CHAPTER IV: REPEATED GAMES

1. Tntroduction

The tWO-person Non-zero-Sum geme, "prigoners! Dilemma", has the

following payoff matrix:

1 G H

G (1,1) (5,0)

H (0,5) (4,4)

Tt is useful to think of G as 2 "greedy" strategy and H =28
a "helpful" strategy. The strategy G is dominating for both playars
and since esch player wants €0 maximize his utility, G 1is the "rational"
choice for both pleyers. Moreover, (¢,G) is the unique equilibriwm point
of this game. So if this game ig played once, it 1s "prepsonable’ O
single out (G,G) as the "golution" of the game.

Now suppose this game is to be played 100 times with the tcsal pay-
off being the sum of the payoffs from the 100 plays of the game. At the
100-th play of the game, the game is to be played once, and the retional
choices for the players are (G,G), since these are dominating strategles.
At the 99-th play of the game, each player realizes that in the 1:0-th
play the players will choose (g,3), so that +the 100-th play is ezsentially
determined, and the 99-th play 1is in strategic reallty the last, 50 the

players will choose their dominating strategles (¢,G). By backwzrds
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ipduction we see that the rational cholices for the players are

(@¢,G) at each of the 100 plays of the game. These strategies are not

only maxmin strategies, but alse constitute an equilibrium point for the

repeated game of 100 plays; moreover, the only equilibrium payoff is (lOO,lOC).
We now ask, what would be rational choices for the players if the

game were to be played a countable number of times? One might expect

that some sort of cooperation is induced: if a player deviates from a

particular strategy at some play, in order to increase his own payoff, then

the other player may be able to act in such a way that his opponent is penal-

jzed in every subsequent play of the game. In the sequel we study repeated

games, consisting of a countable number of repeated plays of a single

game.

2. Definition of a Repeated Game and Strategies

5.1 TNotetion. Let T denote the finite game with

(i) +the set of players N = {1,...,n},

(ii) strategy sets .., (1es T= O ),
ien

(iii) payoff functions h: >R, VieEN.
Let Xl be the set of mixed gstrategies for player i (i.e., the set of
probability distributions on %), 1et X= I X sndlet H:X>R

i
be the expected payoff function for player 1.



2.2 Definition. The Super-game, I', consists of countably many

repeated plays of the game T.

2.3 Remark. We should really speak of strategies for T and of

"super strategies" for T. Bowever, to simplify terminology, we shall

henceforth refer to ¢~ € g+ (a strategy in T) as a "choice", and to

& strategy in I simply as a strategy.

2.4 Definition. 4 (pure) strategy for player i is a sequence

) k-1

F' = {i’i}m » Where £ ig a function, f: (g > zl, (i.e., £~

k k=1 k k k
dictztes the choice of player i at the k-th play of the game T, as a

function of the choices made by all the players in the preceding (k - 1)

plays of T). Let F = {F°} = the set of all pure strategies for player

"
i ir T.

2.5 Remark. Let |[z] =s, |>:i| = t,. Then, for each fixed
. o, k-1 (I
ienx, IFJ'[ = I tés ) < tik=l =t =K. so each player has
k=1

uncoratably many pure strategies.

2.6 Remark. 3yconsidering the example where the game T has payoff

matrix [é], we can see that the 1lim and I1im of +he average payoff
Mo mn—roa
over m plays of T need not agree. So that, in general, the limit of the

averege payoff cannot be used as the payof?f for T, since this limit need
not exist. In fact we shall see that there is no need %o define a payof?

function for T, rather, in Section 3 we shall define equilibrium points

in terms of preference relations on the strategy n-tuples.
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In the following we define mixed strategies for the players.

2.7 RNotation. Let ([0,1],B,A) denote the probability space

consisting of the uait interval, [0,1], with the o-field of its Borel
subsets, B, and the Lebesgue measure, A. For each i€ N, player 1 has

a probability space (Ql,A},Pl) which is isomorphic to ([0,11,B8,2). Let
i i i i i
w denote an element of @, let 2= T &, A= I A and let P= NI P

ieN igyw icN
be the probability measure on (&,A).

