

### How Dull Are Monotonic Mechanisms

#### **Sergiu Hart**

First version: June 2022

This version: October 2022

SERGIU HART © 2022 - p. 1



### How Dull Are Monotonic Mechanisms

### Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart



#### Joint work with



#### **The Hebrew University of Jerusalem**

SERGIU HART C 2022 - p. 3



#### Ran Ben Moshe, Sergiu Hart, and Noam Nisan "Monotonic Mechanisms for Selling Multiple Goods" (2022)

www.ma.huji.ac.il/hart/abs/mech-monot.html



SERGIU HART (C) 2022 - p. 5



#### • 1 SELLER

#### ho 1 BUYER

#### • 1 SELLER

- 1 BUYER
- k GOODS (ITEMS)

- 1 SELLER
- 1 BUYER
- k goods (items)

#### **OBJECTIVE**:

#### MAXIMIZE the **REVENUE** of the **SELLER**

#### • 1 SELLER

- 1 BUYER
- k GOODS (ITEMS)

- 1 SELLER
- J BUYER
- k goods (items)
  - values of GOODS to BUYER :

 $X=\left(X_{1},X_{2},...,X_{k}
ight)$ 

- 1 SELLER
- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )

- 1 SELLER
- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )
  - **BUYER knows** the value X

- 1 SELLER
- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )
  - BUYER knows the value X
  - **SELLER** does **not know** the value X

- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )
  - BUYER knows the value X
  - **SELLER** does **not know** the value X
  - X distributed according to c.d.f.  $\mathcal{F}$  on  $\mathbb{R}^k_+$

- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )
  - BUYER knows the value X
  - **SELLER** does not know the value X
  - X distributed according to c.d.f.  $\mathcal{F}$  on  $\mathbb{R}^k_+$
  - **SELLER knows** the distribution  $\mathcal{F}$  of X

- J BUYER
- k goods (items)
  - values of GOODS to BUYER :  $X = (X_1, X_2, ..., X_k)$  (random variable)
  - additive valuation (good 1 and good  $2 = X_1 + X_2$ )
  - BUYER knows the value X
  - **SELLER** does not know the value X
  - X distributed according to c.d.f.  $\mathcal{F}$  on  $\mathbb{R}^k_+$
  - **SELLER knows** the distribution  $\mathcal{F}$  of X

#### • 1 SELLER

- 1 BUYER
- k GOODS (ITEMS)

- 1 SELLER
- J BUYER
- k GOODS (ITEMS)

**SELLER** and **BUYER** :

quasi-linear utilities (i.e., additive in monetary payments)

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

**SELLER** and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- **risk-neutral** (i.e., linear in probabilities)

#### ● 1 SELLER

- J BUYER
- k GOODS (ITEMS)

**SELLER** and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
   (or: linear in quantities)

#### ● 1 SELLER

- J BUYER
- k GOODS (ITEMS)

**SELLER** and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
   (or: linear in quantities)

#### SELLER :

no value and no cost for the GOODS

#### • 1 SELLER

- 1 BUYER
- k GOODS (ITEMS)

- 1 SELLER
- 1 BUYER
- k goods (items)

#### **OBJECTIVE**:

#### MAXIMIZE the **REVENUE** of the **SELLER**

 $\mathsf{Rev}(X) :=$  optimal revenue from valuation X



#### ONE GOOD (k = 1):

#### ONE GOOD (k = 1):

#### Myerson 1981

ONE GOOD (k = 1):

#### $\checkmark$ SELLER posts a PRICE p

#### Myerson 1981

ONE GOOD (k = 1):

- **SELLER posts** a **PRICE** p
- BUYER chooses between:
  - get the good and pay p, or
  - get nothing and pay nothing

ONE GOOD (k = 1):

- **SELLER posts** a **PRICE** p
- BUYER chooses between:
  - get the good and pay p, or
  - get nothing and pay nothing
- p such that REVENUE  $R = p \cdot \Pr[X > p]$ =  $p \cdot (1 - F(p))$  is MAXIMAL

ONE GOOD (
$$k=1$$
):

- **SELLER posts** a **PRICE** p
- BUYER chooses between:
  - get the good and pay p, or
  - get nothing and pay nothing
- p such that REVENUE  $R = p \cdot \Pr[X > p]$ =  $p \cdot (1 - F(p))$  is MAXIMAL

$$\mathsf{Rev}(X) = \max_p p \cdot (1 - F(p))$$

Myerson 1981



# $X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$
  
 $p = 10 \rightarrow R = 10 \cdot 1 = 10$ 

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11$$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \quad \longleftarrow$$

## **One Good: Example**

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \quad \longleftarrow$$

 $\mathsf{Rev}(X) = 11$  p = 22

SERGIU HART (C) 2022 - p. 10

## **Multiple Goods** $(k \ge 2)$



**Multiple Goods**  $(k \ge 2)$ 

**Multiple Goods**  $(k \ge 2)$ 

No simple useful characterization of solution

**Multiple Goods**  $(k \ge 2)$ 

- No simple useful characterization of solution
- Hard to solve even in simple cases

Multiple Goods (k > 2)

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries

Multiple Goods (k > 2)

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes

Multiple Goods (k > 2)

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

**Multiple Goods**  $(k \ge 2)$ 

Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

**Multiple Goods**  $(k \ge 2)$ 

**Multiple Goods**  $(k \ge 2)$ 

• There are valuations X such that

 $\mathcal{N}$ -REV(X) = 1 and REV $(X) = \infty$ 

Multiple Goods (k > 2)

There are valuations X such that *N*-REV(X) = 1 and REV(X) = ∞
For every ε > 0 there are bounded X s.t. *N*-REV(X) < ε ⋅ REV(X)</li>

SERGIU HART C 2022 - p. 13

**Multiple Goods**  $(k \ge 2)$ 

• There are valuations X such that  $\mathcal{N}$ -REV(X) = 1 and REV $(X) = \infty$ • For every  $\varepsilon > 0$  there are bounded X s.t.  $\mathcal{N}$ -REV $(X) < \varepsilon \cdot \text{REV}(X)$ 

