CHAPTER I: THE NASH CCOPERATIVE SOLUTION OF TWO PERSON GAMES

Bargaining Problems - Fixed Threats

1.1 -Definition: A (two person) bargaining problem is = pair {a,C}

2 . ] _
where a€ R 1s the nonagreement point and €, 2 convex compact subsst

2 . s .
of R containing a, is the set of ail agreement points. The collession

of all such pairs is denoted B.

1.2 Notation: If x and y are elements of R° we write x »>y 1iff

x. >y, for i=1,...,n,x§y iff «x,

1 1 l;yi for i'= l,..-,n, and

x>y iff x>y and x#y. A.lso,BEE{XEZRn: x>0}, and if C is

a convex compact subset of ZIRE, CP = {x € C: ther‘e isno vy &€ C with

Itv

¥y > x},

1.3 Definition: If f: B +BE satisfies the following sxioms and

f(a,C} €C for all (2,0) €EB +then f is a Nash solution function ==

£(a,C) is a Nash solution of the bargaining problem (a,C).

Aziom 1: f(a,C) & CP (Parsto efficiency).
. . - c .
Axiom 2: If a, =&, eand (;;1,x2) €C = (xe,xl) C then
fl(a,C) = fe(a.,C) {syrmetry).

Aziom 3: Let o GE+ and Bl’ Bgelﬂ. Then if ' ={{z.x

%10 % el

* 8 X + 8,0 x €C} amd &' = (a3 + 8y, a8, +B,), £(a',07)

1° %%
= {a,?, (a,C) + 8

. s o s
1 ae-a(a,c) + 32) (invariance undsr linear

trensformetions).
Axiom 4: If CCD then f(a,D) €C =(a,0) = £(a,D)

(independence of irrelevant alternatives).



1.l Theorem (Nash [1950]): There exists a Nash solution function .f£.

Moreover it is unigue and f(a,C) = arg max (x, ~ a. )(x. - a.).
£ 1 1772 2
P

L

Proof: See Nash [1950], or Luce and Raiffe [1957], p. 127.

1.5 Remark: If there is an x € ¢ such that x >> a, then cQQaJLQxa

£(a,C) = arg max (:L_L - a,){x, - a,). In Diagrem 1 there isnoc x € C
<0 1 2 2

x>a

‘such tiat x >> a; f(a,C) = arg max (xl - a.l)(x2 - a.2) is as shown, whilst

x=C
D

arg mex (x, - a._L)(x - a,) is the line segment joining f(a,C) and a. -T&-
e 1 2 2 -

— — et L e I == g -

...:1_5_'. o
e 1L 2772

f(a,C)
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2. Variable Threats -

Let C be a convex compact subset of ]Rg. We will first examine

the nature of the set {a € C: #(a,C) = x} for any given x € Cp.

Define g: C - CP by

gla) = £(a,c) .

Then g_l(x) = {a € C: f(a,l) = x} 1is the set in which we are interested.

2,1 Lemma: g is a ¢continucus function of a.

Proof: Let {a"} be a sequence of members of C, with a® > a.

soereiizr} that d° ool ~f> 3—(‘1) .

n n n Iy /.0 n . .
mh(xl - =='.l)(:sc2 - 2) < (‘-dl - a.l)(d2 - a.2) for al> x € Cp, so that,

Let 4% = g(a®), and assume

taking limits, (xl - al)(x2 - aa) < (dl - al)(d.2 -a,; forall x€ cp,

or d=gla). (Tawe g iz contimlous.

2.2 Lemma: (2) If aEC\Cp ‘and 4 is in the irzersection of C and

the lize through a end g{a) then gld) = gla);

() if a, b€ C and 0 <a g1 ther

gilea + (1 - a)b) € [g,(a),g,(¥)] for i=1,2.

Proof: (i) Let C be the isosceles triangle in Diagrem 2, with
a as shown. Moving the origin to =&, and using Axiom 3, and then Axioms
1l and 2 we see that gl{a) is the midpoint of PQ.
(ii) Let ¢ be the triangle in Disgrs= 3, with & as shown.
We can rescale the payoffs and shift the origin tocreztea new problem for

wihich the set of agreement points is an isosceles tr:'.a:gle with corner at B

~ 1t - . | ‘:‘ . i
Tt Yo b a &LMM , wulfe\_ou.,'t Logs “t Lj-ex...mua_k J—j e
: iy em.wm o sowie CL——F%@ Neeo—
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Diagram 2 Diagram 3

the origin. Then we can apply she result of (i), together with Axiom 3,
to deduce that g{a) 1is precissly the midpoint of PQ.