A~

"92.8 Definition. A mixed strategy for player i in T is =&

)k—l % 52:L > 21.

sequence of functicas F o= (£21° , where fi: (I
k k=1 k

~

2.9 Remerk. To implement a mixed strategy, F~, in a play of T,
player i acts as follows. DBefore the play begins, player 1 performs
a randcm experiment to select W € Ql, sccording to the probability dis--

tribution P- om (Q°,A"). Then at the k-th play of T, player i

i i
chooses f;(cl,---,ck_l,m

of choices mede by t2e players at the preceding (k ~ 1) plays of [. UNote

) € Zl, where Gpsees e r are the n-tuples

201,

that if fi is independent of w for all k, then Fl is egquivalent

tc a pure sirategy.

2.10 Remar:. If one needs (wants) independent randomizations at
each play k of T, then (Ri,Ai,Pi) is sufficient, because it is iso-
morphic to ([0,11,B,1), which-in turn is isomorphic to the Cartesian
product of denumerztly many copies of itself; e.g., if mi e [0,1] with

. . i . . :
decimal expansion w = ¢ a0 0 --.s then this generates realizations
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i

K € fo,1], ¥ = 1,2,..., by the following

of countably meny independent w

diagonal construction:

mi= -afa/a/

1 1,2k
N

Wy /a3 5 e
3 6 e

i

2.11 Notation. Let X = {F'} = the set of al® mixed strategies

for player i in I and let X =

1
ielN

3. Equilibrium Points
3.1 Notation. For a collection of sets Al, iglN, let A= 1 At
1 ielN
snd AT = qad.
IFL
3.2 Totation. For FEX, F=(F),_, ¥ ={=} Vvi€n,
1N =,
k=1
let {ri}w be the seguence of random variables defized on Q as follows.

k=1

For o = (ml,...,mn) € Q, let 'fi(w) = (fl(

1 ml}, A ~(w?)) € I, the n-

tuple of choices of the players at the first playof T, corresponding to  w,

() = (£5(zh () ub)y <ees 250g (0)su™)

F 1 F F n
Th(w) = (e (w)se ety g (0)sut)s veny S50y (0)ou))
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Then TF

Ty is the n-tuple of choices made by the players in the k-th

play of T (it is a random variable when the players are using mixed
strategies).

We have not defined payoffs for f‘ and so, to enable us to define
an equilibrium point for f', we introduce the following preference rela-
tions on the mixed strategies. (Also see Section 5 for a discussion of

payoffs in T).

3.3 Definjtion. Let F, G € X.

(a) Player i g-prefers G to F 1if there exists an ¢ > 0O

such that

G 1 % i, F ‘
L ~k(m)) > 0 kglh (Ek(m)) + £,

. .
Plo € Qi r (T

He~18

for all but finitely many m's} =1

£
We denote this by G? F.
' i

(b) Player i u-prefers G to F 1if there exists an € > 0

such that
m
1 1.8 i
plo€ @: = ] n(r(a) >= Tu 'r(u: +c
k=1 =1

for infinitely many m's} > 0 .

u
We denote this by G>F.
i

Remark: One can define other preference relations as well; the

two above are the "extreme”.
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3.4 Definition. An n-~tuple of mixed strategies, F& X, has a

payoff (or: F is summable) if there is 2 &€ ®®  such that

m . aA.8. .
L ) nta () — &

=1 M0

, ViIEN .

3.5 Definition. An n-tuple of mixed strategies, F € X, 1s an

upper ~
{123631,} equilibrium point for T if:
(a) F has a payoff, ‘ 3
. ~ . s L
(b) for all i €N end for all G exX, (Fl,6") & F.
i

3.6 Notation. We shall use the abtreviation {T':'g'} for
upper equilibrium point
lower equilibrium point

2 u u 2
3.7 Remark. Since G&S F = G?‘F, it follows that GHFF = G}F
i i i i
and hence {u.e.p.} C{l.e.p.}.