Hart and Nisan 2013/2019 (Briest, Chawla, Kleinberg, Weinberg 2010/2015 for  $k \ge 3$ )

**Multiple Goods**  $(k \ge 2)$ 

**Multiple Goods**  $(k \ge 2)$ 

**Multiple Goods**  $(k \ge 2)$ 

For example:

selling separately

Multiple Goods (k > 2)

- selling separately
- selling bundled

Multiple Goods (k > 2)

- selling separately
- selling bundled
- all deterministic mechanisms

Multiple Goods (k > 2)

- selling separately
- selling bundled
- all deterministic mechanisms
- mechanisms with bounded "menus" (at most m choices, for finite m)

**Multiple Goods**  $(k \ge 2)$ 

Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods (k > 2)

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods (k > 2)

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

### "CONCEPTUAL COMPLEXITY"



## Monotonicity

SERGIU HART © 2022 – p. 17

## **Monotonicity of Revenue**

| _ |  |  |
|---|--|--|



### **BUYER's willingness to pay increases**



#### **BUYER's willingness to pay increases**

#### $\Rightarrow$ **SELLER's revenue increases**

## **Monotonicity of Revenue**

### **BUYER's willingness to pay increases**

### $\Rightarrow$ **SELLER's revenue increases**

correct for one good

## **Non-Monotonicity of Revenue**

### **BUYER's willingness to pay increases**

- $\Rightarrow$  **SELLER's revenue increases**
- correct for one good
- FALSE for multiple goods !

## **Non-Monotonicity of Revenue**

### **BUYER's willingness to pay increases**

- $\Rightarrow$  **SELLER's revenue increases**
- correct for one good
- FALSE for multiple goods !

### Hart and Reny 2014

|  | Menu             |      |
|--|------------------|------|
|  | good 1<br>good 2 | \$10 |
|  | good 2           | \$20 |
|  |                  |      |
|  |                  |      |
|  |                  |      |
|  |                  |      |

SERGIU HART (C) 2022 - p. 19





SERGIU HART © 2022 - p. 19



SERGIU HART © 2022 - p. 19





(10, 23) pays \$20 (20, 27) pays \$10

SERGIU HART © 2022 - p. 19





(10, 23) pays \$20
(20, 27) pays \$10

### **Optimal for some** *X***?**





(10, 23) pays \$20 (20, 27) pays \$10

#### Optimal for some X? No!

SERGIU HART C 2022 - p. 19











There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism MAXIMIZES REVENUE

## **Non-Monotonicity**

- There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism MAXIMIZES REVENUE
  - moreover: unique maximizer; robust

## **Non-Monotonicity**

- There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism MAXIMIZES REVENUE
  - moreover: unique maximizer; robust
- There are simple 2-good valuations X, X' such that

 $X' \ge X$  but  $\mathsf{Rev}(X') < \mathsf{Rev}(X)$ 

#### Conclusion: NON-MONOTONIC mechanisms are <u>needed</u> in order to obtain the maximal revenue

- Conclusion: NON-MONOTONIC mechanisms are <u>needed</u> in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?

- Conclusion: NON-MONOTONIC mechanisms are <u>needed</u> in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?
  - Answer 1: a non-negligible amount

- Conclusion: NON-MONOTONIC mechanisms are <u>needed</u> in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?
  - Answer 1: a non-negligible amount
  - Answer 2: <u>most</u> of the revenue !



## The Setup

SERGIU HART © 2022 - p. 23





#### (Direct) *mechanism* $\mu = (q, s)$ :

#### (Direct) *mechanism* $\mu = (q, s)$ :

Allocation function

(Direct) *mechanism*  $\mu = (q, s)$ :

Allocation function

$$oldsymbol{q} = (oldsymbol{q}_1,oldsymbol{q}_2,...,oldsymbol{q}_k): \mathbb{R}^k_+ 
ightarrow [0,1]^k$$

- (Direct) *mechanism*  $\mu = (q, s)$ :
- Allocation function
  - $oldsymbol{q} = (oldsymbol{q}_1,oldsymbol{q}_2,...,oldsymbol{q}_k): \mathbb{R}^k_+ 
    ightarrow [0,1]^k$
  - $q_i(x)$  = probability of getting good i for BUYER with valuation x

- (Direct) *mechanism*  $\mu = (q, s)$ :
- Allocation function
  - $oldsymbol{q} = (oldsymbol{q}_1,oldsymbol{q}_2,...,oldsymbol{q}_k): \mathbb{R}^k_+ 
    ightarrow [0,1]^k$
  - $q_i(x)$  = probability of getting good i for BUYER with valuation x
- Payment function

$$s:\mathbb{R}^k_+ o\mathbb{R}$$

- (Direct) *mechanism*  $\mu = (q, s)$ :
- Allocation function
  - $oldsymbol{q} = (oldsymbol{q}_1,oldsymbol{q}_2,...,oldsymbol{q}_k): \mathbb{R}^k_+ 
    ightarrow [0,1]^k$
  - $q_i(x)$  = probability of getting good i for BUYER with valuation x
- Payment function

$$s:\mathbb{R}^k_+ o\mathbb{R}$$

• s(x) = payment from **BUYER** with valuation x to **SELLER** 



#### **BUYER** payoff function

#### BUYER payoff function

$$\mathbf{b}(x) = \mathbf{q}(x) \cdot x - \mathbf{s}(x)$$

#### BUYER payoff function

$$\mathbf{b}(x) = \mathbf{q}(x) \cdot x - \mathbf{s}(x)$$

# • INDIVIDUAL RATIONALITY (IR) $b(x) \ge 0$ for all x

#### BUYER payoff function

$$\mathbf{b}(x) = \mathbf{q}(x) \cdot x - \mathbf{s}(x)$$

# • INDIVIDUAL RATIONALITY (IR) $b(x) \geq 0$ for all x

INCENTIVE COMPATIBILITY (IC)  $q(y) \cdot x - s(y) \leq b(x) \text{ for all } x, y$ 



