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Abstract

We study the question of how long it takes players to reach a Nash equilibrium in uncoupled setups, where each player initially
knows only his own payoff function. We derive lower bounds on the communication complexity of reaching a Nash equilibrium,
i.e., on the number of bits that need to be transmitted, and thus also on the required number of steps. Specifically, we show lower
bounds that are exponential in the number of players in each one of the following cases: (1) reaching a pure Nash equilibrium; (2)
reaching a pure Nash equilibrium in a Bayesian setting; and (3) reaching a mixed Nash equilibrium. We then show that, in contrast,
the communication complexity of reaching a correlated equilibrium is polynomial in the number of players.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Equilibrium is a central concept in interactions between decision-makers. The definition of equilibrium is static:
it is characterized by the property that the participants (“players”) have no incentive to depart from it. No less fun-
damental, however, are the dynamic issues of how such an equilibrium arises (see, e.g., the books Fudenberg and
Levine, 1998; Young, 2004). Since decisions are assumed to be taken independently by the participants, it is only nat-
ural to study dynamics in decentralized environments, where each decision-maker has only partial information—for
instance, he knows only his own preferences and not those of the other players. As a result, no player can find an
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equilibrium on his own, and the resulting dynamics become complex and need not converge to a rest-point (i.e., an
equilibrium).

Significant progress has been made in understanding the dynamic aspects of one equilibrium concept, that of
correlated equilibrium (Aumann, 1974). A correlated equilibrium obtains when players receive signals before the
game is played; these signals, which may be correlated, do not affect the payoffs in the game. Of course, the play-
ers may well use these signals when making their strategic choices. To date, there are several efficient algorithms
(Blum and Mansour, 2007; Cahn, 2004; Cesa-Bianchi and Lugosi, 2003, 2006; Foster and Vohra, 1997; Hart, 2005;
Hart and Mas-Colell, 2000, 2001; Stoltz and Lugosi, 2005, 2007; Young, 2004) that, in all games, converge fast to
(approximate) correlated equilibria.

In contrast, convergence to Nash equilibrium is a much more complex and less clear-cut issue.1 As we have stated
above, a natural assumption that most dynamics satisfy is that of uncoupledness (Hart and Mas-Colell, 2003): each
player is assumed to know initially only his own payoff function, and not those of the other players. Parallel notions
are “informationally decentralized” or “privacy-preserving” in economics, and “distributed” in computer science; in
particular, the longstanding study of mechanism design in economics, starting with the work of Hurwicz (Hurwicz,
1960), has led to significant concepts and insights concerning the aggregation of information (see Jordan, in press, for
a short survey).

The existing results on uncoupled dynamics and Nash equilibria are as follows. On the one hand, it has been
shown that it is impossible for uncoupled dynamics that are deterministic and continuous2 always to converge to
a Nash equilibrium, even when it is unique (Hart and Mas-Colell, 2003). On the other hand, there are a number
of uncoupled dynamics that converge to Nash equilibria in general games; these dynamics use various techniques
such as hypothesis-testing, regret-testing, and other variants of exhaustive or stochastic search (Foster and Kakade,
2004; Foster and Young, 2003, 2006; Germano and Lugosi, 2007; Hart and Mas-Colell, 2006; Young, 2004).3 Since
all these dynamics perform some form of search over all action combinations, it follows that the number of steps
until a Nash equilibrium is reached is exponential in the number of players (when the number of actions of each
player is kept fixed). In this paper we will show that this is a general phenomenon rather than a deficiency of the
existing literature: the lower bound on the speed of convergence to Nash equilibria is exponential in the number of
players.

To make this precise, define a Nash equilibrium procedure as a dynamic process whereby the players reach a Nash
equilibrium, whether pure or mixed. We study the number of steps needed before the procedure terminates at the
appropriate equilibrium. Again, we are considering uncoupled procedures: each player’s payoff function is private,
initially known only to him. We use the theory of communication complexity (see Kushilevitz and Nisan, 1997) to
derive lower bounds on the amount of communication, measured in terms of the number of transmission bits—and
thus also the number of steps—needed by the players in order to reach a Nash equilibrium. This important connection
was first observed in Conitzer and Sandholm (2004), where various lower bounds for two-person games are derived
(as the number of actions increases). Here we analyze general n-person games.

Our results provide lower bounds that are exponential in the number of players (we keep the number of actions of
each player bounded, e.g., two) for the communication complexity in each of the following cases:

(1) reaching a pure Nash equilibrium—in general games, and also in the restricted class of games having the “finite
improvement property” (Section 3 and Appendix A);

(2) reaching a pure Nash equilibrium in a Bayesian setup (Section 4); and
(3) reaching a mixed Nash equilibrium (Section 5).

We also exhibit simple procedures that yield upper bounds that are also exponential (Section 6).

1 A Nash equilibrium is a fixed point of a nonlinear function, whereas a correlated equilibrium is a solution of finitely many linear inequalities.
This may be one reason—though not the only one—that it appears to be more difficult to converge to the former than to the latter.

2 Continuous with respect to both actions and time.
3 Dynamics of the “best-reply” variety have been studied in Bayesian setups where players possess certain probabilistic beliefs about the payoff

functions of the other players (see, e.g., Jordan, 1991; Kalai and Lehrer, 1993); however, additional coordination between the players is needed to
obtain convergence to Nash equilibria (cf. Section 4 in Jordan, 1991 and footnote 20 in Hart, 2005).
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These exponential lower bounds may seem unsurprising, given that the size of the input (i.e., the players’ private
payoff functions) is also exponential. We thus analyze the communication complexity of reaching correlated equi-
libria, and we show that it is, in contrast, only polynomial in the number of players (Section 7 and Appendix B).
Therefore, the exponential communication complexity of Nash equilibrium procedures is a result of the equilibrium
requirement, and not of the size of the input.

In summary, this paper may be viewed as providing further evidence of the intrinsic difficulty of reaching Nash
equilibria, in contrast to correlated equilibria.4

2. Preliminaries

2.1. Game-theoretic setting

The basic setting is as follows. There are n � 2 players, i = 1,2, . . . , n. Each player i has a finite set of actions Ai

with5 |Ai | � 2, and the joint action space is A = ∏n
i=1 Ai . Let Δi denote the set of probability distributions over Ai

and put Δ = ∏n
i=1 Δi . Most of the games we introduce will be binary-action games, where the action space of each

player i is Ai = {0,1}, and so A = {0,1}n; in this case a mixed action of player i is given by 0 � pi � 1, interpreted
as the probability that ai = 1.

Each player i has a payoff (or utility) function ui which maps A to the real numbers, i.e., ui :A → R. We extend
ui to Δ in a multilinear way, by defining ui(p1, . . . , pn) = E[ui(a1, . . . , an)] for each (p1, . . . , pn) ∈ Δ, where the
expectation E is taken with respect to the product distribution p1 × · · · × pn on A. We denote this game by G =
(n, {Ai}i , {ui}i ).

For a joint action a = (a1, . . . , ai, . . . , an) ∈ A, let a−i = (a1, . . . , ai−1, ai+1, . . . , an) be the joint action of all
players except player i. For each player i, the (pure) best-reply correspondence maps a joint action a−i of the
other players to the set BR(a−i;ui) = arg maxai∈Ai

ui(ai, a
−i ). A joint action a ∈ A is a pure Nash equilibrium if

ui(a) � ui(bi, a
−i ) for every player i and any action bi ∈ Ai ; or equivalently, ai ∈ BR(a−i;ui) for all i. Similarly, a

combination of mixed actions p ∈ Δ is a mixed Nash equilibrium if ui(p) � ui(qi,p
−i ) for every player i and any

qi ∈ Δi .
Finally, we define the concepts of “improvement step” and “improvement path.” Given a joint action a ∈ A, an

improvement step of player i is an action bi ∈ Ai such that ui(bi, a
−i ) > ui(a); we refer to i as the improving player.

An improvement path is a sequence of improvement steps (where the improvement steps can be performed by different
players). A game G has the finite improvement property if all the improvement paths are finite6; such a game always
possesses a pure Nash equilibrium.

2.2. Communication complexity background

In the “classical” setting in communication complexity there are two agents,7 one holding an input x ∈ {0,1}K
and the other holding an input y ∈ {0,1}K , where K is a finite set. Their task is to compute a joint function of their
inputs f (x, y) ∈ {0,1}. The agents send messages to one another, and we assume that at the end of the communication
they each have the value of f (x, y). The communication complexity of a deterministic communication protocol Π for
computing f (x, y) is the number of bits sent during the computation of f (x, y) by Π ; denote this number of bits
by CC(Π,f, x, y). The communication complexity CC(Π,f ) of a protocol Π for computing a function f is defined
as the worst case over all possible inputs (x, y) ∈ {0,1}K × {0,1}K , i.e., CC(Π,f ) = maxx,y∈{0,1}K CC(Π,f, x, y).
Finally, the communication complexity CC(f ) of computing a function f is the minimum over all protocols Π for
computing f , i.e., CC(f ) = minΠ CC(Π,f ).

