

The Optimality of Regret Matching

Sergiu Hart

July 2008

SERGIU HART ⓒ 2008 - p. 1

THE OPTIMALITY OF REGRET MATCHING

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart

Joint work with

Elchanan Ben-Porath

In a repeated game:

In a repeated game:

If the opponent plays *i.i.d.* (independently identically distributed)

In a repeated game:

- If the opponent plays *i.i.d.* (independently identically distributed)
 - Then *fictitious play* is optimal

In a repeated game:

If the opponent plays *i.i.d.* (independently identically distributed)

Then *fictitious play* is optimal

If the opponent is **OBLIVIOUS**

In a repeated game:

If the opponent plays *i.i.d.* (independently identically distributed)

Then *fictitious play* is optimal

If the opponent is **OBLIVIOUS**

OBLIVIOUS = does not see / know / use my actions

In a repeated game:

If the opponent plays *i.i.d.* (independently identically distributed)

Then *fictitious play* is optimal

If the opponent is **OBLIVIOUS** Then ?

OBLIVIOUS = does not see / know / use my actions

SERGIU HART ⓒ 2008 – p. 5

Oblivious

The one-shot game $\Gamma = < I, J, u >$

- The one-shot game $\Gamma = < I, J, u >$
- I = (finite) set of actions of Player 1
- J = (finite) set of actions of Player 2 (the "opponent")

- The one-shot game $\Gamma = < I, J, u >$
- I = (finite) set of actions of Player 1
- J = (finite) set of actions of Player 2 (the "opponent")
- $u: I \times J \longrightarrow \mathbb{R}$ = the *payoff function* of Player 1

- The one-shot game $\Gamma = < I, J, u >$
- I = (finite) set of actions of Player 1
- J = (finite) set of actions of Player 2 (the "opponent")
- $u: I \times J \longrightarrow \mathbb{R}$ = the *payoff function* of Player 1
 - without loss of generality assume:
 $0 \leq u(i,j) \leq 1$ for all $i \in I, j \in J$

The *repeated game* Γ^{∞}

The *repeated game* Γ_0^{∞}

● Player 2 is restricted to OBLIVIOUS strategies $\eta : \cup_{t=0}^{\infty} J^t \to \Delta(J)$

The *repeated game* Γ_0^{∞}

- Player 2 is restricted to OBLIVIOUS strategies $\eta:\cup_{t=0}^\infty J^t \to \Delta(J)$
- Player 1 is unrestricted
 $\sigma: \cup_{t=0}^{\infty} (I \times J)^t \to \Delta(I)$

The *repeated game* Γ_{o}^{∞}

- Player 2 is restricted to OBLIVIOUS strategies $\eta : \cup_{t=0}^{\infty} J^t \to \Delta(J)$
- Player 1 is unrestricted
 $\sigma: \cup_{t=0}^{\infty} (I \times J)^t \to \Delta(I)$
- Payoffs
 - $v_t := u(i_t, j_t)$ payoff at time t

•
$$ar{v}_T := (1/T) \sum_{t=1}^T v_t$$
 average payoff up to time T

The *repeated game* Γ_{o}^{∞}

- Player 2 is restricted to OBLIVIOUS strategies $η : \cup_{t=0}^{\infty} J^t → Δ(J)$
- Player 1 is unrestricted
 $\sigma: \cup_{t=0}^{\infty} (I \times J)^t \to \Delta(I)$
- Without loss of generality:
 Player 1 uses "self-oblivious" strategies
 $\sigma: \cup_{t=0}^{\infty} J^t \to \Delta(I)$

If Player 1 has a *dominant* action $i \in I$ in Γ then playing *i* forever is a dominant strategy in the repeated game

- If Player 1 has a *dominant* action $i \in I$ in Γ then playing *i* forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential

- If Player 1 has a *dominant* action $i \in I$ in Γ then playing *i* forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential if Player 1 does NOT have a dominant action:

- If Player 1 has a *dominant* action $i \in I$ in Γ then playing *i* forever is a dominant strategy in the repeated game
- The one-shot game Γ is called essential if Player 1 does NOT have a dominant action:

for every $i \in I$ there exists $i' \in I$ with u(i,j) < u(i',j) for some $j \in J$

Proposition. Let Γ be an essential game.

