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Calibration

Forecaster says: "The chance of rain
tomorrow is p"

Forecaster is CALIBRATED if
for every p: the proportion of rainy days
among those days when the forecast was p
equals p (or is close to p in the long run)
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Calibration

CALIBRATION can be guaranteed
(no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

Forecaster uses mixed forecasting
(e.g.: with probability 1/2, forecast = 25%

with probability 1/2, forecast = 60%)

Foster and Vohra 1994 [publ 1998]
Hart 1995: proof using Minimax Theorem
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The MINIMAX Theorem

THEOREM (von Neumann 1928)
IF

X ⊂ R
n, Y ⊂ R

m are compact convex sets,
and f : X × Y → R is a continuous function

that is convex-concave,
i.e., f(·, y) : X → R is convex for fixed y,

and f(x, ·) : Y → R is concave for fixed x,
THEN

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).
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The MINIMAX Theorem

THEOREM (von Neumann 1928)

IF
For every strategy of the opponent
I have a strategy
such that my payoff is at least v

THEN
I have a strategy
that guarantees that my payoff is at least v
(for every strategy of the opponent)

finite game; probabilistic (mixed) strategies
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Calibration Proof: Minimax

FINITE δ-GRID, FINITE HORIZON
⇒ FINITE 2-person 0-sum game

IF the strategy of the rainmaker IS KNOWN
THEN the forecaster can get δ-calibrated
forecasts

MINIMAX THEOREM ⇒ the forecaster can
GUARANTEE δ-calibrated forecasts (without
knowing the rainmaker’s strategy)

Hart 1995
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Calibration

CALIBRATION can be guaranteed
(no matter what the weather will be)

BACK -casting (not fore-casting!)
("Politicians’ Lemma")

Foster and Vohra 1994 [publ 1998]
Hart 1995: proof using Minimax Theorem
Hart and Mas-Colell 1996 [publ 2000]: proof
using Blackwell’s Approachability
Foster 1999: simple procedure
Foster and Hart 2016: even simpler
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No Calibration

CALIBRATION cannot be guaranteed when:
Forecast is known before the rain/no-rain
decision is made
(" LEAKY FORECASTS ")
Forecaster uses a deterministic
forecasting procedure

Oakes 1985
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Smooth Calibration

SMOOTH CALIBRATION : combine together
the days when the forecast was close to p
(smooth out the calibration score)

Main Result :

There exists a deterministic procedure
that is SMOOTHLY CALIBRATED .

Deterministic ⇒ result holds also when
the forecasts are leaked

SERGIU HART c© 2015 – p. 12



Calibration

SERGIU HART c© 2015 – p. 13



Calibration

Set of ACTIONS: A ⊂ R
m (finite set)

Set of FORECASTS: C = ∆(A)

Example: A = {0, 1}, C = [0, 1]
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Calibration

Set of ACTIONS: A ⊂ R
m (finite set)

Set of FORECASTS: C = ∆(A)

Example: A = {0, 1}, C = [0, 1]

CALIBRATION SCORE at time T for a
sequence (at, ct)t=1,2,... in A × C:

KT =
1

T

T
∑

t=1

||āt − ct||

where

āt =

∑T
s=1

1cs=ct
as

∑T
s=1

1cs=ct
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Smooth Calibration

A "smoothing function" is a Lipschitz
function Λ : C × C → [0, 1] with Λ(c, c) = 1
for every c.

Λ(x, c) = "weight" of x relative to c

Example: Λ(x, c) = [δ − ||x − c||]+/δ
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Indicator Function

c
x

1

1x=c
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Indicator and Λ Functions

c
x

1

1x=c

c − δ c + δ

Λ(x, c)
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Smooth Calibration

A "smoothing function" is a Lipschitz
function Λ : C × C → [0, 1] with Λ(c, c) = 1
for every c.

Λ(x, c) = "weight" of x relative to c

Λ-CALIBRATION SCORE at time T :

KΛ

T =
1

T

T
∑

t=1

||āΛ

t − cΛ

t ||
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Smooth Calibration

A "smoothing function" is a Lipschitz
function Λ : C × C → [0, 1] with Λ(c, c) = 1
for every c.

Λ(x, c) = "weight" of x relative to c

Λ-CALIBRATION SCORE at time T :

KΛ

T =
1

T

T
∑

t=1

||āΛ

t − cΛ

t ||

āΛ

t =

∑T
s=1

Λ(cs, ct) as
∑T

s=1
Λ(cs, ct)

, cΛ

t =

∑T
s=1

Λ(cs, ct) cs
∑T

s=1
Λ(cs, ct)
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The Calibration Game

In each period t = 1, 2, ... :
Player C ("forecaster") chooses ct ∈ C

Player A ("action") chooses at ∈ A
at and ct chosen simultaneously :
REGULAR setup
at chosen after ct is disclosed:
LEAKY setup

Full monitoring, perfect recall
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Smooth Calibration

A strategy of Player C is
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Smooth Calibration

A strategy of Player C is

(ε, L)-SMOOTHLY CALIBRATED

if there is T0 such that KΛ
T ≤ ε holds for:

every T ≥ T0,

every strategy of Player A, and

every smoothing function Λ with Lipschitz
constant ≤ L

SERGIU HART c© 2015 – p. 18



Smooth Calibration: Result

SERGIU HART c© 2015 – p. 19



Smooth Calibration: Result

For every ε > 0 and L < ∞

there exists a procedure
that is (ε, L)-SMOOTHLY CALIBRATED .

