) utility u and wealth w
"risk-averse decision-makers are LESS AVERSE to g than to h" =

g is PREFERRED to h\[
E[u(w + g)] \geq E[u(w + h)]
\]

for every (concave) utility u and wealth w\[
\]

g STOCHASTICALLY DOMINATES h (2nd-degree)
Comparing Risks: Take 1

“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is PREFERRED to h

$E[u(w + g)] \geq E[u(w + h)]$

for every (concave) utility u and wealth w

g STOCHASTICALLY DOMINATES h (2nd-degree)

$g \succeq_s h$
Stochastic Dominance

g STOCHASTICALLY DOMINATES h (1st-degree)

$g \geq_{S1} h$
Stochastic Dominance

\(g \) STOCHASTICALLY DOMINATES \(h \) (1st-degree)

\[g \geq_{S1} h \]

\[
\begin{align*}
\text{1/2} & \quad +$200 \\
\text{1/2} & \quad -$100 \\
\end{align*}
\]

\[
\begin{align*}
\text{1/2} & \quad +$150 \\
\text{1/2} & \quad -$100 \\
\end{align*}
\]
Stochastic Dominance

\(g \) STOCHASTICALLY DOMINATES \(h \) (1st-degree)

\(g \geq_{S1} h \)

\[\begin{array}{c}
\frac{1}{2} \\
+ \$200 \\
\frac{1}{2}
\end{array} \geq_{S1} \begin{array}{c}
\frac{1}{2} \\
- \$100 \\
\frac{1}{2}
\end{array} \]

\[\begin{array}{c}
\frac{1}{2} \\
+ \$150 \\
\frac{1}{2}
\end{array} \geq_{S1} \begin{array}{c}
\frac{1}{2} \\
- \$100 \\
\frac{1}{2}
\end{array} \]

\(g' \geq h' \)

\(g \sim g' \)

\(h \sim h' \)
Stochastic Dominance

\[g \text{ STOCHASTICALLY DOMINATES } h \text{ (1st-degree)} \]

\[g \geq_{S1} h \]

\[\begin{array}{c}
\frac{1}{2} \quad \frac{1}{2} \\
+ \$200 \quad - \$100 \\
\end{array} \]

\[\begin{array}{c}
\frac{1}{2} \quad \frac{1}{2} \\
+ \$200 \quad - \$120 \\
\end{array} \]

- \(g' \geq h' \)
- \(g \sim g' \)
- \(h \sim h' \)
Stochastic Dominance

\(g \) STOCHASTICALLY DOMINATES \(h \) (1st-degree)

\[g \geq_{S1} h \]

\[
\begin{array}{c}
\frac{1}{2} \\
\downarrow \quad \downarrow \quad \downarrow \\
+200 \quad -100 \quad +200 \\
\frac{1}{2} \quad \frac{1}{3} \quad \frac{2}{3}
\end{array}
\]

\[g' \geq h' \]

\[g \sim g' \]

\[h \sim h' \]
g STOCHASTICALLY DOMINATES h (2nd-degree)

$g \geq_{S2} h$
g STOCHASTICALLY DOMINATES h (2nd-degree)

$$g \succeq_{S2} h$$

- g:
 - $1/2$: +200
 - $1/2$: -100

- h:
 - $1/4$: +250
 - $1/4$: +150
 - $1/2$: -100

$g \succeq_{S2} h$
g STOCHASTICALLY DOMINATES h (2nd-degree)

$g \geq_{S2} h$

from g to h: a MEAN-PRESERVING SPREAD
Stochastic Dominance

\(g \) STOCHASTICALLY DOMINATES \(h \) (2nd-degree)

\[g \succeq_{S2} h \]

from \(g \) to \(h \): a MEAN-PRESERVING SPREAD

\[g \succeq_{S2} h = g \succeq_{S1} + \text{mean-preserving spreads} \]
Stochastic Dominance

Problem
Stochastic Dominance

PROBLEM

Stochastic dominance is a very partial order

Problem

Stochastic dominance is a very partial order: most pairs of gambles cannot be compared.
Stochastic dominance is a very partial order:
most pairs of gambles cannot be compared.
Stochastic dominance is a **very partial** order: most pairs of gambles **cannot be compared**.

