
Chapter VIII

The Harsanyi Value

SERGIU HARTl

1 Introduction

We study multiperson games in coalitional (or, characteristic) function form. The problem
we address here is that of developing general principles for solving such a game.

Consider first transferable utility (TU)-games. An approach with a long tradition in
economics would proceed by assigning to every player his direct marginal contribution to
the grand coalition (i. e., the set of all players). This is not possible in general since these
marginal contributions need not add up to the worth of the grand coalition; namely, they
will either be not feasible or, if feasible, not Pareto optimal. Nonetheless, this is the spirit
of our approach: we associate to each game a single number ~ called the potential of
the game - and then assign to each player his marginal contribution computed according
to these numbers. The surprising fact is: the requirement that a feasible and efficient
allocation should always be obtained determines the procedure uniquely. Moreover, the
resulting solution is well-known: it is the Shapley [1953b] value.

The potential, although presented here just as a technical tool2, has turned out to
be most productive. In particular, the potential approach has suggested further ways to
characterize the Shapley value. As an example, the Shapley value is characterized by an
internal consistency property: eliminating some of the players, after paying them according
to the solution, does not change the outcome for the remaining ones. Another approach,
also suggested by the potential, is via a "preservation of differences" postulate.

In section 3, we extend the potential approach to the general case, where utility need
not be additively transferable. Clearly, the computation of the marginal contributions
according to the potential leads to interpersonal comparison of utilities, since all players
use the same real-valued potential.

This suggests the following construction: fix first a vector w of positive weights, and use
the potential function approach to get a solution Xw. Second, require that w represent the
appropriate marginal rates of efficient substitution between the players' payoffs at Xw. This
is a standard procedure for obtaining solutions in the nontransferable utility case. One first

1Student notes, taken during the author's lecture, and partially revised by the author.
2For an interpretation, see Hart and Mas-Colell [1992].
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assumes that the utility scales of the players are comparable (according to the weights w)
and then requires that these are indeed the "right" weights at the resulting solution. This
makes the final solution correspond to a fixed-point (of the mapping w f-+ Xw f-+ w') and,
most important, independent of resealing utilities (for each player separately).

It turns out that this procedure leads to the Harsanyi value.

2 The 'TV case

2.1 The potehtial

A (cooperative) game (with transferable utility) is a pair (N, v), where N is a finite set of
players and v : 2N t JR is a coalitional junction satisfying v(0) = O. We refer to a subset S
of N as a coalition, and to v(S) as the worth of S. Given a game (N, v) and a coalition S,
we write (S, v) for the subgame obtained by restricting v to subsets of S only (i. e., to 28).

Let G be the set of all games. Given a function P : G -+ JRwhich associates the real
number P(N, v) to every game (N, v), the marginal contribution of a player i in a game
(N, v) is defined to be

Dip(N, v) := P(N, v) - P(N \ {i}, v). (1)

A function P : G -+ JR with P( cp,v) = 0 is called a potential junction if it satisfies the
following condition:

L Dip(N, v) = v(N)
iEN

for all games (N, v); Thus, a potential function is such that the allocation of marginal
contributions (according to the potential function) always adds up exactly to the worth of
the grand coalition. .

(2)

Theorem 1 (Hart-Mas-Colell [1989], [1988]). There exists a unique potential junction P.
For every game (N, v), the resulting payoff vector (Di P( N, v) )iEN coincides with the Shapley
value of the game. Moreover, the potential of any game (N, v) is uniquely determined by
(2) applied only to the game and its subgames p. e. to (S, v) for all S eN).

Proof: Rewrite (2) as

PIN, v).-
I~I

[V(N) +
i~

PIN \ {i}, v)
1

(3)

Starting with P(0, v) = 0, (3) determines P(N, v) recursively. This proves the existence
and uniqueness of the potential function P, and also that P(N, v) is uniquely determined
by (2), applied to all subgames of (N, v).

. . \. .
It remains to show that DtP(N, v) = Sht(N, v), where (Sht(N, V))iEN stands for the

Shapley value of the game (N, v). This may be proved by using an axiomatic approach:
one may show, inductively, that the payoff vector (Di P(N, v) )iEN 'satisfies all the axioms
that uniquely characterize the Shapley value: efficiency, dummy (null) player, symmetry
and additivity.-

Another possibility is to prove that the Shapley value derives from a potential function.
The result then follows from the uniqueness of the potential function.

l
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2.2 Consistency

This section is devoted to another characterization of the Shapley value by means of an
(internal) consistency property. This is a standard approach that has been successfully
applied to many solution concepts (for a survey, see Thomson [1990]).