S

3.8 Example. Consider the repeatei game, T, in which [ 1is the
game of "Prisoners’ Dilemma". The stratezy pair in which both players
chcose G at each play of T is an (uprer) equilibrium point for E,
with payoff (1,1). The strategy pair in which each player plays "tit-
for-tat", is also an (upper) equilibrium zoint for f‘, with payeff (L,h).
To pley his "tit-for-tat" strategy, a pleyer chooses H in the first play
of T =2nd in each subsequent play of T, he chooses whatever his opponent

. chose in the immediately preceding play c® [. We show that the "Sit-for-

+at" strategies do form an equilibrium peint for T (it is even easier
g

or ey anes
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to show that the strategy pair where both players always choose G is
an equililbrium point). ILet F = (Fl,Fe) denote the "tit-for-tat"
strategy pair. When both players play according to F, they will choose
H at each play of T and it follows that F has payoff (L,k}). To
prove that F satisfies condition (b) of Definition 3.5, it suffices,
because of the symmetry between 1 and 2, to show that there is ne
¢t S %l such that (Gl,FE)ﬁg‘F. Since F 1is a pure strategy we need
only show that, for each ¢ i 0, no matter what pure strategy player 1
uses, as long as player 2 plays "tit-for-tat", thén player 1's mean
payoff over the first m plays of T is greater than L + ¢ for st
most finitely many m. (In fact, we shall show that player 1l's rean
payoff is greater than 4 for at most a single value of m.)

Suppose player 2 plays "tit-for-tat" in a pley of r. If player
1 always chooses H +then the mean payoff is always U. On the other
hand, if player 1 deviates from choosing H and k is the firsT play
of T in which he chooses G, then his payoff for the k-th play iz 35,
but in the (k + 1)-st play of T, player 2 will play. G and player 1's
payoff for that pilay will be at mest 1. So player 1's mean paycif for
the first (k + 1) ﬁlays of T will be at most (4{k - 1) + 5 + _}/(k + 1)
< 4, For future plays of I, player 1's payoff will be at most 1
until the play following one in which he reverts to choosing E. It feollows
that player 1's mean payoff for the first m > k + 2 plays of 7 can

be a2t most

L(k - 1) +5+ 1+ 0+ Ulm-%k~3)+5 _ L — 2 <L
o - m
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So, player 1's mean payoff is greater than 4 only at the k-th play
of T. Hence, vhether or not player 1 deviates from playing "tit-for-
tat”, his mear peyoff over the first = plays of TI' can be greater than
4 for at most one value of m, when player 2 plays "tit-for-tat".

We note that the payoff (0,5) cannot be an equilibrium payoff
for f‘, because, if there was a strategy pair F = (Fl,Fg) € X with
payoff (0,5), then player 1 would g-prefer the pair (é,Fa) to F,
where é is tie strategy f‘orr player 1 where he chocses G in each play
of T. Player 1 g-prefers (&,Fz) to . F Dbecause by playing é— against
1?’2 he obtains a mean payoff of at least 1, whereas playing Fl against
F2, his mean payoff converges to 0 with probability 1.

We shall prove a thecorem characterizing equilibrium payoffs, but

before we can do so, we must introduce the notion of individual rationality

for a player.

3.9 Definition. The individual rationality level for player i

in T is

rt = min max H (x) .

x'iex'i xi‘é';'f{i
3.10 Rerark. The individuel rationality level for player i is
such that, wher the players Jj # i are not allowed to correlate their
choices, ri iz the minimum payoff which those players can ensure player
i caonot exceei (i.e., it is the maximum payoff which player i cannot
be prevented fram obtaining). The following example illustrates the fect

that, in generzl, for an n-person game {(n > 2),
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min max Hl(x) # max min Hl(x) .
x_lEX-l xlexl xlEKl x_IEX“1

3.11 FExample. Consider the three-person game in which Dlayer 1l's

payoffs are as in the tables below.