A well-studied function in communication complexity is the disjointness function. Let S be a finite set; the S -
disjointness function DISJS is defined on the subsets of S (i.e., on {0,1}S × {0,1}S ) by DISJS (S1, S2) = 1 if the two
inputs S1, S2 ⊂ S are disjoint sets (i.e., S1 ∩ S2 = ∅), and DISJS (S1, S2) = 0 otherwise. There is a large literature

4 See Hart and Mas-Colell (2006, Section 5(g)), particularly the last sentence there.
5 The number of elements of a finite set Z is denoted |Z|.
6 These are the “generalized ordinal potential games” (Monderer and Shapley, 1996).
7 We call them “agents” to avoid confusion with the players of the game.
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on the communication complexity of the disjointness function (see Kushilevitz and Nisan, 1997). We state here one
result that will be used to derive bounds in our setting (see Kushilevitz and Nisan, 1997, Section 1.3).

Theorem 1. The communication complexity of the S -disjointness function is |S| bits, i.e., CC(DISJS ) = |S|.

2.3. Nash equilibrium procedures

A Nash equilibrium procedure is a dynamic process by which the players reach a Nash equilibrium of the game,
whether pure or mixed (both cases will be considered below). Fix the number of players n and the action spaces Ai ;
a game G is thus identified with its payoff functions (u1, . . . , un). Let G be a family of games to which the procedure
should apply. The basic assumption is that of uncoupledness: each player knows only his own payoff function ui (Hart
and Mas-Colell, 2003, 2006).

We emphasize that we make no assumptions about the players’ incentives, since we are interested in lower bounds,
which give the minimum it takes to reach an equilibrium—no matter what the incentives are. Indeed, any form of
strategic behavior when choosing the messages would be an additional restriction that can only increase the commu-
nication complexity (cf. Conitzer and Sandholm, 2004).

Formally, the n players who participate in a Nash equilibrium procedure have the following information and capa-
bilities. The “input” of the procedure is a game G = (u1, . . . , un) in the family G . Initially, each player i has access
only to his own “private” payoff function8 ui . In each round t = 1,2, . . . , every player i performs an action9,10

ai,t ∈ Ai . At the end of round t all the players observe each other’s actions; i.e., they all observe the joint action
(a1,t , . . . , an,t ) ∈ A.

In a mixed Nash equilibrium procedure Π for G , the “output” of each player i is a distribution pi ∈ Δi , such that
(p1, . . . , pn) ∈ Δ is a mixed Nash equilibrium of the game G = (u1, . . . , un) that was given as input.11 In a pure Nash
equilibrium procedure Π for G , the “output” of player i is either (1) a pure action ai ∈ Ai , or (2) a declaration of
“no pure Nash equilibrium.” In case (1), the joint output (a1, . . . , an) ∈ A is a pure Nash equilibrium of G, whereas
in case (2) G has no pure Nash equilibrium. Let PNEP and MNEP denote the collection of pure and mixed Nash
equilibrium procedures, respectively.

The communication complexity CC(Π,G) of a Nash equilibrium procedure Π applied to a game G is the num-
ber of bits communicated until Π terminates when the input is G. Given a family of games G , the communication
complexity of a Nash equilibrium procedure Π for the family G is the worst-case communication complexity of
Π over all games G ∈ G , i.e., CC(Π, G) = maxG∈G CC(Π,G). Next, CC(PURE, G), the communication complex-
ity of pure Nash equilibrium procedures for a family of games G , is the minimal communication complexity of any
pure Nash equilibrium procedure Π for the family of games G , i.e., CC(PURE, G) = minΠ∈PNEP CC(Π, G); simi-
larly, CC(MIXED, G) = minΠ∈MNEP CC(Π, G) is the communication complexity of mixed Nash equilibrium procedures
for G . Finally, when the games in the family G are chosen according to a probability distribution P, the expected com-
munication complexity of pure Nash equilibrium procedures is minΠ∈PNEP E[CC(Π,G)], where the expectation E is
taken with respect to P; we denote this by E[CC(PURE, G)].

One may measure the communication complexity of Nash procedures also in terms of the number of rounds; this
may be more natural from the game-theoretic viewpoint. Formally, the time communication complexity tCC(Π,G)

of a Nash equilibrium procedure Π applied to a game G is the number of time periods until Π terminates. The two
communication complexity measures, CC and tCC, are closely related: in each time period the players transmit at
least 1 bit and at most

∑
i log |Ai | = log |A| bits.12

8 The number of players n, the action spaces Ai , and the set of games G are fixed and commonly known.
9 It is natural to consider dynamics in the framework of repeated games, and so we assume without loss of generality that the communication pro-

ceeds through actions. Using any other set Bi instead of Ai will only affect the communication complexity by a constant factor (cf. Proposition 2).
For binary-action games, ai,t ∈ Ai just means that the communication of each player in each period is 1 bit.
10 The procedure is thus deterministic; see Section 8.1 for stochastic procedures.
11 Finite games always possess mixed Nash equilibria.
12 Throughout this paper log is always log2.
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Proposition 2. The time communication complexity tCC and the (bit) communication complexity CC satisfy:

1

log |A|CC � tCC � CC. (1)

(A similar connection for two-player games was observed in Conitzer and Sandholm, 2004.)
We are interested in the asymptotic behavior of the communication complexity of Nash equilibrium procedures as

the number of players n increases, while the size of the action sets is fixed. Let Γ n
s be the family of all n-person games

where each player has at most s actions, i.e., |Ai | � s for all i. We want to estimate the communication complexity
of Nash equilibrium procedures on the class Γ n

s as n increases and s is fixed. Our results will deal with the class Γ n
2

of binary-action games (except for Theorem 4, where we need 4 actions). Since the communication complexity is
defined as the worst case over all games, any lower bound for Γ n

2 is clearly also a lower bound for Γ n
s for every s � 2;

see also Section 8.2.

3. Pure equilibria

In this section we derive exponential lower bounds on the communication complexity of pure Nash equilibrium
procedures. Our result is13

Theorem 3. Any pure Nash equilibrium procedure has communication complexity Ω(2n), i.e., for every s � 2,

CC
(

PURE,Γ n
s

)
� CC

(
PURE,Γ n

2

) = Ω
(
2n

)
.

Proposition 2 implies that the time communication complexity of pure Nash equilibrium procedures is tCC(PURE,

Γ n
2 ) = Ω(2n/n) = Ω(2n−logn).

At this point one may conjecture that restricting the class of games to those that have pure Nash equilibria may
decrease the communication complexity. However, this is not so. Even if one considers only the specific class F I P n

s

of n-person s-action games that have the “finite improvement property” (see Section 2.1) and thus always possess
pure Nash equilibria, the lower bound remains exponential. Specifically, for games with s � 4 actions, we have

Theorem 4. Any pure Nash equilibrium procedure on the class F I P n
s of s-action games with the finite improvement

property has communication complexity Ω(2n/2), i.e., for every s � 4,

CC
(

PURE, F I P n
s

)
� CC

(
PURE, F I P n

4

) = Ω
(
2n/2).

Theorem 3 will be proved in Section 3.2 using a simple reduction from the disjointness problem (recall Theorem 1),
whereas Theorem 4 will require a much more complex construction, which is relegated to Appendix A.

3.1. Reductions

We now show how to reduce the disjointness problem to the problem of finding pure Nash equilibria. Divide
the player set {1, . . . , n} into two sets T1 and T2 of size n/2 each (assume for simplicity that n is even), say T1 =
{1, . . . , n/2} and T2 = {n/2 + 1, . . . , n}. It will be convenient to rename the players such that the players in T� are
(�, i) for i ∈ {1, . . . , n/2} and � ∈ {1,2}. For any two sets S1, S2 ⊂ S —an input of the S -disjointness problem—the
reduction will define a game G = (n, {Ai}i , {ui}i ), such that two properties are satisfied:

• Reducibility: S1 ∩ S2 �= ∅ if and only if G has a pure Nash equilibrium.
• Constructibility: The payoff function of each player (�, i) in T� is constructible from S� (i.e., for every a ∈ A the

number u�,i(a) is computable, by a finite algorithm, from a, S�, and i).

13 Notation: f (n) = Ω(g(n)) and f (n) = O(g(n)) mean that there exists a constant C > 0 such that f (n) � Cg(n), respectively f (n) � Cg(n),
for all n.
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The reducibility property enables us to relate the outcome of a pure Nash equilibrium procedure on G with the
outcome of the S -disjointness function on S1 and S2. Namely, if the players reach a pure Nash equilibrium in G then
the sets S1 and S2 are not disjoint, and if they do not reach a pure Nash equilibrium then the sets are disjoint. The
constructibility property ensures that given a pure Nash equilibrium procedure ΠNE we are able to generate a protocol
ΠD for the disjointness problem, with the same communication complexity. More specifically, given ΠNE we create
a protocol ΠD by having agent � ∈ {1,2} simulate all the players in T� (he can do so by the constructibility property).
We summarize this in the following claim, which is based on Theorem 1.

Claim 5. Assume that there exists a reduction from the S -disjointness problem to n-person pure Nash equilibrium
procedures that satisfies the reducibility and constructibility properties. Then any pure Nash equilibrium procedure
has communication complexity of at least |S| bits.

