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CHAPTER III: STOCHASTIC GAMES

1. Introduction

In a (two—perSOn, zero-sum) stochastic game, the play proceeds by
stages from state to state, according to transition probabilities controlled
Jointly by the two players. In eccordance with Smapley [1953], we assume
there are a finite number of states, s € {0,1,...,8}, vhere s =0 1is
the state "stop the game,” and for each s € § = f1,...,8}, player 1 has
a finite number of possible actions, i = l""’Is’ and player 2 has a
finite number of possible actions, j = l,...,Js. We can assume, without
loss of generality, that I = Is and J = JS for each s €8. If, when
at a state s €S, the players choose actions i and d» respectively,

then player 1 receives the payoff a? from plzyer 2 =and the probabi-

1j
1lity that the next stage of the game is in state %t 1is ng, where
2
pi? >0 for t =0,1,...8, and I ng = 1. Payrents accumilate throughout
- =0

the course of the play.

1.1 Notation. For each state s €5, let A° = (ai )

i1,
~ ot J=1l,ene T
and let p;, = (pi ) for i=1,...,I, j=1,...,J.
J d 4=0,1,...8
1.2 Assumption. Assume that pi? >0 forell ie€{1,...,I},

J €{L,...,7} and for all s €38, (i.e., assume *nat the probebility of

stopping after any state and any actions is always positive). Then

I= min 29 » 0.

R i
§,i,§
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Since I is poéitive, the game ends with probability 1 after
a finite number of stages, because for any number =n, the probability that
the game has not stopped after n stages is no more than (1 - n)n, which

converges t0 0 as n o> =.
Let M = max ]a?_l.
. iJ
$,1,]
players is bounded Ty

Then the expected total gain or loss for the

M+(1-H)-M+(1—H)2-M+...=

==

. . s
By specifying & starting state s € S, we obtain a particular geme T,
where the payoff is the expected gain or loss. The term "stochastic

game" will refer to the collecticen T = (rl,...,rs).

2. ‘Strategies

2.1 Definition. A pure strategy for player 1 is a sequence

() ,06 :H xS+1{1,...,I}, vhere H_ is the set of all possible
n__;’ n 'n n
histories of the pley prior to stage n, i.e., the set of all

H = [(i, .3, ,s )}n-l, where 1, (respectively Jj,) was the action of player
n k'"k" &k o= k k

1 (respectively 2) st stage Xk and s, was the state at stage k.

Pure strategiss for player 2 can similarly be defined.

The full sets of pure and mixed strategies are rather cumbersome.
It will be shown that it suffices to consider a subelass of the set of
mixed strategies, krown as the beheviour stationary strategies, being those
strategies which emprioy an independent randomization st each stage, where

the randomization dezends only on the state s (and not on the stage n

ror the history).



ITI-3

2.2 Definition. A beheviour stationary strategvy for Player 1

I
: . _ [.8q S _ . 8 s s s _
158 & ecollection x = [x ]SES where x = (x ,...,xI), x>0, zlxi =1,
and xi is the rrobaebility that player 1 chooses action i in state s.
Similarly, a behaviour stationary strategy y = [ys]s cg® Cen be defined

for player 2.

3. Existence of a Valye
3.1 Definition. For am T x J matrix € = {¢, ) s let
I i=1,,...1
j=1,....J

val (C) be the value, with respect to mixed strategies of the two-terson

gero-sum game in vhich the payoff matprix is C, i.e., val (C) = min max xTCy

T y=¥ el
= max min x"Cy, where X is the (I-1)-dimensional simplex, Y is thne

xeX yey
{J -~ 1)-dimensional simplex.

3.2 Lemma. TLet Cs D betwo I xJ matrices. fThen

[val (C) - val (D)] < max ]c:i:I - dij].
i,d
Proof. Let o = ?ag Icij - dijl' Then, dij -a< cij < iij + .

