The Optimality of Regret Matching

Sergiu Hart

July 2008

The Optimality of Regret Matching

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

Joint work with

Elchanan Ben-Porath

Repeated Games

In a repeated game:

Repeated Games

In a repeated game:

- If the opponent plays i.i.d.
(independently identically distributed)

Repeated Games

In a repeated game:

- If the opponent plays i.i.i.d.
(independently identically distributed)
Then fictitious play is optimal

Repeated Games

In a repeated game:

- If the opponent plays i.i.d.
(independently identically distributed)
Then fictitious play is optimal
- If the opponent is oblivious

Repeated Games

In a repeated game:

- If the opponent plays ii.i.d.
(independently identically distributed)
Then fictitious play is optimal
- If the opponent is oblivious

OBLIVIOUS = does not see / know / use my actions

Repeated Games

In a repeated game:

- If the opponent plays ii.i.d.
(independently identically distributed)
Then fictitious play is optimal
- If the opponent is oblivious

Then ?

OBLIVIOUS = does not see / know / use my actions

Oblivious

Oblivious

Model: One-Shot Game

Model: One-Shot Game

The one-shot game $\Gamma=<I, J, u>$

Model: One-Shot Game

The one-shot game $\Gamma=<I, J, u>$

- $I=$ (finite) set of actions of Player 1
- $J=$ (finite) set of actions of Player 2 (the "opponent")

Model: One-Shot Game

The one-shot game $\Gamma=<I, J, u>$

- $I=$ (finite) set of actions of Player 1
- $J=$ (finite) set of actions of Player 2 (the "opponent")
- $u: I \times J \longrightarrow \mathbb{R}$
$=$ the payoff function of Player 1

Model: One-Shot Game

The one-shot game $\Gamma=<I, J, u>$

- $I=$ (finite) set of actions of Player 1
- $J=$ (finite) set of actions of Player 2 (the "opponent")
- $u: I \times J \longrightarrow \mathbb{R}$
$=$ the payoff function of Player 1
- without loss of generality assume:
$0 \leq u(i, j) \leq 1$ for all $i \in I, j \in J$

Model: Repeated Game

Model: Repeated Game

The repeated game Γ^{∞}

Model: Repeated Game

The repeated game Γ_{o}^{∞}

- Player 2 is restricted to OBLIVIoUS strategies $\eta: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(J)$

Model: Repeated Game

The repeated game Γ_{o}^{∞}

- Player 2 is restricted to ObLIVIous strategies $\eta: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(J)$
- Player 1 is unrestricted

$$
\sigma: \cup_{t=0}^{\infty}(I \times J)^{t} \rightarrow \Delta(I)
$$

Model: Repeated Game

The repeated game Γ_{o}^{∞}

- Player 2 is restricted to Oblivious strategies $\eta: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(J)$
- Player 1 is unrestricted
$\sigma: \cup_{t=0}^{\infty}(I \times J)^{t} \rightarrow \Delta(I)$
- Payoffs
- $v_{t}:=u\left(i_{t}, j_{t}\right)$
payoff at time t
- $\bar{v}_{T}:=(1 / T) \sum_{t=1}^{T} v_{t}$ average payoff up to time T

Model: Repeated Game

The repeated game Γ_{o}^{∞}

- Player 2 is restricted to Oblivious strategies $\eta: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(J)$
- Player 1 is unrestricted

$$
\sigma: \cup_{t=0}^{\infty}(I \times J)^{t} \rightarrow \Delta(I)
$$

- Without loss of generality: Player 1 uses "self-oblivious" strategies $\sigma: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(I)$

Dominance

Dominance

- If Player 1 has a dominant action $i \in I$ in Γ then playing i forever is a dominant strategy in the repeated game

Dominance

- If Player 1 has a dominant action $i \in I$ in Γ then playing i forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential

Dominance

- If Player 1 has a dominant action $i \in I$ in Γ then playing i forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential if Player 1 does not have a dominant action:

Dominance

- If Player 1 has a dominant action $i \in I$ in Γ then playing i forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential if Player 1 does not have a dominant action:
for every $i \in I$ there exists $i^{\prime} \in I$ with $\boldsymbol{u}(\boldsymbol{i}, \boldsymbol{j})<\boldsymbol{u}\left(\boldsymbol{i}^{\prime}, \boldsymbol{j}\right)$ for some $\boldsymbol{j} \in J$

Dominance

Proposition. Let Γ be an essential game.