3.2. Matching pennies reduction

We now provide a simple reduction, which we call the matching pennies reduction, and establish Theorem 3.
Take S = {0,1}n; for each S1, S2 ⊂ S the reduction will generate a binary-action game G in Γ n

2 as follows. The
action spaces are Ai = {0,1} for all i, and a joint action is thus a ∈ A = {0,1}n. The payoff u�,i(a) of each player
(�, i) in T� will be high (specifically, 2) if the joint action a lies in the set S�, and low (specifically, 0) if it does not.
In the latter case, two distinguished players in T�, say (�,1) and (�,2), will in addition play a matching pennies game
between themselves.

Formally, for � = 1,2, the payoff function u�,i of a player (�, i) in T� is defined as follows. For i � 3, put14

u�,i(a) =
{

2, if a ∈ S�,

0, if a /∈ S�;
as for players (�,1) and (�,2) in T�, their payoff functions are

u�,1(a) =
⎧⎨
⎩

2, if a ∈ S�,

1, if a /∈ S� and a�,1 = a�,2,

0, if a /∈ S� and a�,1 �= a�,2;

u�,2(a) =
⎧⎨
⎩

2, if a ∈ S�,

0, if a /∈ S� and a�,1 = a�,2,

1, if a /∈ S� and a�,1 �= a�,2.

Claim 6. For n � 4, the reducibility and constructibility properties hold for the matching pennies reduction.

Proof. The payoff functions of the players in T� depend on S� only, and so the constructibility property holds. For
the reducibility property, note that a is a pure Nash equilibrium if and only if a ∈ S1 ∩ S2 (indeed, if a ∈ S1 ∩ S2, then
every player gets the maximal payoff of 2; otherwise, a /∈ S� for some �, and then either (�,1) or (�,2) benefits by
deviating). �

We can now prove Theorem 3.

Proof of Theorem 3. Follows from Claims 5 and 6 (recall that S = {0,1}n). �
4. Pure equilibria in a Bayesian setting

We now consider a Bayesian setting where the game (i.e., the payoff functions) is chosen according to a probability
distribution that is known to all players. While the communication complexity of pure Nash equilibrium procedures
has been shown to be exponential in the worst case, it is conceivable that the expected communication complexity
will be smaller (where the expectation is taken over the randomized selection of the payoff functions). However, that

14 Alternatively: put u�,i (a) = 0 for all a ∈ A and all i � 3.
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turns out not to be the case. We will exhibit a simple distribution for which the expected communication complexity
of pure Nash equilibrium procedures is exponential. Our result is the following.

Theorem 7. There exists a probability distribution over games such that any pure Nash equilibrium procedure has
expected communication complexity Ω(2n); i.e., there exists a probability distribution P over the family of binary-
action games Γ n

2 such that

E
[
CC

(
PURE,Γ n

2

)] = Ω
(
2n

)
.

(Note that Theorem 3 is implied by Theorem 7.) Unlike the results in the previous section, here we will not apply
a reduction, but rather provide a direct proof, using techniques from “distributional communication complexity” (see
Kushilevitz and Nisan, 1997, Sections 1.2 and 3.4).

Some further background from communication complexity is needed at this point. A combinatorial rectangle is
X = X1 × · · · × Xn, where each Xi is a subset of inputs of player i. Every sequence of messages in a communication
protocol can be described by a combinatorial rectangle, namely, all inputs generating that sequence of messages.
Given a function f of n inputs x1, . . . , xn, a combinatorial rectangle X is called monochromatic if f (x) has the
same value for all x = (x1, . . . , xn) ∈ X . A minimal covering of a function f using combinatorial rectangles is the
minimum number of monochromatic combinatorial rectangles needed to represent f (i.e., the minimum number of
monochromatic rectangles whose union covers the space of all possible inputs). Clearly, the logarithm of this number
is a lower bound on the communication complexity of f (since, roughly speaking, every bit of communication can
only split combinatorial rectangles into two; for more details see Kushilevitz and Nisan, 1997, Chapter 1).

In our setting, the combinatorial rectangles are U = U1 × · · · × Un, where each Ui is a set of payoff functions of
player i. A monochromatic combinatorial rectangle is labeled by either (1) a pure joint action a ∈ A (when a is a Nash
equilibrium for every game (u1, . . . , un) ∈ U ), or (2) “no pure Nash equilibrium” (when no game (u1, . . . , un) ∈ U
has a pure Nash equilibrium).

Informally, the lower bound on the expected communication complexity of pure Nash equilibrium procedures will
be a consequence of the fact that it will be “hard” for the players to agree that there is no pure Nash equilibrium.
We will construct a probability distribution over payoff functions such that, first, the probability that there is no pure
Nash equilibrium is bounded away from 0 as the number of players n increases. And second, we will show that any
combinatorial rectangle that is labeled “no pure Nash equilibrium” has a low probability. This will yield a lower bound
on the number of monochromatic combinatorial rectangles, and thus on the communication complexity.

Formally, our probability distribution P is defined on the family Γ n
2 of binary-action games (i.e., Ai = {0,1} for

all i). The payoff function ui of player i is selected randomly as follows. For every a−i ∈ {0,1}n−1, with probability
1/2 put ui(0, a−i ) = 0 and ui(1, a−i ) = 1, and with probability 1/2 put ui(0, a−i ) = 1 and ui(1, a−i ) = 0; these
choices are made independently over all a−i and over all i. Note that for every a ∈ {0,1}n each player i has a unique
best reply, and P[ui : ai ∈ BR(a−i;ui)] = P[ui : ai /∈ BR(a−i;ui)] = 1/2.

We start by showing that the probability that there are no pure Nash equilibria is bounded away from 0.

Lemma 8. There exists a constant α > 0 such that

P
[
(u1, . . . , un): the game (u1, . . . , un) has no pure Nash equilibrium

]
� α

for all n � 2.

Proof. First, we claim that for every a ∈ {0,1}n, the probability that a is a pure Nash equilibrium is 2−n. Indeed, a is
a pure Nash equilibrium if and only if for every player i the payoff function ui satisfies ai ∈ BR(a−i;ui). This holds
with probability 1/2, independently, for each player i, and so the probability that a is a pure Nash equilibrium is 2−n.

Second, let N be the number of pure Nash equilibria; then E[N ] = 1, since there are 2n joint actions a ∈ {0,1}n
and the probability of each one being a pure Nash equilibrium is 2−n. Therefore P[N = 0] � P[N � 2], since 1 =
E[N ] = ∑

k�1 kP[N = k] � 1P[N = 1] + 2P[N � 2] = (1 − P[N = 0]) + P[N � 2].
Third, let Z = {a ∈ {0,1}n: |{i: ai = 1}| is even} be the set of joint actions with an even number of ones, and let ζ

be the probability that in Z there are exactly 2 pure Nash equilibria. For any a, b ∈ Z with a �= b, the event that a is
a pure Nash equilibrium is independent of the event that b is a pure Nash equilibrium (a and b differ in at least two
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coordinates by the definition of Z; hence for every player i we have a−i �= b−i ). Therefore the probability that exactly
two elements of Z (whose size is |Z| = 2n−1) are Nash equilibria is

ζ =
(

2n−1

2

)(
2−n

)2(1 − 2−n
)2n−1−2

,

which is positive for all n � 2. Moreover, ζ → (1/8)e−1/2 > 0 as n → ∞, and so P[N = 0] � P[N � 2] � ζ is indeed
bounded away from 0. �

Next we show that every combinatorial rectangle labeled “no pure Nash equilibrium” has low probability.

Lemma 9. Let U = U1 × · · · × Un be a combinatorial rectangle labeled “no pure Nash equilibrium.” Then

P
[
(u1, . . . , un) ∈ U

]
� 2−2n−1

.

Proof. First, we claim that for every a ∈ {0,1}n there exists a player i such that ai /∈ BR(a−i;ui) for all ui ∈ Ui .
Indeed, otherwise, for every player i we would have ai ∈ BR(a−i;u′

i ) for some u′
i ∈ Ui . But this would imply that

a is a pure Nash equilibrium for (u′
1, . . . , u

′
n), which belongs to U since U is a rectangle—in contradiction to the

assumption that every game in U has no pure Nash equilibrium.
Second, as in the proof of Lemma 8, let Z be the set of all a ∈ {0,1}n with an even number of ones. Define

Zi = {a ∈ Z: ai /∈ BR(a−i;ui) for all ui ∈ Ui}; then Ui ⊂ {ui : ai /∈ BR(a−i;ui) for all a ∈ Zi}, and, as we saw
just above, Z = ⋃n

i=1 Zi . Since the events {ui : ai /∈ BR(a−i;ui)} are independent for different a ∈ Zi (again, a �= b

implies that a−i �= b−i for a, b ∈ Z) and each one has probability 1/2, we get

P[ui ∈ Ui] �
∏
a∈Zi

P
[
ui : ai /∈ BR

(
a−i;ui

)] = 2−|Zi |.

Therefore,

P
[
(u1, . . . , un) ∈ U

] =
n∏

i=1

P[ui ∈ Ui] �
n∏

i=1

2−|Zi | � 2−2n−1
,

since
∑

i |Zi | � |Z| = 2n−1. �
Combining the two lemmata allows us to prove Theorem 7.

