How Dull Are Monotonic Mechanisms

Sergiu Hart

First version: June 2022

This version: October 2022

How Dull Are Monotonic Mechanisms

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il
http://www.ma.huji.ac.il/hart

Joint work with

Ran Ben Moshe and

Noam Nisan

The Hebrew University of Jerusalem

- Ran Ben Moshe, Sergiu Hart, and Noam Nisan
"Monotonic Mechanisms for Selling
Multiple Goods"
(2022)
www.ma.huji.ac.il/hart/abs/mech-monot.html

A Simple Problem

A Simple Problem

A Simple Problem

- 1 SELLER

A Simple Problem

- 1 SELLER
- 1 BUYER

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

OBJECTIVE:

maximize the revenue of the seller

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER :

$$
\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- additive valuation
$\left(\right.$ good 1 and good $\left.2=X_{1}+X_{2}\right)$

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- additive valuation
(good 1 and good $2=X_{1}+X_{2}$)
- buyer knows the value \boldsymbol{X}

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- additive valuation
$\left(\operatorname{good} 1\right.$ and good $\left.2=X_{1}+X_{2}\right)$
- buyer knows the value \boldsymbol{X}
- SELLER does not know the value X

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- additive valuation
$\left(\operatorname{good} 1\right.$ and good $\left.2=X_{1}+X_{2}\right)$
- buyer knows the value \boldsymbol{X}
- SELLER does not know the value X
- \boldsymbol{X} distributed according to c.d.f. \mathcal{F} on \mathbb{R}_{+}^{k}

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{k}\right)$
- additive valuation
(good 1 and good $2=X_{1}+X_{2}$)
- buyer knows the value \boldsymbol{X}
- SELLER does not know the value X
- X distributed according to c.d.f. \mathcal{F} on \mathbb{R}_{+}^{k}
- SELLER knows the distribution \mathcal{F} of X

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER : $\boldsymbol{X}=\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{k}\right) \quad$ (random variable)
- additive valuation
(good 1 and good $2=X_{1}+X_{2}$)
- buyer knows the value \boldsymbol{X}
- SELLER does not know the value X
- X distributed according to c.d.f. \mathcal{F} on \mathbb{R}_{+}^{k}
- SELLER knows the distribution \mathcal{F} of X

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER :

- quasi-linear utilities (i.e., additive in monetary payments)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities) (or: linear in quantities)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities) (or: linear in quantities)

SELLER:

- no value and no cost for the GOODS

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

OBJECTIVE:

maximize the revenue of the seller
$\operatorname{Rev}(X):=$ optimal revenue from valuation X

One Good

ONE GOOD $(k=1)$:

One Good: Solution

ONE GOOD $(k=1)$:

One Good: Solution

ONE GOOD $(k=1)$:

- SELLER posts a PRICE p

One Good: Solution

ONE GOOD $(k=1)$:

- SELLER posts a PRICE p
- buyer chooses between:
- get the good and pay p, or
- get nothing and pay nothing

One Good: Solution

ONE GOOD $(k=1)$:

- SELLER posts a PRICE p
- buYER chooses between:
- get the good and pay p, or
- get nothing and pay nothing
- p such that revenue $R=p \cdot \operatorname{Pr}[X>p]$
$=p \cdot(1-F(p))$ is MAXIMAL

Myerson 1981

One Good: Solution

ONE GOOD $(k=1)$:

- SELLER posts a PRICE p
- buYER chooses between:
- get the good and pay p, or
- get nothing and pay nothing
- p such that revenue $R=p \cdot \operatorname{Pr}[X>p]$
$=p \cdot(1-F(p))$ is MAXIMAL

$$
\operatorname{REV}(X)=\max _{p} p \cdot(1-\boldsymbol{F}(\boldsymbol{p}))
$$

Myerson 1981

One Good: Example

One Good: Example

$X \sim \begin{cases}10 & \text { with probability } 1 / 2 \\ 22 & \text { with probability } 1 / 2\end{cases}$

One Good: Example

$$
\begin{aligned}
X & \sim \begin{cases}10 & \text { with probability } 1 / 2 \\
22 & \text { with probability } 1 / 2\end{cases} \\
-p=10 & \rightarrow R=10 \cdot 1=10
\end{aligned}
$$

One Good: Example

$$
\begin{aligned}
X & \sim \begin{cases}10 & \text { with probability } 1 / 2 \\
22 & \text { with probability } 1 / 2\end{cases} \\
\text { - } p=10 & \rightarrow R=10 \cdot 1=10 \\
-p= & \rightarrow R=22 \cdot 1 / 2=11
\end{aligned}
$$

One Good: Example

$$
\begin{aligned}
X & \sim \begin{cases}10 & \text { with probability } 1 / 2 \\
22 & \text { with probability } 1 / 2\end{cases} \\
\text { - } p=10 & \rightarrow R=10 \cdot 1=10 \\
\text { - } p= & 22 \rightarrow R=22 \cdot 1 / 2=11
\end{aligned}
$$

One Good: Example

$$
\begin{gathered}
X \sim \begin{cases}10 & \text { with probability } 1 / 2 \\
22 & \text { with probability } 1 / 2\end{cases} \\
\text { - } p=10 \rightarrow R=10 \cdot 1=10 \\
\bullet p=22 \rightarrow R=22 \cdot 1 / 2=11 \\
\\
\operatorname{REv}(X)=11 \quad p=22
\end{gathered}
$$

Multiple Goods $(k \geq 2)$

Multiple Goods $(k \geq 2)$

An extremely complex problem

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods $(k \geq 2)$

An extremely complex problem

- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

- There are valuations \boldsymbol{X} such that

$$
\mathcal{N}-\operatorname{Rev}(\boldsymbol{X})=1 \quad \text { and } \quad \operatorname{Rev}(\boldsymbol{X})=\infty
$$

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

- There are valuations \boldsymbol{X} such that

$$
\mathcal{N}-\operatorname{Rev}(X)=1 \quad \text { and } \quad \operatorname{Rev}(X)=\infty
$$

- For every $\varepsilon>0$ there are bounded X s.t.

$$
\mathcal{N}-\operatorname{Rev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})
$$

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

- There are valuations \boldsymbol{X} such that

$$
\mathcal{N}-\operatorname{Rev}(X)=1 \text { and } \operatorname{Rev}(X)=\infty
$$

- For every $\varepsilon>0$ there are bounded \boldsymbol{X} s.t.

$$
\mathcal{N}-\operatorname{ReV}(\boldsymbol{X})<\varepsilon \cdot \operatorname{ReV}(\boldsymbol{X})
$$

Hart and Nisan 2013/2019
(Briest, Chawla, Kleinberg, Weinberg 2010/2015

$$
\text { for } k \geq 3)
$$

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

Multiple Goods $(k \geq 2)$

Let $\boldsymbol{\mathcal { N }}$ be a class of "simple" \boldsymbol{k}-good mechanisms.

