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NONZERO-SUM TWO-PERSON REPEATED GAMES
WITH INCOMPLETE INFORMATION*¢

SERGIU HART
Tel-Aviv University

Characterization of all equilibria of nonzero-sum two-person repeated games with incom-
plete information, in the standard one-sided information case. Informally, each such equilib-
rium is described by a sequence of communications between the players (consisting of
information transmission and coordination), leading to some individually rational agreement.
Formally, the concept of a bi-martingale is introduced.

1. Introduction. An incomplete information environment is one where at least some
of the participants do not possess all the relevant data. Much interest has been devoted
in recent years to the analysis of such situations. In the economic theory literature, for
example: the principal-agent problem; the theory of actions; signalling (e.g., in
insurance markets); rational expectations equilibria; and so on.

What are the main difficulties in such problems? First, consider the “informed”
persons—those who know more than others. On one hand, it is to their advantage to
make use of their additional information (in order to improve their own final
outcome). On the other hand, by doing so they actually reveal this information—and
their relative advantage vanishes. Thus, what is the good of being more informed, if
one cannot profit from it? This type of conflict is an essential issue in the analysis of
incomplete information environments.

As an idealized example, assume someone has “inside information” that a certain
small company has just succeeded in developing a new product, for which a very
profitable market exists. He thus expects that the value of the shares of this company
on the Stock Exchange will rise dramatically. Should he immediately buy a large
quantity of these shares? By doing so, he will implicitly signal to the others the success
of the company—and everyone will want to buy its shares, raising their value
immediately and lowering the profits of the initially informed person. The answer
clearly lies in his buying the “right” quantity of shares—not too large to draw
attention, and not too small to make his profit insignificant.

The results of the analysis of such models of incomplete information usually indicate
that some transmission of information does occur (possibly, in an implicit way only;
namely, deducing information from actions taken by those possessing it). Thus, some
sort of communication and cooperation may arise (e.g., “trading information”)—even
though everything is based on purely selfish (noncooperative) motives.

There is yet another conflict—this time, for the “uninformed” participants. Should
they trust the information transmitted by the informed ones? In the Stock Exchange
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example, maybe the purpose of buying a large quantity of shares is just to convince
everyone that a technological breakthrough indeed occurred, leading to a big buying
activity, which may finally make a good profit for the one that started it all—whether
or not a new product has been developed by the company at all!

Game theory is a tool for studying conflict situations—by definition, inter-personal
conflicts. However, one obtains as an outcome resolution of intra-personal conflicts
(like the ones mentioned above) as well—based on individual rational behavior. This is
true in particular for games with incomplete information—a class of which forms the
subject of this paper.

An important development in game theory in recent years has been in the study of
multi-stage games—especially, the so-called repeated games, where the same game is
played repeatedly. This suggests itself as a good framework for incomplete information
games, for two main reasons.

The first one is that, by its very nature, a repeated game has enough structure to
allow the kinds of complex behaviour we described above (and many others as well).
There is enough “time” to enable players to “generate” certain beliefs in other people,
or to make deductions, statistical inferences, and so on. There is also place for threats,
for punishments—and for rewards too.

The second reason is more formal—although closely related to the first one.
Consider an infinitely repeated game with complete information. A well-known result
(called the “Folk Theorem” since its authorship is not clear) states that the noncooper-
ative equilibria in the repeated game precisely correspond to the individually rational
and jointly feasible points in the one-shot game. The importance of this result is that
one obtains cooperative outcomes in the one-shot game from noncooperative behaviour
in the infinite game. Thus, the cooperation we usually observe is explained here not as
an outcome of altruistic motives—but of purely selfish noncooperative ones (which
many feel are the only rational ones).

One is therefore led in a natural way to the study of repeated games of incomplete
information. The first research on these was done in the Mathematica (1966-68)
reports, in particular by Aumann, Maschler and Stearns. It turned out that the very
complex structure of these games—which, as we pointed out above, is one of the
reasons for studying them—creates many difficulties. Up to date, essentially only
two-person zero-sum games have been extensively analyzed (see the forthcoming book
of Mertens and Zamir 1980, or the notes of Sorin 1980 for details).

As for the nonzero-sum case (still, only two players), a first study has been done by
Aumann, Maschler and Stearns (1968). They characterized a special class of equilibria,
in the so-called standard one-sided information case, where one player has more
information than the other one, and both observe during the play all the actions taken.
These equilibria—called “enforceable joint plans”—essentially consist of a transmis-
sion of information from the informed to the uninformed player (“signalling”)
followed by a completely nonrevealing play from then on (similar to the Folk
Theorem). Moreover, they showed that this does not exhaust all equilibria—one could
have joint randomizations of enforceable joint plans, and so on.

Our main result in this paper is the complete characterization of all equilibria in such
games. We will show that every equilibrium is equivalent to a collection of nonreveal-
ing “plans”, one of which is chosen at random. This choice is done via a sequence of
communications, which are of two types: signalling (i.e., implicit transmissions of
information), and jointly controlled randomizations (i.e., “lotteries” in which no single
player can unilaterally change the probabilities). The reader is referred to §3 for 2
more detailed description.

Thus, we are able to characterize in a formal way all the kinds of cooperation and
communication that arise out of noncooperative behavior in these games; moreover,
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we obtain a precise structure that guarantees it does not pay any player to do anything
else (e.g., revealing less or more, or double-crossing, cheating, and so on). We would
like to point out that the model is not the most general possible (in particular, in terms
of the information structure); this paper is to be regarded as a first step in the analysis
of nonzero-sum repeated games with incomplete information.

The formal model is described in §2, together with various notions of equilibrium.
The main results are stated in §3, which also includes additional discussion and
intuitive interpretations. §§4 and 5 are devoted to the two parts of the proof, and in §6
we present some results on enforceable joint plans. (We would like to point out that
Sorin 1983 has recently proved the existence of such equilibria whenever the number
of possible games is two.) The paper is concluded with an example analyzed in §7.

Some notation: R is the real line, and R" the n-dimensional Euclidean space. For
vectors x = (x;,...,x,) and y=(py,...,),) in R", x > y means x; >y, for all
i=1,2,...,n, and x - y is the scalar product 3;..,x,y;. For a finite set L, [L]| is the
number of elements of L, and R’ the |L|-dimensional Euclidean space with coordi-
nates indexed by the members of L (thus, we write x = (X)), = (x(/));, for x in
RY). The unit simplex in R* will be denoted by A*:

A"={xER":x,>OforalllinL,2x,=1}.
feL

Finally, N is the set of positive integers {1,2, ... }.

2. The model. The class of games we study is given by the following:

(i) Two players, player 1 and player 2.

(ii) A finite set / of choices for player 1 and a finite set J of choices for players 2; /
and J contain each at least two elements.

(i) A finite set K of games; to each k in K there corresponds a pair of I X J
matrices (4%, BX), with A% = (4*(i, )ies; jes» B = (B G Mier; jes-

(iv) A probability vector p = (p*),cx on the set K (ie, p EAT); without loss of
generality, we assume p" > 0 for all k in K; otherwise, we may discard those k that
have zero probability.

Based on (i)—(iv), a game of incomplete information T .(p) is given as follows:

(v) An element « of K is chosen according to the probability vector p; & is told to
player 1 but not to player 2.

(vi) At each stage t = 1,2,..., player 1 chooses an element j, in I and player 2
chooses an element j, in J; the choices are made simultaneously (or, without either
player knowing what the other did).

(vii) Both players are then told the pair (i, j,), and they get the payoffs 4*(i,, j,) and
B*(i,, j,), respectively (but they do not observe these payoffs).

(viii) Both players have perfect recall (i.e., they do not forget what they were told at
all previous stages).

(ix) All of (i)—(viii) is common knowledge to both players (sec Aumann 1976 for a
precise definition).

Usually, (v) is called one-sided information (see also the discussion below), and (vii)
and (viii)—standard information. Note that the players observe only the actual choices
i, and j,, and not the randomizations used.

Following Harsanyi (1967-1968), this can be equivalently viewed as a game with
complete but imperfect information (namely, where the uncertainty players have is not
about the “rules of the game”—e.g., payoffs—but only about moves previously made,
by the players or by chance). This is done by adding a stage ¢ = 0, at which “nature”
chooses an element « of K according to the probability p. At each stage r=1,2,. ..,
the information player 2 has consists of the sequence of previous choices by both
players: (i, j,), (iz» jo)s - - - » (ir—1» jo—1)- As for player 1, he in addition knows «.
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This completes the description of I' (p). It should be pointed out that more general
games can be made to fit into this model. In particular, consider the case where player
1 does not have full information on «, but player 2 knows even less (see Mertens and
Zamir 1980, Chapter III). Formally, a partition of the set K is given for each player,
which is informed only what element of his partition contains the chosen x. For
example, let K = {1,2,3,4,5}, the partition of player 1is {1,2}, {3}, {4}, {5}, and that
of player 2 is {1,2,3}, {4,5). The (common) prior p is (1/5,1/5,1/5,1/5,1/5). First,
we observe that both players distinguish between {1,2,3} and {4,5}—thus, there are
two completely disjoint games. In the first, both do not distinguish between 1 and 2;
therefore, this corresponds to K' = {{l 2},{3}} and p’ = (2/3,1/3), where the payoff
matrix for {1,2} is 4"} = (1/2)4" + (1/2)A2 and similarly for B. Note that 2/3 is
the conditional probability that x € {1,2} given x € {1,2,3},1/3is P(k =3|x € {1,2,
3)), and 1/2=P(x=1|x € {1,2}) = P(k =2|«x € {1,2}). In the second game, K"
= (4,5} and p” = (1/2,1/2). Thus, the original game has been decomposed into two
games, each fitting our model. It should be clear how to generalize the construction
given for this example.

Next we describe the sets of strategies of the players in I'(p). For each =],

2,..., let H, be the set of histories up to (but not including) stage ¢, namely,'
H,= (I XJ)Y"'. A pure strategy o of player 1 is collection 6 = {0,}72.,, where

o,:H XK->I (2.
forallt=1,2,... . Thus, for every history A, in H, and every k in K (the “true” game

x chosen), o,(h,; k) is the choice i, made by player 1. In a similar way, a pure strategy
of player 2 is v = {1,}{%.,, where

T, :H->J (22)
forallr=1,2,..

A mixed strategy is, as usual, a probability distribution over the set of pure
strategies. Since I' (p) is a game with perfect recall, one can restrict the study to
behaviour strategies (cf. Kuhn 1953 and Aumann 1964), where players make indepen-
dent randomizations at each move. A behaviour strategy is thus defined in the same
way as a pure strategy, with (2.1) replaced by

0, : H x K>A, (23)
and (2.2) replaced by
T, H N 24)
Since we never use pure strategies specifically, the term “strategy” will henceforth
mean behaviour or mixed strategy.

We have not yet defined payoffs in ', ,(p), only sequences of payoffs. Given a pair
of strategies (o, 7) of the two players, we denote

af = l,}: i 0 23)

=—23@¢) (2.6)

t'-l

for all T=1,2,... and all k in K. Thus, a¥ is the average payoff up to (and
including) stage T to player 1, if the true game is x = k; this depends on the choices of

"The set H,, being an empty product, is defined 10 consist of one element only.
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i’s and j’s, made according to ¢ and 7 (actually, only ¢(-;k) and 7 matter). Let
Ef.(af) denote its expectation. For player 2, B is his average payoff up to T; it
depends on o, and also on the choice of k (according to p). Let E, (B;) be its
expectation.

A pair of (o,7) of strategies is a (Nash) equilibrium point in T (p) if

o k ( k : k ¢k '
h;ll 1£f E,.(ar) > luTn _f:p E; . (ar) 2.7

for all strategies o’ of player 1 and all k in K, and
li;g i£f E,.,(Br)> lirTn_’sgp E, . (Br) (2.8)

for all strategies 7’ of player 2. If we take o’ = o in (2.7), we get a vector a = (a*), c x
such that

: k (kY — ok
Tlgx:o E,,(ar)=a (2.9)

for all k in K. Similarly, 7" = 7 in (2.8) gives B8 with
1!_1_?:0 Ed.f.p( BT ) = B' (210)

We will call a and B the payoffs of the equilibrium point (o,7). Note that they are
computed ex post—namely, after the choice of k was made and player 1 was informed
of it. Therefore, player 1 considers his payoffs in each possible state x = k, whereas for
player 2 only his expectation over k matters. It can be easily checked that the
definition does not change if we replace (2.7) by ex ante optimality, namely:
li;‘l_l’ iorolf E, . (ar) > lirTn*s::p E, . (ar),

where a; is defined in the same way as B (thus, a; = a7). Indeed, since the value & of
K is in any case part of the information player 1 has at every stage, he can choose his
best response against v independently for each k (this is o(-;k)). In the imperfect
information version of T, (p), the adequate payoff is indeed this expectation over ; in
the incomplete information one, the vector of payoffs should be considered instead,
since given any “type” k—in Harsanyi’s terminology—it does not care about the
payoffs to all the other possible types.

