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A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

OBJECTIVE:

MAXIMIZE the REVENUE of the SELLER

REV(X) := optimal revenue from valuation X
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BUYER chooses between:
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get nothing and pay nothing

p such that REVENUE R = p · Pr[X > p]
= p · (1 − F (p)) is MAXIMAL
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One Good: Example

X ∼

{

10 with probability 1/2

22 with probability 1/2

p = 10 → R = 10 · 1 = 10

p = 22 → R = 22 · 1/2 = 11 ←

REV(X) = 11 p = 22
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Let N be a class of “simple” k-good
mechanisms.

There are valuations X such that

N -REV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

N -REV(X) < ε · REV(X)

Hart and Nisan 2013/2019
(Briest, Chawla, Kleinberg, Weinberg 2010/2015

for k ≥ 3)
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Multiple Goods (k ≥ 2)

Let N be a class of “simple” k-good
mechanisms.

For example:

selling separately

selling bundled

all deterministic mechanisms

mechanisms with bounded “menus”
(at most m choices, for finite m)
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An extremely complex problem

No simple useful characterization of solution

Hard to solve even in simple cases

Randomized outcomes: sell lotteries

Arbitrarily many (even infinitely many)
outcomes

Simple mechanisms cannot guarantee any
positive fraction of the optimal revenue
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correct for one good
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Hart and Reny 2014
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Menu

good 1 $ 10

good 2 $ 20

both $ 40

x1

x2

q = (0, 0)

s = 0

q = (1, 0)

s = 10

q = (0, 1)

s = 20

(10, 23) pays $ 20

(20, 27) pays $ 10

q = (1, 1)

s = 40

Optimal for some X?

YES!
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Non-Monotonicity

There are simple 2-good valuations X for
which the above NON-MONOTONIC

mechanism MAXIMIZES REVENUE

moreover: unique maximizer; robust

There are simple 2-good valuations X, X ′

such that

X ′ ≥ X but REV(X ′) < REV(X)
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Non-Monotonic Mechanisms

Conclusion: NON-MONOTONIC mechanisms
are needed in order to obtain the maximal
revenue

Question: How much additional revenue can
one gain by using NON-MONOTONIC

mechanisms?

Answer 1: a non-negligible amount

Answer 2: most of the revenue !
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Mechanisms

(Direct) mechanism µ = (q, s):

Allocation function

q = (q1, q2, ..., qk) : R
k
+

→ [0, 1]k

qi(x) = probability of getting good i for
BUYER with valuation x

Payment function

s : R
k
+

→ R

s(x) = payment from BUYER with valuation
x to SELLER
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Mechanism

BUYER payoff function

b(x) = q(x) · x − s(x)

INDIVIDUAL RATIONALITY (IR)

b(x) ≥ 0 for all x

INCENTIVE COMPATIBILITY (IC)

q(y) · x − s(y) ≤ b(x) for all x, y
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Optimal Revenue

Given a random valuation X

Payoff of SELLER from mechanism µ = (q, s)

R(µ; X) := E[s(X)]

Optimal REVENUE

REV(X) := sup
µ

R(µ; X)

supremum is taken over all (IR and IC)
mechanisms µ
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Monotonic Mechanisms

A mechanism µ = (q, s) is MONOTONIC if its
payment function s is nondecreasing:

x ≥ y implies s(x) ≥ s(y)

MONREV(X) := maximal revenue
obtainable by MONOTONIC mechanisms
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Monotonicity of Revenue

Claim. If X ≥ Y (more generally: if X first order
stochastically dominates Y ) then

MONREV(X) ≥ MONREV(Y )

For k = 1:

REV(X) ≥ REV(Y )

Proof 1. Every one-good (IC) mechanism is
monotonic, and so REV = MONREV

Proof 2. For every price p

p · P[X > p] ≥ p · P[Y > p]
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Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .
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Monotonic vs. Bundled

Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
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Monotonic vs. Bundled

Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
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Monotonic vs. Bundled

Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
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Monotonic vs. Bundled

Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
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Monotonic vs. Bundled

Theorem. For every k-good valuation X

MONREV(X) ≤ k · BREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
≤ k · REV(X1 + ... + Xk)

SERGIU HART c© 2022 – p. 31



Monotonic Revenue

SERGIU HART c© 2022 – p. 32



Monotonic Revenue

Corollary. Let k ≥ 2.
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

MONREV(X) < ε · REV(X)
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

MONREV(X) < ε · REV(X)

Proof. MONREV

REV
≤ k ·

BREV

REV

Use Hart and Nisan 2013/2019 (Briest et al
2010/2015 for k ≥ 3) for BREV
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

MONREV(X) < ε · REV(X)
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

MONREV(X) < ε · REV(X)

There are bounded X such that

MONREV(X) ≤
k2

2k − 1
· DREV(X)
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Monotonic Revenue Is Low

Corollary. Let k ≥ 2.