Dominance in Γ_0^{∞}

Proposition. Let Γ be an essential game. Then every strategy of Player 1 in Γ_{o}^{∞} is weakly dominated.

Proposition. Let Γ be an essential game. Then every strategy of Player 1 in Γ_{o}^{∞} is weakly dominated.

That is, for every σ there exists $\hat{\sigma}$ such that: • For every oblivious strategy η of Player 2

 $\mathrm{E}_{\hat{\sigma},\eta}\left[ar{v}_T
ight] \geq \mathrm{E}_{\sigma,\eta}\left[ar{v}_T
ight] - 1/T \;\; ext{ for all } T \geq 1$

Proposition. Let Γ be an essential game. Then every strategy of Player 1 in Γ_{o}^{∞} is weakly dominated.

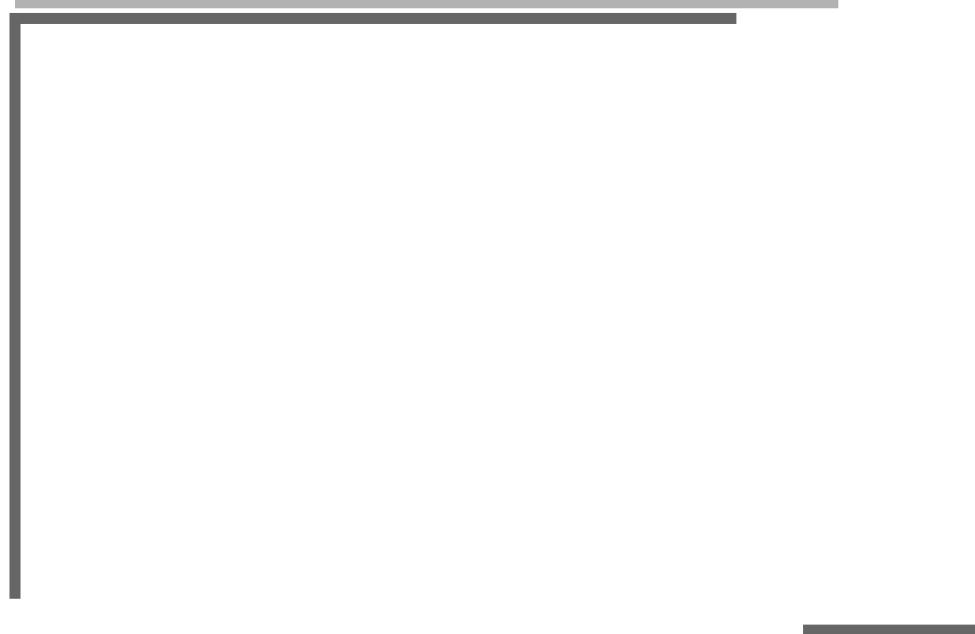
That is, for every σ there exists $\hat{\sigma}$ such that:

• For every oblivious strategy η of Player 2

 $\mathrm{E}_{\hat{\pmb{\sigma}},\eta}\left[ar{v}_T
ight] \geq \mathrm{E}_{\pmb{\sigma},\eta}\left[ar{v}_T
ight] - 1/T \;\;\; ext{for all } T \geq 1$

There exists an oblivious strategy η_0 of Player 2 and a constant $\gamma > 0$ such that

$$\mathrm{E}_{\hat{\sigma},\eta_0}\left[ar{v}_T
ight] > \mathrm{E}_{\sigma,\eta_0}\left[ar{v}_T
ight] + \gamma \quad ext{ for all } T \geq 1$$



Regret Matching

For every $k \in K$, let $\sigma_k : \bigcup_{t=0}^{\infty} J^t \to \Delta(I)$ be a (self-oblivious, behavior) strategy of Player 1.

For every $k \in K$, let $\sigma_k : \bigcup_{t=0}^{\infty} J^t \to \Delta(I)$ be a (self-oblivious, behavior) strategy of Player 1.

Theorem. For every finite set K there exists a K-REGRET-MATCHING strategy $\sigma^* \equiv \sigma_K^*$ such that

$$\mathrm{E}_{\pmb{\sigma}^*,\eta}\left[ar{v}_T
ight] \geq \mathrm{E}_{\pmb{\sigma}_{\pmb{k}},\eta}\left[ar{v}_T
ight] - rac{3\sqrt{|K|}}{\sqrt{T}}$$

for every $k \in K$, every time $T \ge 1$, and every oblivious strategy η of Player 2.