A strengthening of the definition of equilibrium is suggested by the results obtained
in the zero-sum case (i.c., where A% + B* =0 for all k in K). A pair of strategies (o, )

i$ a uniform equilibrium point in T (p) if

iminf EX (a¥) > i EX _(ak 2.11
h;.‘_l’l::f Eo.f(aT) > l;’n_)s:p(s:p o.r(aT )) ( )
for all k£ in X, and
liminfE, () > litrn_f:p(sng,‘,.w( B)). (2.12)

Clearly, every uniform equilibrium point is also an equilibrium point (if we change the
order of limsup and sup in (2.11) and (2.12), we obtain (2.7) and (2.8), respectively).
The payoffs (a, B) are given by (2.9) and (2.10).

To emphasize the difference between the two definitions, we translate them into the
“¢-language”. A uniform equilibrium satisfies the following: for every € > O there exists

Ty = Ty(e) large enough such that for all T > T,
Ef (af)<a*+e and E, . (Br)< B+e (2.13)
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for all kK in K and all strategies o’ of player 1 and 7' of player 2. For a regular

equilibrium (according to (2.7) and (2.8)), T, may also depend on o' and 7'. The

importance of (2.13) uniformly in ¢’ and 7’/ is that it implies that (o,7) generates an

e-equilibrium in all long enough but finite games T'7(p) (which are defined in the same

way as T (p), but they only last T stages). Since T'(p) may be viewed as an

“idealization” of such games, the uniform definition may seem more appropriate.
However, we will prove the following result:

PROPOSITION 2.14. The sets of payoffs of equilibrium points and of uniform equilib-
rium points in T (p) coincide.

Thus, although it is clear that there exist equilibrium points that are not uniform,
they are always payoff-equivalent to uniform ones.

Other definitions of equilibrium are also possible. For example, one could use Abel
instead of Cesaro summability; namely, limits as p > O converge to 0 of

i)

r=1 {1+ p)

where {x,}%, is the corresponding sequence of payoffs (this is interpreted as the limit,
as the interest rate goes to zero, of the current value). Banach limits (see §4) can also
be used. However, in all cases the set of equilibrium payoffs will be the same as in
Proposition 2.14.

In view of this result, we can unambiguously define the set of equilibrium payoffs of
T'.(p). Our main result will be a characterization of this set.

Can one further strengthen the definition of equilibrium by changing the order of
limit and expectation? The answer is no—as an example by J.-F. Mertens and the
author shows already in the zero-sum case.

3. Statement and interpretation of the main result. In this section we state our
main result—the characterization of all equilibria in T',(p).

The Folk Theorem in the complete information case states that the set of equilib-
rium payoffs coincides with the set of feasible and individually rational payoffs. We
consider first the notion of individual rationality; it is to be understood in the sense of
what each player cannot be prevented from obtaining (i.e., the “minmax”). The study
of the zero-sum case (Aumann and Maschler 1966) enables us to characterize individ-
ual rationality in T (p).

We need some notation first. Let p be a probability vector in AX; let p - A be the
matrix 3, cxp*4* (ie, whose (i, j)th element is 3¢ xp*4%(i, j)). Consider the
two-person zero-sum game with payoffs to player 1 given by p - A and let (val,A)(p)
denote its value (when played just once). Thus,

(vald)(p) = max min,(p- A)(x, ) = min, max(p- A)xy) (D

where x = (x,');e]’y = (}fj)jEJ’ and

@-AHEN=2 2 mjkgxp"fl k@i, J)-

i€l jes

Similarly, let (val,B)Xp) be the value of player 2 of the two-person zero-sum game with
payoff matrix p - B to player 2. Clearly,

(val,B)(p) = — (vali(~ B))(p)- | (32

For a function f on AX, let vex f denote its convexification; namely, vex f is the
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largest convex function on A* that does not exceed f. We will write (vex val,BX p) for
the evaluation of the function vex(val,B) at the point p.

We can now define: a vector a = (a*), o in R¥ is an individually rational payoff
vector to player 1 in T (p) if

q-a>(val4)(¢q), forall ginAX. (33)
A scalar B in R is an individually rational payoff to player 2 in T (p) if
B > (vexval,B)(p). 349

These definitions are the correct ones, in view of the following results. A set Q in R*
is approachable by player 2 (cf. Blackwell 1956) if there exists a strategy 7 of player 2
such that

Jim (supE,(d(Q,ar)) =0,

where a, = (a¥),cx (recall (2.5)), d is the Euclidean distance in R¥, and the su-
premum is over all strategies g of player 1.

PROPOSITION 3.5. Let a be a vector in RX. Then (3.3) is a necessary and sufficient
condition for the set Q = {x € RX: x < a} to be approachable by player 2.

Proor. Blackwell (1956); see Aumann and Maschler (1966).

Thus, if (3.3) is satisfied, then player 2 can guarantee that the payoffs to player 1 will
not, in the limit, exceed a* for all k in K simultaneously. If (3.3) is not satisfied, then
given any strategy of player 2, player 1 has a strategy such that, for at least one & in X,
he will get more than a*.

For player 2, we have

PROPOSITION 3.6. Let B be a scalar in R. Then (3.4) is a necessary and sufficient
condition for player 1 to have a strategy o such that

lim sup (sup E,,,,( Br)) < B,
T—-o0 T

where By is given by (2.6) and the supremum is over all strategies T of player 2.

PrOOF. Aumann and Maschler (1966); see (3.2). 8

Again, this means that player 1 can hold player 2 down to (vex val,B) p) in T'(p),
but to no less than that.

Having completed the study of individual rationality, we come next to feasibility.
Let us consider a simple case first. Fix i in / and j in J: is there an equilibrium
resulting in the pair (i, j) being chosen at every stage and for all k in K? Clearly, the
answer depends on the actions the players will take “outside of equilibrium”—namely,
when (i, ) is no longer been played. Again as in the Folk Theorem, it is easy to see
that the necessary and sufficient condition is precisely individual rationality for both
players (each will use the corresponding strategy given by Propositions 3.5 and 3.6,
respectively, immediately after the other deviates from (i, j)). Therefore, the payoffs
a = (A*(i, ))rex and B = 3, xp*B*(i, j) will be equilibrium payoffs in ', (p) if and
only if (3.3) and (3.4) are satisfied.

This reasoning can now be extended to any convex combination by using the
corresponding frequencies. It generates a class of equilibria in T'o(p), which result in
player 1 actually playing the same for all k in X (i.e., independent of «). Note that this
is true only “in equilibrium” (i.e., so long as there are no defections); “out of
equilibrium”, the strategy given by Proposition 3.6 may depend on x. We will thus call
these equilibria nonrevealing.
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To define formally the corresponding payoffs, we denote by (4, B)(i, j) the vector
(ABYG ) = (A4 D) (BH0 D) e ) € REXRE,
for all i in / and j in J. Then, let
F=co{(A,B)(i,j):i€l,jEJ}, 3.7

where “co” denotes the convex hull of a set. F can be viewed as the set of feasible

vector payoffs (in the one-shot game).
Let M be the maximum absolute value of any possible payoff:

M = max{|A*(i, pl|B*(i, ) :i€LjET kEKY. (3.8)

We then write RA’,‘ for the set of all vectors in RX, all of whose coordinates are
bounded by M. We also put R,, for the real interval [— M, M] (thus R} = (R,)").
Clearly, F is a subset of RX X RJ.

Finally, we define the set G as follows: it consists of all triples (a, B, p), with a in
RX, B in R,, and p in AX, such that (3.3) and (3.4) are satisfied, and there exist ¢ and d

in RX with

(c,d) EF, (39)
az?c and p-a=p-g (3.10)
B=p-d (3.11)

As in the zero-sum case, we will find it necessary to consider all the games I ,(p), as
p ranges over AKX, at the same time; a triple (a, B, p) is understood as (a, B) being
payoffs in T' (p).

In view of our previous discussion, G is essentially the set of payoffs corresponding
to nonrevealing equilibria (note that (3.10) can be restated as: a* = c* if p* >0,
a* > c* otherwise—therefore, a and ¢ are identical for all relevant games).

Our main result states that, based on the set G, we can characterize all equilibrium
payoffs. We thus define the concept of a G-process, as follows.

Let g=(a, B, p) € RE X Ry X A*. A sequence {g,}7.;=1{(a,, By, pa)}nur Of
(RX x R,, x AK)-valued random variables (on some probability space) is called 2
G-process starting at g if:

s6=g a.s. (3.12)
There exists a nondecreasing sequence { 2, } > , of finite fields®
with respect to which { g,}"_, is a martingale. (3.13)
Let g, be an a.s. limit of g, (as n— co); then g, € G ass. (3.14)
Foreachn=1,2,..., eithera,,,=a,as.,orp,, =p,as. (3.15)

The martingale condition in (3.13) means that g, is 2,-measurable and E(g,.,| %)
=g as. for all n. Together with (3.12), it implies E(g,)=g for all n. Since the
sequence is uniformly bounded, the Martingale Convergence Theorem implies that it
has an a.s. limit—thus (3.14) is well defined. It then means that g, = (d, Buws Po)
satisfies a.s. individual rationality for both players (i.e., (3.3) and (3.4)), and also

(3.9)-(3.11).

2 A finite field means a ficld with finitely many elements; such a field is equivalent to a finite partition of
the space (the atoms of the field being the elements of the partition).
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The last condition (3.15) is slightly unusual: at every step, either a, or p, remain
constant (while the other may change—but in such a way that the conditional
expectation does not, by (3.13)). If we disregard the B, coordinate, such a process may
be called a bi-martingale (see Proposition 3.18 below). These objects are studied in
Aumann and Hart (1983).

Finally, we define G* as the set of all points g = (a, B, p) in R} X R,, X A¥ such
that there exists a G-process starting at g. We note here that (3.12) and (3.15) are
essential conditions; without either one, G* will just be the convex hull of G.

We are now ready to state our main result.

MAIN THEOREM. Let a € RX and B € R. Then (a, B) are equilibrium payoffs in
T.(p) if and only if (a, B, p) € G*.

Thus, the set G* is the graph of the equilibrium payoffs correspondence (as p ranges
over AX). It can be easily checked that G is a nonempty set; in particular, any
(a*,b%) € R X R that is feasible and individually rational in the game (A4 %, B¥) (cf. the
“Folk Theorem™) generates a point (a, 8, p) in G, with a=(M, ..., M, a*,
M,..., M), B=>b* and p the kth unit vector in AX. Hence, G* is also a nonempty
set; however, this does nor imply that for every p in AX there exist (a, 8) with
(a, B, p) € G*, i.e, that every I _(p) has at least one equilibrium point (recently, Sorin
1983 has shown this to be the case when |K| = 2).

The Main Theorem and Proposition 2.14 will be proved together (we know of no
direct proof of the latter alone). This will be done by showing first (in §4) that all
equilibrium payoffs, according to the regular definition (2.7)-(2.10), belong to G*. And
second, by constructing (in §5) a uniform equilibrium (cf. (2.11) and (2.12)) corre-
sponding to any point in G*.

The second part of the proof leads us to an important additional result; namely, that
all equilibrium points in I' (p) are equivalent to a special class of equilibria (those we
construct in §5). Informally, such an equilibrium consists of a “master plan”, which is
followed by each player so long as the other does it too; and of “punishments”, which
come into effect after a deviation from the master plan has been detected.

The master plan is a sequence of “communications” between the two players, the
purpose of which is to eventually settle on a point in G which is played forever from
then on (using frequencies), and leads to the desired “payoffs”. The communications
are of two sorts: “signalling”, where the informed player 1 plays dependent on « (and
thus reveals some of this information to player 2, who can update his posterior
probabilities); and joint decisions, more precisely “jointly controlled lotteries”, where
the two players make together a randomization on how to continue the play.?
Signalling has aiready been obtained in the zero-sum case; however, the jointly
controlled lotteries (in which the uninformed player plays a no lesser role than the
informed one) are a feature of the nonzero-sum case only.

At the end of the communication period (which we assume for the moment to
consist of finitely many stages only), player 1 will play independent of x (otherwise, he
will reveal additional information)—and thus a nonrevealing equilibrium results from
then on (a point in G). In the general case, the sequence of communications may be
infinite. However, after a long enough time, almost everything that was ever going to

3The standard example is the well-known children’s way of choosing among two alternatives with equal
probability (“two-finger Morra™): they each show, simultaneously, either one or two fingers. If they match
(i.e., both show the same number), the first alternative is chosen; if not, the second one. If both choose the
number of fingers at random (i.e., with probabilities 1/2, 1/2), the two alternatives cach have probability
1/2, even when onc of the participants uses any other strategy! (This is better than tossing a coin, which
may be counterfeit—a fact known to one but not to the other.) This idea of jointly controlled randomiza-

tions is due to Aumann, Maschler and Stearns (1968).
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signalling
communications
[ Master plan & joint lotteries |

deviation payoffs
detected
punishments
FIGURE 1

be revealed (by player 1) or decided (by a joint randomization) has already occurred—
and we are essentially at a nonrevealing point again (i.e., in G). To generate the right
payoffs, “payoff accumulation” periods are then introduced between communications
—at which both players choose prescribed moves (again—with the correct frequen-
cies).