The consistency requirement may be described as follows: let cp be a function that
associates a payoff to every player in every game. For any group of players in a game, one
defines a reduced game among them by giving to the other players their payoffs according
to cpoThen cpis said to be consistent if, when it is applied to any reduced game, it yields
the same payoffs as in the original game. Note that one gets different requirements by
modifying the definition of the reduced game.

Formally, let cp be a function defined on the set of games, i. e., cp(N, v) E JRN for all
(N, v). Such a function is called a solution function. Let (N, v) be a game, and T a subset
of N. The reduced game is defined as follows:

v~(S) := v(S U TC) - L cpi(8 U Tc, v), for all SeT,
iETC

where Tc := N \ T. The function cpis consistent if, for every game (N, v) and every coalition
\

TeN, one has
q)(T,v~) = q)(N,v), for all jET.

The interpretation is as follows. Given cp,a game (N, v) and a coalition T, every subcoalition
of T needs to consider the total payoff remaining after paying the members of Tc according
to cpoTo compute the worth of a coalition 8, we assume that the members of T \ 8 are not
present; in other words, one considers the game (8 U Tc, v).

The property of consistency is essentially equivalent to the existence of a potential
function.

Theorem 2 (Hart-Mas-Colell [1989J, [1988]) Let cp be a solution function. Then cp is
consistent and cp is standarrP for two-person games if and only if cp is the Shapley value for

all games. -

3 The NTU case

A nontransferable-utility game -an NTU game, for short- is a pair (N, V), with V(S) a
subset of JRs for all coalitions 8 of N. The interpretation is that x = (xi)iES E V(8) if and
only if there is an outcome attainable by the coalition S, whose utility to each member i
of 8 is xi. A TU game (N, v) in G corresponds to the NTU game (N, V), where

V(S) = {x E JRs : Lxi < v(8)}.
iES

. We make the following (standard) assumptions: all sets V(8) are nonempty, not the
whole space JRs, convex, closed and comprehensive. We assume furthermore that bd V(S),
the Pareto-efficient boundary- of V(S), is smooth and non-level. We denote by r the set of
games eN, V).

3That is, it "divides the surplus equally": <t>i({1,2},v) = v({i}) + Hv({1,2}) - v({l}) - v({2}» for
i = 1,2.
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3.1 Axiomatizations

We briefly review the axiomatizations of the Shapley [1969] and the Harsanyi [1963] NTU
solution concepts.

We will now distinguish between between "solution"and "value" j the former yields a
payoff configuration, that is a collection x= (XS)SCNwith Xs E V(S) for all S, and the
latter a payoff vector for N (i.e., xN.E V(N)). ...

3.1.1 The Shapley NTU-value

The axiomatization of the Shapley NTU-value is due to Aumann [1985].
First, we say that a game (N, V) is monotone if, for each coalition S, there is a payoff

vector x such that
V(S) x {ON\S} c V(N) + x

(this is a very weak kind of monotonicity).

Definition 1 A payoff configuration x. is a Shapley NTU-solution of a game (N, V) if
there exists a vector A E JRN,such that:

Xs E 8V(S) for all S c Nj

AS .Xs > AS . Y for all Y E V(S) and all S c Nj

for all i E N, Aix}y = Shi(N, v), where v(S) := AS . Xs for all SeN.

(4)

(5)

(6)

If x is a Shapley NTU-solution of (N, V), then its N-coordinate XN is a Shapley NTU-
value of (N, V).

3.1.2 Axioms

Let cjJdenote a value function.

(AO)-Nonemptiness: cjJ(V) i- 0.

(Al)-EfIiciency: cjJ(V) c 8V(N).

(A2)-Scale Covariance: cjJ(AV) = AcjJ(V), for all A E JR~+.

(A3)-Conditional additivity: if U = V + W, then

cjJ(U) :> [cjJ(V) + cjJ(W)] n 8U(N).

(A4)-Independance of Irrelevant Alternatives: if V(N) c W(N) and V(S) = W(S) for all
S i- N, then

cjJ(V) :> cjJ(W) n V(N).

