"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

December 2021

"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster

University of Pennsylvania \& Amazon Research NY

Papers

- Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration"
- First version: 2016
- Journal of Political Economy, 2021
wWw.ma.huji.ac.il/hart/publ.html\#calib-int
- Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration"
- First version: 2016
- Journal of Political Economy, 2021
www.ma.huji.ac.il/hart/publ.html\#calib-int
- Dean P. Foster and Sergiu Hart " 'Calibeating': Beating Forecasters at Their Own Game"
- First version: 2020
- Center for Rationality DP-743, 2021
www.ma.huji.ac.il/hart/publ.html\#calib-beat

Calibration

Calibration

- Forecaster says: "The probability of rain tomorrow is p "

Calibration

- Forecaster says: "The probability of rain tomorrow is p "
- Forecaster is calibrated if

Calibration

- Forecaster says: "The probability of rain tomorrow is p "
- Forecaster is calibrated if
- for every forecast p : in the days when the forecast was p, the proportion of rainy days equals p

Calibration

- Forecaster says: "The probability of rain tomorrow is p "
- Forecaster is calibrated if
- for every forecast p : in the days when the forecast was p, the proportion of rainy days equals \boldsymbol{p} (or: is close to p in the long run)

Calibration

Calibration

CALIBRATION can be guaranteed
(no matter what the weather will be)

Calibration

CALIBRATION can be guaranteed (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]

Calibration

CALIBRATION can be guaranteed
 (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem

Calibration

CALIBRATION can be guaranteed
 (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem

Calibration

CALIBRATION can be guaranteed (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability

Calibration

CALIBRATION can be guaranteed (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure

CALIBRATION can be guaranteed (no matter what the weather will be)

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2016 [publ 2021]: simplest procedure, by "Forecast Hedging"

Forecast-Hedging

Forecast-Hedging

AVERAGE ACTION (= frequency of rain)

Calibration in Practice

Calibration in Practice

Calibration plots of FiveThirtyEight.com (as of June 2019)

Calibration in Practice

Calibration plot of ElectionBettingOdds.com (2016-2018)

Example

Example

Example

time	1	2	$\mathbf{3}$	4	5	6	\ldots
rain	1	0	1	0	1	0	

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: \quad CALIBRATION $=\mathbf{0}$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: \quad CALIBRATION $=0$

F2: \quad CALIBRATION $=0$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: \quad CALIBRATION $=0 \quad$ IN-BIN VARIANCE $=0$
F2: \quad CALIBRATION $=0$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION $=0 \quad$ IN-BIN VARIANCE $=0$
F2: \quad CALIBRATION $=0 \quad$ IN-BIN VARIANCE $=\frac{1}{4}$

Notations

Notations

- $a_{t}=$ action at time t

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was \boldsymbol{x}

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x

$$
\bar{a}(x)=\frac{\sum_{t=1}^{T} \mathbf{1}_{x}\left(c_{t}\right) a_{t}}{\sum_{t=1}^{T} \mathbf{1}_{x}\left(c_{t}\right)}
$$

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was \boldsymbol{x}

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$

$$
\mathcal{K}=\frac{1}{T} \sum_{t=1}^{T}\left\|c_{t}-\bar{a}\left(c_{t}\right)\right\|^{2}
$$

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$
- $\mathcal{R} \equiv \mathcal{R}_{T}=$ REFINEMENT score $=$ average variance inside the bins

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION Score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$
- $\mathcal{R} \equiv \mathcal{R}_{T}=$ REFINEMENT score $=$ average variance inside the bins

$$
\mathcal{R}=\frac{1}{T} \sum_{t=1}^{T}\left\|a_{t}-\bar{a}\left(c_{t}\right)\right\|^{2}
$$

Notations

- $a_{t}=$ action at time t
- $c_{t}=$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_{T}(x)=$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_{T}=$ CALIBRATION score $=$ average distance between c_{t} and $\bar{a}\left(c_{t}\right)$
- $\mathcal{R} \equiv \mathcal{R}_{T}=$ REFINEMENT score $=$ average variance inside the bins

Brier score

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{T}=$ Brier (1950) score $=$ average distance between a_{t} and c_{t}

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{T}=$ Brier (1950) score $=$ average distance between a_{t} and c_{t}

$$
\mathcal{B}=\frac{1}{T} \sum_{t=1}^{T}\left\|a_{t}-c_{t}\right\|^{2}
$$

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{T}=$ Brier (1950) score $=$ average distance between a_{t} and c_{t}