Finally, punishments are always in accordance to the strategies given by Proposi-
tions 3.5 and 3.6, respectively® (see Proposition 3.16).

The structure of such equilibria is summarized in Figure 1.

The G-process is thus “followed” during the play. At each stage, the corresponding
g = (a,, B,, p,) will serve as a “state variable”, with g, in R} being the vector payoff
player 1 will get from then on, 8, in R,, the same for player 2 (averaging over «), and
P, in A¥ the vector of posterior probabilities for’ x.

Why is an equilibrium thus obtained? Deviations during communication stages are
not helpful: jointly controlled lotteries are so designed as to have each one of the
players generate the right probabilities even if the other does not; as for signalling by
player 1, it occurs precisely when a,,, = a, in the G-process, which makes him
indifferent among the various alternatives. In all other cases, the punishments keep the
players in line. This is due to the following:

PROPOSITION 3.16. Let {(a,, B,» pu)} 2= be a (R X Ry X A¥)-valued martingale,
converging a.s. to (a,, Bes Po)- Then

() a, satisfies (3.3) a.s. if and only if for all n=1,2, . . ., a, satisfies (3.3) a.s.

(i) (B Poo) Satisfies (3.4) a.s. if and only if for all n=1,2, ..., (B,, p,) satisfies
(34) a.s.

Proor. The “if” part is obtained by taking the limit as n—> oo (in (ii), we use the
continuity of the function vexval,B—e.g., see Mertens and Zamir 1980, Theorem
3.14). -

Let {Z,}7-; be the corresponding sequence of o-fields, then we have aq,=
E(a,|%,) by the martingale theorem. The “only if” part in (i) is obtained by taking
conditional expectations over 2, . As for (ii),

ﬂn = E(Bm I?") > E«vexva‘llB)(Pan)I?ﬂ)
> (vexvaL,B)(E(px | Za)) = (vexval,B)(p,),
where we used the convexity of the function vexval,B. 8

“In the complete information case, the so-called “Perfect Folk Theorem” (cf. Aumann and Shapley 1976
and Rubinstein 1977) shows that any equilibrium can be made perfect (i.e. without “unbelievable threats”,
that hurt the “punisher” as well as the “punished”). However, this is not the case in the games of incomplete
information we consider here. Indeed, player 1 may have to reveal additional information in order to keep
phyer2nth§sindividulnﬁondlwd,:fwwhichatewn.wthemtt«phnmynotbepouible.(Such
an example may be easily constructed.)

5Qur result shows that every randomization of player 2 can be replaced by a jointly controlled: lottery-
Therefore, one can essentially ignore the equilibrium conditions for player 2, and obtain a sequential
structure (with the move of player 2 at every stage following that of player 1)—which can be then described
by a state variable as above. : .
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This last result leads to an additional interpretation of G* as outcomes of bargaining
processes—see Aumann (1981).

COROLLARY 3.17. Let (a, B) be equilibrium payoffs in T (p). Then a and B are
individually rational for player 1 and player 2, respectively.

Proor. Proposition 3.16 for n = 1 (recall (3.12)); or, directly from Propositions 3.5
and 36. 8
Another property of a G-process (which led to the name “bi-martingale”) is as

follows.
PROPOSITION 3.18. Let {(a,, p,)}%., be a (R X AX)-valued martingale with respect

o

to a nondecreasing sequence of o-fields { Qy }yuy- If (3.15) is satisfied, then {a, - p,} 5,
is also a martingale with respect to { P Y-

ProoF. Let n be such that a,,,=a, as.; then E(a,,,  Pos|Zn) = E(a,-
Posi| 2n) =0, E(Prs1|Zn) = a, - p,, since a, is P,-measurable. The same when

Prn+1 = Pn- '

4. From equilibrium to martingale. This section contains the proof of the first part
of our result; namely, given an equilibrium point we construct the corresponding
G-process (see Proposition 4.43 at the end of the section for a precise statement).

We start with an informal discussion of the proof. Let (6, 7) be an equilibrium point;
to simplify the arguments, let us assume that the frequencies with which the various
pairs (i, j) in I X J are played always converge. Let ¢, = (c£ ), and d,, = (d5)iex
be the limit payoffs; clearly, (c.,,d,,) € F. For every history 4, up to stage 7, we then
define the following: for each k in K, a*(h,) is the expected payoff to player 1 if k = k
(thus, a*(h,) is just the expectation of ck given h); 8(h) is the expected payoff to
player 2 (the expectation of d* given h,); and p*(h,) is the (posterior) probability that
k= k (again, given h). We next introduce “half-steps”, i.e., we define the above
conditional expectations when given both h, and the next move ;, of player 1; we will
thus write a*(h,,i,), and so on.

Assume h, has positive probability of occurring when k = k. Then all possible moves
i, of player 1 (ie., those with a,(k,;k)i,) > 0) must have the same expected payoff
a*(h,,i). Otherwise, player 1 could give probability 1 to that i, leading to the highest
payoff; this would be “undetected” by player 2 (since this i, is possible according to o),
and giving an expected payoff of a*(h,,i,), which is higher than that given by o. This
contradicts the equilibrium conditions, therefore a*(h,,i,) must be constant—hence,
equal to a*(h,)—for all possible i’s. A similar argument shows that for the other i’s an
inequality is obtained (if they are not chosen, then their corresponding payoff cannot
be higher); this will eventually lead to the condition (3.10) in the limit.

Next, consider the half-step from (k,,i,) to k,,, = (h,,i,, j,). Since player 2 does not
know «, j, is independent of it, and the posterior probabilities cannot change. We thus
have® p*(h,,i) = p*(h,.1)- o

It is easy to check that in all other cases, the martingale conditions are satisfied; e.g.,
E(a*(h,, )| h,,i) = a*(h,,i), and so on. We have therefore obtained a martingale
(with the index set being that of half-steps), which furthermore satisfies (3.15). The
individual rationality conditions (3.3) and (3.4) also hold (since otherwise (o, ) will not
be an equilibrium), and one can show that, in the limit (which exists by the martingale
convergence theorem), a point in G is a.s. reached.

The actual proof will be quite complicated. Since we have no convergence of the

SNote that we ignore the equilibrium conditions for player 2—since we can replace his randomizations by
Jointly controlled lotteries (see previous footnote).



128 SERGIU HART

payoffs, we will need to use Banach limits.” To facilitate following the arguments, we
divided the proof into a sequence of subsections.

4.1. The probability space. For each t € N (the set of positive integers), we
defined H, = (I X J)'™', the set of histories before stage #. We also define the set of
infinite histories H_ = [ ,(I X J), an element of H,, being a sequence {(i, j,)} -,
of moves made by the two players at all stages.

On H_ we define for each 1 € N the finite field generated by H,, and call it H;
thus, two infinite histories belong to the same atom in 5, if and only if they coincide
up to (but not including) 7. Let 5#°,, be the o-field generated by all the s (usually
called the cylindrical or the product o-field on the space H ).

The basic probablity space will also include the choice of « in K by chance. Thus, let
Q= H_ X K be endowed with the o-field 7, ® 2X. Each pair of strategies (6, 7) and
each probability vector p € AX for the initial chance move determine a probability
distribution on this space. We denote it by P, ,; note that £, used in §2 is precisely
the expectation with respect to P, ,, and E}, is the conditional expectation given
K=k,

We will use some additional fields on H_. For each tE€N, let H,,,, =X
J)Y ™' X I= H,x I, and denote by 5, ,,, the finite field it generates. We have now
defined H, and 27, for all half-integers s, namely all®* s€ N, =(1,14,2,24,...}.
Note that {37, } ,c v, is an increasing sequence of finite subfields of #°,,, converging
to #°,, as s—> 0.

Since our probability space is actually @ = H,, X K and not H,,, we will denote the
field generated by H, on  also by 57, ; this will generate no confusion.

42. Banach limit. In order to deal with the nonsummability of the sequences of
payoffs, we introduce the concept of a “Banach limit” (e.g., see Dunford and Schwartz
1958, p. 73).

As usual, let / be the (Banach) space of all real bounded sequences x = (X} oy A
Banach limit is a real operator L on /, with the following properties® (holding for all
x={x,},andy={y,},inl,,and A, pin R):

L({Ax, + uy,}) =AL({*,}) + pL({1a}): @1
L{{Xps1}pny) = L({X}pmr)» 42)
limglfx,,< L({x,}) <linlsupx,,. (4.3)

In particular, note that (4.3) implies:
L({x,})= nliﬂ;lo x,, if {x,} is a convergent sequence. (44)

Therefore the Banach limit is an extension of the notion of limit (to a// bounded
sequences). To slightly simplify the notation, we will henceforth write L[x,] for

L({x,}7=1)-
Three further properties of Banach limits will be needed.
LemMa 4.5. Let L be a Banach limit, and let {x,},,{¥n}n € lo.- Then

IL[xn] - L[yn:” <ﬁ£§:?]%*hl-

"The use of Banach limits has been suggested by J.-F. Mertens.

81n this section we will always use ¢ for integers in N, and s for half-integers in N,.

9We list here only those we will need in our proofs; the existence of such L is guaranteed by the
Hahn-Banach Theorem (see the reference above).



NONZERO-SUM TWO-PERSON REPEATED GAMES WITH INCOMPLETE INFORMATION 129

Proor. Immediate by (4.1) and (4.3). »
LeMMA 4.6. Let L be a Banach limit, and X = {X,}>_, an [_-valued random

n=}

variable (i.e., X is a measurable function from some probability space into l.). If X has
only finitely many values, then L|E(X,)} = E(L{X,).

Proor. Immediate by (4.1). @

In particular, this result will be useful for conditional expectations over finite fields.
One could actually define a stronger concept of Banach limit, which commutes with
the expectation operator for any uniformly bounded (or, even uniformly integrable)
sequence of random variables—without the finiteness assumption. Although it will
simplify some of the arguments below, the construction of such a so-called “medial
limit” requires however the use of the continuum hypothesis—and it is not needed in
our proof (cf. Mokobodzki, see Meyer 1973).

LeMMA 4.7. Let L be a Banach limit, and C a compact and convex subset of some
Euclidean space R™. Let {x,}y., be a sequence in C, with x, = €V, ... ™).
Let 9 = L[g") forr=1,2,...,m. Then y = ("2, ..., 7" ecC.

ProOF. Let g be any vector in R, then by (4.1), (4.3) and x, € C,
qg-y=L[g-x,] <limsupq- x, <sup{g-c:cEC).
This holds for all g; since C is a compact convex set, it implies y € C. 8

Given a Banach limit L, we can now define the concept of an L-equilibrium point in
T .(p), by replacing (2.7) with

L[E,,’f,(a;)] > L[E,,’f,,(a;‘)], (4.8)
and (2.8) with
L[E,.,(Br)] > L[ Eorp(Br)]: 49)
where the limit L is taken with respect to the index 7= 1,2, . . . ; this convention will
be kept throughout this section. The corresponding payoffs will then be
L[E},(af)] = a* (4.10)
for each k in K, and
L[E,,,(Br)] =8 (4.11)

We put a = (@) ex-

In view of (4.3), every equilibrium point is also an L-equilibrium point for any
Banach limit L.

Throughout this section, we fix the following: a Banach limit L, a probability vector p
in AX, and an L-equilibrium point (o,7) in I'.(p) with payoffs (a, B) € RX X R,,.
Unless stated otherwise, the probability measure P = P, , is assumed (on the space
Q), with E = E, , the corresponding expectation operator. Thus, all statements “a.s.”,
“martingale”, and so on, will be with respect to P. Also, we will use EX for the
conditional expectation E(- |k = k).