(iii) Consider =za arbitrary bargaining problem (a,C). We
want to show that if 4 is in <he intersection of C and the line through
s and g{a) then g{(d) = g(a). Note that if there is no x € ¢ such
that x >> a, thern the result iz immediszte. So we need only consider the
case where there is an x € C with x >> a. In this case consider the
tangent at g(a) +to the rectanzilar hyperbola through g{a) with center
& and asymptotes parallel to tki2 exes of ZBQ. The tangent is unigue since
the rectangulaer hyperbola is differentiable. TFurthermore, it has a negative
finite slope, and separates S = {x € B (xl - al)(x2 - 52) > (gl(&) - &l)
x (ge(a) - ae)} and C: 1if there were = point in C sebove the line, the con-
véxity of € would ensurs that zhere would be a point C in the interior

of 8, which would contradiet t:2 fact that {(a) is the Nash sclution of
E



Dizgram 4

(a,C). Hence it is possible to construet a right-angled trizngle containing

C, as in Diagram 4. Let the poiats in the triangle comprise the set D.
Give the point a € E@ the label A, and let the points in the triangle
APQ comprise the set E. Then by construction we have £(2,0) = gla)
and f(a,B) = gla); so by {ii), g{a) is the midpoint of PG. Also by
(i1), £(4,0) 1is the midpoint of P'Q', which by similar triangles is the
zidpoint of PQ. But gla) € C, so by axiom 4, gla) = £(¢,D) = £(d,0)
= g(d). Hence g(a) = gla), proving part (a) of the lemma.

(iv) Let a, bEC 2nd ¢ = aa + (1 alb, & € {0,1].
First let a, b € C\C:p and suppose g, (c) € [gi(a),gi(b)l for some 1.
Then the segment [e,g{e}] has a point in common with the line through a
.and g(a), or that through b and glb). ILet this point be ¢' (see
Diagram 5a). Then by (iii), gle') = g{a) anda g(c') = g{c), which is not

rossible since gla) # gle) by assumption. Hence g.(c) € [g.(a),z.(1)]
i i i
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a=g(a)

z(e)

° =&(b) g(b)

Diagrem 5b Dizgram Sc

for i =121,2. Secomd, if a or b, or both, are elements of C_,
the result follows from the first case since & 1s continuocus (see

Lemma 2.1)}.

This completes the proof of the lemmaf

We are now in & position to establish the nature of g_l(x) for

- . . . 2
® € Cn' Zenceforth if a lower case letter denotes a point in R~ the

Py

corraesperiing upper case letter is the label of thas point. We have:

2.3 Lemma: If x € C,o det 2(x) Dbe the set of lines which suprort ¢

gt x. Then g (x} = U {a€<C: the line througk A and X is the

& (x) .
L with respect to & perpendicular from X onto an axis}).

reflecticn of

Prcof: Let 05 be the set of points in Cp all of whose suppert-

ing lines have negative finite slope., We will first show that if x &



and a 1is suchk that the line through A and X 1is the reflectiom of
some £ € 2(x) with respect to a perpendicular from X onto an axis,
then & € g_l(x). Construct the right-angled triangle PQR of Diagram 6,
the hypotenuse of which is a segment of 2. Since RX is, by construc=
tion, the reflsstion of ¥Q with respect to I35, RS = 8Q. GSimilarly,

PT = TR, so X is the midpoint of PQ. Let D te the set of points
in PQR. Then by (ii) of the proef of Lemma 2.2, f(r,D) = x, so by
Lemma 2.2, £(2,)) = x. Hence by Axiom 4, £{a,C) = g{a) = x, as was to
be shown. If =z & CP\Cé, then for any supporting line with negative
finite slope tks coustruction can be carried ocut. For a supporting line
with zerq or i:finitelslope the result follows immediately from Lemma 2.2
(since in this 2ase AX coincides with the supporting line).