Proof of Theorem 7. By Lemma 8, the total probability of the event that there is no pure Nash equilibrium is bounded
from below by α > 0. By Lemma 9, each combinatorial rectangle labeled “no pure Nash equilibrium” has probability
at most 2−2n−1

. Therefore R, the number of such rectangles, satisfies R � α22n−1
; this gives a lower bound on the

expected communication complexity of logR = Ω(2n) (see the discussion following the statement of Theorem 7, or
Section 1.2 in Kushilevitz and Nisan, 1997). �
5. Mixed equilibria

Before we introduce our result for mixed Nash equilibrium procedures, a certain preliminary discussion is in order.
In the case of mixed Nash equilibria the values of the payoff functions play a crucial role. Consider the following
variant of the matching pennies game

1,0 0,1

0,1 M,0

where M is a positive integer. There is a unique Nash equilibrium: (1/2,1/2) for the row player and (M/

(M + 1),1/(M + 1)) for the column player. Since the parameter M appears only in the payoff function of the row
player, and in equilibrium the column player needs to know the precise value of M , it follows that logM bits have
to be communicated. This is a somewhat unsatisfactory result, since the number of bits needed to encode one of the
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values of the payoff function of the row player is also logM . However, had it been commonly known, for instance,
that the payoff functions under consideration have either 1 or M in that entry, then only one bit would have sufficed.
We therefore distinguish between two concepts, “magnitude” and “encoding.”

Let Ui be a family of payoff functions of player i. The magnitude of a rational number ρ is mag(ρ) = log |M| +
log |K|, where ρ = M/K is a reduced fraction (i.e., M and K have no common divisor higher than 1), and the
magnitude of the family Ui is mag(Ui) = maxui∈Ui,a∈A mag(ui(a)). For each a ∈ A, the encoding of the payoff of
player i at a is enc(Ui, a) = log |{ui(a): ui ∈ Ui}|; i.e., the number of bits required to encode the possible values
of ui(a) as ui varies over Ui ; the encoding of the family Ui is enc(Ui) = maxa∈A enc(Ui, a). For example, if every
payoff function ui in Ui has two values 1 and M (i.e., ui(a) ∈ {1,M} for all ui ∈ Ui and all a ∈ A), then the encoding
of Ui is enc(Ui) = 1 bit, whereas its magnitude is mag(Ui) = logM bits. Finally, if U = U1 × · · · × Un is a family of
games, then enc(U ) = max1�i�n enc(Ui) and mag(U ) = max1�i�n mag(Ui).

When deriving lower bounds on the communication complexity of mixed Nash equilibrium procedures, one would
like the encoding as well as the magnitude to be as low as possible (so that a high complexity will not be just a trivial
consequence, as in the example above). Specifically, we will construct a large family of games U that has an encoding
of 1 bit and a magnitude of O(n) bits, such that each game in U will have a different unique Nash equilibrium. This
will imply that, in order to reach the correct Nash equilibrium, the number of bits to be transmitted must be at least
the logarithm of the size of the family U . Formally, our result is

Theorem 10. For every n � 2 there exists a family of binary-action games U n ⊂ Γ n
2 whose encoding is 1 bit and whose

magnitude is O(n) bits (i.e., enc(U n) = 1 and mag(U n) = O(n)), such that any mixed Nash equilibrium procedure
over U n has communication complexity Ω(2n), i.e.,

CC
(

MIXED, U n
) = Ω

(
2n

)
.

Our construction is based on a generalization of Jordan’s game (Jordan, 1993) in which we modify the payoff of
one of the players. For n � 2, the n-person Jordan game Jn is a binary-action game with payoff functions ui(a) =
1{ai=ai−1}(a) for all players i �= 2 (where a0 ≡ an) and u2(a) = 1{a2 �=a1}(a) for player 2 (we write 1X for the indicator
function of the event X; e.g., 1{a1=an}(a) = 1 if a1 = an and 1{a1=an}(a) = 0 otherwise). Thus player 2 wants to
“mismatch” the action of player 1, whereas every other player i �= 2 wants to “match” the action of the previous
player15 i − 1.

Let f be a real function from {0,1}n−2 to the half-open interval [0,1), i.e., f : {0,1}n−2 → [0,1); we define the
f -modified Jordan game Jn(f ) by

ui(a) = 1{ai=ai−1}(a), for i �= 2; and

u
f

2 (a) = 1{a2 �=a1}(a) + 1{a1=a2=1}(a) · f (a3, . . . , an) (2)

(only the payoff of player 2 has been modified).
The following lemma shows that a modified Jordan game has a unique Nash equilibrium, and gives an explicit

formula for it. For every function f as above, let

μ(f ) = 1

2n−2

∑
(a3,...,an)∈{0,1}n−2

f (a3, . . . , an)

be the average of the values of f ; equivalently, this is the expected value of f when every player i � 3 randomizes
uniformly, i.e., pi = 1/2.

Lemma 11. The modified Jordan game Jn(f ) has a unique Nash equilibrium (p1, . . . , pn), where pi = 1/2 for all
players i �= 1, and16

p1 = 1

2 − μ(f )
. (3)

15 This game has a unique Nash equilibrium (1/2, . . . ,1/2) (this also follows from Lemma 11 below).
16 Recall that pi stands for the probability of action 1, i.e., pi = P[ai = 1].
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Proof. Let (p1, . . . , pn) be a Nash equilibrium of Jn(f ). Assume that pi �= 1/2 for some player i � 2; without loss
of generality, pi > 1/2. Then player i + 1 must be playing purely the action 1, i.e., pi+1 = 1. Repeating this argument
implies that pi+2 = · · · = pn = p1 = 1. Therefore player 2, who wants to mismatch player 1, must be playing the
action 0 (here we use the fact that 0 � f < 1), i.e., p2 = 0. Hence player 3 must be playing 0, and so on; i.e.,
p3 = p4 = · · · = pi = 0, contradicting pi > 1/2.

So we have pi = 1/2 for all i �= 1. As for player 1, the probability p1 is determined by the condition that player 2
must be indifferent between his two actions (p2 = 1/2 and so player 2 plays both actions with positive probability),
i.e.,

u
f

2 (p1,0,1/2, . . . ,1/2) = u
f

2 (p1,1,1/2, . . . ,1/2),

or, recalling the definitions of u
f

2 and μ(f ),

p1 = p1μ(f ) + 1 − p1.

Solving for p1 yields (3) and completes the proof. �
To construct our family of games, we vary the function f over a set F of functions; thus, for each i �= 2, the family

Ui = {ui} is a singleton, whereas the family U2 = {uf

2 : f ∈ F } consists of all payoff functions u
f

2 of player 2 that
are obtained for all f ∈ F . The property of the family F will be that, for each function f ∈ F , when we substitute
f in (3) we get a different value for p1. The lower bound on the communication complexity will follow from the
fact that for each f ∈ F the communication to player 1 must be different. (Indeed, player 1 needs to reach a different
value of p1 for each f , and always starts with the same information.) This will imply that the number of bits that have
to be communicated is at least log |F |. To formalize this, we will call a set of functions F separating if for any two
functions f1 �= f2 in F we have μ(f1) �= μ(f2). Thus

Claim 12. Let U be given as above by a separating set of functions F . Then the communication complexity of any
mixed Nash equilibrium procedure on U is at least log |F |.

We now construct our family of functions. For every x = (x1, . . . , xn−2) in {0,1}n−2, let [x]2 = ∑n−2
i=1 xi2n−2−i

be the integer corresponding to the binary string x. Let H be the set of Boolean functions h : {0,1}n−2 → {0,1}. For
every h ∈ H, define a function fh on {0,1}n−2 by

fh(x) = h(x)
1

prime([x]2)

for each x ∈ {0,1}n−2, where prime(k) is the k-th prime, starting for convenience with prime(0) = 2 (thus
prime(1) = 3, prime(2) = 5, and so on; note that indeed fh(x) ∈ [0,1)). Let F H = {fh: h ∈ H}. The following
lemma shows that F H is a separating family.

Lemma 13. The family F H is separating; i.e., for any two Boolean functions h1 �= h2 in H we have μ(fh1) �= μ(fh2).

Proof. Let r1, . . . , rm be m distinct prime numbers, and let ρ = ∑m
i=1 1/ri . Express ρ as a reduced fraction ρ = M/K ,

and let R = ∏m
i=1 ri . We claim that K = R. Indeed, on the one hand the common denominator in the sum ρ is R, so

K divides R. On the other hand, multiplying ρ by K
∏m

i=2 ri gives

M

m∏
i=2

ri = K
∏m

i=2 ri

r1
+

m∑
i=2

K
∏

j �=1,i

rj ;

therefore K
∏m

i=2 ri/r1 is an integer, and since the ri are distinct primes, it follows that r1 divides K . The same holds
for all i, and so

∏m
i=1 ri = R divides K . Altogether K = R (since each one divides the other), as claimed.