Our purpose is to construct a G-process starting at (a, B, p). The probability space
on which it will be defined is ©, and the sequence of fields is {2} sen,

43. The martingale {p,). For each k€K, sEN, and an history A, € H,, let
pr= pk(h,) be the conditional probability of the “true” game « of b;cmg k, given 0,1, p
and h, (namely, if s = 1 € N, the first 1 — 1 moves of each player; if s=1+1,1EN,
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the first ¢+ moves of player 1 and 1 — 1 moves of player 2). We can thus write
pk= P,,,(x = k|3 ,)= P(k|2,) (on each atom h, € H, of 7 , p¥ is a.s. constant,
thus a.s. equal to p*(h,)). We put p, = (p)ex-
PROPOSITION 4.12.  The sequence {p,},cy, is a AX-valued martingale with respect to
{3} sen,» satisfying
P =p- (4.13)

Prr1/2= Pran forall t€N. 4.14)

There exists a AX-valued random variable p ., such that p, > p , a.s.as s> . (4.15)

ProoF. The fact that { p}}, forms a martingale is immediate from its definition.
Since it is bounded, it must converge a.s., say to pX; then p, = (p)icx. (4.14)
follows from the fact that given 4, /, (actually, only A, suffices), the ¢tth move j, of
player 2 is independent of x; as for (4.13), at ¢ =1 there is no history yet, hence
posteriors and priors coincide. 8

4.4. The martingales {v,} and {8,}. In §2, we defined the average payoffs of the
two players up to time T (see (2.5) and (2.6)). We will find it useful to define also

T
ar =1 3 A%, j) (4.16)
t=1
(i.e., a; = a}). For each s € N,, let y, = L[E(ay| 27,)), 8, = LLE(B;| 5%)). Thus, v,
and §, are the (Banach) limits of the expected average payoffs to player 1 and player 2,
respectively, given a history A,.

PROPOSITION 4.17.  The sequences {Y,},en, and {8,} e n, are Ry-valued martingales

with respect to {3, } ;e n,, satisfying:

yw=p-a and & =8. (4.18)
There exist R,,~valued random variables v, and 8,
such that v, vy, and § > 8 , a.s. as s> . (4.19)

ProOF. We can use Lemma 4.6: the field 5#°, being finite, y, has finitely many
values:

E(Yy41/219:) = E(L[ E(ar|3,112) ]| ,)
= L[E(E(aﬂ??’,“ﬂ)l%’,)]
= L[E(I!TIQV,)] = s -

Thus {v,},cn, forms a martingale. It is bounded by M (which bounds all possible
payoffs by (3.8), hence also averages, expectations and limits—by (4.3)—of those).
Therefore it converges to some limit y,,. For s = 1, we have

E(ap|2¢)) = E(ay) = kgkaEk("?lf)'

hence (4.1) and (4.10) give v, = p - a. The sequence {8,} is dealt with in a similar way
(8, = Bisjust (4.11)). &

4.5. The martingales {c,} and {d,}. We now associate vector payoffs to each
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infinite history. We define, for each k in K and T in N,

T
b# -1 2 Bk(i',j,),
T 2
in a similar way to the definition (2.5) of af. Note that these are random variables,
27, -measurable (k is fixed; in contrast, a; and By in (4.16) and (2.6) are (7,1 ®
2X)-measurable). We further remark that af and bf are defined for all histories—even
those which may be incompatible with x = k according to (o, 7).

If the limit of aX (as T—>o0) would always exist, it would imply E(limar)
= limE(a}‘). However, this is not the case, and the Banach limit L commutes with the
expectation operator if there are only finitely many values (see Lemma 4.6 and the
discussion thereafter). We define, for each s € N,: c* = L[E(af|¢,)), df =
L[E(bX| 5#,)] (again, for each k in K). Note that the expectations are not conditional
on k = k; thus, the probability of any history is its total probability, summed over allk
in K.

One can interpret cX and d* as follows. Let h, € H, have positive probability, then
p, = p,(h,) is the vector of posterior probabilities for the various games k. Assume that
after h, occurred, player 1 replaces his strategy o by his average nonrevealing strategy
there; namely, for all k in K, he uses 3 cexPro,(h; k) instead of o,(h,; k) whenever
t > s and h, coincides with A, up to s. The expected average payoffs up to T in game k
will then be E(ak|h,) and E(b¥| h,), respectively. As we shall see later, the difference
in payoffs due to this change in strategy becomes negligible as s—> oo (Proposition
4.23). Intuitively, this is due to the fact that after sufficiently many stages, player 1 has
already revealed (almost) everything he is ever going to reveal about the true game «;
thus, he must thereafter play (almost) nonrevealing, or (almost) independent of x. In
technical terms, this occurs whenever the martingales are close to their limits.

As usual, we write ¢, for (cX),c x and d, for (d¥), ¢ x- The set F was defined in (3.7)
as the set of all “feasible” vector payoffs to both players (in the one-shot game).

PROPOSITION 4.20. The sequences {¢,},en, and {d.},cn, are RX-valued martingales
with respect to {3, } ;e n,, satisfying:
There exist RX-valued random variables ¢, andd,
such that ¢, ¢, and d,—> d, a.s. as s> . (4.21)

(Coo»ds) € Fa.s. ' (4.22)

Proor. The martingale property and (4.21) are proved in a similar way to
Proposition 4.17. For every T in N, the vector ((ar)ex: (%), cx) belongs to the
compact convex set F, as an average of such vectors. The same holds for its
expectations, and by Lemma 4.7 for its Banach limits (c,,d,) too. (4.22) now follows by
letting s> c0. #

The next proposition makes precise the statement that, as s—> oo, player 1 plays
“almost” nonrevealing after s (see the discussion following the definition of cf
and d¥).

ProposrmioN 4.23. v, —p, ¢,>0and & — p,- d, >0 a.s. as s> ®.

ProoF. We prove here the first part. Fix s € N, and let1 > 5,1 € N. Conditioning
over 27, , and « gives (recall that p%, , = P(x = k|3¢1,.1)):

B4, 126) = E T, A" (i) 2.)

=3 prE(A*(, i) ) + 3 E((Pé - pEYAk (i, )1 ).
kek kek
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We sum this for all ¢ in the range s < £ < 7, and note that total payoffs up to s are
bounded by sM, to obtain

E(ar|9,) = 3 prE(ar] 5 <24 m 2 2 E(ph - p1)
s<t<T

We denote (for each s € N,)

= 2 SuPlPx’il—Psk"
keKteEN
t>s

and let T— . By Lemma 4.5 and (4.1), |y, — p, - ¢,| < ME(m,|5¢;). Since {p)s
converges a.s. as s—> oo by (4.15), it follows that E(w,|5#,)—>0 as. as s—> co; this
assertion is proved in the next lemma. #

LemMaA 4.24. Let (X,)%., be a bounded sequence of real random variables, converg-

ing a.s. as n—> o0, and let {F,}7., be a nondecreasing sequence of o-fields. Define
Y, = Sup,5alXm — Xl then E(Y,|Fn)—0a.s.as n—>o0.

PrOOF.'® Let X, =limX,, and put Z, = sup,,;,|X,, — X,|- Then {Z,};"., is a
nondecreasing sequence as 7 —> 00, CONverging a.s. to zero. Therefore { E(Z,| F )} n=1
is a bounded super-martingale'' with respect to (F .}, hence converges a.s. to
some Z,. Now E(E(Z,| % ,)) = E(Z,)—0, thus E(Z,)=0and Z, =0 as. Noting
that Y, < 2Z, completes the proof.

Finally we have

COROLLARY 4.25. Y, =P " Coo 8.5. and 8, = Py, * €, A.5.

PrOOF. (4.15), (4.19), (4.21) and Proposition 423. 1

4.6. The martingales {e,} and {f,}. For each k in K and s in N,, we define
e = sup L[ E},(af| )],

where o’ ranges over all strategies of player 1 (note that the expectation now is
conditional on & = k). Thus, for every history h € H,, ef is the most player 1 can
obtain if the true game is k and player 2 uses T—given that A, has already occurred.

PROPOSITION 4.26. For every k in K, s in Nyand t in N:

ef =a*. (4.27)

ek > ck. (4.28)

e 2= E(e,’f,_‘ |2 141/2)- (4.29)

ef(h)= xgxge{; 1y (hi)  forallhin H,. (4.30)

PROOF. (4.27) is just (4.8) and (4.10). To obtain (4.28), we consider the following
o’: if x =k and h, occurred, play the average nonrevealing strategy given by o;
namely, o/(h,; k) = 34 xpX0,(h; k') for all ¢ > s and b, in H, that coincide with A, up
to s (see the discussion following the definition of ¢ and d¥ in §4.5).

To prove (4.29), note that the additional information from 7+ 4 tot + 1 is ji, whose

195uggested by J.-F. Mertens.
Wie, E[E(Zys | Fae )| Fal < E(Z,] F0)
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distribution depends on 7 and A, only, hence is the same in Ek, as in E. Therefore,
| S‘:PL[E;f.f(a#lhxu/z)] = s‘:PL[E(Eak,f(a; | ht+l/2’jl)|h1+l/2)]
= sup E(L[ £ (a7 | RV isrya)

(we used Lemma 4.6). Given A, , 5, the first stage player 1 has to choose a move is
{ + 1, and by that time he will already know j,. Thus, the best he can dogiven i,y is
just to do his best given (k2 j) = h,,,, for each possible j,. Therefore, the last

expression is
= E(sup L[ B} (af | k1)) I hiar ).

proving (4.29).

Next, let b, € H, be given. For any ¢', its relevant part for L[EX (af| h)] consists of
a probability distribution 7 = g;(h; k) in A’ for choosing i, and some strategy
afterwards ¢” = 0”(i,) = o’((h,,i,, *); k), for each possible i,. Therefore (again using
Lemma 4.6)

eX(h,) = sup sup E"‘(L[ E’*(af|h,, i,)] | h,),
nea! 6"(i)
where E* is just EX, . The choice of 6"(i,) can be done separately for each i,, therefore
we can interchange the first E** with the supremum over 6”(i,), to obtain
eX(h) = sup > m(i)essrja(hri)-
mea! €T

The supremum is attained by giving positive probability 7(i,) only to those i, for which
ek, AR maximal; this proves (4.30). 8

It is easy to see that (4.29) and (4.30) imply that e, = (e¥)yex forms a super-
martingale: e, > E(e,, /2| s+1/2) for all s € N,. We want to obtain a martingale
with values in RX too. For this purpose, fix k € K and let 0 < A%, < 1 be such that
M—ek =N (M~ el ) forallt €N (recall (4.30)). Now define f for ail s € N,

by
M= = T M-

=
put f; = (fex-

PROPOSITION 4.31.  The sequence { f,} ;e n, is an RX-valued martingale with respect to

{3 ) sen,» satisfying:
fi=a. (4.32)
fi=firp2 for alltin N. (4.33)
There exists an RX-valued random variable f, such that f,— f,, a.s. as s > ©. (4.34)
f,>e>c foralsin N,. (4.35)
fo P Co ad P foo =P’ Coo @:5: (4.36)

ProoF. All the \'s are in [0, 1], therefore ef < ff < M. (4.32) is immediate from
(4.27) and the definition of f,. Let 1 € N, then

k _ gk
M ‘f:k+|/z = (’QN}‘rkax/z)}‘r'f«:/z(M - e,k+1/2) = (’IE-IN)‘rkﬂﬂ)(M & )" M f: ’
r<t r<i
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proving (4.33). Moreover, PN s2 18 2,41 /r-measurable for all r < 1, and by (4.29) we
obtain

M- E(ﬁkﬂ‘%rn/z) =( r£IN }\rk+|/2)(M— E(elﬁnlgfzﬂ/z))

r<t+1

. reN
r<t+1/2

= H )\rk+1/z)(M“ eﬁn/z) =M "f:k+1/2-

This completes the proof that { f,} indeed forms a martingale in R (note: with respect
to the probability measure P =P, ). Since it is bounded, (4.34) follows, and
f, > e, > c, implies f,, > ¢, a.s. (recall (4.28) and (4.21)).

Therefore Py * fu # P " €o = Yoo (by Corollary 4.25). To obtain the opposite
inequality, we note that {p,} and {f)} form a bi-martingale, hence {ps-f,) isa
martingale (Proposition 3.18), and we have by (4.13), (4.32) and 4.18)

E(ps fu) = E(pr-f)=p-a=E(M) = E(7x)
proving that p * fo = Yoo = Poo " €oo 3:5. B
47. Individual rationality. We start with player 1.
PROPOSITION 4.37. ¢ - f, > q - e, > (val,AXq) for all vectors q in AX and all s in N,

ProoF. Let g € AX, and consider the one-shot zero-sum game A(g). By definition
(3.1), player 1 has a strategy u € A’ such that for any strategy v € A’ of player 2,

(val,4)(q) < ,%:1 jéju,.vjkgxqq ki, j)- (4.38)

Let h, € H, have positive probability (under (o, 7)). Define a new strategy ¢’ of player
1 as follows: o’((h,, -); k) = u for all k, and o’ equals o otherwise (thus, after h, has
occurred, player 1 makes independent randomizations with distribution u at all stages
for all k). By (4.38), we have for all tin N, 1 > s

(vl A)) < Evo( T 4*4% (i i) |}
kek

As T oo, payoffs before s become negligible in a¥, and we have (by (4.2), (4.3) and
then (4.1)):

(VallA )(q) < L[Ea‘,f( 2 ‘Ika# ' hs)] = 2 qu[Ea'.‘r(a#lhs)]'
KEK KEK
Recalling the definition of e* (note that given k,, E, is independent of k),
(vallA )(Q) < 2 qkesk(h.t) =q" e,(h,),
KEK

and - ¢, < ¢ - f, follows from (4.35). #
COROLLARY 4.39. ¢ - f,, > (val,AXq) a.s. for all q in AX.