There are k-good valuations X such that

MONREV(X) = 1 and REV(X) = ∞

For every ε > 0 there are bounded X s.t.

MONREV(X) < ε · REV(X)

There are bounded X such that

MONREV(X) ≤
k2

2k − 1
· DREV(X)

Proof. Use Hart and Nisan 2013/2019
SERGIU HART c© 2022 – p. 32
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Monotonic vs. Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · SREV(X)
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Monotonic vs. Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · SREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
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Monotonic vs. Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · SREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
≤ k · (REV(X1) + ... + REV(Xk))
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Monotonic vs. Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · SREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
≤ k · (REV(X1) + ... + REV(Xk))

P[Xmax > p] ≤ P[X1 > p]+...+P[Xk > p]
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Monotonic vs. Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · SREV(X)

Proof. Put Xmax := max1≤i≤kXi .

Then: MONREV(X1, ..., Xk)
≤ MONREV(Xmax, ..., Xmax)
≤ REV(Xmax, ..., Xmax)
= k · REV(Xmax)
≤ k · (REV(X1) + ... + REV(Xk))

p·P[Xmax > p] ≤ p·(P[X1 > p]+...+P[Xk > p])
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

There are k i.i.d. goods s.t.

SREV(X) > (k−ε)BREV(X)

(Hart and Nisan 2012/2017)
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

There are k i.i.d. goods s.t.

MONREV(X) ≥ SREV(X) > (k−ε)BREV(X)

(Hart and Nisan 2012/2017)
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

SREV: ??
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

SREV: ??

There are k i.i.d. goods s.t.

BREV(X) ≥ Ω(log k)·SREV(X)

(Hart and Nisan 2012/2017)
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

SREV: ??

There are k i.i.d. goods s.t.

MONREV(X) ≥ BREV(X) ≥ Ω(log k)·SREV(X)

(Hart and Nisan 2012/2017)
SERGIU HART c© 2022 – p. 34



Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

SREV: ?? [between Ω(log k) and k]

There are k i.i.d. goods s.t.

MONREV(X) ≥ BREV(X) ≥ Ω(log k)·SREV(X)

(Hart and Nisan 2012/2017)
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Monotonic vs. Bundled/Separate

Theorem. For every k-good valuation X

MONREV(X) ≤ k · min{BREV(X), SREV(X)}

Tight?

BREV: Yes

SREV: ?? [between Ω(log k) and k]
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Non-Monotonic Mechanism

Menu

good 1 $ 10

good 2 $ 20

both $ 40

x1

x2

q = (0, 0)

s = 0

q = (1, 0)

s = 10

q = (0, 1)

s = 20

q = (1, 1)

s = 40

(10, 23) pays $ 20

(20, 27) pays $ 10

Optimal for some X?

YES!
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Non-Monotonic Mechanism

Menu

good 1 $ 10

good 2 $ 20

both $ 40

x1

x2

0

20

10

40
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Monotonic Mechanism

Menu

good 1 $ 10

good 2 $ 10

both $ 40

x1

x2

0

10

10

40
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Monotonic Mechanism

Menu

good 1 $ 10

good 2 $ 10

both $ 40

x1

x2

0

10

10

40

MONOTONIC
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Monotonic Mechanism

Menu

good 1 $ 10

good 2 $ 10

both $ 40

x1

x2

0

10

10

40

MONOTONIC

Symmetric

Deterministic
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Monotonic Mechanism

Menu

good 1 $ 30

good 2 $ 30

both $ 40

x1

x2

0

30

30

40
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Monotonic Mechanism

Menu

good 1 $ 30

good 2 $ 30

both $ 40

x1

x2

0

30

30

40

MONOTONIC
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Monotonic Mechanism