| • |  |  |
|---|--|--|

**Optimal Revenue** 

**Optimal Revenue** 

Payoff of SELLER from mechanism  $\mu = (q, s)$ 

**Optimal Revenue** 

Payoff of SELLER from mechanism  $\mu = (q, s)$ 

### ${old R}(\mu;X):=\mathbb{E}[{old s}(X)]$

**Optimal Revenue** 

Payoff of SELLER from mechanism  $\mu = (q, s)$ 

## ${old R}(\mu;X):=\mathbb{E}[{old s}(X)]$

Optimal REVENUE

**Optimal Revenue** 

Payoff of SELLER from mechanism  $\mu = (q, s)$ 

$${f R}(\mu;X):=\mathbb{E}[{f s}(X)]$$

Optimal REVENUE

$$\mathsf{Rev}(X) := \sup_{\mu} \mathbb{R}(\mu; X)$$

supremum is taken over all (IR and IC) mechanisms  $\mu$ 

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

 $x \geq y$  implies  $\mathbf{s}(x) \geq \mathbf{s}(y)$ 

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

 $x \geq y$  implies  $\mathbf{s}(x) \geq \mathbf{s}(y)$ 

• MONREV(X) := maximal revenueobtainable by **MONOTONIC** mechanisms

## **Monotonicity of Revenue**



## **Monotonicity of Revenue**

## **Claim.** If $X \ge Y$ (more generally: if X first order stochastically dominates Y) then

### $\mathsf{MONRev}(X) \geq \mathsf{MONRev}(Y)$

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

 $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$ 

**Proof.** For every monotonic mechanism  $\mu$ :  $X \ge Y \Rightarrow s(X) \ge s(Y)$ 

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

 $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$ 

**Proof.** For every monotonic mechanism  $\mu$ :  $X \ge Y \Rightarrow s(X) \ge s(Y)$  $\Rightarrow \mathbb{E}[s(X)] \ge \mathbb{E}[s(Y)]$ 

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

 $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$ 

**Proof.** For every monotonic mechanism  $\mu$ :  $X \ge Y \Rightarrow s(X) \ge s(Y)$   $\Rightarrow \mathbb{E}[s(X)] \ge \mathbb{E}[s(Y)]$  $R(\mu; X) > R(\mu; Y)$ 

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

 $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$ 

**Proof.** For every monotonic mechanism  $\mu$ :  $X \ge Y \Rightarrow s(X) \ge s(Y)$   $\Rightarrow \mathbb{E}[s(X)] \ge \mathbb{E}[s(Y)]$   $R(\mu; X) \ge R(\mu; Y)$  $\Rightarrow \sup_{\mu} R(\mu; X) \ge \sup_{\mu} R(\mu; Y)$ 

# **Claim.** If $X \ge Y$ (more generally: if X first order stochastically dominates Y) then

#### $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

#### $\mathsf{MonRev}(X) \geq \mathsf{MonRev}(Y)$

For k = 1:

#### $\mathsf{Rev}(X) \geq \mathsf{Rev}(Y)$

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

#### $\mathsf{MONRev}(X) \geq \mathsf{MONRev}(Y)$

For k = 1:

#### $\mathsf{Rev}(X) \geq \mathsf{Rev}(Y)$

**Proof 1.** Every one-good (IC) mechanism is monotonic, and so Rev = MonRev

**Claim.** If  $X \ge Y$  (more generally: if X first order stochastically dominates Y) then

#### $\mathsf{MONRev}(X) \geq \mathsf{MONRev}(Y)$

For k = 1:

#### $\mathsf{Rev}(X) \geq \mathsf{Rev}(Y)$

**Proof 1.** Every one-good (IC) mechanism is monotonic, and so Rev = MonRev

**Proof 2.** For every price p $p \cdot \mathbb{P}[X > p] \ge p \cdot \mathbb{P}[Y > p]$ 



## **Monotonic Revenue**

SERGIU HART (C) 2022 - p. 30

#### **Theorem.** For every k-good valuation X $MONREV(X) \leq k \cdot BREV(X)$

#### **Theorem.** For every k-good valuation X $MONREV(X) \le k \cdot BREV(X)$

Proof. Put  $X^{max} := max_{1 \leq i \leq k}X_i$  .

SERGIU HART (C) 2022 - p. 31

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot BREV(X)$ 

Proof. Put  $X^{max} := max_{1 \leq i \leq k}X_i$  . Then:  $\mathsf{MONREV}(X_1,...,X_k)$ 

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot BREV(X)$ 

Proof. Put  $X^{max} := max_{1 \leq i \leq k} X_i$  .

Then:  $MONREV(X_1, ..., X_k)$  $\leq MONREV(X^{max}, ..., X^{max})$ 

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot BREV(X)$ 

Proof. Put 
$$X^{max} := max_{1 \leq i \leq k} X_i$$
 .

Then:  $MonRev(X_1, ..., X_k)$   $\leq MonRev(X^{max}, ..., X^{max})$  $\leq Rev(X^{max}, ..., X^{max})$ 

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot BREV(X)$ 

Proof. Put 
$$X^{max} := max_{1 \leq i \leq k} X_i$$
 .

Then:  $\mathsf{MONREV}(X_1, ..., X_k)$   $\leq \mathsf{MONREV}(X^{max}, ..., X^{max})$   $\leq \mathsf{REV}(X^{max}, ..., X^{max})$  $= k \cdot \mathsf{REV}(X^{max})$ 

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot BREV(X)$ 

Proof. Put 
$$X^{max} := max_{1 \leq i \leq k} X_i$$
 .

Then:  $MONREV(X_1, ..., X_k)$   $\leq MONREV(X^{max}, ..., X^{max})$   $\leq REV(X^{max}, ..., X^{max})$   $= k \cdot REV(X^{max})$   $\leq k \cdot REV(X_1 + ... + X_k)$ 

### **Monotonic Revenue**

#### **Monotonic Revenue**

#### **Corollary.** Let $k \geq 2$ .

**Corollary.** Let  $k \geq 2$ .

• There are k-good valuations X such that  $\mathsf{MONREV}(X) = 1 \quad \text{and} \quad \mathsf{REV}(X) = \infty$ 

**Corollary.** Let  $k \geq 2$ .

There are k-good valuations X such that
 MONREV(X) = 1 and REV(X) = ∞

 For every ε > 0 there are bounded X s.t.