3 3
5 L R 2 L R

T =1 0 T 0 0
B 0 0 B 0 -1
Payoff matrix for Payeff matrix for
Player 1's first Player 1's second
choice choice

Here min max HTY = min max {-qr, -(1 - g)(1 - r)} = ~1/L4, and
2,3 1 q,r

max min B = max min {-0,0,0,-(2 - p)} = -1/2. The payors —1/b =5 the
1 2,3 P
minimum whieh players 2 and 3 can €nsure player 1 cannot exceed, when
they make their choices independently. To ensure that player 1's expected
payoff did not exceed ~-1/2, players 2 and 3 would have to cerrelate their

cheices to randomize (with equal probabilities) between the pairs {('T,L)

and (B,R).

3.12 Wotation. Let € = conv {a(c)io € £} = the convex hull of

the n-tuples of payoffs for T, (i.e., C 1is the set of bayoffs wzich can
be achieved by correlation (agreements))., Note that {H(x): x €} C C;

since T is a finite game, C 1is a compact set.
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3.13 "Folk" Theorem. The following three sets are egqual.

(a) U = {payoffs corresponding to u.e.p.'s in T}.
(b) L = {payoffs corresponding to l.e.p.'s in T}.

(e) CIR={aE C: a.l::erieH}.

3.14 Example. When [I' is the geme of Prisoners' Dilemma,

rl=minma.x{q+5(l-q), (i = g)} = min {5 - kgt =1
q q

2 .
and by symmetry, r = 1. BSo, CIR is the set of points, a, in C with

a = (al,ag) > (l_,l).
2 A
a

(0,51

”

b4

&L o

Proof of Theorem 3.13., Since {u.e.p.} C {l.e.p.} it follows

that (i) U C L. We shall prove that (i) L C Cop and (iii) Cig CU-
combining (i), (ii) and (iii) yields, UCL C Crp CU, and hence

Us=L=Cpp Sowveneed only prove {ii} and (3ii).

Since {h(g): c &€} cC and ¢ is convex and closed, it follows

from Definition 3.4 that U and L ars subsets of C.



iv-12

(11) We shall prove that the complement of ¢ is contained in the

IR

complement of I, this being equivalent to 1 C c So suppose

IR®
a e C\CIR' Then there is i ey such that a.l < rl. To prove that
ad L, it suffices to prove that if FeX has payoff a, then tiere ig
. ] R 1
G € X such that @ = (F*,6Y) > F.
i
1)

So suppose FeX, F= (F (23" vi € N , has payorff

i
g Fo= i =1
. 1 . - - -c —0
&. Bince r = min max Hl(x), then for each x + ex™ there is
— X-IGX-I xlezl

Bi(x-i) et such that Hi(x_i,Bi(x_i)) 3 rl. The following example
illustrates the first two steps in the inductive Drocedure for defining
Gi = {gi}m s &lven F,
k=1
Example. Consider the case where ' is the game of Prisoners!
Dilemma. Suppose 92 = [0,1], 2% = Borel o-field, P2 = Lebesgue measure,
(i.e., the uniform distribution on [0,1], where each sub-interval has

measure equal to its length). Suppose

5 5 G, ir m2 €{0,1/2)
f7 (") = 2
B, if o €[1/2,1]
) 2
5 o G, if W € [0, 1/3)
£,((G,6),u%) ={ 5
H, it w” e [1/3, 1]

G, if o° € [(1/7, 5/7]

g5, it W° €0, 1/7) U (S/7, 1]
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5 ' 5 G, if u> € [0, 1/%)
0w,0,4) = { .
H, if « € [1/b, 1]

5 5 G, if W € [0, 1/6)
fa((H,H),m ) = { 5
H, it o € [1/6, 1]

- ™

Then gi, gé are defined as follows. Since f. dictates that, in the

first play of T, player 2 should choose each of G and H with proba-

bility 1/2, then gi = 61(1/2(},1/211). Since = 1, the choice G
for player 1 guarantees him & payoff of at least rl in T, and s0 we can
1et gt = c.