Now we will show that if =& € g"l(x), AX is a segment of the
reflection of & supporting line at X with respect t¢ a2 perpendicular
from X onto zz axis. If x; = ay for i1 =1 or 1= 2, the result is
immediate. If =zot, tzen the rectangular hyperbols through x with cgnter
gt a and asy-mztotes parallel to the axes of IB2 has a tangsnot at x
which supvorts C at that point (see part (iii) of the proof of Lemma 2.2).
Construct the »ight-angled triangle AFG, &s in Diagram 6, the hyvotenuse
of which is 2 zsgment of the tanrgent. Let E bte the set of peints in
AFG. Then f£(=,E) = x by constructicn, so that by (ii} of the preof of
Lemma 2.2 X Is the midpoint of PQ. But this means that AX is a
segment of the reflection of XQ@ with respect to XS,

This comzlates the proof of the lemma.
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2.k Remark: If there is a unique supporting line at x, g"l(x) is

the intersection of & line and C; if there are multiple supporting lires
at x, g“l(x) is the union of an uncountable collection of such interssc~
tions-~-in fact, & cone (see Diagram T). Since each such cone contains a
point both of whose coordinates are raticnal, there are countably many

such (nondegenerate) cones for any given C.

We cen now discuss the ("variable threat") ¥ash soluticn of = +us
person game. Let G be a two person game in strategic form in whica =2

set of pure strategies of player 1 (resp. 2) is M = {1,...,m} (resp.

N

{1,...,n}) and the payoff function of player i is hys Mx N=>E for
i=1,2. Let X (resp. Y) be the set of mixed strategies of player -

(resp. 2) in G, and let Hi: X x ¥ >R %be the payoff function of plzyer i
in the mixed extension of G. Finally, let C be the convex hull of (X)),

and let g: C + Cp be the function defined at the beginning of this :zapier.

2.5 RBemark: Since the strategy sets of botk players in G are Tinize,

C 1is a polyhedron; it is the set of points which the players can reach
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via correlated strategles--i.e. the set of agreement points,

2.6  Definition: The {two person) bargaining ssme derived from G is

the {two person) game G* 3in which the set of pure strategies of player 1
(resp. 2) is X (resp. Y) ‘and the payoff function of player i is

giDH: XxY¥Y->R for 1i=1,2.

2.7 Remark: The following passage in Luce and Raiffa [1957], p. 1ko,
explains what is going on.
(In G¥] each player adopts a mixed strategy [of G] as
& "threat"; the pair of threats establishes a payoff, which,
in turn, acts as the [nonagreement point] for future bar-
gaining; and the bargaining probtlem is resolved in the manner
discussed in [Chapter 1 above]. Therefore, the problem is
reduced Lo selecting the threat strategies so as to influence
the [nonagreement point J~=which contrcls the ultimate payoff--
in the most favorable manner.
2.8 Examovle: Let G be as in Table 1. Then ¢ is as in Diagram 8.
2(X,Y) is a subset of C which contains all the vertices of C. A pair

of strategies (x,y} in G* determines a point =& = E(x,y) in H(X,Y),

and consquently & pair of payoffs gla) = g(H(x,y)) in Cp'

i
1 2
1 2,1 0.9

(2,1)

2| -1,0 | 1,2

Payoffs in G f

- R | k]
Tzole 1
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2.9 Theorem {N¥ash [1953]): There exists a point d € ¢ (the agreement

point) and poinis X, €X and Yy €Y (the optimal threats) such that

HIY

1 dE€c,

(1) .

(2) for e2ll y €Y, g, (B(x _,¥)) 2 dy» gnd
(3) for 211 x €%, ge(H(x,yo)) é

o

2.10 Remark: 3ince 4 € CP, (2) implies that for all y € ¥, gng(xc,y))

na

d2 and (3) icplies that for all x € X, gl(H(x,yo)) < dl. So we have

dl and

& point (xo,yo) in X x Y such that gl(H(xo,yo))

Vizy)exxy | gl(H(x,yo)) < gl(H(xo,yo))

na

g (Bx_,7)) 3
similarly for plzyer 2.

2.11 Remark: We cannot directly apply Nash's theorem on the existence
of an equilibriun point in the mixed extension of = noncocoperative game
with finitely meny pure strategies (Nash {1951]; see also Thecrem 2.23 of

Aumenn [1976])) teczuse g;°% for i =1,2 is not linear in x and jy.