Menu

good 1 $ 30

good 2 $ 30

both $ 40

x1

x2

0

30

30

40

MONOTONIC

Subadditive

(Submodular)
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Classes of Monotonic Mechanisms

Hart and Reny 2014
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Classes of Monotonic Mechanisms

Symmetric deterministic mechanisms

Hart and Reny 2014
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Classes of Monotonic Mechanisms

Symmetric deterministic mechanisms

Submodular mechanisms

Hart and Reny 2014
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Monotonic Mechanism

Menu

good 1 $ 30

good 2 $ 30

both $ 40

x1

x2

0

30

30

40

MONOTONIC

Subadditive

(Submodular)
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Allocation-Monotonic Mechanism

Menu

good 1 $ 30

good 2 $ 30

both $ 40

x1

x2

0

30

30

40

ALLOCATION-MONOTONIC

Subadditive

(Submodular)
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Monotonic

Menu

good 1 $ 10

good 2 $ 10

both $ 40

x1

x2

0

10

10

40

MONOTONIC

Symmetric

Deterministic
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NOT Allocation-Monotonic

Menu

good 1 $ 10

good 2 $ 10

both $ 40

x1

x2

0

10

10

40

NOT ALLOCATION-MONOTONIC

Symmetric

Deterministic
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Allocation-Monotonic
Mechanisms
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Monotonic Mechanisms
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Monotonic Mechanisms

A mechanism µ = (q, s) is MONOTONIC if its
payment function s is nondecreasing:

x ≥ y implies s(x) ≥ s(y)
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Allocation-Monotonic Mechanisms

A mechanism µ = (q, s) is MONOTONIC if its
payment function s is nondecreasing:

x ≥ y implies s(x) ≥ s(y)

A mechanism µ = (q, s) is ALLOCATION

MONOTONIC if its allocation function q is
nondecreasing:

x ≥ y implies q(x) ≥ q(y)

SERGIU HART c© 2022 – p. 44



Allocation-Monotonic Mechanisms

A mechanism µ = (q, s) is MONOTONIC if its
payment function s is nondecreasing:

x ≥ y implies s(x) ≥ s(y)

A mechanism µ = (q, s) is ALLOCATION

MONOTONIC if its allocation function q is
nondecreasing:

x ≥ y implies q(x) ≥ q(y)

allocation monotonicity ⇒ monotonicity
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Allocation-Monotonic Mechanisms

A mechanism µ = (q, s) is MONOTONIC if its
payment function s is nondecreasing:

x ≥ y implies s(x) ≥ s(y)

A mechanism µ = (q, s) is ALLOCATION

MONOTONIC if its allocation function q is
nondecreasing:

x ≥ y implies q(x) ≥ q(y)

allocation monotonicity ⇒ monotonicity
(by IC)

SERGIU HART c© 2022 – p. 44



2-Good Deterministic Mechanisms
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2-Good Deterministic Mechanisms

x1

x2

0

20

10

40

not mon

not alloc-mon
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2-Good Deterministic Mechanisms

x1

x2

0

20

10

40

not mon

not alloc-mon

x1

x2

0

10

10

40

mon

not alloc-mon
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2-Good Deterministic Mechanisms

x1

x2

0

20

10

40

not mon

not alloc-mon

x1

x2

0

10

10

40

mon

not alloc-mon

x1

x2

0
30

30
40

mon

alloc-mon

SERGIU HART c© 2022 – p. 45
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Deterministic: Pricing

Let µ = (q, s) be a deterministic mechanism
for k goods. Put K := {1, ..., k}.
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Deterministic: Pricing

Let µ = (q, s) be a deterministic mechanism
for k goods. Put K := {1, ..., k}.

The PRICE of a set of goods A ⊆ K:

p(A) := s(x) for x with q(x) = A
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Deterministic: Pricing

Let µ = (q, s) be a deterministic mechanism
for k goods. Put K := {1, ..., k}.

The PRICE of a set of goods A ⊆ K:

p(A) := s(x) for x with q(x) = A

If A is never allocated, put
p(A) := inf{p(B) : B ⊃ A}
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Deterministic: Pricing

Let µ = (q, s) be a deterministic mechanism
for k goods. Put K := {1, ..., k}.