Knowing fi, fé and the choices of the players at the first play

of T, gé is defined so as to depend on the corditional probability that,

2
under -f2,

players in the first play of TI.

player 2 will choose G or H, giver the cholces made hy the

If the players chose (6,6) in the first play of T, then the
probability that player 2 chooses G, (respectively H), in the second

play of T, given (G,G) was chosen in the first play, is
P € [0,1/3) | w® € [0,1/2)} = 2/3 ,
; . 2. 2 2 ¢ - _
(respectively P {w” € [1/3, 1] ] 0, 1/2)} = 1/3}

Similarly, if (G,E) was chosen in the first play, then the probability
that player 2 chooses G, (respectively H), irn the second play, given

(G,E) was chosen in the first play, is
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-
Pl € /7, 5/7] | e [1/2, 1]} 37,

(respectively P*(u” & [0, 1/7) U (5/7, 1] [ e (172, 11} = 4/7)

We then define g; as follows.

g5(6,¢) = £'(2/36, 1/3m)
&(0,5) = 8L(3/7¢, 4/7m)

The definitions of gé(H,G) and g;(H,H) are immaterial since gi = G.

We now give the general definition of the {pure} strategy
¢ =1{g'}”  andor g = (F .64,
=

For each j # 1, let xi €X' be the mixture o choices in r,

corresponding to fi, l.e.,

xj(dJ) =P € g, fj(mj) = ¢v}
1 1
= the probability that under F o= {f._i}Ba » Player j
z=]
chooses ¢Y e EJ at the first play -r T
et x. = (x¥) and let gl = xiz Bl(x_l). For esch 4y g Q, let
1 1., 1 1 1
J#i
G, \_ , .-i i _ i, G
El(w)-(fl (m),gl), and ﬂ%l(w) = h (Il(“))' Then
R = =
ASXi) é?l(m)dP(m) expected value of ,fl

i i . , i_ 1
2t (xl) >T  , by the choice of g =x]
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n
Suppose o, = (oi) is an n-tuple of choices for the first

J=1
play of T'. For each j # 1 and UJ e EJ, let

([

3(o?) = P! el (o w?) = o | Slw) = o))

the conditional probability that, under FJ, player
J

J chooses ¢ in the second play of T, given theat
he chose ci and the other players chose azj in the
- first play of T .
-1 _ i IO SR R | T S &
Let x, (xe)Jﬁi’ let gg(cl) T x, =8 (x2 ) and let x2’01 (x2 ,xz).

: G -i, G i, G
For each w € R, let Ia(m) = (f2 (El(m),m), ge(zl(w))) and
7olw) = hl(gg(m)). Then for esch w € 0,
r~ :
E(Y2 ] gg(m)) = the expected value of To» given the n~tuple
~ s :

of choices, g; = Ei(m), mede in the first play

of T
i
= H (x )
2,cl
i
> I .

Since the g-algebra of Borel subsets of { generated by the random

. - G
variatle T

1 contains the g-aslgebra generated by the random variable ¥y

and since E(y2 Irf(m)) > v’ ¥y €q, implies that an average of such
N z

terms is > r~, (Logve [1978], p. 16, Section 38.2, No. L), then



V16

e

E(yé [ 7. {w)) = the expected value of y,, giver the payofr,
1 2

f\) s ~d

yl(m), for the first play of T

~

= E(E(y, | 1y (w)) Igl(m))
~
i

>r

The (pure) strategy @ = {g;} is defined inductively as follows.

k-1 k=1 )
Suppose that {g;} has been defined, some k > 3. Tkan for n-tuples
l:l . -
of choices Op2-+s0, 1 made in the first (k - 1) plars of I, let

Xi(c‘j) = PJ{wj GQJ: fJ(o' ,...,Uk_l,m'j) = o"ii lff(m) =g

k 2

for 2=1,...,k -1} ,

s i - d i I S D
for each j#1 and o’ €2V, rLet gk(cr ""’Uk-l) =x =8 (xk ).
For each w € Q, let

G ~i, G G i, G G

Ek(m) = (fkl('gl(w),-—-,Ek_l(w),m), gk(gl(w),---,g led)) o,

and let yk(w) = hi(zi{m)). Then, in direct analogy with <he case k = 2,
~
we have that for each gy & 2,