1/2 +$150 1/2
 | | |
 V V V
1/2 −$100

1/4 +$500 3/4
 | | |
 V V V
3/4 −$100
Acceptance and Rejection

Let g be a gamble.
Acceptance and Rejection

Let g be a gamble.

g is ACCEPTED by a decision-maker with utility u at wealth w if

$$
E[u(w + g)] > u(w)
$$
Let g be a gamble.

- g is ACCEPTED by a decision-maker with utility u at wealth w if

 $$E[u(w + g)] > u(w)$$

- g is REJECTED by a decision-maker with utility u at wealth w if

 $$E[u(w + g)] \leq u(w)$$
Comparing Risks

“risk-averse decision-makers are LESS AVERSE to g than to h”
“risk-averse decision-makers are LESS AVERSE to g than to h” = g is REJECTED LESS than h
Comparing Risks: Take 2

“risk-averse decision-makers are LESS AVERSE to \(g \) than to \(h \)”

\[g \text{ is REJECTED LESS than } h \]

IF \(g \) is rejected by \(u \) at \(w \)
THEN \(h \) is rejected by \(u \) at \(w \)

for every (concave) utility \(u \) and wealth \(w \)
“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is REJECTED LESS than h

IF $E[u(w + g)] \leq u(w)$
THEN $E[u(w + h)] \leq u(w)$

for every (concave) utility u and wealth w
Comparing Risks: Take 2

“risk-averse decision-makers are LESS AVERSE to g than to h”

g is REJECTED LESS than h

IF g is rejected by u at w
THEN h is rejected by u at w

for every (concave) utility u and wealth w
Comparing Risks: Take 2

“risk-averse decision-makers are LESS AVERSE to g than to h”

g is REJECTED LESS than h

IF g is rejected by u at w
THEN h is rejected by u at w

for every (concave) utility u and wealth w

g ACCEPTANCE DOMINATES h
Comparing Risks: Take 2

“risk-averse decision-makers are less averse to \(g \) than to \(h \)”

\[g \text{ is rejected less than } h \]

IF \(g \) is rejected by \(u \) at \(w \)
THEN \(h \) is rejected by \(u \) at \(w \)

for every (concave) utility \(u \) and wealth \(w \)

\[g \text{ acceptance dominates } h \]

\[g \succeq_A h \]
Comparing Risks

“risk-averse decision-makers are LESS AVERSE to g than to h”
Comparing Risks: Take 3

“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is WEALTH-UNIFORMLY REJECTED LESS than h
Comparing Risks: Take 3

“risk-averse decision-makers are LESS AVERSE to g than to h”

g is WEALTH-UNIFORMLY REJECTED LESS than h

IF g is rejected by u at all w
THEN h is rejected by u at all w

for every (concave) utility u
Comparing Risks: Take 3

“risk-averse decision-makers are LESS AVERSE to g than to h”

g is WEALTH-UNIFORMLY REJECTED LESS than h

\[
\text{IF } \mathbb{E}[u(w + g)] \leq u(w) \text{ for all } w \\
\text{THEN } \mathbb{E}[u(w + h)] \leq u(w) \text{ for all } w
\]

for every (concave) utility u
Comparing Risks: Take 3

“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is WEALTH-UNIFORMLY REJECTED LESS than h

IF g is rejected by u at all w
THEN h is rejected by u at all w

for every (concave) utility u
“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is WEALTH-UNIFORMLY REJECTED LESS than h

IF g is rejected by u at all w
THEN h is rejected by u at all w

for every (concave) utility u

g WEALTH-UNIFORMLY DOMINATES h
“risk-averse decision-makers are LESS AVERSE to g than to h”

g is WEALTH-UNIFORMLY REJECTED LESS than h

IF g is rejected by u at all w
THEN h is rejected by u at all w

for every (concave) utility u

g WEALTH-UNIFORMLY DOMINATES h

$g \geq_{wu} h$
Comparing Risks

“risk-averse decision-makers are LESS AVERSE to g than to h”
Comparing Risks: Take 4