For example:

Multiple Goods $(k \geq 2)$

Let \mathcal{N} be a class of "simple" \boldsymbol{k}-good mechanisms.

For example:

- selling separately

Multiple Goods $(k \geq 2)$

Let \mathcal{N} be a class of "simple" \boldsymbol{k}-good mechanisms.

For example:

- selling separately
- selling bundled

Multiple Goods $(k \geq 2)$

Let \mathcal{N} be a class of "simple" \boldsymbol{k}-good mechanisms.

For example:

- selling separately
- selling bundled
- all deterministic mechanisms

Multiple Goods $(k \geq 2)$

Let \mathcal{N} be a class of "simple" \boldsymbol{k}-good mechanisms.

For example:

- selling separately
- selling bundled
- all deterministic mechanisms
- mechanisms with bounded "menus"
(at most \boldsymbol{m} choices, for finite \boldsymbol{m})

Multiple Goods $(k \geq 2)$

An extremely complex problem

- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

Multiple Goods $(k \geq 2)$

An extremely complex problem

- No simple useful characterization of solution
- Hard to solve even in simple cases
- Randomized outcomes: sell lotteries
- Arbitrarily many (even infinitely many) outcomes
- Simple mechanisms cannot guarantee any positive fraction of the optimal revenue

"CONCEPTUAL COMPLEXITY"

Monotonicity

Monotonicity of Revenue

Monotonicity of Revenue

BUYER's willingness to pay increases

Monotonicity of Revenue

BUYER's willingness to pay increases

\Rightarrow SELLER's revenue increases

Monotonicity of Revenue

BUYER's willingness to pay increases
\Rightarrow SELLER's revenue increases

- correct for one good

Non-Monotonicity of Revenue

BUYER's willingness to pay increases
\Rightarrow SELLER's revenue increases

- correct for one good
- FALSE for multiple goods !

Non-Monotonicity of Revenue

BUYER's willingness to pay increases
\Rightarrow SELLER's revenue increases

- correct for one good
- FALSE for multiple goods !

Hart and Reny 2014

Non-Monotonic Mechanism

Non-Monotonic Mechanism

Menu
good 1 \$10
good $2 \$ 20$

Non-Monotonic Mechanism

Menu
good $1 \quad \$ 10$ good $2 \quad \$ 20$

Non-Monotonic Mechanism

Menu
good $1 \quad \$ 10$ good $2 \$ 20$

Non-Monotonic Mechanism

Non-Monotonic Mechanism

$(10,23)$ pays $\$ 20$
$(20,27)$ pays $\$ 10$
Optimal for some X ?

Non-Monotonic Mechanism

$(10,23)$ pays $\$ 20$
$(20,27)$ pays $\$ 10$
Optimal for some X ? No!

Non-Monotonic Mechanism

x_{1}

Non-Monotonic Mechanism

Non-Monotonicity

Non-Monotonicity

- There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism MAXIMIZES REVENUE

Non-Monotonicity

- There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism maximizes revenue
- moreover: unique maximizer; robust

Non-Monotonicity

- There are simple 2-good valuations X for which the above NON-MONOTONIC mechanism MAXIMIZES REVENUE
- moreover: unique maximizer; robust
- There are simple 2-good valuations X, X^{\prime} such that

$$
X^{\prime} \geq X \text { but } \operatorname{Rev}\left(X^{\prime}\right)<\operatorname{Rev}(X)
$$

Non-Monotonic Mechanisms

Non-Monotonic Mechanisms

- Conclusion: nON-MONOTONIC mechanisms are needed in order to obtain the maximal revenue

Non-Monotonic Mechanisms

- Conclusion: NON-MONOTONIC mechanisms are needed in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?

Non-Monotonic Mechanisms

- Conclusion: nON-MONOTONIC mechanisms are needed in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?
- Answer 1: a non-negligible amount

Non-Monotonic Mechanisms

- Conclusion: nON-MONOTONIC mechanisms are needed in order to obtain the maximal revenue
- Question: How much additional revenue can one gain by using NON-MONOTONIC mechanisms?
- Answer 1: a non-negligible amount
- Answer 2: most of the revenue!

The Setup

Mechanisms

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

- Allocation function

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

- Allocation function

$$
q=\left(q_{1}, q_{2}, \ldots, q_{k}\right): \mathbb{R}_{+}^{k} \rightarrow[0,1]^{k}
$$

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

- Allocation function

$$
q=\left(q_{1}, q_{2}, \ldots, q_{k}\right): \mathbb{R}_{+}^{k} \rightarrow[0,1]^{k}
$$

- $\boldsymbol{q}_{i}(\boldsymbol{x})=$ probability of getting good i for BUYER with valuation \boldsymbol{x}

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

- Allocation function

$$
q=\left(q_{1}, q_{2}, \ldots, q_{k}\right): \mathbb{R}_{+}^{k} \rightarrow[0,1]^{k}
$$

- $\boldsymbol{q}_{i}(x)=$ probability of getting good i for BUYER with valuation \boldsymbol{x}
- Payment function

$$
s: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}
$$

Mechanisms

(Direct) mechanism $\mu=(q, s)$:

- Allocation function

$$
q=\left(q_{1}, q_{2}, \ldots, q_{k}\right): \mathbb{R}_{+}^{k} \rightarrow[0,1]^{k}
$$

- $\boldsymbol{q}_{i}(x)=$ probability of getting good i for BUYER with valuation \boldsymbol{x}
- Payment function

$$
s: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}
$$

- $s(\boldsymbol{x})=$ payment from BUYER with valuation \boldsymbol{x} to SELLER