Now, for � = 1,2,

2n−2μ(fh�
) =

∑
n−2

fh�
(x) =

∑
x:h (x)=1

1

prime([x]2)
= M�

K�

,

x∈{0,1} �
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where M�/K� is a reduced fraction. If μ(fh1) = μ(fh2) then K1 = K2, or∏
x:h1(x)=1

prime
([x]2

) =
∏

x:h2(x)=1

prime
([x]2

)
,

which implies that the binary functions h1 and h2 are identical. �
Next, the magnitude of F H is O(n) bits, since prime(k) = O(k logk) by the Prime Number Theorem, and so

log(prime([x]2)) � log(prime(2n−2)) = O(n); whereas the encoding of F H is just 1 bit, since fh(x) has only two pos-
sible values, 1/prime([x]2) and 0. The same therefore holds for the resulting family of games U ≡ U n := {Jn(f ): f ∈
F H} (see (2)). We have thus established

Claim 14. The family U satisfies enc(U ) = 1 and mag(U ) = O(n).

We can now complete the proof of Theorem 10.

Proof of Theorem 10. There are 22n−2
Boolean functions h in H, so |F H| = |H| = 22n−2

. Combining this with
Claims 12 and 14 and Lemma 13 proves Theorem 10. �
6. Upper bounds

In this section we will show that two rather trivial procedures achieve near-optimal communication complexity.
This demonstrates the power of our lower bounds, showing that even trivial procedures achieve a near-optimal perfor-
mance.

We start with a pure Nash equilibrium procedure on binary-action games Γ n
2 .

Enumeration: Let ΠENUM be the following procedure. All 2n joint actions are examined in turn, with each player
communicating whether or not he is best-replying there. Formally, at every period t = 0,1, . . . ,2n − 1, let
b ∈ {0,1}n be such that [b]2 = t (where [b]2 = ∑n

i=1 bi2n−i is the integer corresponding to the binary string
b); then player i broadcasts ai,t = 1 if bi is a best reply to b−i (i.e., ui(b) � ui(1 − bi, b

−i )), and broadcasts
ai,t = 0 otherwise. If all players broadcasted 1 at a certain period t , then the procedure terminates at that point
with the corresponding b (i.e., [b]2 = t) as a pure Nash equilibrium of the game. Otherwise, the procedure
ends at period 2n with “no pure Nash equilibrium.”

Since every one of the n players communicates 1 bit in each one of the 2n periods, we have

Proposition 15. For every n � 2,

CC
(

PURE,Γ n
2

)
� CC

(
ΠENUM,Γ n

2

) = n2n.

For the next procedure, consider first the family of binary-action games that also have binary payoffs, i.e., ui(a) ∈
{0,1} for all a ∈ A = {0,1}n. For every game G let x̄(G) be a Nash equilibrium of G. Think of x̄ as a predetermined
and agreed-upon rule that selects a Nash equilibrium for each game (for example, among pure Nash equilibria select
that one a that minimizes [a]2; among mixed Nash equilibria, select that one (p1, . . . , pn) that minimizes the pi

lexicographically). The procedure is as follows.

Broadcast: Let ΠBCAST be the following procedure. The values of the payoff functions at each one of the 2n joint
actions are broadcast in turn, by all players. Formally, at every period t = 0,1, . . . ,2n − 1, let b ∈ {0,1}n be
such that [b]2 = t ; then player i communicates ai,t = ui(b). At period t = 2n every player can reconstruct
the payoff function of every other player: ui(b) = ai,[b]2 for each b ∈ {0,1}n, and so they all know the game
G, and thus the agreed-upon Nash equilibrium x̄(G).

The communication complexity of this procedure is again n2n. Clearly, the same holds for any family of games
U n ⊂ Γ n whose encoding is 1 bit (recall Section 5; the magnitude of U n does not matter and may be arbitrarily large),
1 2 1



118 S. Hart, Y. Mansour / Games and Economic Behavior 69 (2010) 107–126
whereas if the encoding is r bits, then the number of periods becomes r2n (every payoff entry takes r periods to
transmit). So we have

Proposition 16. For every n � 2 let U n
r ⊂ Γ n

2 be a family of binary-action games whose encoding is at most r bits,
i.e., enc(U n

r ) � r . Then,

CC
(

MIXED, U n
r

)
� CC

(
ΠBCAST, U n

r

)
� rn2n.

7. Correlated equilibria

In this section we study the communication complexity of reaching a correlated equilibrium, and prove that it
is polynomial rather than exponential in the number of players. This shows that the exponential bounds for Nash
equilibrium procedures are not due just to the complexity of the input, i.e., to the payoff functions being of exponential
size, but rather to the intrinsic complexity of reaching Nash equilibria.

Based on the polynomial-time algorithm of Papadimitriou (2005) for computing correlated equilibria of certain
“succinct polynomial games,” we derive a correlated equilibrium procedure with polynomial communication com-
plexity, for all games with integer payoffs. Specifically, let U n

u ⊂ Γ n
2 be the family of n-person binary-action games

with integer payoffs of magnitude at most u bits, i.e., max1�i�n mag(ui) � u; our correlated equilibrium procedure
will have a communication complexity that is polynomial in the number of players n and the magnitude of the pay-
offs u (for simplicity we again consider only binary-action games; otherwise, it would be polynomial in n,u, and
max1�i�n |Ai |).

We start by recalling the definition of a correlated equilibrium; see Aumann (1974). Given a game G = (n,
{Ai}i , {ui}i ), a distribution Q over the space of joint actions A = ∏n

i=1 Ai is (the distribution of) a correlated equilib-
rium of G if for each player i and all actions bi, b

′
i ∈ Ai , we have EQ[ui(bi, a

−i )1{ai=bi }] � EQ[ui(b
′
i , a

−i )1{ai=bi }]
(where EQ denotes expectation with respect to the distribution Q). Equivalently, consider the “extended game” where,
before G is played, a joint action a = (a1, . . . , an) ∈ A is randomly chosen according to Q and each player i is given
a “recommendation” to play ai , his coordinate of the chosen a; then Q is a correlated equilibrium of G if and only
if the combination of strategies where each player always plays according to his recommendation constitutes a Nash
equilibrium of the extended game.

A correlated equilibrium procedure Π is defined in the same way as a Nash equilibrium procedure, except that now
the output of each player is a distribution Q, such that Q is a correlated equilibrium of the game G = (u1, . . . , un) that
was given as input.17 Let CEP be the collection of correlated equilibrium procedures. Similarly to CC(MIXED, G) and
CC(PURE, G), we define the communication complexity of correlated equilibrium procedures for a family of games G
as CC(CORRELATED, G) = minΠ∈CEP CC(Π, G) = minΠ∈CEP maxG∈G CC(Π,G).

We come now to the construction of Papadimitriou (2005), which consists of running an ellipsoid algorithm in
the Hart–Schmeidler setup (Hart and Schmeidler, 1989). In our communication complexity framework, every player
can run internally the computations of the algorithm at no cost. However, since the payoff function ui is known
only to player i, only i can compute his own expected payoffs—which he can then broadcast to all players. The
communication complexity counts only the number of bits transmitted, and therefore, as we will see, there is no need
to restrict ourselves to “succinct games of polynomial type” as in Papadimitriou (2005).

We define the procedure ΠCORR as follows. All players simulate the algorithm of Papadimitriou (2005). At each step
of the ellipsoid algorithm, an n-tuple of mixed strategies p = (p1, . . . , pn) ∈ Δ = ∏n

i=1 Δi is generated (the whole
vector p is computed internally by—and thus known to—each player). Every player i then computes his expected
payoff ui(p) and broadcasts it. In terms of communication complexity, again, the local computation of p and ui(p)

has no cost; only the transmission of ui(p) counts.
Papadimitriou (2005) proves, first, that a correlated equilibrium is reached in a number of steps that is bounded

by a polynomial in n and u; and second, that the n-tuples of mixed strategies p ∈ Δ generated at every step have a
magnitude mag(p) = O(nu) bits. Therefore, when the payoffs ui(a) for all a ∈ A are integers of at most u bits, the
expected payoff ui(p) for p ∈ Δ requires at most O(nmag(p) + u + n) = O(n2u) bits (since it is a weighted sum of

17 Finite games always possess correlated equilibria.
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2n entries). Altogether, this implies that the total number of bits transmitted in the procedure ΠCORR is bounded by a
polynomial in n and u, and we have shown

Theorem 17. For every n � 2 and u � 1, let U n
u ⊂ Γ n

2 be the family of n-person binary-action games with integer
payoffs of magnitude at most u, i.e., max1�i�n mag(ui) � u. Then there exists a correlated equilibrium procedure
ΠCORR whose communication complexity over U n

u is polynomial in n and u, i.e.,

CC
(

CORRELATED, U n
u

)
� CC

(
ΠCORR, U n

u

)
� polynomial(n,u).

In Appendix B we will present further results on the communication complexity of reaching correlated equilibria.
Specifically, in the classes of games of Sections 4 and 5 where the communication complexity of reaching Nash
equilibria was shown to be exponential, that of correlated equilibria turns out to be quite low; moreover, it is attained by
simple procedures. We will also analyze the communication complexity of reaching correlated approximate equilibria.

8. Extensions

8.1. Stochastic procedures

For simplicity we have discussed only deterministic procedures; however, our results carry over to “stochastic”
(or “randomized”) procedures. In an equilibrium stochastic procedure, the players may randomize when choosing
their actions (i.e., ai,t ∈ Ai is chosen according to a probability distribution, which may depend on the history and on
player i’s payoff function), and the procedure terminates in an appropriate equilibrium (pure, mixed, or correlated,
as the case may be). The analysis of stochastic procedures is in terms of the expected communication complexity
(i.e., the expectation of the number of bits transmitted until termination), which we denote CCS (where S stands for
“stochastic”).