“risk-averse decision-makers are LESS AVERSE to g than to h” =

g is UTILITY-UNIFORMLY REJECTED LESS than h
Comparing Risks: Take 4

“risk-averse decision-makers are LESS AVERSE to g than to h”

g is UTILITY-UINFORMLY REJECTED LESS than h

IF g is rejected by all u at w
THEN h is rejected by all u at w

for every wealth w
“risk-averse decision-makers are LESS AVERSE to g than to h”

g is UTILITY-UNIFORMLY REJECTED LESS than h

IF $\mathbb{E} [u(w + g)] \leq u(w)$ for all u

THEN $\mathbb{E} [u(w + h)] \leq u(w)$ for all u

for every wealth w
“risk-averse decision-makers are LESS AVERSE to g than to h"

g is UTILITY-UNFORMLY REJECTED LESS than h

IF g is rejected by all u at w
THEN h is rejected by all u at w

for every wealth w
"risk-averse decision-makers are LESS AVERSE to \(g \) than to \(h \)"

\[g \text{ is UTILITY-UNIFORMLY REJECTED LESS than } h \]

IF \(g \) is rejected by \textbf{all} \(u \) at \(w \)

THEN \(h \) is rejected by \textbf{all} \(u \) at \(w \)

for every wealth \(w \)

\[g \text{ UTILITY-UNIFORMLY DOMINATES } h \]
Comparing Risks: Take 4

“risk-averse decision-makers are LESS AVERSE to \(g \) than to \(h \)” =

\(g \) is UTILITY-UNIFORMLY REJECTED LESS than \(h \)

IF \(g \) is rejected by all \(u \) at \(w \)
THEN \(h \) is rejected by all \(u \) at \(w \)

for every wealth \(w \)

\(g \) UTILITY-UNIFORMLY DOMINATES \(h \)

\(g \geq_{uu} h \)
Comparing Risks by Rejection

\[g \text{ is LESS RISKY than } h \]
\[\iff g \text{ is REJECTED LESS than } h \]
Comparing Risks by Rejection

g is LESS RISKY than h

$\iff g$ is REJECTED LESS than h

<table>
<thead>
<tr>
<th>REJECTED =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Comparing Risks by Rejection

\[g \text{ is LESS RISKY than } h \]
\[\iff g \text{ is REJECTED LESS than } h \]

\[g \succeq_A h \]

<table>
<thead>
<tr>
<th>REJECTED =</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g \succeq_A h] REJECTED by (u) at (w)</td>
</tr>
</tbody>
</table>

Comparing Risks by Rejection

g is LESS RISKY than h

\Leftrightarrow g is REJECTED LESS than h

<table>
<thead>
<tr>
<th></th>
<th>REJECTED =</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g \succeq_A h$</td>
<td>REJECTED by u at w</td>
</tr>
<tr>
<td>$g \succeq_{wu} h$</td>
<td>REJECTED by u at ALL w</td>
</tr>
</tbody>
</table>
Comparing Risks by Rejection

g is **LESS RISKY** than h

$\iff g$ is **REJECTED LESS** than h

<table>
<thead>
<tr>
<th></th>
<th>REJECTED =</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g \geq_A h$</td>
<td>REJECTED by u at w</td>
</tr>
<tr>
<td>$g \geq_{wu} h$</td>
<td>REJECTED by u at ALL w</td>
</tr>
<tr>
<td>$g \geq_{uu} h$</td>
<td>REJECTED by ALL u at w</td>
</tr>
</tbody>
</table>
Comparing “Comparing Risks”

\[g \geq s \ h \]
Comparing “Comparing Risks”

$g \geq_S h$

\[\downarrow\]

$g \geq_A h$
Comparing “Comparing Risks”

\[g \geq_{S} h \]

\[\Downarrow \]

\[g \geq_{A} h \]

\[\Downarrow \]

\[g \geq_{WU} h \]

\[\Downarrow \]

\[g \geq_{UU} h \]
Riskiness Orders: Results
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:

UTILITY-UNIFORM DOMINANCE:
Riskiness Orders: Results

- **WEALTH-UNIFORM DOMINANCE**: is a *complete* order

- **UTILITY-UNIFORM DOMINANCE**:
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
- is a *complete* order:
 - for every g, h either $g \succeq_{wu} h$ or $h \succeq_{wu} g$

UTILITY-UNIFORM DOMINANCE:
WEALTH-UNIFORM DOMINANCE:
- is a complete order

UTILITY-UNIFORM DOMINANCE:
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
- is a complete order