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{T}=$ Brier (1950) score $=$ average distance between a_{t} and c_{t}

$$
\mathcal{B}=\mathcal{R}+\mathcal{K}
$$

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{\boldsymbol{T}}=$ BriER (1950) score $=$ average distance between a_{t} and c_{t}

$$
\mathcal{B}=\mathcal{R}+\mathcal{K}
$$
BRIER $=$ REFINEMENT + CALIBRATION

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{T}=\operatorname{Brier}$ (1950) score $=$ average distance between a_{t} and c_{t}

$$
\mathcal{B}=\mathcal{R}+\mathcal{K}
$$

BRIER $=$ REFINEMENT + CALIbRATION

Proof.

$$
\mathbb{E}\left[(X-c)^{2}\right]=\operatorname{Var}(X)+(\bar{X}-c)^{2}
$$

where c is a constant and X is a random variable with $\overline{\boldsymbol{X}}=\mathbb{E}[\boldsymbol{X}]$

Brier score

- $\mathcal{B} \equiv \mathcal{B}_{\boldsymbol{T}}=$ BriER (1950) score $=$ average distance between a_{t} and c_{t}

$$
\mathcal{B}=\mathcal{R}+\mathcal{K}
$$
BRIER $=$ REFINEMENT + CALIBRATION

Example

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION $=0 \quad$ IN-BIN VARIANCE $=0$
F2: \quad CALIBRATION $=0 \quad$ IN-BIN VARIANCE $=\frac{1}{4}$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: $\mathcal{K}=0 \quad \mathcal{R}=0$
F2: $\mathcal{K}=0 \quad \mathcal{R}=\frac{1}{4}$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

$\mathrm{F} 1: \mathcal{K}=0 \quad \mathcal{R}=0 \quad \mathcal{B}=0$
$\mathrm{F} 2: \quad \mathcal{K}=0 \quad \mathcal{R}=\frac{1}{4} \quad \mathcal{B}=\frac{1}{4}$

"Experts"

"Experts"

Testing experts:

"Experts"

Testing experts:
 Brier score

"Experts"

Testing experts:
 Brier score
 CALIBRATION score

"Expertise"

"Expertise"

- Recognize patterns and regularities in the data

"Expertise"

- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days

"Expertise"

- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days
- Make the binning as refined as possible
- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days
- Make the binning as refined as possible

$\Leftrightarrow \quad$ LOW REFINEMENT SCORE

"Expertise" and Calibration

"Expertise" and Calibration

- CALIBRATION $(\mathcal{K} \approx 0)$ can always be guaranteed in the long run

"Expertise" and Calibration

- CALIBRATION $(\mathcal{K} \approx 0)$ can always be guaranteed in the long run
- But: calibration procedures ignore whatever "EXPERTISE" one has

"Expertise" and Calibration

- CALIBRATION $(\mathcal{K} \approx 0)$ can always be guaranteed in the long run
- But: calibration procedures ignore whatever "EXPERTISE" one has

Question:

Can one Gain calibration without LOSING "EXPERTISE"?

"Expertise" and Calibration

- CALIBRATION $(\mathcal{K} \approx 0)$ can always be guaranteed in the long run
- But: calibration procedures ignore whatever "EXPERTISE" one has

Question:
 Can one gain calibration without LOSING "EXPERTISE"?

- Can one get \mathcal{K} to 0 without increasing \mathcal{R} ?

"Expertise" and Calibration

- CALIBRATION $(\mathcal{K} \approx 0)$ can always be guaranteed in the long run
- But: calibration procedures ignore whatever "EXPERTISE" one has

Question:
 Can one gain calibration without LOSING "EXPERTISE"?

- Can one get \mathcal{K} to 0 without increasing \mathcal{R} ?
- Can one decrease $\mathcal{B}=\mathcal{R}+\mathcal{K}$ by \mathcal{K} ?