Dominance in Γ_{0}^{∞}

Proposition. Let Γ be an essential game.
Then every strategy of Player 1 in Γ_{0}^{∞} is weakly dominated.

Dominance in Γ_{0}^{∞}

Proposition. Let Γ be an essential game.
Then every strategy of Player 1 in Γ_{o}^{∞} is weakly dominated.

That is, for every σ there exists $\hat{\sigma}$ such that:

- For every oblivious strategy $\boldsymbol{\eta}$ of Player 2

$$
\mathbf{E}_{\hat{\sigma}, \eta}\left[\overline{\boldsymbol{v}}_{T}\right] \geq \mathbf{E}_{\sigma, \eta}\left[\overline{\boldsymbol{v}}_{T}\right]-\mathbf{1} / \boldsymbol{T} \quad \text { for all } \boldsymbol{T} \geq \mathbf{1}
$$

Dominance in Γ_{0}^{∞}

Proposition. Let Γ be an essential game.
Then every strategy of Player 1 in Γ_{o}^{∞} is weakly dominated.

That is, for every σ there exists $\hat{\sigma}$ such that:

- For every oblivious strategy $\boldsymbol{\eta}$ of Player 2

$$
\mathbf{E}_{\hat{\sigma}, \eta}\left[\overline{\boldsymbol{v}}_{T}\right] \geq \mathbf{E}_{\sigma, \eta}\left[\overline{\boldsymbol{v}}_{T}\right]-\mathbf{1} / \boldsymbol{T} \quad \text { for all } \boldsymbol{T} \geq \mathbf{1}
$$

- There exists an oblivious strategy η_{0} of Player 2 and a constant $\gamma>0$ such that

$$
\mathbf{E}_{\hat{\sigma}, \eta_{0}}\left[\overline{\boldsymbol{v}}_{\boldsymbol{T}}\right]>\mathbf{E}_{\sigma, \eta_{0}}\left[\overline{\boldsymbol{v}}_{\boldsymbol{T}}\right]+\gamma \quad \text { for all } \boldsymbol{T} \geq \mathbf{1}
$$

Regret Matching

Regret Matching

For every $k \in K$, let $\sigma_{k}: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(I)$ be a (self-oblivious, behavior) strategy of Player 1.

Regret Matching

For every $k \in K$, let $\sigma_{k}: \cup_{t=0}^{\infty} J^{t} \rightarrow \Delta(I)$ be a (self-oblivious, behavior) strategy of Player 1.

Theorem. For every finite set \boldsymbol{K} there exists a K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ such that

$$
\mathbf{E}_{\sigma^{*}, \eta}\left[\overline{\boldsymbol{v}}_{T}\right] \geq \mathbf{E}_{\sigma_{k}, \eta}\left[\overline{\boldsymbol{v}}_{T}\right]-\frac{3 \sqrt{|\boldsymbol{K}|}}{\sqrt{\boldsymbol{T}}}
$$

for every $k \in K$, every time $T \geq 1$, and every oblivious strategy $\boldsymbol{\eta}$ of Player 2.

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows.

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $U:=\sum_{t=1}^{T} v_{t}$ (realized total payoff)

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $\boldsymbol{U}:=\sum_{t=1}^{T} v_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:

Regret Matching

The K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $\boldsymbol{U}:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
(the total payoff of σ_{k} against the realized sequence of actions of Player 2)

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $\boldsymbol{U}:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
(the total payoff of σ_{k} against the realized sequence of actions of Player 2)
- $\boldsymbol{R}(\boldsymbol{k}):=[\boldsymbol{V}(\boldsymbol{k})-\boldsymbol{U}]_{+}$(the REGRET of \boldsymbol{k})

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $U:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
(the total payoff of σ_{k} against the realized sequence of actions of Player 2)
- $\boldsymbol{R}(k):=[\boldsymbol{V}(\boldsymbol{k})-\boldsymbol{U}]_{+}$(the REGRET of \boldsymbol{k})
- $\quad \rho_{k}:=R(k) / \sum_{\ell \in K} R(\ell)$
(the normalized regret of \boldsymbol{k})

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $\boldsymbol{U}:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
- $\boldsymbol{R}(k):=[\boldsymbol{V}(\boldsymbol{k})-\boldsymbol{U}]_{+}$(the REGRET of \boldsymbol{k})
- $\quad \rho_{k}:=R(k) / \sum_{\ell \in K} R(\ell)$