UTILITY-UNIFORM DOMINANCE:
- is a complete order
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
- is a *complete* order
- is equivalent to the order induced by the *Aumann–Serrano index of riskiness*

UTILITY-UNIFORM DOMINANCE:
- is a *complete* order
WEALTH-UNIFORM DOMINANCE:
- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness:
 \[g \succeq_{wu} h \iff R^{AS}(g) \leq R^{AS}(h) \]

UTILITY-UNIFORM DOMINANCE:
- is a complete order
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
- is a *complete* order
- is equivalent to the order induced by the *Aumann–Serrano index of riskiness*:
 \[g \succeq_{wu} h \iff R^{AS}(g) \leq R^{AS}(h) \]

UTILITY-UNIFORM DOMINANCE:
- is a *complete* order
- is equivalent to the order induced by the *Foster–Hart measure of riskiness*
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:
- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness:
 \[g \succeq_{wu} h \iff R^{AS}(g) \leq R^{AS}(h) \]

UTILITY-UNIFORM DOMINANCE:
- is a complete order
- is equivalent to the order induced by the Foster–Hart measure of riskiness:
 \[g \succeq_{uu} h \iff R^{FH}(g) \leq R^{FH}(h) \]
RAS and R^FH
The Aumann–Serrano index of riskiness R^{AS} is given by:

$$E \left[1 - \exp \left(- \frac{1}{R^{AS}(g)} g \right) \right] = 0$$
\(R^{\text{AS}} \) and \(R^{\text{FH}} \)

Aumann–Serrano index of riskiness \(R^{\text{AS}} \):

\[
E \left[1 - \exp \left(-\frac{1}{R^{\text{AS}}(g)} g \right) \right] = 0
\]

Foster–Hart measure of riskiness \(R^{\text{FH}} \):

\[
E \left[\log \left(1 + \frac{1}{R^{\text{FH}}(g)} g \right) \right] = 0
\]
\(\text{Aumann–Serrano index of riskiness } R_{\text{AS}} : \)

\[
E \left[1 - \exp \left(- \frac{1}{R_{\text{AS}}(g)} g \right) \right] = 0
\]

(1 / the CRITICAL RISK-AVERSION coefficient)

\(\text{Foster–Hart measure of riskiness } R_{\text{FH}} : \)

\[
E \left[\log \left(1 + \frac{1}{R_{\text{FH}}(g)} g \right) \right] = 0
\]
Aumann–Serrano index of riskiness R^{AS}:

$$E \left[1 - \exp \left(-\frac{1}{R^{AS}(g)} g \right) \right] = 0$$

(1 / the CRITICAL RISK-AVERSION coefficient)

Foster–Hart measure of riskiness R^{FH}:

$$E \left[\log \left(1 + \frac{1}{R^{FH}(g)} g \right) \right] = 0$$

(the CRITICAL WEALTH LEVEL)
Aumann–Serrano Index

Aumann–Serrano index of riskiness R^{AS}:

$$E \left[1 - \exp \left(- \frac{1}{R^{\text{AS}}(g)} g \right) \right] = 0$$
Aumann–Serrano index of riskiness R_{AS}:

$$E \left[1 - \exp \left(- \frac{1}{R_{AS}(g)} g \right) \right] = 0$$

Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = -\exp(-\alpha^* x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g.
Aumann–Serrano index of riskiness R^{AS}:

$$E \left[1 - \exp \left(- \frac{1}{R^{\text{AS}}(g)} g \right) \right] = 0$$

Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = - \exp(-\alpha^*x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g.

Then $R^{\text{AS}}(g) = 1/\alpha^*$
Aumann–Serrano Index

Aumann–Serrano index of riskiness R^{AS}:

$$E \left[1 - \exp \left(- \frac{1}{R^{AS}(g)} g \right) \right] = 0$$

Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = -\exp(-\alpha^* x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g

Then $R^{AS}(g) = 1/\alpha^*$

(JPE 2008)
Foster–Hart measure of riskiness R^{FH}:

$$
E \left[\log \left(1 + \frac{1}{R^{FH}(g)} g \right) \right] = 0
$$
Foster–Hart Measure