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$
$\Rightarrow \mathcal{K}^{\prime}=0$

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$
$\Rightarrow \mathcal{K}^{\prime}=0 \quad \mathcal{R}^{\prime}=\mathcal{R}$

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$
$\Rightarrow \mathcal{K}^{\prime}=0 \quad \mathcal{R}^{\prime}=\mathcal{R} \quad \mathcal{B}^{\prime}=\mathcal{B}-\mathcal{K}$

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$
$\Rightarrow \mathcal{K}^{\prime}=0 \quad \mathcal{R}^{\prime}=\mathcal{R} \quad \mathcal{B}^{\prime}=\mathcal{B}-\mathcal{K}$
- IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

"Expertise" and Calibration

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$
$\Rightarrow \mathcal{K}^{\prime}=0 \quad \mathcal{R}^{\prime}=\mathcal{R} \quad \mathcal{B}^{\prime}=\mathcal{B}-\mathcal{K}$
- IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

Question:

Can one do this online ?

3

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}_{T}^{\mathrm{c}} \leq \mathcal{B}_{T}^{\mathrm{b}}-\mathcal{K}_{T}^{\mathrm{b}}+\mathrm{o}(1) \quad \text { as } T \rightarrow \infty
$$

for ALL sequences a_{t} and b_{t} (uniformly)

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}=\mathcal{R}^{\mathrm{b}}
$$

"Calibeating"

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}=\mathcal{R}^{\mathrm{b}}
$$

c "BEATS" b by b 's CALIBRATION SCOR

"Calibeating"

- Consider a forecasting sequence b_{t} (in a [finite] set \boldsymbol{B})
- At each time t generate a forecast c_{t}
- ONLINE: use only b_{t} and history
- such that

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}=\mathcal{R}^{\mathrm{b}}
$$

c "BEATS" b by b 's CALIBRATION SCORe

- GUARANTEED for ALL sequences of actions and forecasts

Example

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	

$b: \mathcal{K}^{b}=0.1 \quad \mathcal{R}^{b}=0 \quad \mathcal{B}^{b}=0.1$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	
\boldsymbol{c}	100%	0%	100%	0%	100%	0%	

$b: \mathcal{K}^{b}=0.1 \quad \mathcal{R}^{b}=0 \quad \mathcal{B}^{b}=0.1$

Example

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	
\boldsymbol{c}	100%	0%	100%	0%	100%	0%	

$$
\begin{array}{lll}
b: \mathcal{K}^{b}=0.1 & \mathcal{R}^{b}=0 & \mathcal{B}^{b}=0.1 \\
c: & \mathcal{K}^{c}=0 & \mathcal{R}^{\mathrm{c}}=0
\end{array} \quad \mathcal{B}^{\mathrm{c}}=0
$$

Calibeating

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	
\boldsymbol{c}	100%	0%	100%	0%	100%	0%	

$$
\begin{array}{lll}
b: \mathcal{K}^{b}=0.1 & \mathcal{R}^{b}=0 & \mathcal{B}^{b}=0.1 \\
c: \mathcal{K}^{c}=0 & \mathcal{R}^{\mathrm{c}}=0 & \mathcal{B}^{\mathrm{c}}=0
\end{array}
$$

c calibeats $b: \mathcal{B}^{c} \leq \mathcal{B}^{b}-\mathcal{K}^{b}$

Calibeating

time	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\ldots
rain	1	0	1	0	1	0	
\boldsymbol{b}	80%	40%	80%	40%	80%	40%	
\boldsymbol{c}	100%	0%	100%	0%	100%	0%	

$$
\begin{array}{lll}
b: \mathcal{K}^{b}=0.1 & \mathcal{R}^{b}=0 & \mathcal{B}^{b}=0.1 \\
c: \mathcal{K}^{c}=0 & \mathcal{R}^{\mathrm{c}}=0 & \mathcal{B}^{\mathrm{c}}=0
\end{array}
$$

c calibeats $b: \mathcal{B}^{c} \leq \mathcal{B}^{b}-\mathcal{K}^{b}=\mathcal{R}^{b}$

Calibeating

Calibeating

(that was easy ...)

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- Binning of b is not perfect $\left(\mathcal{R}^{b}>0\right)$

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- Binning of b is not perfect $\left(\mathcal{R}^{b}>0\right)$
- Bin averages do not converge

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- Binning of b is not perfect $\left(\mathcal{R}^{b}>0\right)$
- Bin averages do not converge
- ONLINE

Calibeating

(that was easy ...)
Can one CALIBEAT in general, non-stationary, situations?