Considering the left-hand ineguslity, we see that each entry in (¢ ‘3

greater than or equal to the corresponding entry in D minus a@. I-

M
follows that val (C) = min max X°Cy > min max xTDy -« =val (D) ~ a.
YEY xex - Y& x&X
Similarly from the right-hand inequality, val (¢) < val (D) + a. The

desired result foliaws immediately. |

3.3 Notaticn. Let P?n) be the game starting at state s, wxich

is stopped after stage n if a blay reaches that stage. Let
1 3 )

y = (r(n),...,r(n)

. £ 5
iven T = nos
P(n, Given a vector w = {w )tGS’ let B7[w] den--e
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8 3t t s
ij z pijw . Let wal I'(n)
teS

denote the value (in mixed strategies) of the finite game I‘?n). Let

the matrix with components sz (w) = a

val T = (val s ) . It then follows by induction om n that for each
(n) (n)’ g
s €S8
s s
val T = val (A
(1) (A7)
val I5 . = val {B5[vel T D! for n=2,3,... .
(n) (n-1} ? e

3.4 Definition. Let G be a two-person zero-sum game with mixed
strategy sets Xl and X2, and expected payoff function H: Xl x X2 + IR.
Then G has a value v 1if, for each ¢ > Q, there are mixed strategies

Tex anda FPer (depending on ¢) such that

H(.J_cl,x2) >V - g V x° € X and

- . 7
H(xl,xe) <V He ¥Vx € Xl

3.5 Theorem. For each s € 8, the game I‘S has a value. More-

over, val 1‘3 = lim val I'?n).
Il-ca

Proocf. Fix s £€8. In I'?n), the expected payoff to player

1 is bounded in absolute value by

M+(l—1‘I)M+...+(l—l'[)n_lM<I-§-

8

So  |val F?n)l <M/ for each n and so lim val I'(n)

e
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and lim val r?n) are finite. We shall prove that 1iz val I'E(‘ﬁ)
R , n+=
= 1lim val r?n) and that this is a value for the game r. In a play
Ty-==ca

of Ts, Ly playing an optimal strategy of r?n) for the first n
stages and playing arbitrarily thereafter, the first plzyer can guarantee

his expected payoff will be at least

hs M
val I‘?n) ~ m;—nfl - ]'[)mM) = val I‘?n) - {1 - II)n I -

Similarly, player 2 can guaraniee that pléyer 1l's expected payoff will

not exceed

val r?n) + mz_-n(l - I[)mM = yal r?n) + (l _ H)n ?[_i ]

Let € >0 and let m >0 be such that (I - I)" M/T < €/2, so that

—(1-D"¥/I<e/2 forall n>m Let k,2 >m be such thet

val rf’k > Tim val r?n) — /2 and val r?u < lim val ??n) + ¢/2. Then
p

ayoff will he

n-r-e 5 n-o
in a play of I , player 1 can guarantee his expected

gt least

¥v® = val r?

kM s —_ 5
. - -2 a— - T -
) (L -1 I val r( > lim val (2) £

n-+

o

k k)

and player 2 can gusrsntee that player 1's expectef payoff will not

exceed

=1

£ .
5 < Liz val F(n) +

1A
—

1

i

1im wal P?n) + £
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Eence vs = 1im vel I'?n] is a value for I‘s, and since for each £ > 0,
e

Timvel IS , —e< v <7 < limval It , +e< Limval To , + &
(n) - - = - = (n) - {n)

n+e= n-ree -~

it follows on letting £ + 0 that iim val I‘? y = 1im vel I‘? X
e n T n

So val I° = v = lim vel r?n).
I
g s B s
3.6 Notation. Let T: R -+ R be defined by T w = val (B [w])

8

l,...,wS)EIIR and each s € S.

for each w = (w

- 5] 5 ]
3.7 Definition. For v = (vl,...,v ) ERY, let vl = maéx |+" 1.
s

- g - -

3.8 Proposition. There is a unigque v € IR~ such that v = Tv,

and any sequernce (w(n))m be arbitrary in
n=0

IBS and letting w( ) = Tw(

defined by letting w(o)

D 1) BT 1,2,..., ccaverges to v,

n
S
Proof. Let u, w € R ., Then

max ITsu - Tsw[

sES

1Tu - Twl

max |val (8°[u]) - vai (B°[w])|
3

1A

max max ]b?.(u} - % (w)| , by Lemma 3.2
g i,] 1d +J

max [ zps‘t v

st t
iju - Z Pijw I
s,1,j t&S &S
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<max]ut-wt|. max ZPSt

= s,1,] tes -
= fu - wl max (l—p?o)
8,1, 1

o - wlh«{1 g} .

So, ITu - Twl< (1 - m)lln ~ wl.
2] . . . P,
let W € R~ be arbitrary. Define a secuence {w, .) .,
(O) (n) n=0

inductively, by w(n) = Tw(n—-l)’ n=1,2,.... Then,

Win) = ¥nan)t = 19 1) = TV oy

1A

(l - H)uw(n

-1) (n-2)

(1 - m*tw P .