Regret Matching

The *K*-**REGRET-MATCHING** strategy $\sigma^* \equiv \sigma_K^*$ is defined as follows.

Regret Matching

The *K*-**REGRET-MATCHING** strategy $\sigma^* \equiv \sigma_K^*$ is defined as follows. At time T + 1:

Regret Matching

• $U := \sum_{t=1}^{T} v_t$ (realized total payoff)

Regret Matching

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:
 - $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$ (the total payoff of σ_k against the realized sequence of actions of Player 2)

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:
 - $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$ (the total payoff of σ_k against the realized sequence of actions of Player 2)

• $R(k) := [V(k) - U]_+$ (the REGRET of k)

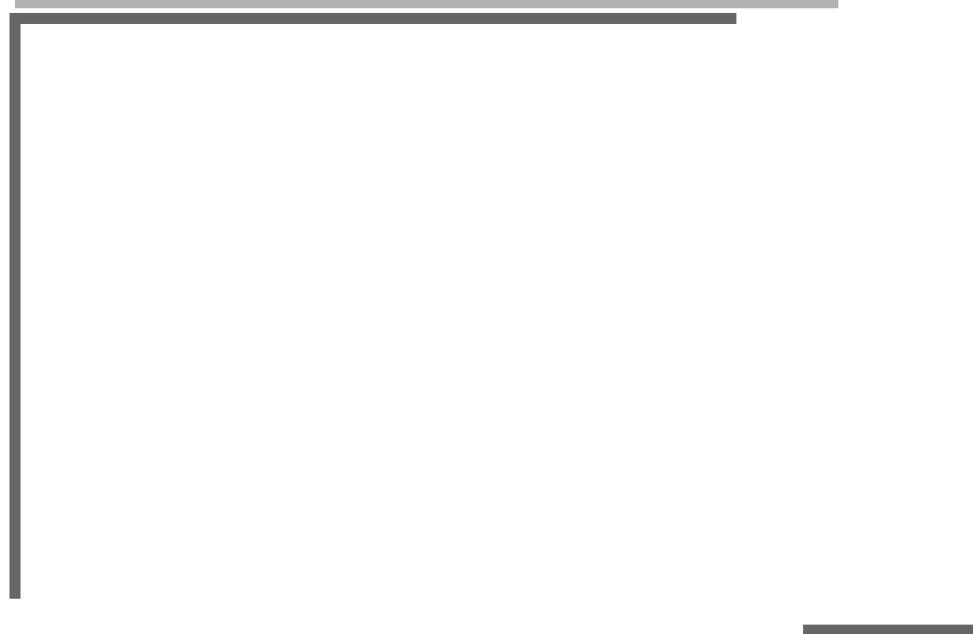
- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:
 - $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$ (the total payoff of σ_k against the realized sequence of actions of Player 2)
 - $R(k) := [V(k) U]_+$ (the REGRET of k) • $ho_k := R(k) / \sum_{\ell \in K} R(\ell)$ (the normalized regret of k)

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$: • $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$
 - $R(k) := [V(k) U]_+$ (the REGRET of k)
 - ${oldsymbol{
 ho}}_k:=R(k)/\sum_{\ell\in K}R(\ell)$

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:
 - $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$
 - $R(k) := [V(k) U]_+$ (the REGRET of k)
 - $ho_k := R(k) / \sum_{\ell \in K} R(\ell)$
- σ^* plays like σ_k with probability ρ_k

- $U := \sum_{t=1}^{T} v_t$ (realized total payoff)
- For each $k \in K$:
 - $V(k) := \sum_{t=1}^{T} u(\sigma_k(h_{t-1}^2), j_t)$
 - $R(k) := [V(k) U]_+$ (the REGRET of k)
 - $ho_k := R(k) / \sum_{\ell \in K} R(\ell)$
- σ^* plays like σ_k with probability ρ_k :