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- Binning of b is not perfect $\left(\mathcal{R}^{b}>0\right)$
- Bin averages do not converge
- ONLINE
- GUARANTEED (even against adversary)

A Simple Way to Calibeat

A Simple Way to Calibeat

Theorem

The procedure

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{b}}\left(b_{t}\right)
$$

GUARANTEES b-CALIBEATING

A Simple Way to Calibeat

Theorem

The procedure

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{b}}\left(b_{t}\right)
$$

GUARANTEES b-CALIBEATING

Forecast the average action of the current b-forecast

Proof

Proof

$\operatorname{Var}=\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2}$

Proof

$$
\begin{aligned}
\operatorname{Var} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}
\end{aligned}
$$

Proof

$$
\begin{aligned}
\mathbb{V a r} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}
\end{aligned}
$$

Proof

$$
\begin{aligned}
\operatorname{Var} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}
\end{aligned}
$$

Proof

$$
\begin{aligned}
\mathbb{V a r} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}-\mathrm{o}(1)
\end{aligned}
$$

Proof

$$
\begin{aligned}
\mathbb{V a r} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}-\mathrm{o}(1)
\end{aligned}
$$

(*) $\mathrm{o}(1)=\mathrm{O}\left(\frac{1}{T} \sum_{t=1}^{T} \frac{1}{t}\right)=\mathrm{O}\left(\frac{\log T}{T}\right)$

Proof

$$
\begin{aligned}
\mathbb{V a r} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}-\mathrm{o}(1)
\end{aligned}
$$

Proof: "Online Variance"

$$
\begin{aligned}
\operatorname{Var} & =\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{T}\right\|^{2} \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(1-\frac{1}{t}\right)\left\|x_{t}-\bar{x}_{t-1}\right\|^{2} \\
& =\underbrace{\frac{1}{T} \sum_{t=1}^{T}\left\|x_{t}-\bar{x}_{t-1}\right\|^{2}}_{\widehat{\operatorname{Var}}}-\mathrm{o}(1) \\
& =\mathrm{o}(1)
\end{aligned}
$$

Proof: "Online Variance"

$$
\mathbb{V a r}=\widehat{\mathbb{V a r}}-\mathrm{o}(1)
$$

Proof: "Online Refinement"

$\operatorname{Var}=\widetilde{\operatorname{Var}}-\mathrm{o}(1)$
$\mathcal{R}^{\mathrm{b}}=\widetilde{\mathcal{R}}^{\mathrm{b}}-\mathrm{o}(1)$

Proof: "Online Refinement"

$\operatorname{Var}=\widetilde{\operatorname{Var}}-\mathrm{o}(1)$
$\mathcal{R}^{\mathrm{b}}=\widetilde{\mathcal{R}}^{\mathrm{b}}-\mathrm{o}(1)$
$=\frac{1}{T} \sum_{t=1}^{T}\left\|a_{t}-\bar{a}_{t-1}\left(b_{t}\right)\right\|^{2}-\mathrm{o}(1)$

Proof: "Online Refinement"

$$
\begin{aligned}
\begin{aligned}
& \operatorname{Var}=\widetilde{\operatorname{Var}}-\mathrm{o}(1) \\
& \mathcal{R}^{\mathrm{b}}=\widetilde{\mathcal{R}}^{\mathrm{b}}-\mathrm{o}(1) \\
&=\underbrace{\frac{1}{T} \sum_{t=1}^{T}\left\|a_{t}-\bar{a}_{t-1}\left(b_{t}\right)\right\|^{2}}_{\mathcal{B}^{\mathrm{c}}}-\mathrm{o}(1) \\
&=\mathrm{o}(1) \\
& c_{t}=\bar{a}_{t-1}\left(b_{t}\right)
\end{aligned}
\end{aligned}
$$

Calibeating

Calibeating

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{b}}\left(b_{t}\right)
$$

GUARANTEES b-CALIBEATING:

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

Self-Calibeating

Theorem

GUARANTEES b-CALIBEATING:

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{c}}\left(c_{t}\right)
$$

GUARANTEES c-CALIBEATING:

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{c}}-\mathcal{K}^{\mathrm{c}}
$$

Self-Calibeating

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{b}}\left(b_{t}\right)
$$

GUARANTEES b-CALIBEATING:

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{c}}\left(c_{t}\right)
$$

GUARANTEES c-CALIBEATING:

$$
\begin{aligned}
& \mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{c}}-\mathcal{K}^{\mathrm{c}} \\
\Leftrightarrow & \mathcal{K}^{\mathrm{c}}=0
\end{aligned}
$$