 $\mathsf{MonRev}(X) < \varepsilon \cdot \mathsf{Rev}(X)$ 

Corollary. Let k > 2.

**Proof**.

• There are k-good valuations X such that **MONREV**(X) = 1 and  $\text{REV}(X) = \infty$ 

• For every  $\varepsilon > 0$  there are bounded X s.t.  $\mathsf{MONRev}(X) < \varepsilon \cdot \mathsf{Rev}(X)$ 

 $\frac{\mathsf{MONRev}}{\mathsf{Rev}} \leq k \cdot \frac{\mathsf{BRev}}{\mathsf{Rev}}$ Use Hart and Nisan 2013/2019 (Briest et al 2010/2015 for k > 3) for **BREV** 

**Corollary.** Let  $k \geq 2$ .

There are k-good valuations X such that
 MONREV(X) = 1 and REV(X) = ∞

 For every ε > 0 there are bounded X s.t.

 $\mathsf{MonRev}(X) < \varepsilon \cdot \mathsf{Rev}(X)$ 

**Corollary.** Let  $k \geq 2$ .

There are k-good valuations X such that
 MONREV(X) = 1 and REV(X) = ∞

 For every ε > 0 there are bounded X s.t.
 MONREV(X) < ε ⋅ REV(X)</p>

• There are bounded X such that  $\mathsf{MONRev}(X) \leq \frac{k^2}{2^k-1} \cdot \mathsf{DRev}(X)$ 

Corollary. Let  $k \geq 2$ .

There are k-good valuations X such that
 MONREV(X) = 1 and REV(X) = ∞

 For every ε > 0 there are bounded X s.t.

 $\mathsf{MonRev}(X) < \varepsilon \cdot \mathsf{Rev}(X)$ 

$$\mathsf{MONRev}(X) \leq rac{k^2}{2^k-1} \cdot \mathsf{DRev}(X)$$

Proof. Use Hart and Nisan 2013/2019

## **Monotonic vs. Separate**



#### **Theorem.** For every k-good valuation X**MONREV** $(X) \le k \cdot SREV(X)$

## **Monotonic vs. Separate**

**Theorem.** For every k-good valuation X**MONREV** $(X) \le k \cdot SREV(X)$ 

Proof. Put 
$$X^{max} := max_{1 \leq i \leq k} X_i$$
 .

Then:  $MonRev(X_1,...,X_k)$   $\leq MonRev(X^{max},...,X^{max})$   $\leq Rev(X^{max},...,X^{max})$   $= k \cdot Rev(X^{max})$ 

## **Monotonic vs. Separate**

**Theorem.** For every k-good valuation X**MONREV** $(X) \le k \cdot SREV(X)$ 

Proof. Put 
$$X^{max} := max_{1 \leq i \leq k} X_i$$
 .

Then:  $MONREV(X_1, ..., X_k)$   $\leq MONREV(X^{max}, ..., X^{max})$   $\leq REV(X^{max}, ..., X^{max})$   $= k \cdot REV(X^{max})$   $\leq k \cdot (REV(X_1) + ... + REV(X_k))$ 



**Theorem.** For every k-good valuation X

 $MONREV(X) \le k \cdot SREV(X)$ 

Then:  $MonRev(X_1,...,X_k) \leq MonRev(X^{max},...,X^{max}) \leq Rev(X^{max},...,X^{max}) = k \cdot Rev(X^{max}) \leq k \cdot (Rev(X_1) + ... + Rev(X_k))$ 

**Monotonic vs. Separate** 

 $\mathbb{P}[X^{max} > p] \leq \mathbb{P}[X_1 > p] + ... + \mathbb{P}[X_k > p]$ 

## **Monotonic vs. Separate**

**Theorem.** For every k-good valuation X  $MONREV(X) \leq k \cdot SREV(X)$ 

Proof. Put 
$$X^{max} \ := \ max_{1 \leq i \leq k} X_i$$
 .

Then:  $MONREV(X_1, ..., X_k)$   $\leq MONREV(X^{max}, ..., X^{max})$   $\leq REV(X^{max}, ..., X^{max})$   $= k \cdot REV(X^{max})$   $\leq k \cdot (REV(X_1) + ... + REV(X_k))$ 

 $p \cdot \mathbb{P}[X^{max} > p] \leq p \cdot (\mathbb{P}[X_1 > p] + ... + \mathbb{P}[X_k > p])$ 

#### Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{BREV(X), SREV(X)\}$

#### Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{BREV(X), SREV(X)\}$



SERGIU HART © 2022 - p. 34

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

- Tight?
  - BREV: Yes

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

Jight?

BREV: Yes

There are k i.i.d. goods s.t.

 $\mathsf{SRev}(X) > (k - \varepsilon) \mathsf{BRev}(X)$ 

(Hart and Nisan 2012/2017)

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

#### Jight?

#### BREV: Yes

There are k i.i.d. goods s.t.  $MONREV(X) \ge SREV(X) > (k - \varepsilon)BREV(X)$ (Hart and Nisan 2012/2017)

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

- Jight?
  - BREV: Yes
  - **SREV:** ??

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

Jight?

BREV: Yes

**SREV:** ??

There are k i.i.d. goods s.t.

 $\mathsf{BRev}(X) \geq \Omega(\log k) {\boldsymbol{\cdot}} \mathsf{SRev}(X)$ 

(Hart and Nisan 2012/2017)

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

- Jight?
  - BREV: Yes
  - **SREV:** ??

There are k i.i.d. goods s.t.

 $\mathsf{MONRev}(X) \geq \mathsf{BRev}(X) \geq \Omega(\log k) \cdot \mathsf{SRev}(X)$ 

(Hart and Nisan 2012/2017)

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{\mathsf{BREV}(X), \mathsf{SREV}(X)\}$ 

- Tight?
  - BREV: Yes
  - SREV: ?? [between  $\Omega(\log k)$  and k]

There are k i.i.d. goods s.t.