Proof orf “heorem: Recall the following:

(1) for =11 a2 in €, g{a) is Pareto efficient;
(i1) 2 s continuous {Lemma 2.1); apd

(1ii) for all 2, b €C and 0 < a

A

= - E
1, ai(aa + {1 ~ a)b) [gi(a),si(b)]
for i =1,2 (lemma 2.2).
Using induction za (iii) we obtain

(iii') fzr all a
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Define, for all x € X,y €Y, 1 €M, and j €N,

ci(x,y) = max'{gng(x,y)) - ge(H(ei,y)),O} and
3 (xy) = mex (g (B(x,¥)) - g (H(x,e2)), 01

where ei (resp. ei) is the k-th unis vector in X (resp. Y)

Assertion 1: For all x€ X and y €Y thereisan 1 €M

such that
(a). x > 0, and

- (1) c-‘;cxm = 0.

Proof: By definiticn, ci(x,y) > 0, If there isno i €M for

which {(a) and (%) hold, then

x; > 0 implies ci(x,y) >0 , or

. . 1 :
X, > 0 implies g, (H(x,7)) > g,(H(e},¥))
1 1 , ; . s sz
Since x = ] x.e, = ] x,e , this coniradicts (iii').
YW D S N A |
i ieM
xi>0

Assertiom 2: For all x € X z2nd y €Y, there is & jEX
such that
(a) vy >0, and

{v) cg(x,y) = 0.

Proof: As for Assertion 1.
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Yow for each x € X and y €Y 1let

xf = (xi + ci(x,y))/(l + 3 ci(x,y)) for 1 €M , and
ieM -~
:rfj* = (YJ + c‘?(x,y))/(l ) c?(x,y)) for JEN

JEN

It is clear that x?, y? 20 forell i€M, jEUN, and Z x;
iet

= y* = 1. Hence the transformation {x,y)} = (x*,y*) is from X x Y
JQIJ 1 2
into itself, and is continucus (since c; -and ey are continuous); X X Y

is convax and compact, so we can apply Brouwer's fixed point theorem to
- ir : 1 ® o) = “
obtain & point (xo,yo) in X *x Y such that (xo,yo) (xo,yo) Let

d= g(E:xO,yo)). Then we have:

A

Assertion 3: For a2ll x € X, ge(H(x,yo)) > gz(H(xo,yo)) = d,.

Proof: Applying Assertion 1 to xo and yo, we get an 1€ M

such tz2zt x . > 0 and c.(xo,yo) = Q. Hence

x ., +0
T <x ., = x*i = 011-
ol Q
is

1
So 1 + E e {x ,v ) =1, and c%(x 2. ) =0 for all i € M. By the
e ol o itFoo L
definition of ¢, this implies gz(H(xo,yo)) < ge(H(ei,yo)) for all

i € M. Hence for 2ll x € X, using (iii'),

S(H(x.y) 2 min g (Ele,,y)) 2 2,(E(x_,v,)) .

as was =0 he showa.
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Assertion b: (xo,yo) are optimal threats, and & is the

agreement point.

Proof: Apply Assertion 2 to obtair zn inequality similar fo that

in Assertion 3 for player 1.
This completes the proof of the theorem.

2.12 BRemark: It is easy to see that the theorem holds if instead of
letting C = convex hull of H(X,Y), it is merely assumed that C is con-

vex and compact and contains H(X,Y).

2.13 Remark: What the theorem says is that player 1 can guarantee
himself a final payoff of at least dl by pleying the strategy X, and
this strategy is a best response when player 2 uses the strategy Y3 snd
player 2 can guarantee himself a final payoff of at least dg by playing

the strategy yo, and this strategy is & best response when player 1 uses

the sirategy X,-

2.1%  Remark: The agreement point d is unique. To see this, suppose
that fthere were two such points, d and d'. Then player 1 could guarantee
himself meax (dl,di), which would mean that player 2 could not guarantee
himself max (dz,dé}, in which case one of the points would not be an
agreement point. The optimal threats, however, need not be unique (see

Example 2.18 btelow).
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2.15 Remark: The use of mixed strategies in G* does not expand the
set of feasible payoffs. Indeed, given the pure strategy of the other
player, randomization between pure strategies (in G¥*)} by a player will
yield a payoff which is a linear combinatior of the payoffs he gets to
the pure strategies, while if C is strictly convex in the appropriate

region, he could obtain a higher payoff by using some other pure strategy.