The PRICE of a set of goods A ⊆ K:

p(A) := s(x) for x with q(x) = A

If A is never allocated, put
p(A) := inf{p(B) : B ⊃ A}

p : 2K → [0, ∞] is the (canonical) PRICING

FUNCTION of µ (nondecreasing function)
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Deterministic: Submodular
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Deterministic: Submodular

The function p is SUBMODULAR if
for all A, B :

p(A) + p(B) ≥ p(A ∪ B) + p(A ∩ B)
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Deterministic: Submodular

The function p is SUBMODULAR if
for all A, B :

p(A) + p(B) ≥ p(A ∪ B) + p(A ∩ B)

⇔ for all i, j /∈ A :

p(A∪{i})−p(A) ≥ p(A∪{i, j})−p(A∪{j})
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Deterministic: Submodular

The function p is SUBMODULAR if
for all A, B :

p(A) + p(B) ≥ p(A ∪ B) + p(A ∩ B)

⇔ for all i, j /∈ A :

p(A∪{i})−p(A) ≥ p(A∪{i, j})−p(A∪{j})

Decreasing marginal price
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Deterministic: Submodular

The function p is SUBMODULAR if
for all A, B :

p(A) + p(B) ≥ p(A ∪ B) + p(A ∩ B)

⇔ for all i, j /∈ A :

p(A∪{i})−p(A) ≥ p(A∪{i, j})−p(A∪{j})

Decreasing marginal price

The mechanism µ is SUBMODULAR if its
(canonical) pricing function is submodular

SERGIU HART c© 2022 – p. 47



Deterministic: Allocation Monotonicity
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Deterministic: Allocation Monotonicity

Let µ be a tie-favorable deterministic mechanism

Theorem.

µ is allocation monotonic

⇔ µ is submodular

{AMON} = {SUBMOD}
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General: Allocation Monotonicity
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General: Allocation Monotonicity

Let µ be a tie-favorable
general (probabilistic) mechanism

Theorem.

µ is submodular

⇒ µ is allocation monotonic

⇒ µ is separably subadditive

{SUBMOD} ⊂ {AMON} ⊂ {SEP SUBADD}
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General: Pricing

Let µ = (q, s) be a mechanism for k goods.
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General: Pricing

Let µ = (q, s) be a mechanism for k goods.

The PRICE of an allocation g ∈ [0, 1]k:

p(g) := s(x) for x with q(x) = g
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General: Pricing

Let µ = (q, s) be a mechanism for k goods.

The PRICE of an allocation g ∈ [0, 1]k:

p(g) := s(x) for x with q(x) = g

If g is never allocated, put
p(g) := supx(g · x − b(x))
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General: Pricing

Let µ = (q, s) be a mechanism for k goods.

The PRICE of an allocation g ∈ [0, 1]k:

p(g) := s(x) for x with q(x) = g

If g is never allocated, put
p(g) := supx(g · x − b(x))

p : [0, 1]k → [0, ∞] is the (canonical)
PRICING FUNCTION of µ (nondecreasing,
convex, closed function)
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General: Pricing

Let µ = (q, s) be a mechanism for k goods.

The PRICE of an allocation g ∈ [0, 1]k:

p(g) := s(x) for x with q(x) = g

If g is never allocated, put
p(g) := supx(g · x − b(x))

p : [0, 1]k → [0, ∞] is the (canonical)
PRICING FUNCTION of µ (nondecreasing,
convex, closed function)

The convex functions b and p are Fenchel
conjugates
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Submodular Pricing

The function p is SUBMODULAR if

for all g, h in [0, 1]k :

p(g) + p(h) ≥ p(g ∨ h) + p(g ∧ h)
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Submodular Pricing

The function p is SUBMODULAR if

for all g, h in [0, 1]k :

p(g) + p(h) ≥ p(g ∨ h) + p(g ∧ h)

⇔ for all g and orthogonal d1, d2 ≥ 0 :

p(g+d2)−p(g) ≥ p(g+d1+d2)−p(g+d1)

SERGIU HART c© 2022 – p. 51



Submodular Pricing

The function p is SUBMODULAR if

for all g, h in [0, 1]k :

p(g) + p(h) ≥ p(g ∨ h) + p(g ∧ h)