Mechanism

Mechanism

- BUYER payoff function

Mechanism

- BUYER payoff function

$$
b(x)=q(x) \cdot x-s(x)
$$

Mechanism

- BUYER payoff function

$$
b(x)=q(x) \cdot x-s(x)
$$

- Individual Rationality (IR)

$$
b(x) \geq 0 \text { for all } \boldsymbol{x}
$$

Mechanism

- BUYER payoff function

$$
b(x)=q(x) \cdot x-s(x)
$$

- Individual Rationality (IR)

$$
b(x) \geq 0 \text { for all } \boldsymbol{x}
$$

- Incentive Compatibility (IC)

$$
\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y}) \leq \boldsymbol{b}(\boldsymbol{x}) \text { for all } \boldsymbol{x}, \boldsymbol{y}
$$

Optimal Revenue

Optimal Revenue

Given a random valuation \boldsymbol{X}

Optimal Revenue

Given a random valuation \boldsymbol{X}

- Payoff of seller from mechanism $\mu=(q, s)$

Optimal Revenue

Given a random valuation \boldsymbol{X}

- Payoff of Seller from mechanism $\mu=(q, s)$

$$
R(\boldsymbol{\mu} ; \boldsymbol{X}):=\mathbb{E}[s(\boldsymbol{X})]
$$

Optimal Revenue

Given a random valuation \boldsymbol{X}

- Payoff of Seller from mechanism $\mu=(q, s)$

$$
R(\boldsymbol{\mu} ; \boldsymbol{X}):=\mathbb{E}[s(\boldsymbol{X})]
$$

- Optimal REVENUE

Optimal Revenue

Given a random valuation \boldsymbol{X}

- Payoff of Seller from mechanism $\mu=(q, s)$

$$
R(\boldsymbol{\mu} ; \boldsymbol{X}):=\mathbb{E}[s(\boldsymbol{X})]
$$

- Optimal revenue

$$
\operatorname{Rev}(X):=\sup _{\mu} R(\mu ; X)
$$

- supremum is taken over all (IR and IC) mechanisms μ

Monotonic Mechanisms

Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

- MonRev($\boldsymbol{X}):=$ maximal revenue obtainable by MONOTONIC mechanisms

Monotonicity of Revenue

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then
$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(X) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Proof. For every monotonic mechanism μ :

$$
\boldsymbol{X} \geq \boldsymbol{Y} \Rightarrow s(\boldsymbol{X}) \geq s(\boldsymbol{Y})
$$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(X) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Proof. For every monotonic mechanism μ :

$$
\begin{aligned}
\boldsymbol{X} \geq \boldsymbol{Y} & \Rightarrow s(\boldsymbol{X}) \geq s(\boldsymbol{Y}) \\
& \Rightarrow \mathbb{E}[s(\boldsymbol{X})] \geq \mathbb{E}[s(\boldsymbol{Y})]
\end{aligned}
$$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(X) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Proof. For every monotonic mechanism μ :

$$
\begin{aligned}
\boldsymbol{X} \geq \boldsymbol{Y} \Rightarrow & s(\boldsymbol{X}) \geq s(\boldsymbol{Y}) \\
\Rightarrow & \mathbb{E}[s(\boldsymbol{X})] \geq \mathbb{E}[s(\boldsymbol{Y})] \\
& \boldsymbol{R}(\boldsymbol{\mu} ; \boldsymbol{X}) \geq \boldsymbol{R}(\boldsymbol{\mu} ; \boldsymbol{Y})
\end{aligned}
$$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(X) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Proof. For every monotonic mechanism μ :

$$
\begin{aligned}
\boldsymbol{X} \geq \boldsymbol{Y} & \Rightarrow s(\boldsymbol{X}) \geq s(\boldsymbol{Y}) \\
\Rightarrow \mathbb{E}[s(\boldsymbol{X})] & \geq \mathbb{E}[s(\boldsymbol{Y})] \\
R(\boldsymbol{\mu} ; \boldsymbol{X}) & \geq R(\boldsymbol{\mu} ; \boldsymbol{Y}) \\
\Rightarrow \sup _{\boldsymbol{\mu}} R(\boldsymbol{\mu} ; \boldsymbol{X}) & \geq \sup _{\boldsymbol{\mu}} R(\boldsymbol{\mu} ; \boldsymbol{Y})
\end{aligned}
$$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then
$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{MonRev}(\boldsymbol{Y})$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{MonRev}(\boldsymbol{Y})$

For $k=1$:

$$
\operatorname{Rev}(X) \geq \operatorname{Rev}(\boldsymbol{Y})
$$

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{MonRev}(\boldsymbol{Y})$

For $k=1$:

$$
\operatorname{Rev}(X) \geq \operatorname{Rev}(\boldsymbol{Y})
$$

Proof 1. Every one-good (IC) mechanism is monotonic, and so Rev $=$ MonRev

Monotonicity of Revenue

Claim. If $\boldsymbol{X} \geq \boldsymbol{Y}$ (more generally: if \boldsymbol{X} first order stochastically dominates \boldsymbol{Y}) then

$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{MonRev}(\boldsymbol{Y})$

For $k=1$:

$$
\operatorname{Rev}(X) \geq \operatorname{Rev}(\boldsymbol{Y})
$$

Proof 1. Every one-good (IC) mechanism is monotonic, and so Rev $=$ MonRev
Proof 2. For every price p

$$
p \cdot \mathbb{P}[\boldsymbol{X}>p] \geq p \cdot \mathbb{P}[\boldsymbol{Y}>p]
$$

Monotonic Revenue

Monotonic vs. Bundled

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BREV}(\boldsymbol{X})$

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BREV}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BRev}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then: $\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}\right)$

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(X_{1}, \ldots, X_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonReV}\left(X^{\max }, \ldots, X^{\max }\right)$
$\leq \operatorname{Rev}\left(\boldsymbol{X}^{\max }, \ldots, \boldsymbol{X}^{\max }\right)$

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BRev}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$
$\leq \operatorname{Rev}\left(X^{\max }, \ldots, \boldsymbol{X}^{\max }\right)$
$=k \cdot \operatorname{REV}\left(X^{\max }\right)$

Monotonic vs. Bundled

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{BRev}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonReV}\left(X^{\max }, \ldots, X^{\max }\right)$
$\leq \operatorname{Rev}\left(X^{\max }, \ldots, X^{\max }\right)$
$=k \cdot \operatorname{REV}\left(X^{\text {max }}\right)$
$\leq k \cdot \operatorname{REV}\left(\boldsymbol{X}_{1}+\ldots+\boldsymbol{X}_{k}\right)$

Monotonic Revenue

Monotonic Revenue

Corollary. Let $\boldsymbol{k} \geq 2$.