$$\sigma^*(h_T^2)(i) = \sum_{k \in K}
ho_k \cdot \sigma_k(h_T^2)(i)$$



SERGIU HART (C) 2008 – p. 12

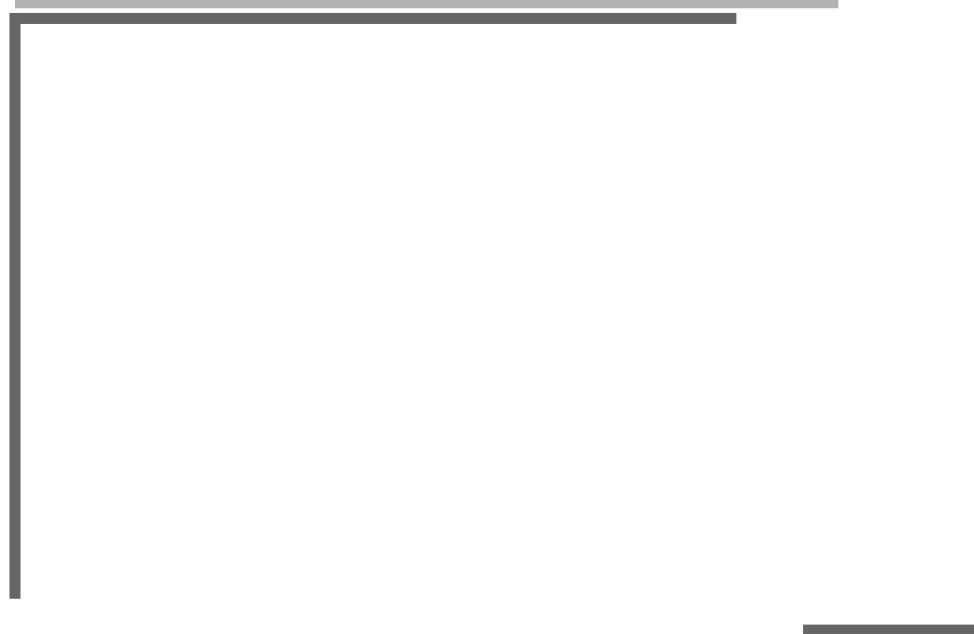
Generalizes Hannan's result:

Generalizes Hannan's result:

$$\sigma_i = "play i ext{ forever}"$$
for each $i \in I$

Generalizes Hannan's result:

- $\sigma_i = "\mathsf{play}\ i$ forever" for each $i \in I$
- Blackwell approachability (with changing payoffs)

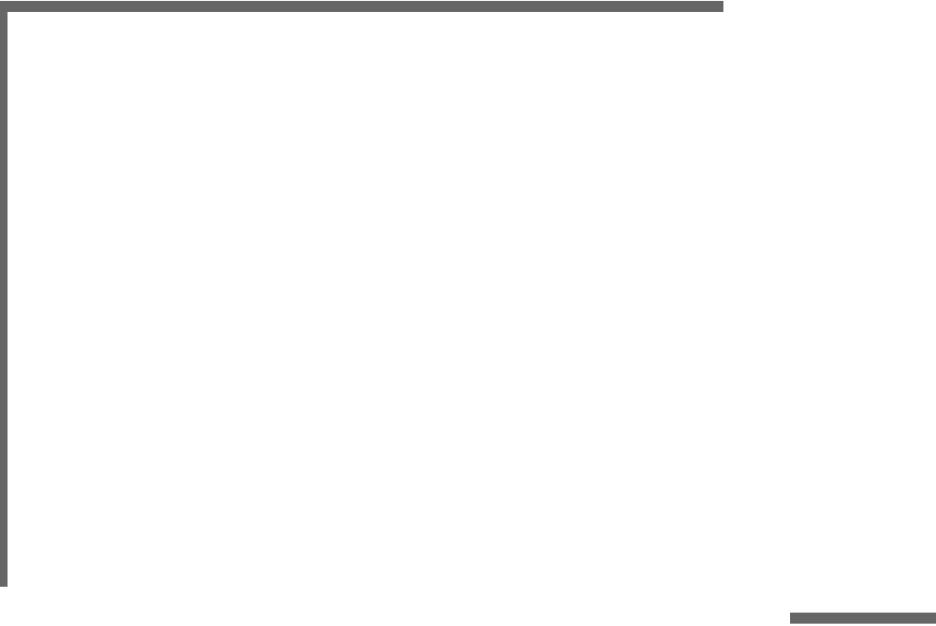


Theorem. For every **COUNTABLE SET** *K* there exists a *K*-**REGRET-MATCHING** strategy $\sigma^* \equiv \sigma^*_K$ such that