 $\mathsf{MONRev}(X) \geq \mathsf{BRev}(X) \geq \Omega(\log k) \cdot \mathsf{SRev}(X)$ 

(Hart and Nisan 2012/2017)

Theorem. For every k-good valuation X MONREV $(X) \leq k \cdot \min\{BREV(X), SREV(X)\}$ 

- Jight?
  - BREV: Yes
  - SREV: ?? [between  $\Omega(\log k)$  and k]



SERGIU HART (C) 2022 - p. 35











\$10 good 2 \$10 \$40

**MONOTONIC** 

**Symmetric Deterministic** 

SERGIU HART (C) 2022 - p. 38





SERGIU HART C 2022 - p. 39



#### Hart and Reny 2014

SERGIU HART ⓒ 2022 - p. 40

#### Symmetric deterministic mechanisms

#### Hart and Reny 2014

SERGIU HART C 2022 - p. 40

- Symmetric deterministic mechanisms
- Submodular mechanisms

#### Hart and Reny 2014



# **Allocation-Monotonic Mechanism**



# Monotonic



# **NOT Allocation-Monotonic**





# Allocation-Monotonic Mechanisms

SERGIU HART © 2022 - p. 43

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

 $x \geq y$  implies  $\mathbf{s}(x) \geq \mathbf{s}(y)$ 

# **Allocation-Monotonic Mechanisms**

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

$$x \geq y$$
 implies  ${\color{black} s}(x) \geq {\color{black} s}(y)$ 

• A mechanism  $\mu = (q, s)$  is **ALLOCATION MONOTONIC** if its allocation function q is nondecreasing:

$$x \geq y$$
 implies  $\mathbf{q}(x) \geq \mathbf{q}(y)$ 

# **Allocation-Monotonic Mechanisms**

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

$$x \geq y$$
 implies  ${\color{black} s}(x) \geq {\color{black} s}(y)$ 

• A mechanism  $\mu = (q, s)$  is **ALLOCATION MONOTONIC** if its allocation function q is nondecreasing:

$$x \geq y$$
 implies  $q(x) \geq q(y)$ 

• allocation monotonicity  $\Rightarrow$  monotonicity

# **Allocation-Monotonic Mechanisms**

• A mechanism  $\mu = (q, s)$  is **MONOTONIC** if its payment function *s* is nondecreasing:

$$x \geq y$$
 implies  ${\color{black} s}(x) \geq {\color{black} s}(y)$ 

• A mechanism  $\mu = (q, s)$  is ALLOCATION MONOTONIC if its allocation function q is nondecreasing:

$$x \ge y$$
 implies  $q(x) \ge q(y)$ 

 ■ allocation monotonicity ⇒ monotonicity (by IC)





#### not mon not alloc-mon

SERGIU HART (C) 2022 - p. 45





# **Deterministic:** Pricing

# **Deterministic:** Pricing

Let  $\mu = (q, s)$  be a **deterministic** mechanism for k goods. Put  $K := \{1, ..., k\}$ .

# **Deterministic:** Pricing

Let  $\mu = (q, s)$  be a **deterministic** mechanism for k goods. Put  $K := \{1, ..., k\}$ .

• The PRICE of a set of goods  $A \subseteq K$ : p(A) := s(x) for x with q(x) = A

# **Deterministic:** Pricing

Let  $\mu = (q, s)$  be a **deterministic** mechanism for k goods. Put  $K := \{1, ..., k\}$ .

• The PRICE of a set of goods  $A \subseteq K$ : p(A) := s(x) for x with q(x) = A

• If A is never allocated, put  $p(A) := \inf\{p(B) : B \supset A\}$ 

# **Deterministic:** Pricing

Let  $\mu = (q, s)$  be a **deterministic** mechanism for k goods. Put  $K := \{1, ..., k\}$ .

• The PRICE of a set of goods  $A \subseteq K$ : p(A) := s(x) for x with q(x) = A

• If A is never allocated, put  $p(A) := \inf\{p(B) : B \supset A\}$ 

•  $p: 2^K \rightarrow [0, \infty]$  is the (canonical) PRICING FUNCTION of  $\mu$  (nondecreasing function)

• The function p is SUBMODULAR if for all A, B:  $p(A) + p(B) \ge p(A \cup B) + p(A \cap B)$ 

• The function p is SUBMODULAR if for all A, B:  $p(A) + p(B) \ge p(A \cup B) + p(A \cap B)$  $\Leftrightarrow$  for all  $i, j \notin A$ :  $p(A \cup \{i\}) - p(A) \ge p(A \cup \{i, j\}) - p(A \cup \{j\})$ 

• The function p is SUBMODULAR if for all A, B:  $p(A) + p(B) \ge p(A \cup B) + p(A \cap B)$  $\Leftrightarrow$  for all  $i, j \notin A$ :  $p(A \cup \{i\}) - p(A) \ge p(A \cup \{i, j\}) - p(A \cup \{j\})$ Decreasing marginal price

- The function p is SUBMODULAR if for all A, B:  $p(A) + p(B) \ge p(A \cup B) + p(A \cap B)$  $\Leftrightarrow$  for all  $i, j \notin A$ :  $p(A \cup \{i\}) - p(A) \ge p(A \cup \{i, j\}) - p(A \cup \{j\})$ Decreasing marginal price
- The mechanism  $\mu$  is **SUBMODULAR** if its (canonical) pricing function is submodular

#### **Deterministic:** Allocation Monotonic

# **Deterministic:** Allocation Monotonic

Let  $\mu$  be a tie-favorable **deterministic** mechanism

Theorem.  $\mu$  is allocation monotonic  $\Leftrightarrow \mu$  is submodular

 $\{AMON\} = \{SUBMOD\}$ 

SERGIU HART (C) 2022 - p. 48

# **General:** Allocation Monotonicity



# **General:** Allocation Monotonicity

Let  $\mu$  be a tie-favorable general (probabilistic) mechanism

Theorem.