Self-Calibeating $=$ Calibrating

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{b}}\left(b_{t}\right)
$$

GUARANTEES b-CALIBEATING:

$$
\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}}-\mathcal{K}^{\mathrm{b}}
$$

Theorem

$$
c_{t}=\bar{a}_{t-1}^{\mathrm{c}}\left(c_{t}\right)
$$

GUARANTEES CALIBRATION:

$$
\begin{aligned}
& \mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{c}}-\mathcal{K}^{\mathrm{c}} \\
\Leftrightarrow & \mathcal{K}^{\mathrm{c}}=0
\end{aligned}
$$

"Fixed Point"

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?

Stochastic "Fixed Point"

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?
Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

Stochastic "Fixed Point"

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?
Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

Stochastic "Fixed Point"

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?
Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

- $C \subset \mathbb{R}^{m}$ compact convex
- $D \subset C$ finite δ-grid of C for $\delta>0$
- $g: D \rightarrow \mathbb{R}^{m}$ arbitrary function

Stochastic "Fixed Point"

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?
Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

- $C \subset \mathbb{R}^{m}$ compact convex
- $D \subset C$ finite δ-grid of C for $\delta>0$
- $g: D \rightarrow \mathbb{R}^{m}$ arbitrary function

Obtained by solving a Minimax problem (LP)

Outgoing Minimax (FH)

How do we get c_{t} "close to" $\bar{a}_{t-1}\left(c_{t}\right)$?
Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

- $C \subset \mathbb{R}^{m}$ compact convex
- $D \subset C$ finite δ-grid of C for $\delta>0$
- $g: D \rightarrow \mathbb{R}^{m}$ arbitrary function

Obtained by solving a Minimax problem (LP)

Stochastic "Fixed Point" (FH)

Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

- Obtained by solving a Minimax problem (LP)

Stochastic "Fixed Point" (FH)

Theorem There exists a probability distribution on (a δ-grid D of) C such that for every $x \in C$

$$
\mathbb{E}_{c}\left[\|x-c\|^{2}-\|x-g(c)\|^{2}\right] \leq \delta^{2}
$$

- Obtained by solving a Minimax problem (LP)
- Moreover, solving a Fixed Point problem yields a probability distribution that is ALMOST DETERMINISTIC: its support is included in a ball of size $\boldsymbol{\delta}$

Calibrating

Calibrating

Theorem

There is a stochastic procedure that GUARANTEES CALIBRATION

Calibrating

Theorem

There is a stochastic procedure that GUARANTEES CALIBRATION

Proof. Self-calibeating + Outgoing Minimax

Calibrating

Theorem

There is a stochastic procedure that GUARANTEES CALIBRATION

Proof. Self-calibeating + Outgoing Minimax
Note. δ-CALIBRATION

Calibrated Calibeating

Calibrated Calibeating

Theorem

There is a stochastic procedure that GUARANTEES CALIBEATING

Calibrated Calibeating

Theorem

There is a stochastic procedure that GUARANTEES CALIBEATING and CALIBRATION

Calibrated Calibeating

Theorem

There is a stochastic procedure that GUARANTEES CALIBEATING and CALIBRATION

Proof. Calibeat the joint binning of b and c, by the Outgoing Minimax theorem

Multi-Calibeating

Theorem

There is a deterministic procedure that Guarantees

simultaneous CALIBEATING

 of several forecasters
Theorem

There is a stochastic procedure that GuARANTEES
simultaneous CALIBEATING of several forecasters
and CALIBRATION

Multi-Calibeating

Theorem

There is a stochastic procedure that GUARANTEES

simultaneous CALIBEATING of several forecasters

and CALIBRATION

Proof. Calibeat the joint binning

In all the results above:

In all the results above:

... and Continuous Calibration

In all the results above:

	CALIBRATION	CONTINUOUS CALIBRATION
Obtained by	Minimax	Fixed Point
Procedure	stochastic	deterministic

Successful Economic Forecasting

Successful Economic Forecasting

TAKING PRIDE IN OUR RECORD

Successful Economic Forecasting

TAKING PRIDE IN OUR RECORD "We have correctly forecasted 8 of the last 5 recessions"

Successful Economic Forecasting

TAKING PRIDE IN OUR RECORD

"We have correctly forecasted 8 of the last 5 recessions"