(1) E(yk Iirl(w),. . ,yk__l(w)) > r

Since the random variables, Vi k=1,2,..., are uriformly bounded
Eek 3
by M, say, we can apply the Strong Law of Large Numbers, see Lodve (1978],

D. 53, 32.18 with bn = M), to deduce that:



m
%kg Erk(m) - Eiykl gl(m),...Lyk_l(m))] +0 as m o @

for almost all w € Q. It follows, by (1), that

Plw € 9: lim yk(u:) > r~}=1 .
m-e T =

H |-
il t~1H

i.e.,

(2) Plw € Q:

e

But, by the assumption that ¥ has payoff a, we have,

1’“' 1
(3) P{NEQ:limEX T(m =a}=1 .

o+

Since r® > a’, it follows from (2) and (3) that there is & > 0 such

that

2]

H t~aH

Plw € Q: é- hi(zz(w)) > L ZLhi(Ei(w)) + g

k=1 B o=

for all but finitely many m's} = 1

Hence, G = (F-l,Gl)§> F, as required.
i .

{iii} Iet a € Cog- We shall show that there is an n-tuple of mixed

strategies, F € X, such that F is an u.e.p. for T, with payoff a.
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Before we give the general construction for F, we shall illustrate

this construction with the following example.

Example. Consider the case where I' is the game of Priscners’
Dilemma., Then (9/4, 7/2) is in Crg (see Example 3.14), and it can be

written as the following convex combination of the pure payoffs for T:

(9/%, T/2) = 3(4,4) + 0,5) + H1,1) .

Consider the following sequences of choices Al and A2, for players 1

and 2, respectively, in a play of T:

1 1.
AT = {ak} = {4,H,H,G,H,H,H,G,...}
=1
2 2.%
AT ={a} = {H,H,G,0,H,H,G,G,...} ,
k=1

where the pair of choices for the pPlayers at the first and the second
play of I is (H,H), (with payoff (L,4)), at the third play of T it is
(2,G), (with payoff (0,5)), at the fourth Play of T it is (G,G), (with
payoff (1,1)}, and then these four pairs of choices are repeated at each
successive bleck of four plays of T. S0, the propertion of the first

m pleys of [ in whick (H,H), trespectively (H,@) or (G,G)), is
chosen, tends to 1/2, (respectively 1/L or 1/k), as m + =, znd hence
the meen payoff vector, (over the first m plays), tends to (o/4, 7/2)

as m - o,
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We now illustrate the procedure for defining an u.e.p.,
F= (Fl,FE), with payoff (9/4, 7/2). Firstly, note that, if player 1,
(respectively player 2), chooses G in a play of T, then his opponent's
payoff for that play can be no more than r2 = 1 (respectively rl =1).

[--]
The strategy Fl = {fi} is defined so that player 1 mskes his
k=1

choices according to A;, s0 long as player 2 makes his cholces according
to A2, but if player 2 deviates from the sequence of choices, A2,

then player 1 "punishes" him in all remaining plays of T, by choosing

G in those remaining plays. The strategy F2 = {fi}m is similarly
defined fof pleyer 2, so that player 2 chooses acczzéing to A2 as

long as player 1 chooses according to Al, but if player 1 ever deviates
from Al, then player 2 punishes him by choosing G in all succeeding

- plays of T. 7

For example, if player 2 is t¢ play according to F2 and player

1's sequence of choices in a play of T iz as follows:
{#,4,4,G6,G,G6,6,H,G6,G,...} ,

i.e., player 1 first deviates from A; at the fifth play of T, then

1S

player 2's sequence of choices will be:
{H,H,G,G,H,G,G,G,G,G,...} ]

vhere player 2 punishes player 1 from the sixth play onwards by choosing
G from therecn. Consequently, player 1's mean payoff over the first m

plays of T, is greater than 9/4 for at most finitely many m.
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We now give the general definition of F, an u.e.p. with payoff
a, where ga £ CIR'
Since a € C, we can write a as a convex combination of the

payoff vectors corresponding to n-tuples of choices in r, i.e., if

= {c(j), J =1,...,8}, then there are real numbers a(j) > 0 such
s
that Za(J =1 and a-= Xa( )h(c ).