ProOF. (4:34) and Propositions 3.16(i) and 4.37. &
We consider now player 2.

PROPOSITION 4.40. 8, > (vexval,BXp,) a.s. for all s in N,.

PROOF. ForewhqinA‘,letI‘f,(q)bedeﬁnedintheumewayasI‘w(q),butwith
payoff matrices (—B*),cx instead of (4%).cx for player 1. This is a zero-sum
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repeated game; therefore player 2 (the uninformed player) has a strategy ¥ = 7(q) such
that

T

T
imsup By 5+ 3 (~B(6 1)) < (b= )9
= —(vexval,B)(q)

for all o’ (cf. Aumann and Maschler 1966—+ may be taken to be the corresponding
Blackwell strategy; “cav” is the concavification of a function, and we use (3.2)). Thus,

li;x_l’ iel.}f Ey;:.(Br) 2 (vex val,B)(q). (441)

Let h, € H, have positive probability under (o,7), and consider the following
strategy 7' of player 2: after h, has occurred, 7’ is #(p,), where p, = p,(h,) is the vector
of posterior probabilities given A, ; otherwise, 7’ equals 7. Let T > s, then we condition
on 27, to obtain

E(Br)— E'(Br) = P(h)(E(Br|h)— E'(Br|h)),
where E’ = E, ., (up to stage s—no difference between E and E’; aftwards—only if A,

has occurred). Apply the Banach limit L as T—> oo; since (,7) is an equilibrium (see
(4.9)), we get by (4.1)

0 < P(h)(L[E(Br|h)] — L[ E'(Brlh)]),
hence
8,(h) = L[ E(Br|h)] > L[E'(Br|h)]

(since P(h,) > 0). By (4.3) and (4.41) (with o' = o: note that payoffs up to s do not
matter as T—> o), the proof is completed. #

COROLLARY 4.42. 8 > (vexval,BXp.) a.s.
PrOOF. (4.15), (4.19) and Propositions 3.16(ii) and 440. @

4.8. The G-process. We have thus completed the proof of

PROPOSITION 4.43. Let (a, B) be the payoffs of an L-equilibrium point (o, T) in
T .(p). Then there exists a G-process starting at (a, B, p)-

Proor. The probability space is (2,5, P, »); the sequence of fields is
{5, },en, and the G-process {g}.en, is given by g = (f,,4,, p,)- All the required
properties are indeed satisfied: g, = (a, B, p) by (4.13), (4.18) and (4.32); the limit
Lo = (8005 Poo) (s€€ (4.15), (4.19) and (4.34)) belongs to the set G as. by 4.22),
(4.36) and Corollaries 4.25, 4.39 and 4.42; and finally the “bi” property (3.15) is given
in (4.14) and (4.33). 8

5. From martingale to equilibrium. This section is devoted to the proof of the
second half of our result; namely, given a G-process the corresponding uniform
equilibrium point is constructed.

Let g = (a, B, p) belong to G*. Thus, we are given a probability space' (Z, 2, 0), &
nondecreasing sequence { 2, } 5~ of finite subfields of 2, and a G-process {8 )rer =
{((f.)8,, Pa)} 2., with respect to { Zu }nurs starting at g; i.c.

(f1,81,P) =(a B.p) Q-as. (&)

uZi:tnct,?aa-ﬁeldonZ,mdanrobabﬂitymusureon?.
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Without loss of generality, we can thus assume that 2, is the trivial field {Z,¢)}. Let
Zoo = (fror800» Poo) bE 2 Q-as. limit of g, as n—> oo: then g, € G as. We will find it
useful to weaken the bi-property (3.15) to the following:

Hoss = full * 1 Pasr = Pall =0 as. forall n=1,2,... . (5.2

This means that on each atom of £,, either f,,, is constant (and thus equals f,), or
P+ is constant (and equals p,); however, which one of the two is true may differ from
one atom to another. It is easy to see that G* does not change (to obtain (3.15) from
(5.2), insert between each 2, and Z,,, an additional field Zy41/2, and put g,
= gus1 if f41=fo and g, 41/, = g, Otherwise).

5.1. Standard G-process. To simplify the construction of the equilibrium point, we
will work with a G-process having the following additional property:

For every atom z, of &, there are exactly two
atoms z,,, and z,, | of £, contained in z,,
and Q(z4112,) = Q211 2,) = 1/2. (53)
Such a G-process will be called standard.
PROPOSITION 5.4. For every g in G* there exists a standard G-process starting at g.

ProoF. We will show how to “transform” a G-process into a standard one.

Given a G-process { g,} ., with respect to { Z, } 5., we can describe the sequence
of fields as a “probability tree” as follows. The nodes in the nth layer are the atoms of
Zn s the root (i.e., the first layer) can be taken to be Z (by (5.1)). A (directed) arc leads
from an atom z, of %, to an atom z, of 2, if and only if m=n+1 and
2, = 2z,,, C z,. We associate the probability Q(z,..|2,) to this arc and define the
probability of a finite path starting at the root to be the product of the probabilities of
all its arcs. This clearly equals Q(z,), where z, is the endpoint of the path. This
probability distribution is then uniquely extended in a standard way to all infinite
paths in the tree starting at the root; we will denote this probability measure also by Q.
This completes the description of our probability tree.

The G-process { g,}%., can now be regarded as being defined on the nodes of the
tree; we will write g,(z,) for the value of g, on the atom z, of Z,. The properties
(3.12)~(3.14) and (5.2) defining a G-process become:

M glz) =g

(il) E[gn+l(zn+l) | Zp+l Succeeds Z"] = gn(zn) for all Zy:

(iii) The sequence { g,(z,)}>.., converges for almost all infinite paths, and the limit
g belongs to G as.

(iv) For each node z,, either f, . (z,,,) = f,(z,) for all successors z,,, of z,, or
P+ l(zn+l) = pn(zn) for all successors Zpe of Zy.

In order to obtain property (5.3), we need two kinds of modifications of the
tree—and thus, of the G-process. First, we make the number of (immediate) successors
of each node exactly two; and second, we make the probability of every arc precisely
1/2.

For the former, we have two cases. If there is only one successor z, ., of z,, we can
add an additional copy of the whole subtree starting at z,,,, and thus obtain two
successors z,,; and z,,, (which is identical to z,,)—and moreover with probability
1/2 each (from z,). Now assume z, has more than two successors, say { Zi Y., We
then introduce additional nodes in between; e.g., at level n + 1 we will have z,,, and
the union of z2, ,, . . ., z™,; from the latter, at level n + 2 we will have z;, | and the
union of z, |, ..., z™,; and so on. The probabilities of the new arcs will be defined
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A' }\2 AJ > A'

1
Zn+t Zns+ Zn+1

2 3
Znat Zn+1

FIGURE 2

as the corresponding conditional probabilities; the value of the G-process at the new
nodes, as the conditional expectation. As an example, see Figure 2; the value of the
G-process at the new node will be

2 3
A—Z-A:-T gn+|(23+l) + }\2_}_‘._}? gn+l(23+!)'

Clearly, all four properties (i)-(iv) continue to hold after such modifications.

Next we have to make the probabilities of all arcs precisely 1/2. Let z,,, and z,,,
be the two successors of z,, and let A’ and A” = 1 — X’ be the corresponding probabili-
ties. We want to obtain z,, , with probability A’ and z,, , with probability A” by using
the probability 1/2 only. This is done as follows: we express A’ as a binary fraction

- 1
A= 2 2—," Am ’
me=1
with A, =0 or 1 for all m. We then consider an infinite sequence of independent
Bernoulli trials, with “success” and “failure” having probability 1/2 each, up to the
first occurrence of “success”. If this happens after m trials, then z,,, “results” if
A, =1 and z”,, “results” if A,, = 0. Thus, the total probability of z,, , is precisely A’
(since the first “success” occurs at the mth trial with probability 1 /2"), and that of
2/, is A”. This structure now replaces the original randomization between z, ., and
2", . in the tree. As an example, see Figure 3 (note that X' = 2/3 gives A,, =1 for m
odd and A, = O for m even). Again, the value of the G-process at a new node is the
corresponding expectation.

With probability one, either z,, , or z,,, will be reached. If we do this modification
at all nodes, the properties (i)-(iv) will not be affected (there are only countable many
nodes, hence the probability of “success” not occurring in even one case is still zero).
]

Henceforth we will assume that the G-process we start with is already standard.

52. The sequence {8,}. The limit g, of the G-process belongs to G a.s.; byl (3.9),
a corresponding point in F is thus obtained—and from it, a point in the set A"’ of
“feasible joint actions”.
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For 8 = (8(i, /));c1 e, in A’/ and k in K, we will denote
a40)=3 3 00 HA* (i J)
i€l jes
and 4(8) = (4%(8));cx; similarly for B.
PROPOSITION 5.5. There exists a A'’-valued random variable 8., satisfying Q-a.s.
fo?A(0y) and poyfo =P A(0,), (5:6)
8, =Py B(8y)- (X))
ProOF. By definition, g, € G implies the existence of (co»dy) E F satisfying
fuo ® Cons Peo* oo = Poo* €0 80 8¢y = Py d,,. Since F is precisely the set of (4(6),
B(8)) for all 8 in A'™7, there is 8, in A’/ such that ¢, = A(6,) and d, = B(@..).
The measurability is obtained by the Measurable Selection Theorem (e.g., see Hil-
denbrand (1974)). a

PROPOSITION 5.8. There exists a sequence {6,}%., of A"*’-valued random variables,
satisfying Q-a.s. for all n in N and (i, j) in I X J:

0, is $»-measurable. 59)
Ion(l’])—.E(aeo("])l?n)l < 1/"' (510)
0,0, as n->oo. 5.11)
nd,(i, j) is an integer. (5.12)

Proor. Define §, = E(0,,| Z,), then {8,}%., forms a martingale converging (0
@,,. Choose 0, to be a rational approximation to §, with denominators n (e.g., let
0!(i, j) = [n8,(i, )}/ n, where [x] denotes the largest integer not exceeding x, then
0,(i, j) is either 8,(i, j) or 8,(i, j) + 1 /n, 50 as to have the sum equal 1). 8

5.3. The strategies o and 1. We can now define the pair of strategies (o,7). In 2
similar way to the so-called “Folk Theorem” for repeated games with complete
information (for a detailed proof, see the Lecture Notes of Hart 1980, Section IV), they
are based on a master plan and punishments. Each player follows the master plan as
long as the other one does it too (at least, as long as no deviation is detected), and us¢s
the corresponding punishment otherwise.
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The master plan consists of two parts. Stages t=n!, for all n=1,2,..., are
communication stages; the moves made serve as a mean of transmitting information
(from the informed to the uninformed player), or of making a joint decision. All the
other stages are payoff periods; well-determined moves (namely, pure) are used in
order for both players to accumulate the “right” payoffs. The sequence n! was chosen
since (n — 1)! is negligible relative to n! as n goes to infinity—thus only the last peri-
od"? really counts. Any other sequence with the same property could be used just as
well.

The master plan is derived from the G-process. The moves at stage ¢ = n! corre-
spond to the arcs from z, to z,,, in the tree (see §5.1), whereas at stages (n — 1)! <1
< n!, one “stays” at z,. Thus, a function { is defined inductively from the set of finite
histories in the game for which no deviations occurred, to the set of atoms of the fields
{ @, }—or, equivalently, to the set of nodes in the tree.

Let i’ # i” be two elements of /, and j/ # j” two elements of J, fixed throughout the
remainder of this section. These two (pure) moves for each player will actually be their
communication alphabet (thus, they essentially “talk” in a binary language)."*

Let t=n!, let h, be a history with no deviation from the master plan, and let
z, = {(h,) be the corresponding node in the tree. We will define now the behaviour of
each player at stage ¢, and also the resulting {(k,.,). If p,,, = p, and f,,, = f, at both
nodes z,,, and z, , succeeding z,, the two players play arbitrarily at 7 = n!, and for
all i, and j,, {(h,, ) = 2, say. Otherwise, we distinguish two cases:

() Pps1 # P, (and thus £, = f,),

@ii) f,+1 * fo (and thus p, ., = p,).
In case (i), we define for each k in K

P:H(Z;H)
2p, (2,)
(’t(ht ;k)(it) = p:+|(z:+l)

2Pnk (2)
0, otherwise.

if Q=1

. if =1

\

Since P,,(Z,,) = (Pn+l(zrln+l) +pn+l(z:+l))/2 by (5'3)’ ol(hl;k) is indeed a prObabﬂity
distribution over 1. As for player 2, we let 7,(h,) be arbitrary in this case, and then for
all j, in J, we put {(h,, 7, j,) = z,4, and $(h,, i, j) = 2,41

LEMMA 5.13. Assume that P[x = k| h)=pX($(h)) for all k € K. Then
P[t(her) = Zper|h] = P[S(hsr) = 20| h] =} and
Plk=k|h 4] =P (§(hsr))-

PrROOF. Assume i, = i/, then we have

Pli= k)= S Pli=1lh.x= K]P[«=k|h]

P:+I(z:v+l)

, 1
- nrt) ) =3 T Pz =3 -
kex 2p,(z,) keEK
BBy “period” we will usually mean the stages from (n — 1)! to ! for some 7.
41f there are more than two strategics, the communications may be “shortened”
not important in our model, since payoffs in finitely many periods do not matter,
discount rate is assumed.