Theorem. For every **COUNTABLE SET** *K* there exists a *K*-**REGRET-MATCHING** strategy $\sigma^* \equiv \sigma_K^*$ such that

$$\mathrm{E}_{\boldsymbol{\sigma}^*,\eta}\left[\bar{v}_T\right] \geq \mathrm{E}_{\boldsymbol{\sigma}_{\boldsymbol{k}},\eta}\left[\bar{v}_T\right] - O\left(T^{-1/4}\right)$$

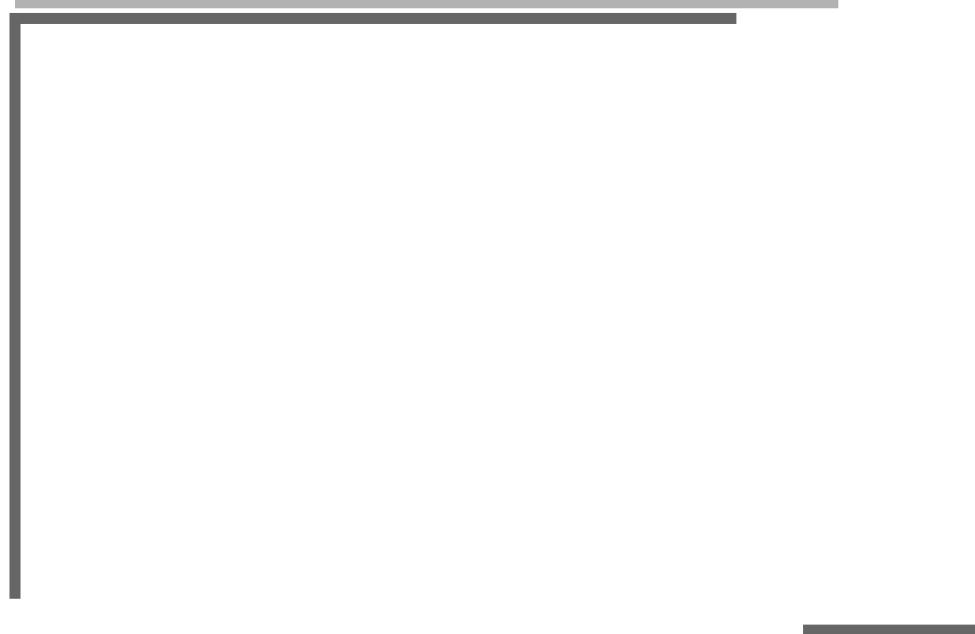
for every $k \in K$, every time $T \ge 1$, and every oblivious strategy η of Player 2.



- For each $k = 1, 2, \ldots$:
 - **BLOCK** k has $n_k = k^3$ periods

- For each $k = 1, 2, \ldots$:
 - **Solution** BLOCK k has $n_k = k^3$ periods
 - During **BLOCK** *k* play the regret-matching strategy for the set $\{\sigma_1, ..., \sigma_k\}$

- For each $k = 1, 2, \ldots$:
 - **Solution** BLOCK k has $n_k = k^3$ periods
 - During **BLOCK** *k* play the regret-matching strategy for the set $\{\sigma_1, ..., \sigma_k\}$
 - Regrets are computed on the basis of the current block only



SERGIU HART (C) 2008 – p. 15

Regret Matching

Automata

Countable sets of strategies:

Automata

Turing Machines

Regret Matching

- Automata
- Turing Machines
- A COMPUTABLE SET OF STRATEGIES

Regret Matching

- Automata
- Turing Machines
- A COMPUTABLE SET OF STRATEGIES
 - **J** INPUT:
 - $\mathbf{s} \mathbf{k}$ (index of a strategy)
 - h_t (a history)

Regret Matching

- Automata
- Turing Machines
- A COMPUTABLE SET OF STRATEGIES
 - INPUT:
 - $\mathbf{s} \mathbf{k}$ (index of a strategy)
 - h_t (a history)
 - **• OUTPUT**:

$${\scriptstyle
ho} \,\, \sigma_k(h_t) \in \Delta(I)$$

Regret: The End