A

(1) ~ ¥(0)

For m> n,

em) = ¥l S W) = Tl M) = Y@l + oo Wy - g
@ -+ (=D e e (1= Ty - ]
(1 - m*
<=y - v

Hence (v(n))m 0 is a Cauchy sequence. Since IRS is complete, this
n:

sequence has a limit, v € ]RS. Then
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!; - T;“ < I!E -— w(n)" + “w(n) - T;n

I+ - w(n)ﬂ + v y - vl

{n-1

| A

iy - “ + - ll -7 ©
¥ w(n) {1 -1) ¥n-1) vh=—=0 as n -~

Since the left hand side ¢f the above irequality is independent of n,
it follows that ¥ = Tv.
To prove that v is unique, suppose w € B> such that ¥ = Tw.

Then,
v « wl = oy - o5l < (1 - My - %1 and so

Oiﬂi?-iﬂio and hence v = w

3.9 Corollary. Les v = (w-rl,...,w_rs) be the unique solution of

v = Tv. Then for each s €5, v is the value of TI".

Proof: Let w, be the zero wvector in IRS. Then the

{0)

sequence (w(n))tl:0 is such that for each s € 8,
= q° - s | _ Sy _ ]
Y1) T ¥10) T val (B [w(O)]) = val (A7) = val r(l)
w?n) Tsw(n-l) = val (Es[w(n_l)]) = val (B°[val P(n—l)}) = val I'?n) .
So TT"S = 1lim ws
- (n)

lim val r?n}

val r° , by Thecrem 3.5 . |
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3.10 Remark. Computation of the segquence (w(n))m o is an
n=
iterative procedure for computing v. An upper bound for the maximum

error when w( =0 is:

0)

n_l)ll < ... <

v - w(n)" iy - Tw(n_l)ﬁ < (1 -mlv - v

< (1 -y - (0

A

Jhe-m*3

3.11 ZRemark. We ssy that v is the value of the stochastic‘game

[, and denote it by wval T.

b, Optimal Strategies

k,1 Theorem. For each s €8, let X , ¥  be optimal strategies
for player 1, player 2, respectively, in the matrix game Bs[?], where
v =val T. Then, x = [is}ses’ ¥ = [§3]368 are optimal behavicur station-

ary strategies in T.

Procf: Let P(n) be the same game as F(n), except that
whenever a play reaches stage n, if the state at stage n is s, then

p + 7 pig?t (and the play
g=

stops as in P(n)). Consider the game r(n}' If the state at stage n

the payoff at stage n is not aij, bhut a?

is s, then the payoff matrix for this stage is B°[v]. By playing X
(respectively ?s), player 1 {respectively player 2} guarantess that the
expected payocff at stage n will be at least 7° (respectively at most
7°). Consider stage n - 1. Since player 1 can guarantee (using X)

that the expected payoif et stage n will be at least v, then if the
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state at stage n - 1 is t, player 1 can guarantee that the expected
payeff matrix, starting at stage n - 1, is at least Bt[w?]. By

playing ¥ at stage n - 1 and x at stage n, player 1 guarantees
that the expected payoff for the last two stages will be &% least ?t.
Similariy, by playing y_'t ot stage n - 1 and ¥y at stage n, player 2
guarantees that the expected payeff for the last two stages will be at
most ?rt. Using backwards induction we see that by playing his bhehaviour
stationery strategy at each stage, player 1 (respectively player 2) ecan
guerantee that the expected payoff in E(n) will be at least +
(respectively, will be at most V).

The difference in payoffs between P(n) and. l"(n), and between
I'(n) and T, is no more that (1 - H)nM/T[. So the difference in payoffs

between I‘(n) end T is no more than

_ n ¥

a = 2(1 - I) T

Let £ > 0 be erbitrary and let N ©be such that U'N < g. Then
by playiag the behaviour stationary strategy X, player 1 guarantees that
the expected payoff in I‘W) is at least v and hence the expected
payoff in T 1is at least Vv - oy > ¥ - ¢. Since g > 0 is erbitrary,
bty playing x, player 1 guarantees the expected payoff in T is at least
¥. Simiilarly, by playing ¥, player 2 guarantees that the expected payorf

in T is no more than ¥. Hence (x,y) is en optimal strategy palr for T. a

Remark. X, y actually guarantee v (not ¥ * & as in the general

Definition 3.4).
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5'1
s =1 s =2
1
e L A 1
25 !2 ,2 2‘
il 0 G| L
‘2 2° *2 2!