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq 2$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq 2$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$
- For every $\varepsilon>0$ there are bounded X s.t. $\operatorname{MonRev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})$

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq \mathbf{2}$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$
- For every $\varepsilon>0$ there are bounded \boldsymbol{X} s.t.

$$
\operatorname{MonRev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})
$$

Proof.

$$
\frac{\text { MonReV }}{\operatorname{ReV}} \leq k \cdot \frac{\text { BREV }}{\operatorname{REV}}
$$

Use Hart and Nisan 2013/2019 (Briest et al 2010/2015 for $k \geq 3$) for BREV

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq 2$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$
- For every $\varepsilon>0$ there are bounded X s.t. $\operatorname{MonRev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})$

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq \mathbf{2}$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$
- For every $\varepsilon>0$ there are bounded \boldsymbol{X} s.t. $\operatorname{MonRev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})$
- There are bounded \boldsymbol{X} such that

$$
\operatorname{MonRev}(X) \leq \frac{k^{2}}{2^{k}-1} \cdot \operatorname{DREv}(X)
$$

Monotonic Revenue Is Low

Corollary. Let $\boldsymbol{k} \geq \mathbf{2}$.

- There are \boldsymbol{k}-good valuations \boldsymbol{X} such that $\operatorname{MonRev}(X)=1$ and $\operatorname{Rev}(X)=\infty$
- For every $\varepsilon>0$ there are bounded \boldsymbol{X} s.t. $\operatorname{MonRev}(\boldsymbol{X})<\varepsilon \cdot \operatorname{Rev}(\boldsymbol{X})$
- There are bounded \boldsymbol{X} such that

$$
\operatorname{MonRev}(X) \leq \frac{k^{2}}{2^{k}-1} \cdot \operatorname{DREv}(X)
$$

Proof. Use Hart and Nisan 2013/2019

Monotonic vs. Separate

Monotonic vs. Separate

Theorem. For every k-good valuation X $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{SRev}(\boldsymbol{X})$

Monotonic vs. Separate

Theorem. For every k-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{SREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(X_{1}, \ldots, X_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$
$\leq \operatorname{Rev}\left(X^{\max }, \ldots, \boldsymbol{X}^{\max }\right)$
$=k \cdot \operatorname{REV}\left(X^{\max }\right)$

Monotonic vs. Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{SREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$
$\leq \operatorname{Rev}\left(X^{\max }, \ldots, X^{\max }\right)$
$=k \cdot \operatorname{ReV}\left(X^{\max }\right)$
$\leq \boldsymbol{k} \cdot\left(\operatorname{REv}\left(\boldsymbol{X}_{1}\right)+\ldots+\operatorname{REv}\left(\boldsymbol{X}_{\boldsymbol{k}}\right)\right)$

Monotonic vs. Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{SREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$
$\operatorname{Rev}\left(X^{\max }, \ldots, \boldsymbol{X}^{\max }\right)$
$=k \cdot \operatorname{ReV}\left(X^{\max }\right)$
$\leq k \cdot\left(\operatorname{REV}\left(X_{1}\right)+\ldots+\operatorname{REV}\left(X_{k}\right)\right)$
$\mathbb{P}\left[X^{\max }>p\right] \leq \mathbb{P}\left[\boldsymbol{X}_{1}>p\right]+\ldots+\mathbb{P}\left[\boldsymbol{X}_{k}>p\right]$

Monotonic vs. Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \operatorname{SREv}(\boldsymbol{X})$

Proof. Put $X^{\max }:=\max _{1 \leq i \leq k} \boldsymbol{X}_{i}$.
Then:
$\operatorname{MonRev}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}\right)$
$\leq \operatorname{MonRev}\left(X^{\max }, \ldots, X^{\max }\right)$
$\operatorname{Rev}\left(X^{\max }, \ldots, \boldsymbol{X}^{\max }\right)$
$=k \cdot \operatorname{ReV}\left(X^{\max }\right)$
$\leq \boldsymbol{k} \cdot\left(\operatorname{Rev}\left(\boldsymbol{X}_{1}\right)+\ldots+\operatorname{Rev}\left(\boldsymbol{X}_{\boldsymbol{k}}\right)\right)$
$p \cdot \mathbb{P}\left[X^{\text {max }}>p\right] \leq p \cdot\left(\mathbb{P}\left[X_{1}>p\right]+\ldots+\mathbb{P}\left[X_{k}>p\right]\right)$

Monotonic vs. Bundled/Separate

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes

There are \boldsymbol{k} i.i.d. goods s.t. $\operatorname{SREv}(\boldsymbol{X})>(k-\varepsilon) \operatorname{BREv}(\boldsymbol{X})$
(Hart and Nisan 2012/2017)

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes

There are \boldsymbol{k} i.i.d. goods s.t.
$\operatorname{MonRev}(\boldsymbol{X}) \geq \operatorname{SREv}(\boldsymbol{X})>(\boldsymbol{k}-\varepsilon) \operatorname{BREv}(\boldsymbol{X})$
(Hart and Nisan 2012/2017)

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes
- SRev: ??

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes
- SRev: ??

There are \boldsymbol{k} i.i.d. goods s.t.
$\operatorname{BREv}(X) \geq \Omega(\log k) \cdot \operatorname{SREv}(X)$
(Hart and Nisan 2012/2017)

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes
- SRev: ??

There are \boldsymbol{k} i.i.d. goods s.t.
$\operatorname{MonRev}(X) \geq \operatorname{BRev}(X) \geq \Omega(\log k) \cdot \operatorname{SRev}(X)$
(Hart and Nisan 2012/2017)

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes
- SREV: ?? [between $\Omega(\log k)$ and k]

There are \boldsymbol{k} i.i.d. goods s.t.
$\operatorname{MonRev}(X) \geq \operatorname{BRev}(X) \geq \Omega(\log k) \cdot \operatorname{SRev}(X)$
(Hart and Nisan 2012/2017)

Monotonic vs. Bundled/Separate

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} $\operatorname{MonRev}(\boldsymbol{X}) \leq \boldsymbol{k} \cdot \min \{\operatorname{BRev}(\boldsymbol{X}), \operatorname{SRev}(\boldsymbol{X})\}$

- Tight?
- BRev: Yes
- SREV: ?? [between $\Omega(\log k)$ and k]