In the examples below, we will use {z,b) %o denote a point in IBQ,
reserving the notation (x,y) for 2 pair of mixed strategies in G. In
the tables each row corresponds to a stratezy of player l,'and each column

to & strategy of player 2, as usual.

2.16 Exemvle: ILet G be as in Example 2.3. C is then as in Diegram 9.
CP is a segment of the line a + b = 3, so for {a%,b¥) € Cp, g—l(a*,b*}
is a segment of a - b = a* ~ v* = X, say. The choice of threats by the
Players determines a value for K, and hence the outcome. Player 1 prefers

higher values of K, and player 2 prefers lewer values, so the "K-gzme"

a+b=3

o -

Table 2
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“involved is strictly competitive., To find the optinal threats in @*%
we calculate a - % for the payéff (2,8) to eack pure strategy combi-
nation in G; these are given in Table 2. The equilibrium point of this
K-game is seen to be (xo,yo) = {{(1,0),(0,1)) whiecx is thus the pair
of cptimal threats in G*; the nonagreement point iz H(xo,yo) = (0,0).

The minmex value of the K-game is K¥ = 0, so the szreement point in G*

4 * 4

is (dl,dg) such that d1 - d2 =0 and

2.17 Example: Let the payoff matrix of G be as in Table 3. ¢ 1is then

as in Diagram 10. CP consists of a segment of the line a + 2b = &,

and a segment of the line 2a + b = 6. We divide C into three regionms,

as shown in the disgram, and. examine the possibility that an optimal threat

lies in each one in turn. Proceeding as in the previous example for region
we calculate a - 2b for each pure stirategy pair, to obtain Table 4. Let
the mixed strategies of the pieyers be (x,y) = {p,. - p),{a,1 - ¢)). Then
for an equilibrium point -6p + 6(1 - p) = 3p - 2(1 - p), or p* = 8/17, so
+
b
(0,3)
12/5
Payoffs (a,b) in G 21/10,15/10)=4
=6/17
1]
=6
0,3 3,0
) S
a -
0,-3 2,2 /

Table 3

3, or (dl,de) =(3/2,3/2).
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a-2b 2a - D
-6 3 -3 6
6 -2 3 2
Table L Table 5

It

the minmax value is K% = —6(8/17) + 6(9/17) = 6/17. But a - 2b = 6/17
does not intersect region 1, so the agreement point does not lie there.

Consider region 3. The values of =2a - b are given in Table 5.

é6p + 2(1 - p), so p¥ = 1/10; hence K* = -3(1/10)

We have -3p + 3(1 - ﬁ)
+ 3(9/123) = 12/5. 28 - b = 12/5 intersects region 3; the agreement point
is (dl,dz) such that 24, + &, = 6 and 24, - 4, = 12/5, so that (dl,dg)
(21/13,18/10). ‘Also, g* = 2/5, so a pair of optimal threets is (xo,yo)

((1/19,9/10),{2/5,3/5)), giving a nonsgreement point of H(xo,yo)

(63/33,6/50). By the unigueness of 4, we need not exemine region 2.

5,18 =xemple: Let the payoff matrix for G be as in Table 6; C is then
as in Tiagram 11. We proceed as in the previous case, merely outlining

the argument. Consider region 1. The values of a - 3 are as in Table T.
p* = 13/1h, and K* = -1/2; & - 3b = -1/2 does not intersect region 1.

So conziier region 3. Values of 2a - b are as in Table 8. p*=1, g¥ =1,
and X¥=0; 2a - b =2C does not interssct region 3. Hence we know that
the agr-sement point is (dl’dE) = (2,1). Morsover, from the argument for
region 1 we know that if player 1 plays p¥ = 13/14 The will guarantee that
his payof? in the game in Table T is at least ~1/2 {in faet his payoff

will =z =-1/2 whatever strategy pleyer 2 usas); i.e. he will guarantee
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+
b
(-l, 2 i
Payoffs (a2,b) in &
: a+3b
0,0 2,1
' a-3b=-1/2
-1,2 3,-1
(-1/24,2/14)3C 2a+b=3
Table 6 ——g e
|
(39"1)
a - 3b - 23 - b
o) -1 0 3
-7 6 -k 7
Table T Table 8§

that the nonagreement point satisfies a - 35 = ~-1/2. Sc¢ by using this
strategy he can ensure that the nonagreement point is in region 2 or
region 3, so thet his agreement payoff is at least 2. Similarly we know
that 1f player 2 plays ¢* = 1 his payoff in the game in Table & is at
least 0, 30 that he can guarsntee that the nonagreement point szatisfies
2a - v 20, and that his sgroement payoff is st least 1. Hence (xo,yo)