⇔ for all g and orthogonal d1, d2 ≥ 0 :

p(g+d2)−p(g) ≥ p(g+d1+d2)−p(g+d1)

Marginal price of good i decreases
as allocation of good j 6= i increases
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Submodular Pricing

The function p is SUBMODULAR if

for all g, h in [0, 1]k :

p(g) + p(h) ≥ p(g ∨ h) + p(g ∧ h)

⇔ for all g and orthogonal d1, d2 ≥ 0 :

p(g+d2)−p(g) ≥ p(g+d1+d2)−p(g+d1)

Marginal price of good i decreases
as allocation of good j 6= i increases

If p is differentiable:
∂2p

∂gi∂gj

≤ 0 for all i 6= j
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Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

for all orthogonal g, h in [0, 1]k :

p(g + h) ≤ p(g) + p(h)
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Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

for all orthogonal g, h in [0, 1]k :

p(g + h) ≤ p(g) + p(h)

⇔ for all g :

p(g) ≤ p(g1, 0, ..., 0) + ... + p(0, ..., 0, gk)

SERGIU HART c© 2022 – p. 52



Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

for all orthogonal g, h in [0, 1]k :

p(g + h) ≤ p(g) + p(h)

⇔ for all g :

p(g) ≤ p(g1, 0, ..., 0) + ... + p(0, ..., 0, gk)

Weaker than subadditivity
(inequality required for all g, h)
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Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

for all orthogonal g, h in [0, 1]k :

p(g + h) ≤ p(g) + p(h)

⇔ for all g :

p(g) ≤ p(g1, 0, ..., 0) + ... + p(0, ..., 0, gk)

Weaker than subadditivity
(inequality required for all g, h)

Weaker than submodularity (by p(0) = 0)

SERGIU HART c© 2022 – p. 52
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Sub... Mechanisms

A mechanism µ is SUBMODULAR if its
(canonical) pricing function is submodular
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Sub... Mechanisms

A mechanism µ is SUBMODULAR if its
(canonical) pricing function is submodular

A mechanism µ is SEPARABLY SUBADDITIVE

if its (canonical) pricing function is separably
subadditive
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Allocation Monotonicity

Let µ be a tie-favorable deterministic mechanism

Theorem.

µ is allocation monotonic

⇔ µ is submodular

{AMON} = {SUBMOD}
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Proof
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Proof
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Let µ be a tie-favorable
general (probabilistic) mechanism

Theorem.

µ is submodular

⇒ µ is allocation monotonic
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q(x)=Ax, s(x)=b(x)=1

2
x⊤Ax, p(g)=1

2
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Theorem (Chawla, Teng, and Tzamos 2019)
Let P ′ be a cone of nondecreasing and closed
k-good pricing functions. Assume that there are
constants 0 < c1 < c2 < ∞ such that for every
p ∈ P there is p′ ∈ P ′ satisfying

c1p
′(g) ≤ p(g) ≤ c2p

′(g)

for every g; then

P-REV(X) ≤ 2 ln

(

2
c2

c1

)

· P ′-REV(X)

for every k-good valuation X.
SERGIU HART c© 2022 – p. 64



Proof

Proof. Let p be the canonical pricing function of
an allocation monotonic mechanism.

Put

p′(g) := p(g1, 0, ..., 0) + ... + p(0, ..., 0, gk)

Then: p′ is separable, and

1

k
p′ ≤ p ≤ p′

(p nondecreasing and separably subadditive)

Apply a result of Chawla, Teng, and Tzamos

SERGIU HART c© 2022 – p. 65



Allocation-Monotonic Revenue

Theorem. For every k-good valuation X

AMONREV(X) ≤ 2 ln(2k) · SREV(X)

SERGIU HART c© 2022 – p. 66



Symmetric Deterministic

SERGIU HART c© 2022 – p. 67



Symmetric Deterministic Revenue

SERGIU HART c© 2022 – p. 68



Symmetric Deterministic Revenue

Theorem. For every k-good valuation X

SYMDREV(X) ≤ O(log2 k) · SREV(X)
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Theorem. For every k-good valuation X

SUPERMODSYMDREV(X) ≤ H(k)·SREV(X)

where H(k) := 1 + 1

2
+ ... + 1

k
∼ ln k
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