Monotonic Mechanisms

Non-Monotonic Mechanism

Non-Monotonic Mechanism

Monotonic Mechanism

Monotonic Mechanism

MONOTONIC

Monotonic Mechanism

MONOTONIC

Symmetric

Deterministic

Monotonic Mechanism

Menu
 good $1 \quad \$ 30$ good 2 \$30 both \$ 40

Monotonic Mechanism

Menu	
good 1	$\$ 30$
good 2	$\$ 30$
both	$\$ 40$

MONOTONIC

Monotonic Mechanism

Menu
 good 1 \$30 good 2 \$30 both \$ 40

MONOTONIC

Subadditive
(Submodular)

Classes of Monotonic Mechanisms

Classes of Monotonic Mechanisms

Hart and Reny 2014

Classes of Monotonic Mechanisms

- Symmetric deterministic mechanisms

Hart and Reny 2014

Classes of Monotonic Mechanisms

- Symmetric deterministic mechanisms
- Submodular mechanisms

Hart and Reny 2014

Monotonic Mechanism

Menu	
good 1	$\$ 30$
good 2	$\$ 30$
both	$\$ 40$

MONOTONIC

Subadditive
(Submodular)

Allocation-Monotonic Mechanism

Monotonic

NOT Allocation-Monotonic

Allocation-Monotonic Mechanisms

Monotonic Mechanisms

Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

Allocation-Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

- A mechanism $\mu=(q, s)$ is ALLOcATION MONOTONIC if its allocation function q is nondecreasing:

$$
x \geq y \text { implies } q(x) \geq q(y)
$$

Allocation-Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

- A mechanism $\mu=(q, s)$ is ALLOCATION MONOTONIC if its allocation function q is nondecreasing:

$$
x \geq y \text { implies } q(x) \geq q(y)
$$

- allocation monotonicity \Rightarrow monotonicity

Allocation-Monotonic Mechanisms

- A mechanism $\mu=(q, s)$ is MONOTONIC if its payment function s is nondecreasing:

$$
\boldsymbol{x} \geq \boldsymbol{y} \text { implies } s(\boldsymbol{x}) \geq s(\boldsymbol{y})
$$

- A mechanism $\mu=(q, s)$ is ALLOCATION MONOTONIC if its allocation function q is nondecreasing:

$$
x \geq y \text { implies } q(x) \geq q(y)
$$

- allocation monotonicity \Rightarrow monotonicity (by IC)

2-Good Deterministic Mechanisms

2-Good Deterministic Mechanisms

not mon
not alloc-mon

2-Good Deterministic Mechanisms

not mon
not alloc-mon

mon
not alloc-mon

2-Good Deterministic Mechanisms

mon
not alloc-mon

mon
alloc-mon

Deterministic: Pricing

Deterministic: Pricing

Let $\boldsymbol{\mu}=(q, s)$ be a deterministic mechanism for k goods. Put $K:=\{1, \ldots, k\}$.

Deterministic: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a deterministic mechanism for k goods. Put $K:=\{1, \ldots, k\}$.

- The Price of a set of goods $\boldsymbol{A} \subseteq \boldsymbol{K}$:

$$
p(\boldsymbol{A}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{A}
$$

Deterministic: Pricing

Let $\mu=(q, s)$ be a deterministic mechanism for k goods. Put $K:=\{1, \ldots, k\}$.

- The price of a set of goods $\boldsymbol{A} \subseteq \boldsymbol{K}$:

$$
p(\boldsymbol{A}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{A}
$$

- If \boldsymbol{A} is never allocated, put

$$
p(A):=\inf \{p(B): B \supset A\}
$$

Deterministic: Pricing

Let $\boldsymbol{\mu}=(q, s)$ be a deterministic mechanism for k goods. Put $K:=\{1, \ldots, k\}$.

- The price of a set of goods $\boldsymbol{A} \subseteq \boldsymbol{K}$:

$$
p(\boldsymbol{A}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{A}
$$

- If \boldsymbol{A} is never allocated, put

$$
p(A):=\inf \{p(B): B \supset A\}
$$

- $p: 2^{K} \rightarrow[0, \infty]$ is the (canonical) PRICING FUNCTION of μ (nondecreasing function)

Deterministic: Submodular

Deterministic: Submodular

- The function p is submodular if for all A, B :

$$
p(A)+p(B) \geq p(A \cup B)+p(A \cap B)
$$

Deterministic: Submodular

- The function p is submodular if for all A, B :

$$
p(A)+p(B) \geq p(A \cup B)+p(A \cap B)
$$

\Leftrightarrow for all $i, j \notin A$:

$$
p(A \cup\{i\})-p(A) \geq p(A \cup\{i, j\})-p(A \cup\{j\})
$$

Deterministic: Submodular

- The function p is submodular if for all A, B :

$$
p(A)+p(B) \geq p(A \cup B)+p(A \cap B)
$$

\Leftrightarrow for all $i, j \notin A$: $p(A \cup\{i\})-p(A) \geq p(A \cup\{i, j\})-p(A \cup\{j\})$

Decreasing marginal price

Deterministic: Submodular

- The function p is submodular if for all A, B :

$$
p(A)+p(B) \geq p(A \cup B)+p(A \cap B)
$$

\Leftrightarrow for all $\boldsymbol{i}, \boldsymbol{j} \notin \boldsymbol{A}$:

$$
p(A \cup\{i\})-p(A) \geq p(A \cup\{i, j\})-p(A \cup\{j\})
$$

Decreasing marginal price

- The mechanism μ is submodular if its (canonical) pricing function is submodular

Deterministic: Allocation Monotonic

Deterministic: Allocation Monotonic

Let μ be a tie-favorable deterministic mechanism

Theorem.
 μ is allocation monotonic $\Leftrightarrow \mu$ is submodular

$$
\{\text { AMON }\}=\{\text { Submod }\}
$$

General: Allocation Monotonicity

General: Allocation Monotonicity

Let $\boldsymbol{\mu}$ be a tie-favorable general (probabilistic) mechanism

Theorem.

μ is submodular
$\Rightarrow \mu$ is allocation monotonic
$\Rightarrow \mu$ is separably subadditive
$\{$ Submod $\} \subset\{A M o n\} \subset\{S e p$ Subadd $\}$

General: Pricing

General: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a mechanism for \boldsymbol{k} goods.

General: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a mechanism for \boldsymbol{k} goods.