If the “(J)'S are all rational, then they can be written as
fractions with a common denominator: a(J) = p(j)/q, where p(J), g are
positive integers, and 4 is independent of J. In this case, we define

A= (Al)ﬂEN’ where, for eaech i S N,rAl = {g;} is a sequence of choices
k=1

of player i (one for each play of r© in f), defined as follows. TFor
the first P(1) Plays of T, the choices or pPlayer i (i.e., ai,...,a%p(l)
should all be c?l)’ for the next p(2) Plays of T, the choices of
Player i should all be 0%2), and so on up to the q-th play of TI'; then
player i should repeat his first g choices at each successive block

°f q plays of T, (i.e., a} = a% where X 2 k (modulo q}). It follows
by construction, that when the Players make the choices given by 4, in

a play of r the fraction of the first m plays of T in whiech c(J)

is chosen, tends to a(j) 8% W + =, and so, for each i € K, player

i's mean payoff over the first =n plays of 1 converges 0 ai as

o o~ co,

If not all the a(J)'s are rational, then, for each Js there is

& sequence of rational numbers (p( )/q ) s convergent to ;) @nd
=1

.
such that when a(j) is chosen for p%j) out of the first q plays
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of T, P%,j) out of the next q2 plays of T, and so on, then the
fraction of the first m plays of ' in which G(j) is chosen, will
tend to a(d) as m + =, and hence, for each i1 € N, player i's mean
payoff, over the first m plays of I, will converge to a.i as m -+ %,

Thus, even if the a( ')'s are not all rational, there is an n-tuple of

3

sequences of choices,
i i i s
A=(A)ia\r . A={ak} , VieEeN )

such that when the players choose according to A in a play of f‘,
player 1i's mean payoff converges to ai for each i € N.

To coestruct an u.e.p., F &€ ';(, with payoff a, we modify the
sequences of choices in A, so thet if, in a play of f‘, player i is
the first player to deviate from the sequence of choices {a. } » then
for all plays of I following that in which he deviates, pla.flec;l i will
be "punished" by the other players, in the sense that his expected payoff

in each of these subseguent plays of T will be nc more than r .

The formal definition of F = (F")iaI = {f b ovie N, follows.
K =1

For each i &N, there is Y ~ =x - € X ° such that

mex E (Y T,x") =r = min max H (x) .
x et x €& T xer
Ce . . i
Thus, B (Y T,x°) < v for all xi & Ei, and hence for all x € X .

For each i €N, f;’_(ml) is defined to be equal to ai for all w & Ql,

and for k > 1, £5 1is defined on (I)¥1 x o' as follows. If

k
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k-1 . . .
(Ul""’ck-l) e (1) is equal to (al""’ak—l)’ (i.e., in the first
(k - 1) plays of T, the players have played according to A), then
i i i i i
fk(cl,...,ck_l,m ) = &, for all w” €Q". If (cl,...ck_l) # (al""’ak-l)’
let 2 = min {2: 5, # a,} and let J = min {j: G% # a%}, (i.e.,
J is the "first" Player to deviate from his A-sequence of choices). If
i # j, then f;(cl,...,ck_l,-) is defined to be the random variable on
i . 3
{1, corresponding to Player 1i's mixed Strategy component in ¥ J, The

random varisble fg(cl,...,akul,-) is defined to be identically equal
to ai.
| If all of the players play acceording to F, in f, then their
sequences of choices are given by A and so it follows that F has pay-
off a.
It remaeins to prove that F satisfies condition (b) of Definition
3.5. So let i €N, let Gi = {gi}°° E.ii and let G = (F—i,Gi). It

k=1
suffices to prove that for each = > G,

m :
4 Plueal Lo < & T () + e

for all but finitely many m's} = 1

For each w €80 and % = l,2,..., let

i, G ) G . .
yk(m) =1 (Ek(w)) , Where T, is as in 3.2 .