In general, the communication complexity of deterministic and stochastic protocols are polynomially related (see
Kushilevitz and Nisan, 1997, Section 2.3), and so we expect the analysis of stochastic procedures also to lead to
exponential bounds. In particular, the lower bound on the communication complexity of the S -disjointness problem
DISJS remains Ω(|S|) also for stochastic protocols (see Kushilevitz and Nisan, 1997, Section 3.4), so the result of
Theorem 3 holds also for pure Nash equilibrium stochastic procedures. As for Theorem 10, the counting argument
of Section 5 applies to any procedure, whether deterministic or stochastic. See Appendix B for the analysis of some
correlated equilibrium stochastic procedures.

8.2. Larger action spaces

We have mainly considered games in Γ n
2 where every player has 2 actions. What happens when the number of ac-

tions increases to s > 2? This has two effects. First, the space of joint actions is larger: sn rather than 2n; and second,
the number of communication bits per message is now log s rather than 1. Of course, as we noted at the end of Sec-
tion 2.3, any lower bound for Γ n

2 is also a lower bound for Γ n
s . However, most of our techniques turn out to be easily

extendable to Γ n
s , and to yield better bounds when s > 2. For instance, the matching pennies reduction (Section 3.2)

gives a lower bound of Ω(sn) when applied to Γ n
s (recall Theorem 1: the disjointness problem for subsets of a set

of size sn has communication complexity sn). As for the upper bounds, the enumeration and broadcast procedures
ΠENUM and ΠBCAST (Section 6) lead to a communication complexity of O(nsn log s) and O(rnsn), respectively.

8.3. Nash approximate equilibria

An approximate equilibrium requires each player’s gain from deviating to be small. Formally, given ε > 0, a Nash
ε-equilibrium is a combination of mixed actions p = (p1, . . . , pn) ∈ Πn

i=1Δi = Δ such that ui(p) � ui(qi,p
−i ) − ε

for every player i and any mixed action qi ∈ Δi of i. It would be interesting to study the communication complexity
of reaching Nash approximate equilibria, and determine whether or not it is also exponential in the number of players.
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Appendix A. Potential game reduction

In Section 3.2 we provided a reduction—the matching pennies reduction—from procedures for the 2n-disjointness
problem to n-person pure Nash equilibrium procedures. We now construct another reduction, which we call the poten-
tial game reduction, whose additional property18 is that whenever the two sets in the disjointness problem intersect,
the corresponding game has the finite improvement path property. This reduction will establish Theorem 4.

Before we describe the potential game reduction, it is worthwhile to investigate why an alternative naive reduction
fails. Let us start with a few notations, which will be useful later on. The Hamming distance dH (w,v) between two
vectors w,v ∈ {0,1}k equals the number of coordinates in which they differ; for a set V ⊂ {0,1}k , put dH (w,V ) =
minv∈V dH (w,v).

Recall from Section 3.1 that n is assumed even and the set of n players is partitioned into two sets of n/2 players,
T1 and T2; the players of T� are denoted (�, i) for i ∈ {1, . . . , n/2} and � ∈ {1,2}. Take S = {0,1}n/2, and consider
the following reduction from the S -disjointness problem to binary-action games Γ n

2 . Let S1, S2 ⊂ S = {0,1}n/2. For
each joint action a ∈ {0,1}n define z = z(a) ∈ {0,1}n/2 by xi = a1,i ⊕ a2,i for all i ∈ {1, . . . , n/2}, and let the payoff
functions be u�,i(a) = −dH (z(a), S�), for all a ∈ {0,1}n, i ∈ {1, . . . , n/2}, and � ∈ {1,2}. One can show that there
exists a pure Nash equilibrium in this game iff S1 ∩ S2 �= ∅. However, improvement paths in these games are not
necessarily finite.19 Our potential game reduction will also use the Hamming distance to drive the joint action to a
certain region, but will require a much more complex structure in order to guarantee that all improvement paths are
finite.

We now present the potential game reduction. Let H be a Hamiltonian cycle in the hypercube {0,1}n/2. For x, y ∈
{0,1}n/2, when y immediately follows x in the cycle H we write y = next(x) and x = prev(y); also, let r(x) ∈
{1, . . . , n/2} denote the index of the unique bit in which x and next (x) differ. Let

L = {
xx: x ∈ {0,1}n/2} ∪ {

yx :y, x ∈ {0,1}n/2, y = next(x)
}
,

where zw denotes the concatenation of the strings z and w. Clearly L ⊂ {0,1}n and |L| = 2 · 2n/2. In our games
every joint action a ∈ A will be mapped to some z(a) ∈ {0,1}n, and the payoff of every player will increase as z(a)

approaches the set L. A pure Nash equilibrium a, if it exists, will always have z(a) ∈ L.
The players in T1 have binary actions, i.e., A1,i = {0,1}, whereas those in T2 have four actions: A2,i = {0,1} ×

{0,1}. For an action a2,i = (c2,i , d2,i ) ∈ A2,i , we will refer to c2,i as the action bit and to d2,i as the done bit. A joint
action a ∈ A can be written a = (a1, a2), where a1 ∈ ∏

i A1,i and a2 ∈ ∏
i A2,i are the joint actions of T1 and T2,

respectively. Given a = (a1, a2), define

x1 ≡ x1(a1) = a1 = (a1,1, . . . , a1,n/2) ∈ {0,1}n/2,

x2 ≡ x2(a2) = (c2,1, . . . , c2,n/2) ∈ {0,1}n/2,

d2 ≡ d2(a2) = (d2,1, . . . , d2,n/2) ∈ {0,1}n/2, and

z ≡ z(a) = x1x2 ∈ {0,1}n
(x1x2 is the concatenation of x1 and x2).

We will view L as a cycle that moves from each xx to yx, where y = next(x), and then from yx to yy. As the joint
action a changes, so does the resulting z(a). To move z(a) in L between xx and yx one player in T1, namely (1, r(x)),

18 Besides reducibility and constructibility; see Section 3.1.
19 For example, take S1, S2 such that S1 ∩ S2 �= ∅ and there are two vectors w and v with dH (w,S1) < dH (w,S2), dH (v,S2) < dH (v,S1), and
dH (w,v) = 1. Let i be the index where w and v differ; players (1, i) and (2, i) can then alternate indefinitely in performing improvement steps.
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must change his action; we call him the forward active 1-player at xx, and also the backward active 1-player at yx,
and denote him by r1(xx) = r1(yx) = (1, r(x)). Similarly, the move between yx and yy is controlled by the action
bit of one player in T2, namely r2(yx) = r2(yy) = (2, r(x)), which we call the forward active 2-player at yx, and also
the backward active 2-player at yy.

A high-level description of our reduction is as follows. Given two subsets S1 and S2 of S = {0,1}n/2, we define the
payoff functions of the players such that: (1) all players want to reach L (i.e., have z(a) ∈ L) and stay in it; (2) when
in L, only the active players have an incentive to change their actions; (3) if the joint action is xx and x ∈ S1 ∩ S2
then no active player has an incentive to change his action, and we are at a pure Nash equilibrium; and (4) the payoff
functions of the players in T� depend only on S�, for � ∈ {1,2}.

Specifically, for each player (1, i) in T1 we define his payoff function

u1,i (a) =

⎧⎪⎨
⎪⎩

−dH (x1x2,L), if x1x2 /∈ L,

1, if x1x2 ∈ L and x1 �= x2,

2, if x1x2 ∈ L, x1 = x2, x1 ∈ S1, and dr2(x1x2) = 1,

0, if x1x2 ∈ L, x1 = x2, x1 /∈ S1 or dr2(x1x2) = 0.

Thus, if z = x1x2 /∈ L then u1,i (a) is the negative of the Hamming distance from z to the set L (this provides the
incentive always to move in the direction of L, and once L is reached not to leave it). If x1 = x2, x1 ∈ S1, and
dr2(x1x2) = 1, then u1,i (a) has the maximal value of 2 (this is where the pure Nash equilibria will be, if at all); note
that players in T1 can test dr2(x1x2) = 1 since the identity of the active 2-player r2(x1x2) = r2(z(a)) is just a function
of the joint action a. If x1 �= x2 then u1,i (a) = 1, and otherwise u1,i (a) = 0 (this will cause the players in T1 to prefer
to move from x1 = x2 to x1 �= x2, unless both x1 ∈ S1 and dr2(x1x2) = 1).

For each player (2, i) in T2, we first define an auxiliary function GoodDone2,i

GoodDone2,i (a) =
{

0, if x1 = x2, (2, i) = r2(x1x2), and d2,i �= 1{x2∈S2},
1, otherwise,

and then the payoff function

u2,i (a) =

⎧⎪⎨
⎪⎩

−dH (x1x2,L), if x1x2 /∈ L,

0, if x1x2 ∈ L and x1 �= x2,

2 · GoodDone2,i (a), if x1x2 ∈ L, x1 = x2, and x2 ∈ S2,

GoodDone2,i (a), if x1x2 ∈ L, x1 = x2, and x2 /∈ S2.