= ((13/14,1/14),(1,0)) satisfies the conditicn for a peir of optimal
threats; H(ko,yo) = (-1/14,2/14). TNote that if the equilibrium strategies
for Tzble 8 were mixed we could deduce that the disagreement point would
be on 2a - b = 0, in which case it would be precisely the intersection of
2a -5 =0 and a- 3b=-1/2. Note also that (xl,70) = {(1,0),(1,0))

is a palr of optimel threats toc (with H(xo,yo) = {0,0)): in this exemple

the optimal thrests are not uriszue.
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The following examples further elucidate the naturs of the Nash

golution; we will only sketch the argument in each case.

2.19 Example: ILet G have the payoffs given in Table 2; ¢ is shown
in Diagram 12. Consider regiocn 1. Values of a - 3b ars given in
Table 10. p¥ =1, qf = 1, so (xo,yo) = ((1,0),(1,0)) e=d H(xo,yo) =(2,1)

= (dl’dE} (which are just the payoffs to the Nash equilizrium of G).

2.20 Exemple: Let G have the payoffs given in Table I1; C is shown in
Diagram 13. Consider region 1. Values of a - 3b are given in Table 12.
p* = L/21; K* = -82/21; a - 3b = -82/21 does not interseoc: region 1. So

2/11,

1

consider region 3. Values of a - b are given in Table 33, p*

K*¥ = 10/11. a - b = 10/11 intersects region 3, giving {il,de) {38/11,

28/11); (xo,yo) = {(2/11,9/11},(6/11,5/11) ), H(xo,yo) = (La2/121,292/121).

.r
T
Payoffs {a,b) in & (-1.2) .
2,1 0,-2
-1,2 3,0 -(xo,yo)=d={2,l)
a+b=3
Teble 9
1 (3,0) a-=
&z = 3b
-1 6
-7 3

Tabls 10 Niacrsm
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"3
Payoffs (a,b) in G (o)
5,0 0,h
3,3 b,2
3.. 393) ) - '
Table 11 d = (38/11,28/11)
a - 3b 2
5 ~12
/-"
-5 ) 1
Table 12
a-"> 4
5 -h
0 2
Table 13

2.21 Example: Let G have the payoffs given in Table 1k; C is shown

in Diagram 14, Consider region 1. Values of & - 2b are given in Tabls 15.
The equilibrium strategies in this strictly competitive game are (2/7,5/7)
for player 1 end (0,6/7,1/7) <for player 2; X* = -§/7, and & - 2b = -G/~
does not intersect region 1. So consider region 3., Values of 28 - %

are given in Table 16. Zquilibrium strategies are (1/2,1/2) for pleye- 1,
and eitker (2/5,3/5,0) or (2/3,0,1/3) for player 2; K* = 0, and

2a = b = 0 does nct intersect region 3. Hence (& ) = (2,2). ilsc,

17%2
the argument for region 1 establishes that if player 1 plays x = (2/7,5/7),
the disagreement point will lie on or Lelow & - 2h = -3/7, while the

argument for region 3 establishes that if player 2 plays v = (2/5,3/5,0)
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Payoffs (a,b) in ¢

+
0,3 | 2,21 3,0 b a+2b=6
. (0,3) Pa-b=0
01_3 -190 "3:0
iable 1- X d=(2,2)
Table 14 > b= o
”,/’ /
a -2b
L~ / ) Pa+b=6
"'6 _2 3 @ / '
/
6 -1 -3 3 -—+ 3 o +—
(-3,0) - (-1,0) /1 2 3,0) a~
( 3/35,-6/2
Iable 15 7 . -1,—2“7* 3/7.-6/7
2a - b (:)
I
-3 2 é 24 r
/
3 -2 -5
(0;'3)
Table 16

Disgrem 1k

or y' =(2/3,0,1/3) he is assured that the disagreement point will lie

on 2a - b = 0. Hence (xo,yo) = ({(2/7,5/7),{2/5,3/5,0)) and (xéaYé)

((2/7,5/7),(2/3,0,1/3)) are btoth pairs of optimal threats: H(xo,yo)

(~3/35,-6/35}, H(xé,yc')) = (~3/7,-6/7).