First consider the case where Gl is a pure strategy (independent

of w'). Then, either Ig(m) =f, forall w€Q emd k=1,2,..., in

which case
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el
“Tk-1

that, (cf. part (ii) of this proof),

E(yk] Ti(m),.. (w)) = hl(fk) for all w €9 and k=1,2,..., SO

E(y, | yl(m) fens ,yk_l(m))

E(E(ykl Ei(w),...,gg_l(w)) | vy (w)s.-eo7

= Ty ()
= hi(fk) ,
for all w § Q and k =1,2,..., and hence
(5) %; If E(yk l yl(m),... ,yk_l(m)) = i- rf 'si(fk) - al
k=1 k=1

as m > «, for almost all w € Q; or there is a smallest number & such
that ri(w) # £, {where ri(m) is independent of w), in which case,
since player 1 1is the first deviator (because everyone else plays

sccording to F), we have, for all w € Q,

E(yk |Ei(w),...,gi_l(m)) < ri

: i
for all k > &, snd hence, (cf. part (1ii)), E(yki yl(m),...,yk_l(m)) <r’,

so that

?lm
(6) ;iz E-kz E(y, !yl(w)""’yk-l(w))

=T ] By, |yy(e),ee v g l)

-
- L
-
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since r- < al (because a E’CIR). Combining (5) and (6), we deduce
that when Gi is & pure strategy,
) Tml 7 () (0)) < at
(7 iﬂmkglEyklyl“"“’yk-l“’ <a
for almost all ¢ € q.

Now, Gi may be a mixed strategy which allows player i to randem-
ize amongst his pure strategies, but since (7) holds for all such pure
strategies, and for a mixed strategy, the expression on thé left of (7)
will be an average of such expressions for pﬁre strategies, it follows
that (7) also holds when G- is a mixed strategy.

We now apply the Strong Law of Large Numbers (cf. part (ii)) to

deduce that:
—1 ¢ i
(8) lim = J v, (w) <a
m k -
M- k=1

—

for almost all w € Q. Also, since T Hhas payoff a,

1 T i, F i
(9) lim E-kélh (gk(w)) = a

M-
for almost all w € Q. It then follews from (8) and (9) that for each
e > 0,
m o,
1 i, G 1 i, F
Plw € Q: E-kglh (Ek(m)) < E',Z h (tk(m}) + g .

for all but infinizely many m=m's} =1 . |
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L, Further Reading

Aumann ([1959] and [1975/76], Chapter 8, pp. 86-106) considers
repeated games in which the players may form coaliticns and he defines
an assoclated notion of a strong equilibrium point. He then gives =a
characterization of the payoffs associated to strong equilibrium points.
References to other work on repeated games can be found in Aumann's

notes.

5. Payoff in a Repeated Game

Note that in Definitions 3.3 and 3.k, (preliminaries to the defih-
ition of equilibrium point in f), we considered mean payoffs for each
realization of w &€ @, rather than using expected mean payoffs:

1/m ? E(hi(zi(m))). The reason for this is that the supergane r is to
be p§:$ed onee, so that a player should use the actual mean payoff for
assessing the worth of his strategy, and not the expected mean payoff
which is a measure of what he could expect, on average, if the supergame
were to be played a number of times (which it is not).

Aumann ({1959], pp. 320-322) illustrates this with an exemple
of a repeated game, in which the players masy form coalitions, where he

shows that it is misleading for the players to make judgements based on

expected payoffs.



Iv-26

References

Aumann, R. [1959], "Acceptable Points in General Cooperative n-Person
Games," Contributions to the Theory of Games, Vol. IV, Annals
of Mathematics Studies, No. 40, Princeton: Princeton University
Press, pp. 287-32k.

Aumann, R. [1975/76], "Lectures on Game Theory," Institute for Mathematical
Studies in the Social Sciences, Stanford University, Stanford.

Lodve, M. [1978], Probability Theory, Volume II, 4th Edition, Springer-
Verlag.

Luce, R.D. and H. Raiffa [1957], Games and Decisions, New York: John
Wiley and Sons, Inc., Sections 5.4-5.7, pp. 94-102.