(A5)-Unanimity Games: for every non-empty coalition T,

{
IT

}
.

cjJ(UT) ~
TTf

;"
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where UT is the T-unanimity game.
Let r L be the subset of games in r that are monotone and have a Shapley NTU-value.

Theorem 3 (Aumann [1985j) There exists a unique value function on fL that satisfies
Axioms AD-A5: it is the Shapley NTU-value function.

3.1.3 The Harsanyi NTU-solution

Definition 2 A payoff configuration x is a Harsanyi NTU-solution of a game (N, V) if
there exists a vector..\ E ]RN and real numbers ~T for all TeN, such that:

for each S eN, Xs E aVeS);

..\ . XN > ..\ . y for all y E V (N) ;

(7)

(8)

(9)for each S C N and each i E S, ..\ix~ = L ~T.
TCS,iET

3.1.4 Axioms

Let r H be the set of games that have at least one Harsanyi solution, and let 'ljJbe a solution
function, that is a set-valued function that assigns to each game (N, V) a set of payoff
configurations.

(BO)-Nonemptiness: 1P(V) =I-0.

(B1)-Efficiency: 'ljJ(V) c av: every solution x E 1P(V) satisfies Pareto efficiency for all
coalitions S.

(B2)-Scale Covariance: 1P(..\V) = ..\'ljJ(V), for all ..\ E ]R~+.

(B3)-Conditional additivity: if U = V + W, then

'ljJ(U):) [1P(V)+ 1P(W)] n au.

(B4)- Independance of Irrelevant Alternatives: if V C W, then

1P(V) :) 1P(W) n V.

(B5)-Unanimity Games: for every non-empty coalition T,

1P(UT) = { Iii} .

Theorem 4 (Hart [1985j) There exists a unique solution function on fH that satisfies
axioms BD-B5: it is the Harsanyi NTU-solution function.

Note that the two axiom systems are essentially the same. The difference is that 3.1.2
applies to payoff vectors (for N), whereas 3.1.4 applies to payoff configurations (for all B).
Further discussion of this can be found in Hart [1985]. .
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3.2 The potential

As suggested in the introduction, let w = (wi)iEN E JR~+ be a collection of positive
weights. The w-potential function Pw associates with every NTU ga~e (N, V) a real
number Pw(N,V) such that

(wiDipW(N, V))iEN E bd V(N). (10)

Without loss of generality, let again Pw(0, V) = O. Thus, (10) is the exact counterpart,
in the NTU case, of (2) in the TU case: the vector of (resealed) marginal contributions is
efficient.

Theorem 5 (Hart-Mas- Colell [1989]) For every collection w = (wi)iEN of positive wei9hts
there exists a unique w-potentialjunction on the class of NTtJ games.

Proof: The assumptions we made above imply that, for each S, the set V(S) is bounded
from above in any strictly positive direction, hence, bd V(S) intersects any such line in
a unique point. The proof proceeds by induction. Consider a game (N, V) and assume
the potential has been defined on all the subgames of (N, V). Define, for i E N, yi :=
-wiPw(N \ {i}, V) and let y = (yi)iEN. Pw(N, V) is then the unique t (not necessarily
positive) such that

y + tw E bd V (N) .

Theorem 6 (Hart-Mas-Colell [1989]) The solution function, resulting from the potential
approach, that associates the payoff vector

(wiDipW(N, V))iEN

to the NTU game (N, V), coincides with the w-egalitarian solution.

The w-egalitarian solution has been introduced by Shapley [1953a]j see :Kalai-Samet [1985]
for an extensive study.

A (Pareto) efficient payoff vector x E bd V (N) is called w- utilitarian if it maximizes the
sum of the utilities over the feasible set V(N), resealed according to w:

,,1 .
'"

1 . .
L.., ix~ > L.., iY\ for all y E V(N).
iEN w iEN W

Finally, x is a Harsanyi NTU-value if there exist weights w such that x is simultaneously
w-egalitarian and w-utilitarian. This is essentially the original definition of Harsanyi [1963].

From this we get the following characterization.

Theorem 7 (Hart-Mas-Colell [1989]) For every NTU game (N, V), the payoff vector x E
JRN is a Harsanyi NTU-value of (N, V) if and only if there exist positive weights w = (wi)i

such that
1. .

--;-x~ = D~Pw(N, V), for all i E N,
w~

and
",1. ",1.
L.., ix~ > L.J iY~' for all y E V(N),
iEN w iEN w .

where Pw is the w-potential function.
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