(i.c., less stages). This is
but will be so if a fixed
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Therefore
P[k=k|hy ] =P[x=k|h,i=17]
_ Pliy=1|h,k=k]P[x= k|h,]
Pli,=i|h,]

P:-Q» 1(Zn+1)
2 (2n)
1

2

Pa (1)

=P:+|(Z;+|)-

Similarly for i, =i". 8

Thus, if the posterior probabilities for the various values of k at stage 1 = n! are P,
then the new posteriors generated after the moves at time ¢ are precisely PXiq. Case (i)
therefore corresponds to a transmission of information (about the value & of k) from
player 1 to player 2; we will henceforth call this signalling (by player D).

In case (ii), f,,, # f, and p,., = p,; we define for all k in K:

-

1 if i=1i,

ok k)i)=44 if i=i",
0 otherwise,

F% if j=J,

T (h)(J) =14 if j,=j

10 otherwise,

and then {(h,, 7', j) = $(h,, 1", J") = 201, §(h ¥, j7) = S(h, 17, ) = 2,44
LEMMA 5.14.
P[S(hsr) = Zysr | B] = P[f(”:u) =2z, 1| By
= P[$(his1) = 20i B> ji] = 4
where z, ., stands for either z,,, , or z,.,\, i, for i or i”, and j, for j' or j".

Proor. The choices of i, and j, are made independently. ®

Thus, in case (ii) a lottery with probabilities 1/2, 1/2 is performed among z,, , and
z/', . Moreover, no player has any control over the outcome—whichever of his two
possible moves he chooses, the probabilities are the same (1/2,1 /2). Therefore, this is
called (following Aumann, Maschler and Stearns 1968) a jointly controlled lottery.

This completes the definition of the master plan for ¢ = n! (the communication
stages). It corresponds to advancing one step in the tree (from z, to z, ).

We next consider the payoff periods. Let z, = {(h(,_ )1+ ,) (thus, we are just after z,
was determined at stage (n — 1)!). Let 6, = 8,(z,) in A’/ be given by Proposition 5.8
(see (5.9)). At stages (n — 1)! + 1 through n! — 1, the players will play 6, by frequencies;
namely, the pair (i, j) will be played 8,(i, j) of the time. Since all the denominators are
n by (5.12), this can be done in cycles of length n each. For example, assume
0,(i', j) = 1/n, 8,(i", j) = (n — 1)/n and 6,(i, j) = O otherwise, then player 1 plays i’
once (at r=(n— 1)!+1), then n— 1 times i* (@t t=(n—N+2,...,(n~ DI+n)
repeating this n-stage cycle up to (and including) t = n!—1; as for player 2, he chooses
jatt=(n—1)!+1and;” att=(n—D+2,...,(n— 1)!+n, and so on. Clearly,
we put {(k,) = z, for all (n — 1)!< ¢ < n!, when the two players play as described.

We introduce the following notation: for every i in I, j inJ and u,0 in N with u < 0,
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let

ops n ] i L
¢u(l,j)—-6—:~m|{tEN.u<t(v,l,=l,j,=j}l.

Thus, ¢,(i,j) is the frequency that the pair of moves (i, j) was used at stages
u,u+1,...,0. Note that it is 57, ,-measurable.

LEmMmA 5.16. Lett €N, (n— 1)!< t < nl. Then, for alliin I and j in J

‘¢('n—|)!+|(i’j) = 0,36, )l < 1—'2;—1 nt-

Proor. Every n stages, the frequency 6, is precisely obtained. The inequality
follows by ignoring the (at most) n — 1 stages following the last complete n cycle. 8

Finally, we have to define the punishments—what each player does after detecting a
deviation from the master plan by the other player. Two results are needed from the
theory of zero-sum games (see Propositions 3.5 and 3.6; the more precise statements
here are needed to obtain a uniform equilibrium).

PROPOSITION 5.17.  Assume the vector y in R* satisfies (3.3). Then player 2 has a
strategy ¥ = 7(y) such that E}.(af) < y* +2M/ VT for all strategies o' of player 1, all
kin Kand all T in N.

Proor. The precise bound is obtained from the proof of the approachability
theorem (cf. Blackwell 1956, or Mertens and Zamir 1980, Chapter 1). 8

PROPOSITION 5.18. For every q in A%, player 1 has a strategy & = 5(q) such that
E; . o( Br) < (vexval,B)¢q) for all strategies v of player 2 and all T in N.

ProOF. The above inequality actually holds with B*(i,, j,) instead of By, for all ¢
(e.g., see Aumann and Maschler 1966 or Mertens and Zamir 1980, Theorem 3.15). #

The definitions of ¢ and 7 can now be completed. Assume first that player 1
deviated from the master plan, either by playing i, # #/,i” at some z = n! or by not
playing the “right” i, at some (n — 1)!< ¢ < n!. Let D be the stage at which this
deviation of player 1 occurred. Thus, all moves in A, are according to the master plan,
and i, is the deviation move (which is observed by player 2 before stage D + 1). Let
z,= t(hy) be the corresponding node just before the deviation; the strategy 7 pre-
scribes then that after A, , (i.e., from stage D + 1 on), player 2 should use 7(y) with
y = f.(z,) (see Proposition 5.17, and note that (3.3) is satisfied in view of Proposition
3.16(i)).

Next, assume player 2 deviated from the master plan at stage D (and was detected).
From stage D + 1 on, player 1 then uses 5(¢) with ¢ = p,(z,) as defined in Proposition
5.18 (again, z, = {(hp)).

This ends the definition of the pair of strategies ¢ and 7.

54. Payoffs and probabilities for (6,7). In this subsection we assume that both
players use o and 7, respectively. Thus, only the master plan matters; there are no
deviations and no punishments.

We first analyze the payoffs. Let T € N, (n — 1)!< T < n!, and let A in Hy be a
history possible under (o,1); i€, P,, o) > 0. We will write 8, for 0,(§(hr))—.—the
value of @, on the atom {(h;) of 2, ; similarly for the other random variables defined
on Z. Recalling definition (5.15) of the frequencies ¢, we have

ProPoOSITION 5.19. Let TEN, (n— )< T< n!, hy € Hy with Py, (hr)> 0.
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Then, for all i in Iand jinJ,

-1 -
¢'T_l(i’j)_[(l”(%-Tf)’)an("’f)*'%‘_j)‘”n—l("’j)] <4

Proor. If 4/n > 1, there is nothing to prove (both ¢ and the expression [ . . . ] lie
in the interval [0, 1]). Let n > 5, then

(T-1)—(n~- n! ¢7._1
T—-1 (n—1!+1"

o= ——“—(';:ll)! of" D'+

The frequency 8,_, is “played” at stages (n —2)! <7 <(n— 1)!, therefore

-2)1+1
6.y = Oemsli < 2

(the difference isdueto 1 < 1 < (n— 2)! and ¢ = (n — 1)!; in total, (n — 2)! +1 stages;
note that §,_, requires a cycle of length n — 1, which divides (n — 1)!). Together with
the inequality in Lemma 5.16 for the second term, we obtain an overall difference of at
most

b

(n=2)!+1+n-1 (n—-2)t+n 4
T-1 n-1)' “n

the last inequality being easily checked (for » > 5). 8
This result shows that the frequencies obtained are close to those given by the

sequence {8,). The next two corollaries will be needed in the sequel; we define
M= M|I||J|

COROLLARY 5.20. For all k in K,

—1y -
at < e ST )+

Proor. By Proposition 5.19,
ak_ = A%(@] ") <AA4(6,) + XA (0,_,) +4M/n,

with AXp=(n— 1)!/(T— 1) and Ay =1 — A7. _
Recalling (5.10) gives 4%(6,) < E(4 k(0,)12.)+ M/n. By (5.6) A k@) < fr
hence 4%(8,) < f* + M/n. Similarly for §,_,, and we obtain

A¥@T ) SAfE+ NS+ 5M/n,
from which the result follows. @
COROLLARY 5.21. For all q in A¥,
q- B(¢] ") < max{q- B(0,)." B(6,-))} +4M/n.

Proor. Immediate from Proposition 5.19. #

Next, we deal with the probability 7,,, and the induced posteriors.

PROPOSITION 5.22. Let n€N, z, an atom of @, and TEN, (n— 1)< T<nl
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Then:
Po.'r,p[ g‘(h'l') = zn] = Q(zn)’ (5.23)

P, [x=k|h]=pX(z,) (5.24)
for all hy in Hy. with {(hr) =z, and all k in K.

ProoF. Induction on n. For n =1, there is only one history A, (the “empty”
history), thus (5.23) is just 1 = 1 and (5.24) is p = p, (recall (5.1)). The induction now
proceeds as follows.

At stages (n — 1)! < ¢ < n! (payoff stages), neither { nor any probabilities change
(both players make pure choices). At ¢t = n!, the probabilities for {(4,,,) = z,,, or
z”,, are 1/2 each by Lemmata 5.13 and 5.14, thus equal to Q(z, .| 2,) = Q(z,,12,)
by (5.3) (recall that our G-process is now assumed standard). As for the posterior
probabilities (of k = k), they change only when there is signalling (+ = n! and case (i))
—and we use again Lemma 5.13. 8

We will now show that the payoffs of (o,7) are (a, 8). We need first the following
result (E%, is the conditional expectation given = k, and f = f({(h7)).

PROPOSITION 5.25. Let TE N, (n— I)!< T < n! and k € K. Then EX (f¥) = a*.

Proor. The probability distribution of z, = {(h;) induced by P, , is precisely Q
(by (5.23)); therefore E,, ,(fy($(h)) = Ez)( f¥), where E;, denotes expectation on
the space Z (with respect to Q; note that E,, , and E}, are on Q). Since { fy.isa
martingale and f, = a by (5.1), the above equals a*.

We claim that the same expectation is obtained when using P, instead of P, "
Indeed, the induced probability distributions over the tree differ only in case of
signalling (in a jointly controlled lottery, it is 1/2 in both cases by Lemma 5.14);
however, in that case f,, , = f,,, so that the expectations are the same. 8

REMARK. Actually, the conditional expectations (with respect to P and P*) are also
the same—thus, { f*}, is a martingale also with respect to the probability distribution
induced by P*. Moreover, any strategy o’ of player 1 that differs from o only in the
probabilities used for signalling has this property (as we shall see in the next

subsection).
PROPOSITION 5.26. lim;.,EX (af) = a* for all k in K, and limr_,E, . ,(Br) = B.

PROOF. We start with player 2. Let (n — 1)! < T < n!; conditioning on 3¢, we
obtain (E = E,_):

E(Br_ilhr)= 3 pB (3 "),
kekK
with p* = p¥({(h;)) as usual. By Proposition 5.19,
|B*(o7 ")~ [ArB*(6,) + NrB*(0,-) ]| < 4M/n,

where A} = (n — 1)! /(T — 1) and Ay = 1 — A7.. As in the proof of Proposition 5.25, the
distribution of z, = {(h;) induced by P = P, , is Q (see (5.23)). Therefore,

|E(Br-1) — E(Z)(Pn ' [ATBk(pn) +A7B(8, —|)])| <4M/n.

As n-> o0, 6,0, and 6,_,—> 8, Q-as. by (5.11); also p,— p,,, hence (Ar,A7 >0,
A7+ A7 = 1 and everything is bounded):

T“_EQE( Br-1) = Ez)(Pw - B(0))-
By (5.7), this is £ z,(8,) = 8, = B (recall (5.1).
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For player 1, the same argument gives (a; was defined in (4.16)):
1!1_1;‘:0 E(ar_ )= Ez|(Pe- A4 (0)) = E(z)(Pos " f) = Pi fi=p-a

(see (5.6), Proposition 3.18 and (5.1)). If we condition on k, we have E(a;_;)=
S cexp*E*(ak_,), where E* = E¥ = E, (- |x=k). As in the proof of Corollary
520, we obtain a_, < Af* +Apft_, + SM/n. By Proposition 5.25, E*(af_,) <
Ara* + \pa* + 5M/n, hence

limsup E*(af) < a*,
T—o00

which together with

lim ¥ p*E*(ar)= 3 p‘a’
Tow ek kEK
and p* > 0 for all k completes the proof. 8

REMARK. The above proof actually shows that, if both players use (o,7), then the
average payoffs converge as. to the corresponding 8, =1lim, 0, where 8,=
8,($ (hy)). Therefore one can interchange the order of limit (as 7— o0) and expectation
(and there is no need for Banach limits!).

