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Repeated Games

In a repeated game:

If the opponent plays i.i.d.
(independently identically distributed)

Then fictitious play is optimal

If the opponent is OBLIVIOUS

Then ?

OBLIVIOUS = does not see / know / use
my actions
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Model: One-Shot Game

The one-shot game Γ = < I, J, u >

I = (finite) set of actions of Player 1

J = (finite) set of actions of Player 2
(the "opponent")

u : I × J −→ R

= the payoff function of Player 1

without loss of generality assume:
0 ≤ u(i, j) ≤ 1 for all i ∈ I, j ∈ J
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Model: Repeated Game

The repeated game Γ∞
O

Player 2 is restricted to OBLIVIOUS strategies
η : ∪∞

t=0
J t → ∆(J)

Player 1 is unrestricted
σ : ∪∞

t=0
(I × J)t → ∆(I)

Payoffs
vt := u(it, jt)
payoff at time t

v̄T := (1/T )
∑T

t=1
vt

average payoff up to time T
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Model: Repeated Game

The repeated game Γ∞
O

Player 2 is restricted to OBLIVIOUS strategies
η : ∪∞

t=0
J t → ∆(J)

Player 1 is unrestricted
σ : ∪∞

t=0
(I × J)t → ∆(I)

Without loss of generality:
Player 1 uses "self-oblivious" strategies
σ : ∪∞

t=0
J t → ∆(I)
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Dominance

If Player 1 has a dominant action i ∈ I in Γ
then playing i forever is a dominant strategy
in the repeated game

The one-shot game Γ is called essential
if Player 1 does NOT have a dominant action:

for every i ∈ I there exists i′ ∈ I
with u(i, j) < u(i′, j) for some j ∈ J
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Dominance

Proposition. Let Γ be an essential game.
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That is, for every σ there exists σ̂ such that:

For every oblivious strategy η of Player 2
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Dominance in Γ∞
O

Proposition. Let Γ be an essential game.
Then every strategy of Player 1 in Γ∞

O

is weakly dominated.

That is, for every σ there exists σ̂ such that:

For every oblivious strategy η of Player 2

Eσ̂,η [v̄T ] ≥ Eσ,η [v̄T ] − 1/T for all T ≥ 1

There exists an oblivious strategy η0

of Player 2 and a constant γ > 0 such that

Eσ̂,η
0
[v̄T ] > Eσ,η

0
[v̄T ] + γ for all T ≥ 1
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Regret Matching

For every k ∈ K, let σk : ∪∞
t=0

J t → ∆(I) be a
(self-oblivious, behavior) strategy of Player 1.

SERGIU HART c© 2008 – p. 10



Regret Matching

For every k ∈ K, let σk : ∪∞
t=0

J t → ∆(I) be a
(self-oblivious, behavior) strategy of Player 1.

Theorem. For every finite set K there exists a
K-REGRET-MATCHING strategy σ∗ ≡ σ∗

K such
that

Eσ∗,η [v̄T ] ≥ Eσk,η [v̄T ] − 3
√

|K|
√

T

for every k ∈ K, every time T ≥ 1, and every
oblivious strategy η of Player 2.
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The K-REGRET-MATCHING strategy σ∗ ≡ σ∗
K is

defined as follows. At time T + 1:

U :=
∑T

t=1
vt (realized total payoff)

For each k ∈ K:
V (k) :=

∑T
t=1

u(σk(h
2
t−1

), jt)

(the total payoff of σk against the realized
sequence of actions of Player 2)
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Regret Matching

The K-REGRET-MATCHING strategy σ∗ ≡ σ∗
K is

defined as follows. At time T + 1:

U :=
∑T

t=1
vt (realized total payoff)

For each k ∈ K:
V (k) :=

∑T
t=1

u(σk(h
2
t−1

), jt)

(the total payoff of σk against the realized
sequence of actions of Player 2)
R(k) := [V (k) − U ]+ (the REGRET of k)

ρk := R(k)/
∑

ℓ∈K R(ℓ)
(the normalized regret of k)
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K is

defined as follows. At time T + 1:

U :=
∑T

t=1
vt (realized total payoff)

For each k ∈ K:
V (k) :=
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t=1

u(σk(h
2
t−1
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R(k) := [V (k) − U ]+ (the REGRET of k)
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∑
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Regret Matching

The K-REGRET-MATCHING strategy σ∗ ≡ σ∗
K is

defined as follows. At time T + 1:

U :=
∑T

t=1
vt (realized total payoff)

For each k ∈ K:
V (k) :=

∑T
t=1

u(σk(h
2
t−1

), jt)

R(k) := [V (k) − U ]+ (the REGRET of k)
ρk := R(k)/

∑

ℓ∈K R(ℓ)

σ∗ plays like σk with probability ρk :

σ∗(h2

T )(i) =
∑

k∈K

ρk · σk(h
2

T )(i)
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Regret Matching

Generalizes Hannan’s result:
σi = "play i forever"
for each i ∈ I

Blackwell approachability (with changing
payoffs)
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Regret Matching - Countable

Theorem. For every COUNTABLE SET K there
exists a K-REGRET-MATCHING strategy
σ∗ ≡ σ∗

K such that
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Regret Matching - Countable

Theorem. For every COUNTABLE SET K there
exists a K-REGRET-MATCHING strategy
σ∗ ≡ σ∗

K such that

Eσ∗,η [v̄T ] ≥ Eσk,η [v̄T ] − O
(

T −1/4

)

for every k ∈ K, every time T ≥ 1, and every
oblivious strategy η of Player 2.
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For each k = 1, 2, ... :

BLOCK k has nk = k3 periods
During BLOCK k play the regret-matching
strategy for the set {σ1, ..., σk}
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Regret Matching - Countable

The K-REGRET-MATCHING strategy σ∗ ≡ σ∗
K

for COUNTABLE K = 1, 2, ... :

For each k = 1, 2, ... :

BLOCK k has nk = k3 periods
During BLOCK k play the regret-matching
strategy for the set {σ1, ..., σk}

Regrets are computed on the basis of the
current block only
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Automata

Turing Machines
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ht (a history)
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Regret Matching

Countable sets of strategies:

Automata

Turing Machines

A COMPUTABLE SET OF STRATEGIES

INPUT:
k (index of a strategy)
ht (a history)

OUTPUT:
σk(ht) ∈ ∆(I)
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Regret: The End
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