- The PRICE of an allocation $g \in[0,1]^{k}$:

$$
p(\boldsymbol{g}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{g}
$$

General: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a mechanism for \boldsymbol{k} goods.

- The price of an allocation $g \in[0,1]^{k}$:

$$
p(\boldsymbol{g}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{g}
$$

- If g is never allocated, put

$$
p(g):=\sup _{x}(g \cdot x-b(x))
$$

General: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a mechanism for \boldsymbol{k} goods.

- The Price of an allocation $g \in[0,1]^{k}$:

$$
p(\boldsymbol{g}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{g}
$$

- If g is never allocated, put

$$
p(g):=\sup _{x}(g \cdot x-b(x))
$$

- $p:[0,1]^{k} \rightarrow[0, \infty]$ is the (canonical) PRICING FUNCTION of μ (nondecreasing, convex, closed function)

General: Pricing

Let $\boldsymbol{\mu}=(\boldsymbol{q}, s)$ be a mechanism for \boldsymbol{k} goods.

- The Price of an allocation $g \in[0,1]^{k}$:

$$
p(\boldsymbol{g}):=s(\boldsymbol{x}) \text { for } \boldsymbol{x} \text { with } \boldsymbol{q}(\boldsymbol{x})=\boldsymbol{g}
$$

- If g is never allocated, put

$$
p(g):=\sup _{x}(g \cdot x-b(x))
$$

- $p:[0,1]^{k} \rightarrow[0, \infty]$ is the (canonical) PRICING FUNCTION of μ (nondecreasing, convex, closed function)
- The convex functions b and p are Fenchel conjugates

Submodular Pricing

Submodular Pricing

The function p is SUBMODULAR if

- for all g, h in $[0,1]^{k}$:

$$
p(g)+p(h) \geq p(g \vee h)+p(g \wedge h)
$$

Submodular Pricing

The function p is submodular if

- for all g, h in $[0,1]^{k}$:

$$
p(g)+p(h) \geq p(g \vee h)+p(g \wedge h)
$$

\Leftrightarrow for all g and orthogonal $d_{1}, d_{2} \geq 0$:

$$
p\left(g+d_{2}\right)-p(g) \geq p\left(g+d_{1}+d_{2}\right)-p\left(g+d_{1}\right)
$$

Submodular Pricing

The function p is submodular if

- for all $\boldsymbol{g}, \boldsymbol{h}$ in $[0,1]^{k}$:

$$
p(g)+p(h) \geq p(g \vee h)+p(g \wedge h)
$$

\Leftrightarrow for all g and orthogonal $d_{1}, d_{2} \geq 0$:

$$
p\left(g+d_{2}\right)-p(g) \geq p\left(g+d_{1}+d_{2}\right)-p\left(g+d_{1}\right)
$$

Marginal price of good i decreases as allocation of good $j \neq i$ increases

Submodular Pricing

The function p is SUBMODULAR if

- for all $\boldsymbol{g}, \boldsymbol{h}$ in $[0,1]^{k}$:

$$
p(g)+p(h) \geq p(g \vee h)+p(g \wedge h)
$$

\Leftrightarrow for all g and orthogonal $d_{1}, d_{2} \geq 0$:

$$
p\left(g+d_{2}\right)-p(g) \geq p\left(g+d_{1}+d_{2}\right)-p\left(g+d_{1}\right)
$$

Marginal price of good i decreases as allocation of good $j \neq i$ increases

- If p is differentiable: $\frac{\partial^{2} p}{\partial g_{i} \partial g_{j}} \leq 0$ for all $i \neq j$

Separably Subadditive Pricing

Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

- for all orthogonal g, h in $[0,1]^{k}$:

$$
p(\boldsymbol{g}+\boldsymbol{h}) \leq p(\boldsymbol{g})+p(\boldsymbol{h})
$$

Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

- for all orthogonal $\boldsymbol{g}, \boldsymbol{h}$ in $[0,1]^{k}$:

$$
p(\boldsymbol{g}+\boldsymbol{h}) \leq p(\boldsymbol{g})+p(\boldsymbol{h})
$$

\Leftrightarrow for all \boldsymbol{g} :

$$
p(g) \leq p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

- for all orthogonal $\boldsymbol{g}, \boldsymbol{h}$ in $[0,1]^{k}$:

$$
p(\boldsymbol{g}+\boldsymbol{h}) \leq p(\boldsymbol{g})+p(\boldsymbol{h})
$$

\Leftrightarrow for all \boldsymbol{g} :

$$
p(g) \leq p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Weaker than subadditivity (inequality required for all $\boldsymbol{g}, \boldsymbol{h}$)

Separably Subadditive Pricing

The function p is SEPARABLY SUBADDITIVE if

- for all orthogonal $\boldsymbol{g}, \boldsymbol{h}$ in $[0,1]^{k}$:

$$
p(\boldsymbol{g}+\boldsymbol{h}) \leq p(\boldsymbol{g})+p(\boldsymbol{h})
$$

\Leftrightarrow for all \boldsymbol{g} :

$$
p(g) \leq p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Weaker than subadditivity (inequality required for all $\boldsymbol{g}, \boldsymbol{h}$)
- Weaker than submodularity (by $p(0)=0$)

Sub... Mechanisms

Sub... Mechanisms

- A mechanism μ is submoduLAR if its (canonical) pricing function is submodular

Sub... Mechanisms

- A mechanism μ is submodular if its (canonical) pricing function is submodular
- A mechanism μ is separably subadditive if its (canonical) pricing function is separably subadditive

Allocation Monotonicity

Allocation Monotonicity

Let μ be a tie-favorable deterministic mechanism

Theorem.

μ is allocation monotonic $\Leftrightarrow \mu$ is submodular
$\{$ AMON $\}=\{$ Submod $\}$

Proof

Deterministic mechanisms

μ allocation monotonic

[1] [×]
b supermodular

$$
\mathbb{I}[F C]
$$

p submodular
(μ submodular)

Deterministic mechanisms

μ allocation monotonic

$$
\text { [1] }{ }^{[x]}
$$

b supermodular

$$
\mathbb{I}[F C]
$$

p submodular
(μ submodular)
$[\mathrm{FC}]=p$ and b are Fenchel Conjugates

Proof of [*]

Proof of [*]
[*] μ allocation monotonic $\Leftrightarrow b$ supermodular

Proof of [*]
[*] μ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$)

$$
=q(x) \cdot x-s(x))
$$

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$)

$$
=q(x) \cdot x-s(x))
$$

Then:

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$)

$$
=q(x) \cdot x-s(x))
$$

Then: q nondecreasing

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$) $=\boldsymbol{q}(\boldsymbol{x}) \cdot \boldsymbol{x}-s(\boldsymbol{x}))$.