Foster–Hart measure of riskiness R^{FH}:

$$E \left[\log \left(1 + \frac{1}{R^{FH}(g)} g \right) \right] = 0$$

- If: each gamble g is rejected when the wealth $W < R^{FH}(g)$
- Then: no-bankruptcy is guaranteed
Foster–Hart measure of riskiness R^{FH}:

$$E \left[\log \left(1 + \frac{1}{R^{FH}(g)} g \right) \right] = 0$$

- If: each gamble g is rejected when the wealth $W < R^{FH}(g)$
 Then: no-bankruptcy is guaranteed

- R^{FH} is the minimal scale-invariant threshold that guarantees no-bankruptcy
Foster–Hart Measure

Foster–Hart measure of riskiness R_{FH}^*:

$$E \left[\log \left(1 + \frac{1}{R_{FH}^*(g)} \right) \right] = 0$$

- If: each gamble g is rejected when the wealth $W < R_{FH}^*(g)$
- Then: no-bankruptcy is guaranteed

- R_{FH}^* is the **minimal** scale-invariant threshold that guarantees no-bankruptcy

(JPE 2009)
\(R^{\text{AS}} \) and \(R^{\text{FH}} \)

Aumann–Serrano index of riskiness \(R^{\text{AS}} \):

\[
E \left[1 - \exp \left(- \frac{1}{R^{\text{AS}}(g)} g \right) \right] = 0
\]

(1 / the **CRITICAL RISK-AVERSION** coefficient)

Foster–Hart measure of riskiness \(R^{\text{FH}} \):

\[
E \left[\log \left(1 + \frac{1}{R^{\text{FH}}(g)} g \right) \right] = 0
\]

(the **CRITICAL WEALTH LEVEL**)
Riskiness Orders

\[g \gtrseq_{S} h \]

\[g \gtrseq_{A} h \]

\[g \gtrseq_{WU} h \quad g \gtrseq_{UU} h \]
Riskiness Orders

\[g \succeq_S h \]

\[g \succeq_A h \]

\[g \succeq_{wu} h \]

\[g \succeq_{uu} h \]

* = complete order
Riskiness Orders

\[g \succeq_S h \]

\[g \succeq_A h \]

\[g \succeq_{\text{WU}} h \quad \text{and} \quad g \succeq_{\text{UU}} h \]

\[R^{\text{AS}}(g) \leq R^{\text{AS}}(h) \quad \text{and} \quad R^{\text{FH}}(g) \leq R^{\text{FH}}(h) \]

\[* = \text{complete order} \]
Technical Details

GAMBLE g:

Technical Details

GAMBLE g:
- a real-valued random variable
- $E\ [g] > 0$
- $P\ [g < 0] > 0$
- finitely many values
GAMBLE g:
- a real-valued random variable
- $\mathbb{E}[g] > 0$
- $\mathbb{P}[g < 0] > 0$
- finitely many values

UTILITY u:
Technical Details

GAMBLE g:
- a real-valued random variable
- $E[g] > 0$
- $P[g < 0] > 0$
- finitely many values

UTILITY u:
- $u : \mathbb{R}_+ \rightarrow \mathbb{R}$
- strictly increasing
- concave
UTILITY u (continued):
UTILITY u (continued):
rejection decreases with wealth:
UTILITY u (continued):

- rejection decreases with wealth:

 g rejected at $w \implies$

 g rejected at w', for $w' < w$
UTILITY u (continued):

rejection decreases with wealth:

- g rejected at w \Rightarrow
- g rejected at w', for $w' < w$

or: DARA (condition 2 of Arrow 1965)
Technical Details

- **UTILITY** \(u \) (continued):
 - rejection decreases with wealth:
 - \(g \) rejected at \(w \) \(\Rightarrow \)
 - \(g \) rejected at \(w' \), for \(w' < w \)
 - or: DARA (condition 2 of Arrow 1965)
 - rejection increases with scale:
UTILITY u (continued):

- rejection decreases with wealth:
 - g rejected at $w \Rightarrow$
 - g rejected at w', for $w' < w$
 - or: DARA (condition 2 of Arrow 1965)

- rejection increases with scale:
 - g rejected at $w \Rightarrow$
 - λg rejected at λw, for $\lambda > 1$
UTILITY u (continued):

rejection decreases with wealth:

- g rejected at $w \Rightarrow$
- g rejected at w', for $w' < w$
- or: DARA (condition 2 of Arrow 1965)

rejection increases with scale:

- g rejected at $w \Rightarrow$
- λg rejected at λw, for $\lambda > 1$
- or: IRRA (condition 1 of Arrow 1965)
Technical Details

UTILITY u (continued):

- rejection decreases with wealth:
 - g rejected at w \Rightarrow
 - g rejected at w', for $w' < w$
 - *or:* DARA (condition 2 of Arrow 1965)

- rejection increases with scale:
 - g rejected at w \Rightarrow
 - λg rejected at λw, for $\lambda > 1$
 - *or:* IRRA (condition 1 of Arrow 1965)

- every gamble is sometimes rejected:
Technical Details

UTILITY \(u \) (*continued*):

- rejection decreases with wealth:
 - \(g \) rejected at \(w \) \(\Rightarrow \)
 - \(g \) rejected at \(w' \), for \(w' < w \)
 - *or*: DARA (condition 2 of Arrow 1965)

- rejection increases with scale:
 - \(g \) rejected at \(w \) \(\Rightarrow \)
 - \(\lambda g \) rejected at \(\lambda w \), for \(\lambda > 1 \)
 - *or*: IRRA (condition 1 of Arrow 1965)

- every gamble is sometimes rejected:
 - for every \(g \) there is \(w \) where \(g \) is rejected
UTILITY \(u \) (continued):

- rejection decreases with wealth:
 - \(g \) rejected at \(w \) \(\Rightarrow \)
 - \(g \) rejected at \(w' \), for \(w' < w \)
 - or: DARA (condition 2 of Arrow 1965)

- rejection increases with scale:
 - \(g \) rejected at \(w \) \(\Rightarrow \)
 - \(\lambda g \) rejected at \(\lambda w \), for \(\lambda > 1 \)
 - or: IRRA (condition 1 of Arrow 1965)

- every gamble is sometimes rejected:
 - for every \(g \) there is \(w \) where \(g \) is rejected
 - or: \(u(0^+) = -\infty \)
Acceptance Dominance

\(p \ast g = \text{the } p\text{-DILUTION of } g = \)
Acceptance Dominance

\[p \ast g = \text{the } p\text{-DILUTION of } g = g \text{ with probability } p, \text{ and } 0 \text{ with probability } 1 - p \]
Acceptance Dominance

- $p \ast g = \text{the } p\text{-DILUTION of } g = g \text{ with probability } p \text{, and } 0 \text{ with probability } 1 - p$

- $g \text{ accepted } \iff p \ast g \text{ accepted}$
Acceptance Dominance

- \(p \ast g \) = the \(p \)-DILUTION of \(g = g \) with probability \(p \), and 0 with probability \(1 - p \)

- \(g \) accepted \(\iff \) \(p \ast g \) accepted

\[
E[u(w+p\ast g)] = pE[u(w+g)] + (1-p)u(w)
\]
Acceptance Dominance

- \(p \ast g = \) the \(p \)-DILUTION of \(g = g \) with probability \(p \), and 0 with probability \(1 - p \)

- \(g \) accepted \(\iff \) \(p \ast g \) accepted

\[
E[u(w + p\ast g)] = pE[u(w + g)] + (1 - p)u(w)
\]

Theorem.
Acceptance Dominance

- $p \ast g = \text{the } p\text{-DILUTION of } g = g \text{ with probability } p, \text{ and } 0 \text{ with probability } 1 - p$

- g accepted $\iff p \ast g$ accepted

$$E[u(w + p \ast g)] = pE[u(w + g)] + (1 - p)u(w)$$

Theorem.

g ACCEPTANCE DOMINATES h
Acceptance Dominance

- \(p \ast g \) = the \(p \)-DILUTION of \(g \) =
 - \(g \) accepted with probability \(p \), and
 - 0 with probability \(1 - p \)

- \(g \) accepted \iff \(p \ast g \) accepted

\[
E[u(w+p\ast g)] = pE[u(w+g)] + (1-p)u(w)
\]

Theorem.