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $U:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
- $\boldsymbol{R}(k):=[\boldsymbol{V}(\boldsymbol{k})-\boldsymbol{U}]_{+}$(the REGRET of \boldsymbol{k})
- $\quad \rho_{k}:=\boldsymbol{R}(k) / \sum_{\ell \in K} R(\ell)$
- σ^{*} plays like σ_{k} with probability ρ_{k}

Regret Matching

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ is defined as follows. At time $T+1$:

- $U:=\sum_{t=1}^{T} \boldsymbol{v}_{t}$ (realized total payoff)
- For each $\boldsymbol{k} \in \boldsymbol{K}$:
- $\boldsymbol{V}(\boldsymbol{k}):=\sum_{t=1}^{T} \boldsymbol{u}\left(\sigma_{k}\left(h_{t-1}^{2}\right), \boldsymbol{j}_{t}\right)$
- $\boldsymbol{R}(k):=[\boldsymbol{V}(\boldsymbol{k})-\boldsymbol{U}]_{+}$(the REGRET of \boldsymbol{k})
- $\quad \rho_{k}:=R(k) / \sum_{\ell \in K} R(\ell)$
- σ^{*} plays like σ_{k} with probability ρ_{k} :

$$
\sigma^{*}\left(h_{T}^{2}\right)(i)=\sum_{k \in K} \rho_{k} \cdot \sigma_{k}\left(h_{T}^{2}\right)(i)
$$

Regret Matching

Regret Matching

- Generalizes Hannan's result:

Regret Matching

- Generalizes Hannan's result:
- $\sigma_{i}=$ "play i forever" for each $i \in I$

Regret Matching

- Generalizes Hannan's result:
- $\sigma_{i}=$ "play i forever" for each $i \in I$
- Blackwell approachability (with changing payoffs)

Regret Matching

Regret Matching - Countable

Theorem. For every countable set K there exists a K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ such that

Regret Matching - Countable

Theorem. For every countable set K there exists a K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ such that

$$
\mathbf{E}_{\sigma^{*}, \eta}\left[\overline{\boldsymbol{v}}_{\boldsymbol{T}}\right] \geq \mathbf{E}_{\sigma_{k}, \eta}\left[\overline{\boldsymbol{v}}_{\boldsymbol{T}}\right]-\boldsymbol{O}\left(\boldsymbol{T}^{-1 / 4}\right)
$$

for every $k \in K$, every time $T \geq 1$, and every oblivious strategy η of Player 2.

Regret Matching - Countable

Regret Matching - Countable

The K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ for COUNTABLE $K=1,2, \ldots$:

Regret Matching - Countable

The K-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ for countable $K=1,2, \ldots$:

- For each $k=1,2, \ldots$:
- BLOCK k has $n_{k}=k^{3}$ periods

Regret Matching - Countable

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ for countable $K=1,2, \ldots$:

- For each $k=1,2, \ldots$:
- BLOCK k has $n_{k}=k^{3}$ periods
- During block k play the regret-matching strategy for the set $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$

Regret Matching - Countable

The \boldsymbol{K}-REGRET-MATCHING strategy $\sigma^{*} \equiv \sigma_{K}^{*}$ for countable $K=1,2, \ldots$:

- For each $k=1,2, \ldots$:
- BLOCK k has $n_{k}=k^{3}$ periods
- During block k play the regret-matching strategy for the set $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$
- Regrets are computed on the basis of the current block only

Regret Matching

Regret Matching

Countable sets of strategies:

Regret Matching

Countable sets of strategies:

- Automata

Regret Matching

Countable sets of strategies:

- Automata
- Turing Machines

Regret Matching

Countable sets of strategies:

- Automata
- Turing Machines
- A COMPUTABLE SET OF Strategies

Regret Matching

Countable sets of strategies:

- Automata
- Turing Machines
- A COMPUTABLE SET OF Strategies
- INPUT:
- \boldsymbol{k} (index of a strategy)
- h_{t} (a history)

Regret Matching

Countable sets of strategies:

- Automata
- Turing Machines
- A COMPUTABLE SET OF Strategies
- INPUT:
- \boldsymbol{k} (index of a strategy)
- h_{t} (a history)
- OUTPUT:
- $\sigma_{k}\left(h_{t}\right) \in \Delta(I)$

Regret

Regret: The End