SERGIU HART c© 2015 – p. 19



Smooth Calibration: Result

For every ε > 0 and L < ∞

there exists a procedure
that is (ε, L)-SMOOTHLY CALIBRATED .

Moreover:
• it is deterministic ,

SERGIU HART c© 2015 – p. 19



Smooth Calibration: Result

For every ε > 0 and L < ∞

there exists a procedure
that is (ε, L)-SMOOTHLY CALIBRATED .

Moreover:
• it is deterministic ,
• it has finite recall

(= finite window, stationary),

SERGIU HART c© 2015 – p. 19



Smooth Calibration: Result

For every ε > 0 and L < ∞

there exists a procedure
that is (ε, L)-SMOOTHLY CALIBRATED .

Moreover:
• it is deterministic ,
• it has finite recall

(= finite window, stationary),
• it uses a fixed finite grid , and

SERGIU HART c© 2015 – p. 19



Smooth Calibration: Result

For every ε > 0 and L < ∞

there exists a procedure
that is (ε, L)-SMOOTHLY CALIBRATED .

Moreover:
• it is deterministic ,
• it has finite recall

(= finite window, stationary),
• it uses a fixed finite grid , and

• forecasts may be leaked
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Smooth Calibration: Implications

For forecasting :
nothing good ... (easier to pass the test)

For game dynamics :
Nash dynamics
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Calibrated Learning

CALIBRATED LEARNING :

every player uses a calibrated forecast on
the play of the other players

every player best replies to his forecast

⇒ time average of play
(= empirical distribution of play)
is an approximate CORRELATED EQUILIBRIUM

Foster and Vohra 1997
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Smooth Calibrated Learning

SMOOTH CALIBRATED LEARNING :

(F) A smoothly calibrated deterministic
procedure, which gives in each period t a
"forecast" of play ct in Πi∈N∆(Ai)

(P) A Lipschitz approximate best-reply mapping
gi : Πi∈N∆(Ai) → ∆(Ai) for each player i

In each period t, each player i:

1. runs the procedure (F) to get ct

2. plays gi(ct) given by (P)
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SERGIU HART c© 2015 – p. 23



Smooth Calibrated Learning

SMOOTH CALIBRATED LEARNING

(with appropriate parameters):
• is a stochastic uncoupled dynamic

SERGIU HART c© 2015 – p. 23



Smooth Calibrated Learning

SMOOTH CALIBRATED LEARNING

(with appropriate parameters):
• is a stochastic uncoupled dynamic
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Smooth Calibrated Learning

SMOOTH CALIBRATED LEARNING

(with appropriate parameters):
• is a stochastic uncoupled dynamic

• has finite MEMORY and is stationary
• Nash ε-equilibria are played

at least 1 − ε of the time
in the long run (a.s.)
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Smooth Calibrated Learning: Proof

smooth calibration
⇒ play t = g(ct) ≈ ct

use: g is Lipschitz

g approximate best reply
⇒ play t is an approximate Nash equilibrium

g(play t) = g(g(ct)) ≈ g(ct) = play t
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Why Smooth ?

SMOOTH CALIBRATION

deterministic
⇒ same forecast for all players
leaky
⇒ actions depend on forecast
calibrated
⇒ forecast equals actions

⇒ FIXED POINT

SMOOTH BEST REPLY
⇒ fixed point = NASH EQUILIBRIUM
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Game Dynamics

Best reply to CALIBRATED forecasts:
→ CORRELATED EQUILIBRIA
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Game Dynamics

Best reply to CALIBRATED forecasts:
→ CORRELATED EQUILIBRIA

Best reply to SMOOTHLY CALIBRATED
forecasts: → NASH EQUILIBRIA

SERGIU HART c© 2015 – p. 27



Dynamics and Equilibrium

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,

or in the DYNAMIC

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,
(CORRELATED EQUILIBRIUM )

or in the DYNAMIC

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,
(CORRELATED EQUILIBRIUM )

or in the DYNAMIC
(NASH EQUILIBRIUM )

SERGIU HART c© 2015 – p. 28



Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,
(CORRELATED EQUILIBRIUM )

or in the DYNAMIC
(NASH EQUILIBRIUM )

(Hart and Mas-Colell 2003)
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Integral Approach to Calibration

INTEGRAL CALIBRATION score:

GΛ

t (z) =
1

t

t
∑

s=1

Λ(cs, z)(as − cs)

SERGIU HART c© 2015 – p. 29



Integral Approach to Calibration

INTEGRAL CALIBRATION score:
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∑

s=1

Λ(cs, z)(as − cs)

||GΛ

t ||2 =

(
∫

C

||GΛ

t (z)||2 dζ(z)

)1/2

INTEGRAL CALIBRATION : Guarantee that

||GΛ

t ||2 ≤ ε

for all t large enough, uniformly
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Stochastic Linear Calibration
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m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is continuous
then there exists y ∈ C

s.t. f(y) · (c − y) ≤ 0 for all c ∈ C

⇔ Brouwer’s fixed-point theorem
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Outgoing Fixed Point Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is continuous
then there exists y ∈ C

s.t. f(y) · (c − y) ≤ 0 for all c ∈ C

⇔ Brouwer’s fixed-point theorem

“variational inequalities”
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Let f : C → R
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If f is bounded and ε > 0 then
there exists a C-valued random variable Y
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1
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