The (i,j)-th cell contains the following information:

a, .
1d
sl 55
Pij F B ’pij

Note that I = 2.
= 1 - 2
Let u=val ", v=val . Then
1+35 (1425
= 2 2
v = val 1= = .
]_,+Ev l+§v
and hence v=1+1/2%, i.e., v=2
1+23|0+2F 1+ 2% 1
- 2 2 _ 2
u = val 1= T = vl TC
0+§v 3+-é-‘ 1 3-!--2—11
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So
- . 1- 1-
1= max mn{p(l+§u)+(l-p),:c+(1—p)(3+§u)} )
Ocpil
N2
3+£_‘j |
2 ¢ |
!
|
l._
: 1l + 2u
14 i
I
’- § >
c p* 1- P

Since W > 0 (all entries > 0), then 3 +2/2u>1 and 1+1/2 u> 1,

and so the lines intersect in [0,1] at p® satisfying

1 1 1 2 + 50
1+ =0p¥ =3+ 20 -(2+Sujp*epf =—— .
2 2 2 -
2 +u
So
1= 1=
- 1- zul2+ 3w 5.5
u=1l +‘Eup* =1+ — - e o= 2 .
2+t
So u= 22 (we choose the positive root since u > C), p¥* = _2£3;:;z2;’
/3 2(/3 + ¥2)
, . _2/3+ /2
g¥ = ——————— .
2(/3 + /2)
. X . - = _ 22 e
mhe value for this stochastic game is (u,v = 0:;:, 2), and the optimal
3

behaviour stationary strategies are given tr p* and g* in state

F-J

s = 1, and any strategies are optimal for = = 2. Note that the value is
not rational, even though the entries in ths payoff matrices are integers,

(for regular zero-sum games, if the entries are rational then the value is

raticnall)
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5.2
s =1 s =2
2 =1
O O-J—" 0 oi 6 0.];
a2 ’3 > 2 2
-1 2 2 ¢
O’;- _:0 Ogi 0'1;
3 2 2 2

Note that I = %’-.

Let u = val I‘l, ¥ = val 1'2.

(&) u and 7 are defined as the unique solutions of

_ 2+32'-1'1 _1+-J3:x'r
U= val .
1~ 1=
-l+3v 2+2u
_ %?r 6+%\? 0 6 ]
v = val = val + = .
2+ 15 i3 2 0 ;
2 2
[o 6 3 _
Since wval =§ s V=3,
12 ]
2 + &3 0
- 2 1~ - L
o u=wvyg] =l+z-u and hence u=-3-.
1 -
+ =
0 2 2u

" The optimal behaviour stationary Strategies for I‘l and 1"2 are the

optimal strategies for

L L I
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8/3 0 3/2 i5/2
and , respectively .

0 8/3 /2 3/2

Thet is, p% = 1/2, q* = 1/2 for rt ana p* = 1/4, q* = 3/4 for r2,

(b) Starting with the initial epproximations o) = 0, (o) =0,
we caleulate the first few terms of the sequences (u(n)), (_v(n}) which

ccaverge to u and v, respectively.

1 i

2 + “z-u(o) =1 + Ev(o) ) 2 =1 L
u(l) = val N N = wval = E
143700 | 2T 2%0) L
1 1
0+3v0) | ©* 27(0) 016 \
v(l} = val i N =val p—T1 = E
2% 3V | % T 27(0) 2| °
1 i L i
2 + Y1) -1 + 5V (1) 9/ 5 ;
B(g) T 7 = Ve -8
=1 + W 2+ ;"Ll _1:. Q/l[.
- (1) 2 (1) 2 g |
|1
1 i 0
0+ 3¥ |62V ol ;
Vigy = Vel 1 1 = val T2V T
2+ 2% | %727 21 °
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39/16 _%.
/gy = val - = 35/32
_= 39/16
i
0 6
_ 1 =21
V(3) T val Y202 T3
2 0
163/6k4 _%_
- - 28
1
-5 163/6k4
0 )
_ 1 _ ks
V(yy T val T 2V(3) T 16
2 0
6. Discount Games

Consider a stochastic game with zero stop probezility at esch

state, that is pig =0 for all s, i, j. Then if th's game is modified

(l _ r}n-l s

sc that the payoff at stage n, in state s, is -aij,for some

fixed r in (0,1), then the resulting game is called -he r-discount
game. It is easily seen that the r-discount game 1is eguivalent to a
stochastic geme with minimum stop probabdbility T = r, znd with trangi-
_ tlon probabilities ng =r, q?? = {1 - r}ng for s, T €8, for all

i ané J, where pr are the given transition probebilities for the

r-discount game.
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