Then: q nondecreasing

$$
\Leftrightarrow \nabla q \geq 0
$$

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$) $=\boldsymbol{q}(\boldsymbol{x}) \cdot \boldsymbol{x}-s(\boldsymbol{x}))$.

Then: q nondecreasing

$$
\begin{aligned}
& \Leftrightarrow \nabla q \geq 0 \\
& \Leftrightarrow \nabla^{2} b \geq 0
\end{aligned}
$$

Proof of [*]

[*] μ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$) $=\boldsymbol{q}(\boldsymbol{x}) \cdot \boldsymbol{x}-s(\boldsymbol{x}))$.

Then: q nondecreasing
$\Leftrightarrow \nabla q \geq 0$
$\Leftrightarrow \nabla^{2} b \geq 0$
$\Leftrightarrow b$ supermodular

Proof of [*]

[*] $\boldsymbol{\mu}$ allocation monotonic $\Leftrightarrow b$ supermodular

- Proof. Assume that b is differentiable, then $q=\nabla b$
(because $b(\boldsymbol{x})=\max _{y}(\boldsymbol{q}(\boldsymbol{y}) \cdot \boldsymbol{x}-s(\boldsymbol{y})$)

$$
=q(x) \cdot x-s(x))
$$

Then: q nondecreasing
$\Leftrightarrow \nabla q \geq 0$
$\Leftrightarrow \nabla^{2} b \geq 0$
$\Leftrightarrow b$ supermodular
Without differentiability: "tie-favorable"

Proof

$\boldsymbol{\mu}$ allocation monotonic

$$
\text { I[}{ }^{[\times]}
$$

b supermodular

I [FC]

p submodular
(μ submodular)
[FC] $=p$ and b are Fenchel Conjugates

General: Allocation Monotonicity

General: Allocation Monotonicity

Let $\boldsymbol{\mu}$ be a tie-favorable general (probabilistic) mechanism

Theorem.

μ is submodular
$\Rightarrow \mu$ is allocation monotonic
$\Rightarrow \mu$ is separably subadditive
$\{$ Submod $\} \subset\{A M o n\} \subset\{S e p$ Subadd $\}$

Proof

Proof

General mechanisms

μ allocation monotonic
II [*]
b supermodular $\Rightarrow b$ separably superadditive $\Uparrow[F C] \quad \mathbb{I}[F C]$
p submodular $\Rightarrow \quad p$ separably subadditive
(μ submodular) (μ separably subadditive)
[FC] = p and b are Fenchel Conjugates

Assume differentiability, regularity, ...

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:
p submodular

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:
p submodular
\Leftrightarrow Off-diagonal entries of $\nabla^{2} p$ are ≤ 0

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:
p submodular
\Leftrightarrow Off-diagonal entries of $\nabla^{2} p$ are ≤ 0
\Rightarrow Off-diagonal entries of $\left(\nabla^{2} p\right)^{-1}$ are ≥ 0

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:
p submodular
\Leftrightarrow Off-diagonal entries of $\nabla^{2} p$ are ≤ 0
\Rightarrow Off-diagonal entries of $\left(\nabla^{2} p\right)^{-1}$ are ≥ 0
$\Leftrightarrow b$ supermodular

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:
p submodular
\Leftrightarrow Off-diagonal entries of $\nabla^{2} p$ are ≤ 0
\Rightarrow Off-diagonal entries of $\left(\nabla^{2} p\right)^{-1}$ are ≥ 0 $\Leftrightarrow b$ supermodular
- $\quad \forall$: already for QUADRATIC mechanisms

Assume differentiability, regularity, ...

- b and p are Fenchel conjugates

$$
\Rightarrow \nabla^{2} b=\left(\nabla^{2} p\right)^{-1}
$$

- Therefore:

p submodular

\Leftrightarrow Off-diagonal entries of $\nabla^{2} p$ are ≤ 0
\Rightarrow Off-diagonal entries of $\left(\nabla^{2} p\right)^{-1}$ are ≥ 0 $\Leftrightarrow b$ supermodular

- \forall : already for QUADRATIC mechanisms
$q(x)=A x, s(x)=b(x)=\frac{1}{2} x^{\top} A x, p(g)=\frac{1}{2} g^{\top} A^{-1} g$

Proof

General mechanisms

μ allocation monotonic
II [*]
b supermodular $\Rightarrow b$ separably superadditive $\Uparrow[F C] \quad \mathbb{I}[F C]$
p submodular $\Rightarrow \quad p$ separably subadditive
(μ submodular) (μ separably subadditive)
[FC] = p and b are Fenchel Conjugates

Allocation-Monotonic Revenue

Allocation-Monotonic Revenue

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X}
$\operatorname{AMonRev}(X) \leq 2 \ln (2 k) \cdot \operatorname{SRev}(X)$

Proof

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

- Put

$$
p^{\prime}(g):=p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

- Put

$$
p^{\prime}(g):=p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Then: \boldsymbol{p}^{\prime} is separable

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

- Put

$$
p^{\prime}(g):=p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Then: \boldsymbol{p}^{\prime} is separable, and

$$
\frac{1}{k} p^{\prime} \leq p \leq p^{\prime}
$$

(p nondecreasing and separably subadditive)

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

- Put

$$
p^{\prime}(g):=p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Then: \boldsymbol{p}^{\prime} is separable, and

$$
\frac{1}{k} p^{\prime} \leq p \leq p^{\prime}
$$

(p nondecreasing and separably subadditive)

- Apply a result of Chawla, Teng, and Tzamos

Proof

Proof

Theorem (Chawla, Teng, and Tzamos 2019) Let \mathcal{P}^{\prime} be a cone of nondecreasing and closed k-good pricing functions. Assume that there are constants $0<c_{1}<c_{2}<\infty$ such that for every $p \in \mathcal{P}$ there is $\boldsymbol{p}^{\prime} \in \mathcal{P}^{\prime}$ satisfying

$$
c_{1} p^{\prime}(g) \leq p(g) \leq c_{2} p^{\prime}(g)
$$

for every \boldsymbol{g}; then

$$
\mathcal{P}-\operatorname{REV}(X) \leq 2 \ln \left(2 \frac{c_{2}}{c_{1}}\right) \cdot \mathcal{P}^{\prime}-\operatorname{REV}(X)
$$

for every \boldsymbol{k}-good valuation \boldsymbol{X}.