The idea is that when x1 = x2 the active 2-player (2, i) = r2(x1x2) should “signal” through his done bit whether or
not x2 ∈ S2 (this is needed to let the players in T1 know when a Nash equilibrium has been reached); if he does not
signal correctly he is “penalized” by having GoodDone2,i = 0 instead of 1, which decreases his payoff.

Claim 18. The constructibility and reducibility properties hold for the potential game reduction.

Proof. By definition of the reduction, the payoffs of the players in T� depend only on S�, and so the constructibility
property holds. It remains to show that the reducibility property holds.

We will distinguish five types of joint actions a in A and analyze each in turn.
(1) a such that z(a) = x1x2 ∈ L,x1 = x2, x1 ∈ S1, dr2(x1x2) = 1 and x2 ∈ S2—thus x1 = x2 ∈ S1 ∩ S2—is a pure

Nash equilibrium, since all players get their maximal payoff of 2 (we have GoodDone2,i (a) = 1 for all players (2, i)

in T2). Such an a is obtained from x = x1 = x2 ∈ S1 ∩ S2 by putting a1,i = x(i) (= the i’s coordinate of x) for each
player (1, i) in T1, and a2,i = (c2,i , d2,i ) with action bit c2,i = x(i) and arbitrary done bit d2,i for each player (2, i) in
T2, except for the active 2-player r2(x1x2), whose done bit is dr2(x1x2) = 1.

(2) a such that z(a) = x1x2 /∈ L cannot be a Nash equilibrium since at least one player (�, i), by changing his
action, can bring the new z(a′) closer to L and thus increase his payoff by 1.

(3) a such that z(a) = x1x2 ∈ L,x1 �= x2 cannot be a Nash equilibrium, since the (forward) active 2-player, by
changing his action bit and also setting his done bit correctly (to dr2(x1x2) = 1{x2∈S2}), can increase his payoff from 0
to either 1 or 2.

(4) a such that z(a) = x1x2 ∈ L,x1 = x2, and either x1 /∈ S1 or dr2(x1x2) = 0 cannot be a Nash equilibrium since the
active 1-player can increase his payoff from 0 to 1 by changing his action.
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(5) a such that z(a) = x1x2 ∈ L,x1 = x2, x1 ∈ S1, dr2(x1x2) = 1 and x2 /∈ S2 cannot be a Nash equilibrium since
GoodDoner2(x1x2)(a) = 0 and so the active 2-player r2(x1x2) can increase his payoff from 0 to 1 by changing his done
bit to dr2(x1x2) = 0.

Now (1)–(5) cover all possibilities, and we have shown that if S1 ∩ S2 �= ∅ then there is a pure Nash equilibrium
(case (1)), whereas if S1 ∩ S2 = ∅ then there is no pure Nash equilibrium. �

Next, we will show that when S1 ∩ S2 �= ∅ all the improvement paths are finite.

Lemma 19. Consider an improvement step from a to a′. If z(a) = x1x2 ∈ L, then z(a′) ∈ L and the improving player
is either the active 1-player r1(x1x2) or the active 2-player r2(x1x2).

Proof. Improvement steps cannot lead outside L: at a all payoffs are non-negative since z(a) ∈ L, whereas if z(a′) /∈ L

then all payoffs become negative. Only an active player can change his action bit such that z(a′) ∈ L; as for the done
bit of a player in T2, it affects his own payoff only when he is the active 2-player. �
Lemma 20. Consider an improvement step from a to a′. If z(a) = x1x2 ∈ L and the improving player is the backward
active 2-player, then he modifies only his done bit.

Proof. A backward active 2-player exists only in the case where x1 = x2 = x; changing his action leads from xx to
xy where y = prev(x), and thus makes his payoff 0—which cannot be an improvement. �
Lemma 21. Consider an improvement path that starts with an improvement step by a player (2, j) in T2 from a with
z(a) ∈ L to a′. Then from a′ until the next improvement step by a player from T2, if any, we have GoodDone2,i = 1
for all players (2, i) ∈ T2.

Proof. We distinguish two cases according to the first improvement step. If (2, j) modified only his done bit, then z(a)

was of the form xx, and GoodDone2,j changed from 0 to 1. So we are now at z(a′) = xx with GoodDone2,i (a
′) = 1

for all players (2, i) ∈ T2 (for player (2, i), where i �= j , this follows from the definition of GoodDone2,i ), and that
will remain so as long as no player in T2 moves (since an improvement step by a 1-player leads to yx where, again by
definition, GoodDone2,i = 1).

If the first improvement step by (2, j) involved the action bit, then Lemma 20 implies that (2, j) was the forward
active 2-player, and so z(a) = yx and z(a′) = yy (where y = next(x)). But unless (2, j) also set the done bit correctly
(to 1{x∈S2}) it could not have been an improvement step, and so GoodDone2,j (a

′) = 1. From here on the argument is
identical to the first case. �
Corollary 22. Consider an improvement path that starts at a with z(a) ∈ L. At each step after the first improvement
step performed by some player from T2, all the players (2, i) in T2 have GoodDone2,i = 1.

Lemma 23. Consider an improvement path that starts at a with z(a) ∈ L. Then there are no consecutive improvement
steps performed by players from the same set T�, where � ∈ {1,2}.
Proof. By Lemma 19 only the active players can perform improvement steps, and the path never leaves L.

By way of contradiction, assume that two players in T1 perform consecutive improvement steps. It must therefore
be the same player moving back and forth between xx and yx (where y = next(x)), but then his payoff after the two
consecutive steps does not change—a contradiction.

If two players in T2 perform consecutive improvement steps, then, again, it must be the same player, and so his
payoff must have first increased from 0 to 1, and then from 1 to 2. But then that second step was from an xx ∈ L

with x /∈ S2 (payoff of 1) to a yy ∈ L with y ∈ S2 (payoff of 2), which is impossible (since it involves two players
modifying their actions). �
Proposition 24. Consider an improvement path. Then after at most n + 2 initial steps: (I) the path reaches L and
never leaves it; (II) all the players (2, i) in T2 have GoodDone2,i = 1; and either (IIIa) all improvement steps are
performed by forward active players or (IIIb) a pure Nash equilibrium is reached.
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Proof. Every improvement step outside L decreases the distance to L, so after at most n steps we must reach L, and
never leave it (Lemma 19). While in L the improvement steps alternate between T1 and T2 (Lemmata 19 and 23),
so in at most 2 more steps (in total, no more than n + 2 steps from the start), an active player from T2 performs an
improvement step. By Corollary 22, from that time on GoodDone2,i = 1 for all the players (2, i) in T2. Therefore, in
particular, no improvement step can change only the done bit, and so the players in T2 can make only forward moves
(Lemma 20). As for T1, if there is a backward move, then it goes from yx to xx and must increase the payoff of
the active 1-player from 1 to 2. Therefore x ∈ S1 and dr2(xx) = 1, which together with GoodDoner2(xx) = 1 implies
that x ∈ S2, and so the payoffs of all players equal 2, the maximal payoff—and a pure Nash equilibrium has been
reached. �
Proposition 25. If S1 ∩ S2 �= ∅ then the game G generated by the potential game reduction has finite improvement
paths.

Proof. Assume by contradiction that an infinite improvement path exists. Proposition 24 implies that from some point
on (IIIa) always holds, and so the improvement steps are all performed by active forward players. Therefore all states
in L are traversed in turn, in particular xx for x ∈ S1 ∩ S2. At that point the payoff of every player (2, i) in T2 is 2
(since GoodDone2,i = 1 by (II) of Proposition 24); also, dr2(xx) = 1{x∈S2} = 1 (since GoodDoner2(xx) = 1), and so the
payoff of every player in T1 is 2 too, and no further improvement is possible. �

We can now complete the proof of our result.

Proof of Theorem 4. Let G ⊂ Γ n
4 be the family of games that are obtained in our construction for all S1, S2 ⊂

S = {0,1}n/2; Claims 18 and 5 imply that CC(PURE, G) = Ω(|S|) = Ω(2n/2). By Proposition 25, every game G ∈ G
either has the finite improvement path property, i.e., G ∈ F I P n

4 (when S1 ∩S2 �= ∅) or G has no pure Nash equilibrium
(when S1 ∩ S2 = ∅). Now CC(PURE, F I P n

4) � CC(PURE, G ∩ F I P n
4) (the communication complexity is defined as

the worst case over all games in the family), and we claim that CC(PURE, G ∩ F I P n
4) = CC(PURE, G). Indeed, take

any pure Nash equilibrium procedure Π over G ∩ F I P n
4, and let its communication complexity be K bits. We can

then use Π over the whole family G , stopping it once K bits have been transmitted without a pure Nash equilibrium
having been reached. Since all games in G having pure Nash equilibrium lie in F I P n

4 by Proposition 25, this is indeed
a pure Nash equilibrium procedure for G , and its communication complexity is also K . So

CC
(

PURE, F I P n
4

)
� CC

(
PURE, G ∩ F I P n

4

) = CC(PURE, G) = Ω
(
2n/2).