- $\mu$  is submodular
- $\Rightarrow \mu$  is allocation monotonic
- $\Rightarrow \mu$  is separably subadditive

#### $\{\texttt{SUBMOD}\} \subset \{\texttt{AMON}\} \subset \{\texttt{SEP SUBADD}\}$





# **General:** Pricing

Let  $\mu = (q, s)$  be a mechanism for k goods. • The PRICE of an allocation  $g \in [0, 1]^k$ : p(g) := s(x) for x with q(x) = g

- The PRICE of an allocation  $g \in [0,1]^k$ :
   p(g) := s(x) for x with q(x) = g
  - If g is never allocated, put  $p(g) := \sup_x (g \cdot x b(x))$

- The PRICE of an allocation  $g \in [0,1]^k$ : p(g) := s(x) for x with q(x) = g
  - If g is never allocated, put  $p(g) := \sup_x (g \cdot x b(x))$
- $p: [0,1]^k \rightarrow [0,\infty]$  is the (canonical) **PRICING FUNCTION** of  $\mu$  (nondecreasing, convex, closed function)

- The PRICE of an allocation  $g \in [0,1]^k$ : p(g) := s(x) for x with q(x) = g
  - If g is never allocated, put  $p(g) := \sup_x (g \cdot x b(x))$
- $p: [0,1]^k \rightarrow [0,\infty]$  is the (canonical) **PRICING FUNCTION** of  $\mu$  (nondecreasing, convex, closed function)
  - The convex functions b and p are Fenchel conjugates

### **Submodular Pricing**

# **Submodular Pricing**

#### The function p is **SUBMODULAR** if

• for all 
$$g, h$$
 in  $[0, 1]^k$  :  
 $p(g) + p(h) \ge p(g \lor h) + p(g \land h)$ 

# **Submodular Pricing**

The function p is **SUBMODULAR** if

- for all g, h in  $[0, 1]^k$ :  $p(g) + p(h) \ge p(g \lor h) + p(g \land h)$
- $\Leftrightarrow$  for all g and orthogonal  $d_1, d_2 \ge 0$ :  $p(g+d_2) - p(g) \ge p(g+d_1+d_2) - p(g+d_1)$

The function p is **SUBMODULAR** if

- for all g, h in  $[0, 1]^k$ :  $p(g) + p(h) \ge p(g \lor h) + p(g \land h)$
- $\Leftrightarrow$  for all g and orthogonal  $d_1, d_2 \ge 0$ :  $p(g+d_2) - p(g) \ge p(g+d_1+d_2) - p(g+d_1)$

Marginal price of good *i* decreases as allocation of good  $j \neq i$  increases The function p is **SUBMODULAR** if

• for all 
$$g, h$$
 in  $[0, 1]^k$ :  
 $p(g) + p(h) \ge p(g \lor h) + p(g \land h)$ 

 $\Leftrightarrow$  for all g and orthogonal  $d_1, d_2 \ge 0$ :  $p(g+d_2) - p(g) \ge p(g+d_1+d_2) - p(g+d_1)$ 

Marginal price of good *i* decreases as allocation of good  $j \neq i$  increases

• If p is differentiable:  $rac{\partial^2 p}{\partial g_i \partial g_j} \leq 0$  for all i 
eq j



The function p is **SEPARABLY SUBADDITIVE** if

for all orthogonal g, h in  $[0, 1]^k$ :
  $p(g+h) \leq p(g) + p(h)$ 

The function p is **SEPARABLY SUBADDITIVE** if

- for all orthogonal g, h in  $[0, 1]^k$  :  $p(g+h) \leq p(g) + p(h)$
- $\Leftrightarrow$  for all g :  $p(g) \leq p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$

The function p is **SEPARABLY SUBADDITIVE** if

- for all orthogonal g, h in  $[0, 1]^k$  :  $p(g+h) \leq p(g) + p(h)$
- $\Leftrightarrow$  for all g :  $p(g) \leq p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$ 
  - Weaker than subadditivity
     (inequality required for all g, h)

The function p is **SEPARABLY SUBADDITIVE** if

• for all orthogonal g, h in  $[0, 1]^k$  :  $p(g+h) \leq p(g) + p(h)$ 

$$\Leftrightarrow$$
 for all  $g$  : $p(g) \leq p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$ 

- Weaker than subadditivity
   (inequality required for all g, h)
- Weaker than submodularity (by p(0) = 0)

#### **Sub...** Mechanisms

SERGIU HART © 2022 – p. 53

#### Sub... Mechanisms

# • A mechanism $\mu$ is **SUBMODULAR** if its (canonical) pricing function is submodular

#### Sub... Mechanisms

- A mechanism  $\mu$  is **SUBMODULAR** if its (canonical) pricing function is submodular
- A mechanism  $\mu$  is **SEPARABLY SUBADDITIVE** if its (canonical) pricing function is separably subadditive

# **Allocation Monotonicity**



# **Allocation** Monotonicity

Let  $\mu$  be a tie-favorable **deterministic** mechanism

Theorem.  $\mu$  is allocation monotonic  $\Leftrightarrow \mu$  is submodular

 $\{AMON\} = \{SUBMOD\}$ 

SERGIU HART (C) 2022 - p. 54







#### **Deterministic mechanisms**

 $\mu$  allocation monotonic rightarrow [\*] b supermodular rightarrow [FC] p submodular  $(\mu$  submodular)

SERGIU HART (C) 2022 - p. 55



#### 

[FC] = p and b are Fenchel Conjugates

SERGIU HART © 2022 - p. 55







#### [\*] $\mu$ allocation monotonic $\Leftrightarrow b$ supermodular



- [\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular
  - **Proof.** Assume that **b** is differentiable, then  $q = \nabla b$

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that *b* is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that **b** is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then:

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that **b** is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then: **q** nondecreasing

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that *b* is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then: q nondecreasing  $\Leftrightarrow \nabla q \ge 0$ 

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that *b* is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then:  $\boldsymbol{q}$  nondecreasing  $\Leftrightarrow \ \boldsymbol{\nabla} \boldsymbol{q} \ge 0$  $\Leftrightarrow \ \boldsymbol{\nabla}^2 \boldsymbol{b} \ge 0$ 

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that **b** is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then: q nondecreasing  $\Leftrightarrow \nabla q \ge 0$   $\Leftrightarrow \nabla^2 b \ge 0$  $\Leftrightarrow b \ge 0$ 

 $\Leftrightarrow$  **b** supermodular

[\*]  $\mu$  allocation monotonic  $\Leftrightarrow b$  supermodular

• **Proof.** Assume that **b** is differentiable, then  $q = \nabla b$ (because  $b(x) = \max_y(q(y) \cdot x - s(y))$  $= q(x) \cdot x - s(x)$ ).