At this point we can show intuitively that (g,7) is indeed an equilibrium point (at
least—in the weak sense (2.7)—(2.8); the complicated inequalities in the next two
subsections are in part due to the fact that we want to prove the uniform property
(2.11)-(2.12)).

Consider player 1, and fix k in K (the true game). As we noted in the last Remark,
the average payoff to player 1 for infinite histories without deviations from the master
plan is the corresponding 4%(0,,), which is < f. If the game has proceeded up to
point corresponding to the node z, in the tree, his expected payoff will thus be at most
E*(f% | 2,) = f¥ (see Proposition 5.25 and the Remark following it). This will also be
the expected payoff if player 1 decides to deviate now—by Proposition 5.17. This
shows that he cannot gain by detectable deviations. How about undetected ones? He
can only make those at communication stages (at payoff stages, the moves are pure). If
a jointly controlled lottery is performed, he cannot influence the outcome—the
alternatives have probability 1/2 each no matter what player 1 chooses (since player 2
randomizes truly according to 7). If he is in a signalling case, then fy, , = f¥, thus f¥,
is constant, and any “signal” he uses gives him the same expectation. Therefore
undetectable deviations do not help either, and o is optimal against 7.

Consider now player 2. Since player 1 uses o, the posterior probabilities are given by
Pa- Therefore the expected average payoff of player 2 at a node z,—if he does not
deviate—is precisely p, - E(B(0,)|z,), which for n large enough is close to E(py-
B8, )|z,) = E(8,]z,) = 8, (since p,~>p,). If he makes a detectable deviation, he
will get thereafter at most (vexval,B)p,) < 8,—thus he cannot gain by doing so. The
only other possible change in strategy is in a jointly controlled lottery; again, if player
1 uses o, player 2 cannot influence the resulting probabilities. Thus 7 is a best response
against o.

5.5. o is optimal against r. We will show here that o is a best response of player 1
against the strategy 7 of player 2. Moreover, the uniform condition (2.11) will be
proved.

Thus, let € > 0; we have to find To= T(e) such that for all 7 > T, and all o
E% (a¥) < a* + e for all k in K (see (2.13) and Proposition 5.26).

As usual, P, P*, E and E* refer to (0,7, p), whereas P’, P*, E’ and E™* to (o', 7, p)-

If both players use (o,7), there are no deviations from the master plan, and { is



NONZERO-SUM TWO-PERSON REPEATED GAMES WITH INCOMPLETE INFORMATION 145

defined for all possible histories (i.e., those with positive P). However, when we
consider alternative strategies, it will be useful to define { for all histories (i.e., even
those that are not possible under (o,7)); {(k,) will be { of the part of A, up to the first
stage a (detectable) deviation occurred. Thus, we define

D =sup{t € N :P(h)>0)}. (5.27)

D is a random variable on @ with values in N U {0}, and is 5#°-measurable. For
every infinite history, D is the stage of the first detectable deviation, if any; D = o
otherwise. Note that P(h,) > 0 just means that the sequence of moves used by both
players at stages 1,2,...,¢—1 is possible under (o,7); more precisely, that A, is
possible under (o, 1) when « = k for some k in K.

Let D A t =min{D,¢}, then we define for all 7 in N and A, in H,

S(h)=$(hpay) (5.28)

The right-hand side was defined in §5.3; we thus extend the definition of ¢ to all

histories.
Next, we “translate” the G-process to the space © as follows:

8i(h) = gn(2m), (5-29)
where z,, = {(h,) (and thus, by (5.28), we have (m — 1)!< D A t < m!). As usual,
& =(f;.8. p). with f, = (f)ex in RX, 8, in R and p, = (5/)ex in A*.

PROPOSITION 5.30. Let k € K. The sequence { f*}%., is a martingale on (Q,2¢
Py with respect to (3¢, )72 . Moreover, for all t in N h,in H, and all i, in I,

E*(fo ik i)y=ff  P*as. (5.31)

This proposition is a crucial assertion in our proof. (5.31) means that the strategies o
and 7 have been constructed in such a way that player 1 is indifferent among his
various choices of i, at all histories A, —and this includes both detectable and undetect-
able deviations from o (see also Proposmon 5.25 and the subsequent Remark).

Proor. The measurability of j; with respect to 2, is immediate by definition. As
for the martingale property, namely E"*( j}+, | h) = f,, it will follow from (5.31) (which
is stronger, since it holds for all i, in 7, not only in the avera e).

We now prove (5.31). It is easy to see by (5.29) that f¥, , 5 f* only when D A t = m!
and DA(H—- D=m!+1, and thus D > ¢+ 1 and r=m!. Let z, = {(h,); since
MR f%, case (ii)—a jointly controlled lottery—occurs at z,,. But i, must be either i’
or i” (otherwise, player 1 deviated and D = ¢); in both instances, {(k,, ) is z,,,, or
Z,,,, with probability 1/2 each by Lemma 5.14, and (5.31) reduces to

fmk(zm) = '%f:+l( m+1) T lfl:+l(zm+l

which holds by (5.3). @

For each T in N, we define 57°, , r to be the finite field generated by all events of
the form' (h, and DA T > ¢t} for t in N, ¢t < T and h, in H;. This is the field of
events prior to the first detectable deviation. Note that D + 1 (but not D) is a stopping
time relative to the sequence {3#,}% ,,and sois (D+ DA(T+ 1)=(DAT)+ 1
The field of events strictly before (D A T)+ 1is precisely 57, , . It is easy to see that
H#ppr C ¥ r, and an atom in I#°p ., which we denote by k, , 5, is of the form
hppry={hand DA T=1t)forsomezin N,t < Tand b, in H,.

"This is the set of infinite histories which coincide with h, up to time 1, and for which D A T is no less
than 1,



146 SERGIU HART

From now on, we fix a strategy o’ of player 1, an element k in K, and T in N. To
shorten notation, we will write D for D A T and 3¢ for Hpnr-

Consider E’*(ak_,); we separate it into three parts: before D, at D, and after D
(note that only the first one is always nonempty). Thus,

k D—-1 « 1 k 1 =
ar = T__laD—l+ T__IA (iD’jD)+ T-—-1 §+‘Ak(iﬂj1)'
-

The middle term is at most M /(T — 1), hence

T—1
, & D=1 M e 1 -
E(ar-1) < E k( T—1 “5“') +ty_1+E k(-T—_‘T ‘_%IA"(%,J:))- (5-32)

For the first term, we have
LemMA 5.33.

(Bt s Bt R) - S

Proor. We use Corollary 5.20:

wf D=1 & af D—1 ok ke D—l(m_l)! K _ ok
E (T_laD—l)<E (T__lfm)+E (T—l D -1 (fm—l fm))

e R2=1 1
+SMEM 2 ) (5.34)
where f* and f%_, are evaluated at the corresponding ¢(hp) (note that m here is 2
random variable, (m — 1)! < D < m!). .
By definitions (5.28) and (5.29), the first term is precisely E*“(((D — /(T - D))
The second term is separated into two parts. If D < (n— 1)}, then m < n— 1, hence

(m—1)! <(11—2)! _ 1
T-1 (n-1)! n-1’

giving a bound of 2M /(n — 1). Next, we claim that
of (M= n!
E k("‘f‘:‘l“ (fﬁ-l "f:. )X{D>(u—l)!)) =0,

where x, ..., denotes the indicator function of the event { -« - }. Let u=(n— 1},
then D > u if and only if P(h,,,) > 0 (see the definition (5.27) of D). But player 2
does not deviate from r, therefore we have P*.as.: P(h,,) >0 if and only if
P(h,,i,) > 0. Conditioning on h, and i, gives

EH( 751 Xpona >0 B (o1~ I LA)S

By (5.29), f*_, = /% and f* = f¥, ; recalling (5.31) shows that the whole expression is
ZeT10.
The last term in (5.34) is also separated into two: for D < (n-—2)!,

p-11 =2 _ 1 .
T-1m (n-1) n-1'

for D>(n—2)!,m>n-—1and
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This gives a bound of 5M/(n — 1); together with 2M /(n — 1) from the second term,
the proof is completed. 8
For the last term in (5.32), we condition on 2¢°, .

LemMa 5.35.
. i T-1
E’(——r_l S A% d)

t=D+1

T-D-1 ., 2M
%’,,)< el

ProoF. Given hy,, player 2 uses the punishment strategy 7( y) startingatt= D + |,
with y = f, (§(hp)) = fr (see (5.29)). The inequality is obtained from Proposition 5.17,
applied to

1 5 k
751,32, (o *

PROPOSITION 5.36. For every € > O there exists Ty = T(¢) such that for all T > T,
and all o', E"*(af) < a* + € for all k in K.

Proor. Combining the inequalities in Lemmata 5.33 and 5.35, we obtain from
(5.32)

ky ok wf T—2 M 5M+2M M
E(“T”')<E(T—1fr)+T—1+ iy

The first term differs from E’*(f¥) = ff = a* (see Proposition 5.30 and (5.1)) by at
most another M /(T — 1). All additional terms are independent of ¢, and converge to
zero as T oo (hence, n—> o0 too). 8

5.6. 7 is optimal against o. Here we prove that 7 is a best response of player 2
against o of player 1; as in §5.5, we obtain the uniform property (2.12): Given € > 0,
we show that there is T, = T(¢) such that forall T > Toand all 7', E, . ,(By) < B+ €
(recall Proposition 5.26). We will use the notations E’ and P’ for 0,7, p.

In §5.5, the time of the first detectable deviation was defined (see (5.27)); also, the
G-process was translated to the space of histories by (5.28) and (5.29). Thus, 8,(h,) is
the value of the sequence {8,,(z,,)},, just before the deviation (if any, up to stage 7).
We have

PrOPOSITION 5.37. The sequence {5,}?‘,’,, is martingale on (2,37 ,, P’) with respect
o (3, ).

Proor. Similar to that of Proposition 5.30. Again we actually prove a stronger
assertion (but which will not be needed in the sequel), namely E'(§,,,|h,,j) =§,
P'-as., for all ¢ in N, h, in H, and j, in J. The only case to check is = m! and
D > t + 1. The probabilities of z/,, , and z/,, are 1/2 each no matter what player 2
chooses at stage ¢; this is so by definition of ¢ in case (i) (signalling), and by Lemma
5.14 in case (ii) (a jointly controlled lottery; since D > ¢ + 1, j, =’ or j” then). ®

An important property of o is that player 2 cannot increase the probability of
reaching any node z, in the tree (he may be able to decrease it by making detectable
deviations in previous stages).

PROPOSITION 5.38. Let t € N, (n— 1)!< t < n!, and let 2, be an atom of 3, . Then
P’{g(ht) = znl < Q(zn)'

Proor. Induction on n. For n = 1 we clearly have equality. Let # = (n — 1)!, then
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definition (5.28) gives
P[¢(h)=12,]=P'[§(hs))=2,20d D > u+ 1]
= P’[{(huH) =z,|$(h)=2,-,and D > u + l]
P'[D>u+1|8(h)=2,,] P[s(h)= Zy 1]

The same argument as in the proof of Proposition 5.37 shows that the first factor is
1/2 (since D > u + 1, in both cases (i) and (ii) the probabilities do not change); the
second is at most 1, and the third at most Q(z,_,) by induction. This completes the
proof, since Q(z,) = (1/2)- @(z,_,) by (5.3). 8

Let 7’ be a fixed strategy of player 2, and fix Tin N, (n — I)!< T < n!. As in §5.5,
we divide E’( B;_,) into three parts, as follows (D stands for D A T):

T-1
E'(Br-y) < E’(%—:—ll Bo-1)+ A +E’(-TITT ’_§+IB“(i,,j,)). (5.39)

In the first term we condition on 5#°; , to obtain

E'( 1;:11 BT-‘)= E'(g"_:'ll"kg,("'("-‘-kléf’p )B"(¢|"“)). (5:40)

LEMMA 5.41. Let h, be an atom of #p, and (m—1)!<D< m!. Then
P'[k = k| hp)l = pX($(hp)) for all k in K.

Proor. Given h,, player 1 did not detect any deviations by player 2 up to D.
Therefore he played according to the master plan, and the result follows by (5.24). 8

LEMMA 5.42. For every € > 0 there exists T, = T)(€) independent of 7' such that

B35 o) < F(70 )

ProOF. On the space Z, we define for all » in N, n,= max{ p, - B(8,),
Pn- B(6,_))}. Clearly 7, is 2,-measurable, and 7,8, Q-as. as n— oo (indeed:
Pn=Poos 0, 0, by (5.11), and 8, = Pw - B(8,) by (5.7)). We also have 8,— 6, as
n— oo, therefore lim,_, E z,(|n, — 8,]) = O (everything is bounded by M). Thus, for
every € > 0 there is n, = n,(¢) large enough such that E (|, — 8,)) < € for alln > n,.