This establishes Theorem 4. �
Appendix B. Correlated equilibria

In this appendix we show that, in the settings where we have obtained lower bounds on the communication com-
plexity of pure and mixed Nash equilibrium procedures, there are simple procedures reaching a correlated equilibrium,
whose communication complexity is low (polynomial, or even zero). Moreover, the support of the correlated equilib-
ria that are reached is also low (the support of a correlated equilibrium Q is the number of joint actions a ∈ A for
which Q(a) > 0).

Finally, we study the communication complexity of reaching correlated approximate equilibria, and show that
regret-minimization techniques yield simple polynomial upper bounds.

B.1. Modified Jordan games

We will exhibit a simple distribution that turns out to be a correlated equilibrium for all modified Jordan games, as
defined in Section 5. For each n � 3, consider the following four joint actions in A:

z00 = (0,1,0,0,0, . . . ,0),

z01 = (0,1,1,0,0, . . . ,0),

z10 = (1,0,0,1,1, . . . ,1),
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z11 = (1,0,1,1,1, . . . ,1)

(i.e., zbc = (b,1 − b, c, b, b, . . . , b) for b, c ∈ {0,1}), and let Qn be the distribution that assigns equal probability of
1/4 to each one of these four joint actions.

Lemma 26. The distribution Qn is a correlated equilibrium of the modified Jordan game Jn(f ) for every n � 3 and
every f : {0,1}n−2 → [0,1).

Proof. For each a in the support of Qn, i.e., a ∈ {z00, z01, z10, z11}, we have the following: every player i �= 2,3,4
always matches his predecessor, and so he gets his highest payoff of 1 and will not deviate; also, player 2 always
mismatches player 1, and so he will not deviate either (we use here 0 � f < 1). As for players i = 3,4, when ai = 0 it
is equally likely (according to Qn) that ai−1 = 0 and ai−1 = 1, and so the payoff of i is 1/2 and a deviation to bi = 1
does not change his payoff; the same holds when ai = 1. �

Since there is a correlated equilibrium that does not depend on the specific modification f , no communication is
needed to reach it. Therefore we have established the following:

Theorem 27. For every n � 3, the communication complexity of reaching a correlated equilibrium over the family of
binary-action games U n ⊂ Γ n

2 of Theorem 10 is zero, i.e.,

CC
(

CORRELATED, U n
) = 0.

B.2. Bayesian setting

Recall the Bayesian setting of Section 4. The probability distribution P over the family Γ n
2 of binary-action games

is obtained by putting ui(0, a−i ) = 0 and ui(1, a−i ) = 1 with probability 1/2, and ui(0, a−i ) = 1 and ui(1, a−i ) = 0
with probability 1/2, independently over all i and a−i . For each player i and action b = 0,1, let Bi,b := {a ∈ A:
ai = b, ui(a) = 1} be the set of joint actions where player i plays the action b, and that is his best-reply action.

We start with a preparatory lemma. Let m = 4n2. After the payoff functions {ui}i have been chosen (according
to P) and every player i has been informed of his own ui , let player i select a random subset of size m of Bi,0, denote
it Si,0, and a random subset of size m of Bi,1, denote it Si,1, with all joint actions in each Bi,b equally likely to be
selected. Put Si = Si,0 ∪ Si,1 and S = ⋃

i Si ; then S ⊂ A is a random set containing at most 2mn joint actions (the
same joint action may be selected by different players). Let ζS denote the uniform distribution on S (i.e., ζS(s) = 1/|S|
for every s ∈ S).

Lemma 28. ζS is a correlated equilibrium in the game (u1, . . . , un) with probability at least 1 − 2ne−n.

Note that there are two randomizations here: first, the payoff functions ui (according to P), and second, the se-
lections Si (conducted after each player i knows his ui ); we will write Pr for the resulting joint probability on both
payoffs and selections.

Proof. In order for ζS to be a correlated equilibrium, the 2n inequalities∑
a∈S: ai=b

[
ui

(
b, a−i

) − ui

(
1 − b, a−i

)]
� 0, (B.1)

for all i and b = 0,1, must be satisfied. Fix a player i and an action ai = b in {0,1}, and let T = {a ∈ S: ai = b}. For
each a ∈ A such that ai = b, let Xa = ui(b, a−i ) − ui(1 − b, a−i ); then Xa ∈ {1,−1}, and we want to obtain an upper
bound on the probability that

∑
a∈T Xa < 0, i.e., the corresponding inequality (B.1) is violated.

If a ∈ T was selected by player i, i.e., a ∈ Si , then necessarily a ∈ Si,b and so Xa = 1 (since Si,b ⊂ Bi,b). If
a /∈ Si , then a was selected by some other player j �= i, and then it is equally likely that Xa = 1 and Xa = −1 (since
player i’s payoff and player j ’s selection are independent). Let K be the number of elements in T \Si ; then 0 �
K � 2m(n − 1) and

∑
a∈T Xa = m + ∑

a∈T \Si
Xa = m + ∑K

k=1 Yk , where the Yk are independent random variables
with Pr[Yk = 1] = Pr[Yk = −1] = 1/2. Applying Hoeffding’s inequality (Hoeffding, 1963) yields Pr[∑a∈T Xa <
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0 | K] = Pr[∑K
k=1 Yk < −m] � e−m2/(2K) � e−n for every K � 2m(n − 1) (recall that we took m = 4n2), and so

Pr[∑a∈T Xa < 0] � e−n.
The same computation applies to all i and b = 0,1, and so the probability that at least one of the 2n inequali-

ties (B.1) is violated is at most 2ne−n. �
Consider now the following stochastic procedure ΠBAYES. In the first stage, each player i selects a random set

Si = Si,0 ∪ Si,1 of joint actions as above, and then broadcasts it. In the second stage, each player i verifies whether
the resulting S = ⋃n

i=1 Si satisfies his two inequalities (B.1) (only ui matters here), and then broadcasts the result,
using one bit. If all inequalities are satisfied, then ζS is a correlated equilibrium and the procedure terminates. If not,
then in the third stage all players broadcast their complete payoff functions, and then they each compute a correlated
equilibrium using the same algorithm, so as to get the same result. Since ΠBAYES is a stochastic procedure, for each
game G we consider the expected communication complexity CCS(ΠBAYES,G) (see Section 8.1).

Theorem 29. The expected communication complexity of the correlated equilibrium stochastic procedure ΠBAYES is
O(n4), i.e.,

E
[
CCS(ΠBAYES, G)

] = O
(
n4),

where the expectation E is according to the probability distribution P of Theorem 7.

Proof. Each one of the n sets Si has 2m = 8n2 elements of n bits each, and so the first stage has a communication
complexity of 8n4 bits. Then each player sends a single bit, which adds n bits of communication. With probabil-
ity at most 2ne−n the resulting ζS is not a correlated equilibrium, and then there is an additional communication
complexity of n2n of broadcasting the payoff functions. Altogether, E[CCS(ΠBAYES, G)] = 8n4 + n + 2ne−nn2n �
8n4 + n + 2n2 = O(n4). �
B.3. Correlated approximate equilibria

We will now show that “regret-minimization” procedures that reach correlated approximate equilibria have a low
communication complexity. Let ε > 0; a correlated ε-equilibrium is defined in the same way as a correlated equilib-
rium, except that now all the inequalities must hold only within ε.

Theorem 30. For every n � 2 and u � 1, let U n
u ⊂ Γ n

2 be the family of n-person binary-action games with payoffs
of magnitude at most u, i.e., max1�i�n mag(ui) � u. Then for every ε > 0 there exists a correlated ε-equilibrium
stochastic procedure Πε-CORR whose expected communication complexity over U n

u is polynomial in n and u, i.e.,

CCS
(
Πε-CORR, U n

u

) = O

(
n2

ε2
+ nu

)
.

Proof. For every ε, δ > 0 there exists a regret-minimization procedure that guarantees that, after T = C log(n/δ)/ε2

periods, there is a probability of at least 1 − δ that the time average of the played joint actions constitutes a correlated
ε-equilibrium (where C is an appropriate constant); e.g., see Cesa-Bianchi and Lugosi (2006, Section 7.4). Let ΠRM

be such a procedure for δ = 2−n; its communication complexity is nT = O(n2/ε2), since in each one of the T periods
every player’s action corresponds to one bit of communication.

The procedure Πε-CORR starts by running ΠRM; let at = (a1,t , . . . , an,t ) ∈ A be the joint action at time t . When ΠRM

terminates, after T periods, each player i computes his average regrets and checks whether they are both at most ε (i.e.,
(1/T )

∑T
t=1[ui(b, a−i,t ) − ui(a

t )] � ε for20 b = 0,1); he then broadcasts the result using one bit. With probability
at least 1 − 2−n all average regrets are at most ε, and then the uniform distribution on (a1, . . . , aT ) is a correlated
ε-equilibrium and Πε-CORR terminates.

Otherwise, all players broadcast their complete payoff functions, after which they all compute a correlated equi-
librium using the same algorithm. The communication at this stage requires O(n2nu) bits, but it only happens with

20 For binary-action games, conditional (“internal”) and unconditional (“external”) regrets are the same.
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probability at most 2−n. The total expected communication complexity is therefore O(n2/ε2) + n + 2−nO(n2nu) =
O(n2/ε2 + nu). �
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