2.22 Examole: Let 5 nave the payoffs giv ren in Table 17 {note their
similarity with those of Ixample 2.21). C i: shown in Diagram 1%. Consider
region 1. Values of a - 2b are given in Tz>le 18. The equilibrium
strategles are (9/13,4/13) for pleyer 1 and (1/13,12/13,0) for player 2;
103!
((9/13,8/13),(2/12,22/13,0)) and H(x,y,)

K* = -30/13, and a - 2% = -30/13 intersecis region 1. We find (4

1]
]

(2L/13,27/13); (xo,yo)

{T2/169,231/169).
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o'

d=(24/13,32/13)

(72/169,231/169} +2b=6

Payoffs {2,b) in G

0,3 2,2 3,0

0,"3 —3,0 _3,_0

Table 17 (-3,0)

a - 2b
-6 =2 3
s 1 3| -3 (0,-3)
Table 18 |  Diagram 15

2.23 Example: Let G have the payoffs given in Table 19 (note their
similarity with those of Examples 2.21 and 2.22). C is shown in Diagram 16.
Consider region 1. Values of a - 2b are giver in Table 20. The equilib-
rium strategies are (5/7,2/7) for player 1 ané (1/7,6/7,0) for player 2;

K* = -36/7, and a - 2b = -36/7 intersects region 1. We find (dl,d )

2

(24/7,30/T), (xg,70) = ((5/7,2/T),(1/7,6/7,0)) emd Hlx_.7_)
(1kb/49,198/19).

2.24  Exemple: Let G have the payoffs given in Table 21. C is shown

in Diagram 17. Consider region 1. Values of z - 2b are given in Table 22.
p* = 0, and o* = 0, so (xb,yo) = ((0,1),(0,1)) and H(KO,YO) = {3,3)

= (dl’de) (which are just the payoffs at the FHesh equilibrium of G; cf.

Exemple 2.19)}.
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a+2h=12

Payoffs {(a,b) in G

0,6 L,k 6,0
(1hL/k9,198/49)

0,~6 | 2,5 | -6,0 ’ 7 2a+b=12

Table 19

-12 -k 6

Table 20

Payoffs (a,b) in ¢
0,0 1,k
31 2 (3,3) =4
1; -7
4,0 3,3 C P !;
/’ F
Table 21 ,,’ f «1.3a+b=12
2.1 P
-7 & /
a - 2b f
1+ /I @
0 -7 /
/
/
L -3 !z
7 1 2 3 (4,0) 2~
Teble 22

Diagram 17
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2.25 Exzmple: Let G have the payoffs given in Table 23. C is

shown in Diagrem 18. Values of a - b are given in Table 2k. Any pair
({p,X - p},(1,0)) with p € [0,1] is a pair of equilibrium strategies.
Hence (d?i_’dE) = (1,4) and the set of optimal threats is {{(p,1-p),(1,0}):
p € [0,1]}; thus every point on the line joining ({-l,-1} and (1,k) is

& possible disagreement payoff.

Payoffs (e,b} in G
ik o ~1,~4
=4, -1 4,1
Tabls 23
a-"=>
-3 3
-3 3
Table 24
Diagram 18
. ' 3o
: 2 . . T g Lo =l
x ‘r’i" w 7/ '_.{f ,e‘;::, G I - /,"‘.J;:I --:". ..... K, = e y - P B
';"-‘m_ J‘, ) . ./ -/. 'f . R4 . _“f_ ~ I E
I ;‘{.' ra ,f.;‘ - ! J' : '\1'-\5;— f"’fi!'- .;I"- ’:,. Q:‘/ H:I-‘g'.‘... o s J\‘Q_ C{"a-—-'-.al-n.e
W/ W~ SN LA - e L Rt — P
. f’ P JP. ,-/.’ -
v ket Lo
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