Using Lemma 5.41 and then Corollary 5.21 (with g = p,), we obtain by (5.40)

(D=1 (D=1 e D=1 1
E( 5= br) < £ D n) + 4ME (T )
where (m — 1)!< D < m!, and 1,, = 1,,({(hp)). As in the proof of Lemma 5.33, the
last term is no more than 4M /(n — 1), which can be made arbitrarily small for large
enough T (independent of 7°).

Therefore it remains to bound E'((D — 1)/(T = 1)){n, — 8,]) (recall that 8,
= §,($(hp))). We separate into three parts: m < n— 2, m=n—1, and m= n. The
first one is bounded by 2M /(n — 1) (since D < (n —2)!). Let z, be an atom of Zn>
then

P'[$(hp) = 2,] = P'[$(hr) = 2] < Q(z)
by (5.28) and Proposition 5.38. This implies that

J(D—1
E ( T—1 M " 5~|X(~-~}) < Egz)(Imn — 8l)-
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Similarly, let z,_, be an atom of Z,_,, then
P'[$(hp)=2,_1] = P'[§(hy) =2,,and D < n!] < Q(z,-,) and

Jf(D—1

E ( ﬁ Inm - 8le(m-n-l)) < E(Z)(’"n—-l - 81:—1')'

If n > ny(e), both expectations are bounded by ¢, which completes the proof. #
For the last term in (5.39), we condition on 577, .

LeMMA 5.43.

T—-1
’ 1 Kr: s T—-D-1¢
E(—T—l 2 B(l‘,‘]')%D)<—T—] 87-.

t=D+1

ProoF. By Lemma 5.41, the posteriors at h,, are given by p,, = p,.({(hp)). From
stage D+ 1 on, player 1 uses his punishment strategy; by Proposition 5.18, the
expression we consider is thus no more than

T-D-1 T—-D-1
——77—_——1—(VCXV3.123 )(PM) < ﬁ"&m

(we used Proposition 3.16(ii)). But '§r = §,,($(hp)), completing the proof. 8

PROPOSITION 5.44. For every € > 0 there exists Ty = T(e) such that for all T > T,
and all v, E'(Br) < B+ e

Proor. Similarly to Proposition 5.36, we combine (5.39), Lemmata 5.42 and 5.43,

Proposition 5.37, and (5.1). 1
We have completed the proof of the second half of our main result.

PROPOSITION 545. Let (a, B, p) € G*. Then there exists a uniform equilibrium point
(o,7) in T (p) with payoffs (a, B).
ProoF. Propositions 5.26, 5.36 and 5.44. &

6. Enforceable joint plans. Let us consider now equilibria that require finite
sequences of communications. For every positive integer m, let G™ = { g € G*: there
exists a G-process { g,} ., starting at g such that g, = g,, for all n > m}. Thus, G™
corresponds to those G-processes for which the limit g, is reached already at stage m.
Clearly, G' = G (recall (3.12)). Therefore, the first such set to study is G2

The following is easily obtained: A point g = (a, B, p) belongs to G?if and only if g
can be expressed as a convex combination of points in G, all of which have the same a
coordinate or the same p coordinate. Thus, there is a finite set S such that g=
3, sP(8)g(s), with p = (p(5)),e s in AS, g(s) = (a(s), B(s), p(s)) in G for all s in S, and
either a(s) = a for all s or p(s) = p for all 5.

The latter case (p(s) = p for all 5) leads to no additional points outside G; this is due
to the fact that, for a fixed p, the set of (a, B) such that (a, B, p) belongs to G is a
convex set (indeed, all conditions (3.3), (3.4), (3.9)-(3.11) are invariant under convex
combinations—again, when p is constant).

Therefore, the only interesting case is a(s) = a for all s (and p(s) not constant). This
generates points in G2 that do not necessarily belong to G, and that correspond to
equilibria with one communication only'® (signalling), followed by payoff accumula-

'61f the G-process is standard (cf. §5.1), this would require one stage in the game; in general, this may take
longer (e.g., if player 1 uses only / and i” as in §5.3, then at least log,/ stages are needed, where / is the
number of different values of g,).
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tion henceforth (using frequencies). Following Aumann, Maschler and Stearns (1968),
this is called an enforceable joint plan."’

An interesting question is: how many different signals are needed? Since the only
information player 1 has (that player 2 has not) is the value of «, it scems reasonable
that no more than |K| signals should be required. Namely, the most player 1 can
transmit to player 2 is just x, which has | K| possible values. However, it turns out that
this is not the case, and the correct bound is | K| + 1 rather than |K]; i.e., no more than
|K| + 1 signals are needed, and there are examples which do indeed require | K|+ 1.

For every integer /, let G*(/) be the set of all g =(a, B, p) in G 2 such that

/ i
g= 2 p()8(*) Ze=1
g(s)=(a, B(s), p(s)) EG and p(s) >0 forall s=1,2,...,L

PropoOSITION 6.1. G*= G*(|K|+ ).

Proofr. For fixed a, the vector (B, p) lies in R X AX, which is a |K|-dimensional
Fuclidean space; we now apply Caratheodory’s Theorem. 8

We will next present an example where G2 # G*(|K|), showing that |K | + 1 is the
best bound.

ExamPLE 6.2. Let K= {1,2}, I={1,2},J ={(1,2,3,4,5,6,7}. The two games are
(player 1 chooses the row, player 2 the column):

J
i | 2 3 4 5 6 7
k=1] 1 |00 04 |0-5]-1,-9 | -1,-3 | -13 -1,6
2 |oo| o4 |0-5]-1,-9| -1,-3 | -1,3 -1,6
J
; 1 2 3 4 5 6 7
k=2 1 [00]o0-5]| 04 -1,6 -1,3 | -,-3 | -1,-9
2 {oo|o-5] o4 -1,6 -1,3 | -1,-3 | -1,-9

It is easy to see that (val, )X p) = —1 for all p in AX, and (vex val,B )X p) = (val,B)(p)
= max{—9p' + 6p% —3p' +3p? 3p' — 3p,6p' — 9p*}, where p = (p', p?). Therefore,
the intersection of G with the hyperplane a = (0,0) consists of exactly three points:

) =((0.0,0,(4.4). 2@=(00.L(34)  &B3)=(00L(3:3))

where we write as usual g = ((a',a?, B,(p', p?); these three points correspond to
j=1,j=2and j = 3, respectively (# does not matter). Indeed, since a = 0,0),j=4,5,
6 and 7 are not possible; individual rationality for player 2 (namely (3.4)) then implies
that j = 1 can be used only at p = (1/2,1/2), j =2 only atp=(2/3,1/3), and j =3
only at p = (1/3,2/3).

Therefore G2 will contain the convex hull of g(1), g(2) and g(3); however, no
interior point of this triangle can be expressed using only two of its vertices.

"Mmﬁyddhe'ﬁdntphm”ﬂndmmﬁndmdiﬁoamdum&eumbe“mmd”by
equih'bria.AsSoﬁn(l%S)pointedout,onedtheireondiﬁomshonldhe.dighﬂyweakened—andmenil
corresponds to our characterization of G°. ;
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It is easily seen in this example that an additional condition may reduce the number
of signals to 2 = |K|. In general, we have

PROPOSITION 6.3. Let (a, B, p) € G?2. Then there exists B’ in R such that 8’ > 8 and
(a, B, p) € G*(K).

ProoF. By Proposition 6.3,
! !
g§=(aB.p)= Zo(s)g(s)  Ze()=1,

g()=(a, B(s), p(s) € G and p(s) > O for all s=1,2,...,/, where / < |K|+ 1. As-
sume / = |K| + 1, and consider the / vectors {(p(s), 1)} -; in A¥ X R. They must be
lmearly dependent; let {7(s))’.., be not all zero and such that 3! _,#(s)p(s) = 0 and

! _1m(s) = 0. Without loss of generality, we assume that S 1@ (s)B(s) > 0 (other-
wise, replace all #(s) by —n(s)). Let n = min{ —p(s)/#(s): w(s) <0}, and put p'(s)
= p(s) + mr(s) Then p'(s) > 0 for all s=1,2,...,/ and at least one p'(s) is zero;
moreover, 3. p(s) = 1, . p(5)p(s) = p and B’ = 3,0 (5)B(s) > B.

The following is now immediate.

COROLLARY 6.5. Let (a, B) be the payoffs of a Pareto optimal'® enforceable joint plan
equilibrium in T _(p). Then no more than |K| signals are needed; namely, (a, B, p) €
GH(K)).

What about G™ for larger values of m? It is easy to see that each G™ is obtained
from the previous G™ ' by taking convex combinations—with either a fixed (when m
is even) or p fixed (when m is odd). New points are usually obtained; Aumann,
Maschler and Stearns (1968) provide examples where G>#G*and G*# G It is
probably not difficult to use the same ideas in order to generate examples where
G™ # G™~! for arbitrary m.

An open question still remains. Is G* the union of all the G™? If one ignores the
game structure, and just considers the notions of bi-convexification (G™) and bi-
martingale (G*), the answer is negative: G* may contain points that do not belong to
any G™ (and it is not just a matter of closure either—G* may be a very different set).
For details on these problems, the reader is referred to Aumann and Hart (1983).

7. Example. In this section we will analyze an example and find its equilibria.
EXAMPLE 7.1."° |I| = |J| = |K| = 2. The games are as follows (player 1 chooses the
row and player 2 the column):

k=1 k=2
J J
; 1 2 ; 1 2
1 1,0 -1,1 1 L1 0,0
2 1,0 0,1 2 L1 -10
It is straughtforward to obtain (val A)(p) = max{—p', - p?} and (vexvalzB)( p=

(val,B) p) = max{ p', p?} for all p = (p’, p?) in AX. Therefore a = (a',a? is individu-
ally rational for player 1 (i.e., satisfies (3.3)) if and only if a',a® > 0.

]e., such that there is no other enforceable joint plan equilibrium in T (p) with payoffs (a', B")
satisfying (', B’) > (a, B) and (a', B') #(a, B).
¥Suggested by S. Zamir,
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We first find the set G. Let g=(a, B, p) € G and let (c,d)EF correspond to it
(recall (3.9)-(3.11)). We distinguish five cases.

(i) p' = 0. Individual rationality for player 2 (i.e., (3.4)) implies that d>= 8 > |,
therefore only j = 1 may be used, in which case a = (L)and g=((1,1),1,(1,0) € G.

(ii) p' = 1. By (3.4) we have d' = B > 1, therefore j = 2. But ¢'=a'>0by (3.10
and (3.3), hence i = 2 and g = ((0,4%), 1,(1,0)) € G for all a’>0.

(iii) 0 < p' <}. Here B > p? by (3.4), hence j=1 (for j=2, B=p'<p?, and
g=((1,1), B, p) € G with B =p’

(iv) 1 <p' < 1. Here j =2 by (3.4), but then a',a? <0, contradicting (3.3). Hence
no points in G in this case.

w) p' = 1. Condition (3.4) imposes no restriction, hence g = (a,4,(4,3)) € G for all
a € co{(1,1),(—1,0),(0, — 1)} N {a > 0} = co{(1,1),(§,0),(0,1),(0,0)} = V.

In conclusion, G consists of the following points (a, B, p):

a=(1,1), B=p% 0<p'<i,
acv, =1, p'=1,
a'=0,a>>0, B=1, pl=1

The set G2 (see the previous section) is now easily obtained (convex combinations of
points in G with the same @). It includes G together with all the points (a, B, p)
satisfying »

a'=0, 0<d’<i, B=p', 1i<p'<l

Indeed, each such point is a convex combination of (a,},(1,4)) and (a,1,(1,0)) when
a satisfies botha € V and a' =0, a> > 0.

Using the methods developed in Aumann and Hart (1983), we can next show that
G? is actually G*. Consider the following functions on Ry X A¥ (the 8 coordinate is
ignored; M = 1):

fap)=[4-p'],d@@D). fap)=[1-p'].daV)

fHap)=[p'—1],4"

where [x], = max{x,0} for real x and d is the (Euclidean) distance. All these
functions are easily seen to be bi-convex, bounded, continuous, nonnegative, and
vanishing on G. They must therefore-vanish on G* too (cf. Proposition 4.8 in Aumann
and Hart 1983). Let (a, B, p) € G*; if p' <} then a = (1, 1) since fi(a, p) = 0; ifp' <1
then a € V since f(a, p) =0; and finally if p' >} then a' = 0 since fy(a, p) = 0. All
these conditions however imply (a, B, p) € G2, therefore G* = G2,

To summarize: all equilibria of T',(p) are equivalent to nonrevealing equilibria
when p' <1, and to enforceable joint plans when p' >1.
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