Then: q nondecreasing

$$\Leftrightarrow \nabla \boldsymbol{q} \ge 0 \\ \Leftrightarrow \nabla^2 \boldsymbol{b} \ge 0$$

 $\Leftrightarrow$  **b** supermodular

Without differentiability: "tie-favorable"



```
\mu allocation monotonic

rightarrow [*]

b supermodular

rightarrow [FC]

p submodular

(\mu submodular)
```

[FC] = p and b are Fenchel Conjugates

SERGIU HART C 2022 - p. 57

### **General:** Allocation Monotonicity



### **General:** Allocation Monotonicity

Let  $\mu$  be a tie-favorable general (probabilistic) mechanism

Theorem.

- $\mu$  is submodular
- $\Rightarrow \mu$  is allocation monotonic
- $\Rightarrow \mu$  is separably subadditive

### $\{\texttt{SUBMOD}\} \subset \{\texttt{AMON}\} \subset \{\texttt{SEP SUBADD}\}$







#### **General mechanisms**

 $\begin{array}{ll} \mu \text{ allocation monotonic} \\ & \updownarrow [*] \\ \textbf{b} \text{ supermodular } \Rightarrow \textbf{b} \text{ separably superadditive} \\ & \uparrow [\mathsf{FC}] & & \updownarrow [\mathsf{FC}] \\ \textbf{p} \text{ submodular } \Rightarrow \textbf{p} \text{ separably subadditive} \\ (\mu \text{ submodular}) & & (\mu \text{ separably subadditive}) \end{array}$ 

[FC] = p and b are Fenchel Conjugates









#### **b** and **p** are Fenchel conjugates

#### • **b** and **p** are Fenchel conjugates $\Rightarrow \nabla^2 \mathbf{b} = (\nabla^2 \mathbf{p})^{-1}$

• **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 b = (\nabla^2 p)^{-1}$ 

Therefore:

• **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 \mathbf{b} = (\nabla^2 \mathbf{p})^{-1}$ 

Therefore: *p* submodular

- **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 b = (\nabla^2 p)^{-1}$
- Therefore:
   *p* submodular
    $\Leftrightarrow$  Off-diagonal entries of  $\nabla^2 p$  are  $\leq 0$

- **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 \mathbf{b} = (\nabla^2 \mathbf{p})^{-1}$
- Therefore:
  - *p* submodular
  - $\Leftrightarrow$  Off-diagonal entries of  $\nabla^2 p$  are  $\leq 0$
  - $\Rightarrow$  Off-diagonal entries of  $(\nabla^2 p)^{-1}$  are  $\geq 0$

- **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 b = (\nabla^2 p)^{-1}$
- Therefore:
  - **p** submodular
  - $\Leftrightarrow$  Off-diagonal entries of  $\nabla^2 p$  are  $\leq 0$
  - $\Rightarrow$  Off-diagonal entries of  $(\nabla^2 p)^{-1}$  are  $\geq 0$
  - $\Leftrightarrow$  **b** supermodular

- **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 \mathbf{b} = (\nabla^2 \mathbf{p})^{-1}$
- Therefore:
  - **p** submodular
  - $\Leftrightarrow$  Off-diagonal entries of  $\nabla^2 p$  are  $\leq 0$
  - $\Rightarrow$  Off-diagonal entries of  $(\nabla^2 p)^{-1}$  are  $\geq 0$
  - $\Leftrightarrow$  **b** supermodular

- **b** and **p** are Fenchel conjugates  $\Rightarrow \nabla^2 \mathbf{b} = (\nabla^2 \mathbf{p})^{-1}$
- Therefore:
  - **p** submodular
  - $\Leftrightarrow$  Off-diagonal entries of  $\nabla^2 p$  are  $\leq 0$
  - $\Rightarrow$  Off-diagonal entries of  $(\nabla^2 p)^{-1}$  are  $\geq 0$
  - $\Leftrightarrow$  **b** supermodular

•  $\notin$  : already for QUADRATIC mechanisms  $q(x) = Ax, \ s(x) = b(x) = \frac{1}{2}x^T\!Ax, \ p(g) = \frac{1}{2}g^T\!A^{-1}g$ 



#### **General mechanisms**

 $\begin{array}{ll} \mu \text{ allocation monotonic} \\ & \updownarrow [*] \\ \textbf{b} \text{ supermodular } \Rightarrow \textbf{b} \text{ separably superadditive} \\ & \uparrow [\mathsf{FC}] & & \updownarrow [\mathsf{FC}] \\ \textbf{p} \text{ submodular } \Rightarrow \textbf{p} \text{ separably subadditive} \\ (\mu \text{ submodular}) & & (\mu \text{ separably subadditive}) \end{array}$ 

[FC] = p and b are Fenchel Conjugates

### **Allocation-Monotonic Revenue**

### **Allocation-Monotonic Revenue**

**Theorem.** For every k-good valuation X  $AMONREV(X) \leq 2\ln(2k) \cdot SREV(X)$ 









🥒 Put

 $p'(g) := p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$ 



Put

$$p'(g) := p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$$

#### • Then: p' is separable



🥒 Put

$$p'(g) := p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$$

• Then: p' is separable, and

$$rac{1}{k}p'\leq p\leq p'$$

(p nondecreasing and separably subadditive)



🥒 Put

$$p'(g) := p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$$

• Then: p' is separable, and

$$rac{1}{k}p'\leq p\leq p'$$

(p nondecreasing and separably subadditive)

Apply a result of Chawla, Teng, and Tzamos







**Theorem** (*Chawla, Teng, and Tzamos 2019*) Let  $\mathcal{P}'$  be a cone of nondecreasing and closed k-good pricing functions. Assume that there are constants  $0 < c_1 < c_2 < \infty$  such that for every  $p \in \mathcal{P}$  there is  $p' \in \mathcal{P}'$  satisfying

$$c_1p'(g)\leq p(g)\leq c_2p'(g)$$

for every g; then

$$\mathcal{P} extsf{-}\mathsf{Rev}(X) \leq 2\ln\left(2rac{c_2}{c_1}
ight)\cdot\mathcal{P}' extsf{-}\mathsf{Rev}(X)$$

for every k-good valuation X.