\(g \) ACCEPTANCE DOMINATES \(h \)

\iff

there exist \(p, q \in (0, 1] \) such that

\(p \ast g \) STOCHASTICALLY DOMINATES \(q \ast h \)
Acceptance Dominance
Acceptance Dominance

For every g with $\mathbb{E}[g] > 0$

$g \geq_A 2g$
Acceptance Dominance

For every g with $\mathbb{E}[g] > 0$

- $g \succeq_{A} 2g$

- $g \succ_{S} 2g$
For every g with $\mathbb{E}[g] > 0$

- $g \geq_{A} 2g$

- $g \not\geq_{s} 2g : \mathbb{E}[g] < \mathbb{E}[2g]$
Acceptance Dominance

For every g with $E[g] > 0$

- $g \geq_A 2g$:
 - $2u(w + x) \geq u(w + 2x) + u(w)$

- $g <_S 2g$:
 - $E[g] < E[2g]$
For every g with $E[g] > 0$

- $g \succeq_A 2g :$
 - $2u(w + x) \geq u(w + 2x) + u(w)$
 - $2E[u(w + g)] \geq E[u(w + 2g)] + u(w)$

- $g \succ_s 2g :$
 - $E[g] < E[2g]$
Acceptance Dominance

For every g with $E[g] > 0$

- $g \geq_A 2g :$
 - $2u(w + x) \geq u(w + 2x) + u(w)$
 - $2E[u(w + g)] \geq E[u(w + 2g)] + u(w)$
 - **IF** $E[u(w + g)] \leq u(w)$ **THEN** $E[u(w + 2g)] \leq u(w)$

- $g \not\geq_S 2g :$
 - $E[g] < E[2g]$
Summary
g is **LESS RISKY** than h whenever risk-averse agents are **LESS AVERSE** to g than to h
Summary

- g is **LESS RISKY** than h whenever risk-averse agents are **LESS AVERSE** to g than to h
- **AVERSION** to a gamble: **REJECTION**
Summary

- g is **LESS RISKY** than h whenever risk-averse agents are **LESS AVERSE** to g than to h

- **AVERSION** to a gamble: REJECTION

- rejection of different gambles should be compared whenever it is **SUBSTANTIVE**: **UNIFORM** over a range of decisions
Summary

- g is LESS RISKY than h whenever risk-averse agents are LESS AVERSE to g than to h
- AVERSION to a gamble: REJECTION
- rejection of different gambles should be compared whenever it is SUBSTANTIVE: UNIFORM over a range of decisions

g is less risky than h
whenver
g is uniformly rejected less than h
by risk-averse agents
\(g \succeq_S h \)

\[\Downarrow \]

\(g \succeq_A h \)

\(g \succeq_{\text{WU}} h \)

\(g \succeq_{\text{uu}} h \)

\(R^{\text{AS}}(g) \leq R^{\text{AS}}(h) \)

\(R^{\text{FH}}(g) \leq R^{\text{FH}}(h) \)

* = complete order
Summary

ORDINAL approach to riskiness
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared

- **STATUS QUO**: current wealth w
Summary

- **ORDINAL** approach to riskiness (Aumann–Serrano and Foster–Hart: “cardinal")

- **OBJECTIVE**: depends only on the gambles (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared

- **STATUS QUO**: current wealth w (in addition to the utility u)
Summary

- **ORDINAL approach to riskiness**
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared

- **STATUS QUO**: current wealth w
 (in addition to the utility u)

- $g \succeq_A \lambda g$ for every $\lambda > 1$
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal”)

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared

- **STATUS QUO**: current wealth w
 (in addition to the utility u)

- $g \succeq_A \lambda g$ for every $\lambda > 1$
 (ALL risk-averse agents reject λg more than g)
ORDINAL approach to riskiness
(Aumann–Serrano and Foster–Hart: “cardinal”)

OBJECTIVE: depends only on the gambles
(not on any specific decision-maker)

COMPLETE: any two gambles can be compared
Summary

- **ORDINAL** approach to riskiness
 (Aumann–Serrano and Foster–Hart: “cardinal")

- **OBJECTIVE**: depends only on the gambles
 (not on any specific decision-maker)

- **COMPLETE**: any two gambles can be compared
Intrinsic Risk

CAUTION
THIS SIGN HAS SHARP EDGES
DO NOT TOUCH THE EDGES OF THIS SIGN

ALSO, THE BRIDGE IS OUT AHEAD