Proof

Proof. Let p be the canonical pricing function of an allocation monotonic mechanism.

- Put

$$
p^{\prime}(g):=p\left(g_{1}, 0, \ldots, 0\right)+\ldots+p\left(0, \ldots, 0, g_{k}\right)
$$

- Then: \boldsymbol{p}^{\prime} is separable, and

$$
\frac{1}{k} p^{\prime} \leq p \leq p^{\prime}
$$

(p nondecreasing and separably subadditive)

- Apply a result of Chawla, Teng, and Tzamos

Allocation-Monotonic Revenue

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X}
$\operatorname{AMonRev}(X) \leq 2 \ln (2 k) \cdot \operatorname{SRev}(X)$

Symmetric Deterministic

Symmetric Deterministic Revenue

Symmetric Deterministic Revenue

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X}
$\operatorname{SymDREV}(X) \leq O\left(\log ^{2} k\right) \cdot \operatorname{SREV}(X)$

Proof

Proof

Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} SupermodSymDRev $(\boldsymbol{X}) \leq \boldsymbol{H}(\boldsymbol{k}) \cdot \operatorname{SREv}(\boldsymbol{X})$ where $H(k):=1+\frac{1}{2}+\ldots+\frac{1}{k} \sim \ln k$

Proof

- Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} SupermodSymDRev $(\boldsymbol{X}) \leq \boldsymbol{H}(\boldsymbol{k}) \cdot \operatorname{SREv}(\boldsymbol{X})$ where $H(k):=1+\frac{1}{2}+\ldots+\frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism

Proof

- Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} SupermodSymDRev $(\boldsymbol{X}) \leq \boldsymbol{H}(\boldsymbol{k}) \cdot \operatorname{SREv}(\boldsymbol{X})$ where $H(k):=1+\frac{1}{2}+\ldots+\frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
- Put: $d(m):=p(m)-p(m-1)$

$$
\begin{aligned}
& d^{\prime}(m):=\max \{d(n): 1 \leq n \leq m\} \\
& p^{\prime}(m):=d^{\prime}(1)+\ldots+d^{\prime}(m)
\end{aligned}
$$

Proof

- Theorem. For every \boldsymbol{k}-good valuation \boldsymbol{X} SupermodSymDRev $(\boldsymbol{X}) \leq \boldsymbol{H}(\boldsymbol{k}) \cdot \operatorname{SREv}(\boldsymbol{X})$ where $H(k):=1+\frac{1}{2}+\ldots+\frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
- Put: $d(m):=p(m)-p(m-1)$

$$
\begin{aligned}
& d^{\prime}(m):=\max \{d(n): 1 \leq n \leq m\} \\
& p^{\prime}(m):=d^{\prime}(1)+\ldots+d^{\prime}(m)
\end{aligned}
$$

- Then: p^{\prime} supermodular and $\frac{1}{k} p^{\prime} \leq p \leq p^{\prime}$

Proof

- Theorem. For every k-good valuation X SupermodSymDRev $(\boldsymbol{X}) \leq \boldsymbol{H}(\boldsymbol{k}) \cdot \operatorname{SREv}(\boldsymbol{X})$ where $H(k):=1+\frac{1}{2}+\ldots+\frac{1}{k} \sim \ln k$
- Let p be the canonical pricing function of a symmetric deterministic mechanism
- Put: $d(m):=p(m)-p(m-1)$

$$
\begin{aligned}
& d^{\prime}(m):=\max \{d(n): 1 \leq n \leq m\} \\
& p^{\prime}(m):=d^{\prime}(1)+\ldots+d^{\prime}(m)
\end{aligned}
$$

- Then: p^{\prime} supermodular and $\frac{1}{k} p^{\prime} \leq p \leq p^{\prime}$
- Apply the result of Chawla, Teng, and Tzamos

Summary

Summary of Main Results

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2: \quad \inf \frac{\text { MONREV }}{\text { Rev }}=0$

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2: \quad \inf \frac{\text { MonRev }}{\text { Rev }}=0$
- $\Omega(\log k) \leq \inf \frac{\text { MONREV }}{\text { SREV }} \leq k$
(tight?)

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2: \quad \inf \frac{\text { MONREV }}{\text { REV }}=0$
- $\Omega(\log k) \leq \inf \frac{\text { MONREV }}{\text { SREV }} \leq k \quad$ (tight?)
- AMonRev $\leq O(\log k) \cdot$ SReV

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2: \quad \inf \frac{\text { MONREV }}{\text { REV }}=0$
- $\Omega(\log k) \leq \inf \frac{\text { MONREV }}{\text { SREV }} \leq k \quad$ (tight?)
- AMonRev $\leq O(\log k) \cdot$ SReV
- SymDRev $\leq O\left(\log ^{2} k\right) \cdot$ SRev

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2: \quad \inf \frac{\text { MONREV }}{\text { ReV }}=0$
- $\Omega(\log k) \leq \inf \frac{\text { MONREV }}{\text { SREV }} \leq k \quad$ (tight?)
- AMonRev $\leq O(\log k) \cdot$ SReV
- SymDRev $\leq O\left(\log ^{2} k\right) \cdot$ SRev
- Deterministic: $\{$ AMON $\}=\{$ SUBMOD $\}$

Summary of Main Results

- MonRev $\leq \boldsymbol{k} \cdot \min \{$ BRev, SRev $\}$
- $k \geq 2$: inf $\frac{\text { MONREV }}{\text { REV }}=0$
- $\Omega(\log k) \leq \inf \frac{\text { MONREV }}{\text { SREV }} \leq k \quad$ (tight?)
- AMonRev $\leq O(\log k) \cdot$ SReV
- SymDRev $\leq O\left(\log ^{2} k\right) \cdot$ SRev
- Deterministic: $\{$ AMON $\}=\{$ SUBMOD $\}$
- $\{$ Submod $\} \subset\{A M o n\} \subset\{S e p$ Subadd $\}$

The End

Next time, get

 a NON-MONOTONIC speaker ...
Thank You!

Next time, get

 a NON-MONOTONIC speaker ...