**Proof.** Let *p* be the canonical pricing function of an allocation monotonic mechanism.

🥒 Put

$$p'(g) := p(g_1, 0, ..., 0) + ... + p(0, ..., 0, g_k)$$

• Then: p' is separable, and

$$rac{1}{k}p'\leq p\leq p'$$

(p nondecreasing and separably subadditive)

Apply a result of Chawla, Teng, and Tzamos

### **Allocation-Monotonic Revenue**

**Theorem.** For every k-good valuation X  $AMONREV(X) \leq 2\ln(2k) \cdot SREV(X)$ 





SERGIU HART (C) 2022 - p. 67

### **Symmetric Deterministic Revenue**



### **Symmetric Deterministic Revenue**

Theorem. For every k-good valuation X SYMDREV $(X) \leq O(\log^2 k) \cdot SREV(X)$ 







#### • Theorem. For every k-good valuation XSUPERMODSYMDREV $(X) \le H(k) \cdot SREV(X)$ where $H(k) := 1 + \frac{1}{2} + ... + \frac{1}{k} \sim \ln k$



- Theorem. For every k-good valuation X SUPERMODSYMDREV $(X) \le H(k) \cdot SREV(X)$ where  $H(k) := 1 + \frac{1}{2} + ... + \frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism



- Theorem. For every k-good valuation X SUPERMODSYMDREV $(X) \leq H(k) \cdot SREV(X)$ where  $H(k) := 1 + \frac{1}{2} + ... + \frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
  - Put: d(m) := p(m) p(m 1) $d'(m) := \max\{d(n) : 1 \le n \le m\}$ p'(m) := d'(1) + ... + d'(m)



- Theorem. For every k-good valuation X SUPERMODSYMDREV $(X) \leq H(k) \cdot SREV(X)$ where  $H(k) := 1 + \frac{1}{2} + ... + \frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
  - Put: d(m) := p(m) p(m 1) $d'(m) := \max\{d(n) : 1 \le n \le m\}$ p'(m) := d'(1) + ... + d'(m)
  - Then: p' supermodular and  $\frac{1}{k}p' \leq p \leq p'$



- Theorem. For every k-good valuation X SUPERMODSYMDREV $(X) \le H(k) \cdot SREV(X)$ where  $H(k) := 1 + \frac{1}{2} + ... + \frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
  - Put: d(m) := p(m) p(m 1) $d'(m) := \max\{d(n) : 1 \le n \le m\}$ p'(m) := d'(1) + ... + d'(m)
  - Then: p' supermodular and  $\frac{1}{k}p' \leq p \leq p'$
- Apply the result of Chawla, Teng, and Tzamos



# Summary

SERGIU HART © 2022 - p. 70



#### • MONREV $\leq k \cdot \min\{\mathsf{BRev}, \mathsf{SRev}\}$

# • MONREV $\leq k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$ • $k \geq 2$ : $\inf \frac{\mathsf{MONREV}}{\mathsf{REV}} = 0$

• MONREV  $\leq k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$ •  $k \geq 2$ :  $\inf \frac{\mathsf{MONREV}}{\mathsf{REV}} = 0$ •  $\Omega(\log k) \leq \inf \frac{\mathsf{MONREV}}{\mathsf{SREV}} \leq k$  (tight?)

MONREV  $\leq k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$   $k \geq 2$ :  $\inf \frac{\mathsf{MONREV}}{\mathsf{REV}} = 0$   $\Omega(\log k) \leq \inf \frac{\mathsf{MONREV}}{\mathsf{SREV}} \leq k$  (tight?)
AMONREV  $\leq O(\log k) \cdot \mathsf{SREV}$ 

**MONREV**  $< k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$ •  $k \ge 2$ :  $\inf \frac{\mathsf{MONReV}}{\mathsf{ReV}} = 0$ •  $\Omega(\log k) \leq \inf \frac{\mathsf{MonRev}}{\mathsf{SRev}} \leq k$  (tight?) • AMONREV  $< O(\log k) \cdot SREV$ **SYMDREV**  $< O(\log^2 k) \cdot SREV$ 

**MONREV**  $< k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$ •  $k \ge 2$ :  $\inf \frac{\mathsf{MONReV}}{\mathsf{ReV}} = 0$ •  $\Omega(\log k) \leq \inf \frac{\mathsf{MonRev}}{\mathsf{SRev}} \leq k$  (tight?) • AMONREV  $< O(\log k) \cdot SREV$ **SYMDREV**  $< O(\log^2 k) \cdot SREV$ 

Deterministic: {AMON} = {SUBMOD}

**MONREV**  $< k \cdot \min\{\mathsf{BREV}, \mathsf{SREV}\}$ •  $k \ge 2$ :  $\inf \frac{\mathsf{MONReV}}{\mathsf{ReV}} = 0$ •  $\Omega(\log k) \leq \inf \frac{\mathsf{MonRev}}{\mathsf{SRev}} \leq k$  (tight?) • AMONREV  $< O(\log k) \cdot SREV$ **SYMDREV**  $< O(\log^2 k) \cdot SREV$ **Deterministic:**  $\{AMON\} = \{SUBMOD\}$ •  $\{SUBMOD\} \subset \{AMON\} \subset \{SEP SUBADD\}$ 







## Next time, get a NON-MONOTONIC speaker ...

SERGIU HART (C) 2022 - p. 72



## Next time, get a NON-MONOTONIC speaker ...

SERGIU HART (C) 2022 - p. 72