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I. Introduction

Robert J. Aumann has been a central figure in developing game theory

and establishing its key role in modern economics. Aumann has shaped

the field through his fundamental and pioneering work. His contributions

during the past half century are profound—conceptually, and often also

mathematically—and at the same time crystal clear, elegant, and illumi-

nating.

Among Aumann’s main scientific contributions, three areas stand out:
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1. Repeated Games : the study of long-term interactions and the account-

ing for cooperative and other patterns of behavior in terms of the clas-

sical “selfish” utility-maximizing paradigm.

2. Knowledge, Rationality, and Equilibrium: the analysis of knowledge in

multi-agent environments and the laying of the foundations of ratio-

nality and equilibrium.

3. Perfect Competition: the modeling of perfect competition by a contin-

uum of agents and the relations between price equilibria and coopera-

tive outcomes.

The next three sections discuss each of these topics in turn (with special

emphasis on the area of repeated games, the main topic for which Aumann

was awarded the 2005 Nobel Memorial Prize in Economic Sciences). We

conclude with a short overview of some of his other contributions.

II. Repeated Games

Most relationships between decision-makers last a long time. Competition

between firms in markets, insurance contracts, credit relationships, and nego-

tiations, are often long-term affairs. The same is true of employer–employee,

lawyer–client, and firm–subcontractor relationships, of conflicts and agree-

ments between political parties and nations, of evolutionary processes in

biology.

In such long-term interactions, the different stages are naturally interde-

pendent. Decision-makers react to past experience, and take into account

the future impact of their choices. Many interesting and important pat-

terns of behavior—like rewarding and punishing, cooperation and threats,

transmitting information and concealing it—can only be seen in multi-stage

situations.

The general framework for studying strategic interaction is game theory.

The “players” are decision-makers—be they individuals, collectives, com-

puter programs, or genes—whose actions mutually affect one another. Game
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theory studies interactions (“games”) from a rational decision-theoretic point

of view, and develops models and methodologies that are universal and widely

applicable—particularly in economics.

Foremost among the multi-stage models are repeated games, where the

same game is played at each stage. Such models allow us to untangle the

complexities of behavior from the complexities of the interaction itself, which

here is simply stationary over time.

The Classical Folk Theorem

The simplest setup is as follows. Given an n-person game G, let G∗ be

the supergame of G: the same n players are repeatedly playing the game

G, at periods t = 1, 2, ... . (It is customary to call G the “one-shot game,”

and G∗ the “repeated game”; to avoid confusion, the choices of the players

in G are referred to as “actions,” and the choices in G∗ as “strategies.”) At

the end of each period, every player is informed of the actions chosen by all

players in that period; thus, before choosing his action at time t, each player

knows what everyone did in all the previous periods 1, 2, ..., t − 1.

The payoffs in G∗ are defined as an appropriate average of the payoffs

received in each period. (There are technical difficulties here; however, any

reasonable definition that is consistent with the “long-term” idea turns out

to lead to essentially the same result; see Aumann 1959, 1989 [Chapter 8],

and the survey of Sorin 1992).

The question is, What are the Nash1 (1951) equilibria of G∗, i.e., those

strategy combinations for the n players such that no player can increase

his payoff by unilaterally changing his strategy? What are the resulting

outcomes? The answer is given in the following result, which emerged in the

late fifties. Its precise authorship is unknown, and it is part of the “folklore”

of game theory; it is thus known as the “Folk Theorem.”2

1John F. Nash, Jr. was awarded the 1994 Nobel Prize in Economics for this work.
2See the sections The Import of the Folk Theorem and A Historical Note below.
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The Folk Theorem. The set of Nash equilibrium outcomes of

the repeated game G∗ is precisely the set of feasible and individ-

ually rational outcomes of the one-shot game G.

An “outcome”3 is represented as an n-dimensional vector a = (a1, a2, ..., an),

whose ith coordinate ai is the payoff (or utility) of player i. Such an outcome

is feasible in G if it can be obtained from some combination of actions in the

game G, or more generally from a probability distribution over such action

combinations.4 For example, if G is the two-person “Battle of the Sexes”

game5

L R

T 3, 1 0, 0

B 0, 0 1, 3

then the set of feasible outcomes is the triangle with vertices (3, 1), (1, 3),

and (0, 0) (see Figure 1). Note that some feasible outcomes require a joint

(or correlated) randomization: for instance, (2, 2) corresponds to the two

action combinations TL and BR being played with equal probabilities of 1/2

each (thus (2, 2) is not a Nash equilibrium outcome in G; in fact, it cannot

be obtained from any pair of independently randomized actions of the two

players).6

A payoff of a player i is “individually rational” in G if player i cannot

be prevented by the other players from getting it. Formally, let ri be the

minimax value of the zero-sum game where i wants to maximize, and the

3Or “payoff vector.”
4Formally, an outcome is feasible if it lies in the convex hull of the vectors

(u1(s), u2(s), ..., un(s)), where s ranges over all pure action combinations (s1, s2, ..., sn),
and ui denotes the payoff function of player i.

5Here and in the other examples, the actions are called “T(op),” “B(ottom),” “L(eft),”
and “R(ight).”

6It would thus be more appropriate (but unwieldy) to call this “coordinated feasibility,”
or “cooperative feasibility,” or “joint feasibility.”
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Payoff to player 1

Payoff to player 2

(0, 0)

(3, 1)

(1, 3)

(2, 2)

r2 = 3/4

r1 = 3/4

Figure 1: The Folk Theorem for the Battle of the Sexes game

other players want to minimize, the payoff of player7 i. An outcome a is

individually rational in G if ai ≥ ri for all players i = 1, 2, ..., n. Returning

to the “Battle of the Sexes” example, we have8 r1 = r2 = 3/4, and the set of

feasible and individually rational outcomes in G is the darkly shaded area in

Figure 1. The Folk Theorem says that this is precisely the set of outcomes

of all Nash equilibria of the infinitely repeated game G∗.

An informal proof of the Folk Theorem is as follows (complete formal

proofs require many technical details; see for instance Aumann 1959, 1989

[Chapter 8]).

One direction consists of showing that the payoff vectors of the Nash

equilibria of G∗ are feasible and individually rational in G. First, any payoff

7Take player 1; then r1 = minx2,...,xn
maxx1

u1(x1, x2, ..., xn), where each xj ranges over
the randomized actions of player j, and u1 is the payoff function of player 1.

8The row player can guarantee himself a payoff of 3/4 by playing T with probability 1/4
and B with probability 3/4: his payoff is then 1/4 · 0 + 3/4 · 1 = 3/4 when the column player
plays L, and 1/4 · 3 + 3/4 · 0 = 3/4 when the column player plays R (and so it is also 3/4 when
the column player plays a randomized action).
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vector in G∗ is an average of payoff vectors of G, and thus feasible in G.

And second, any Nash equilibrium of G∗ (and of G) must yield individually

rational payoffs; otherwise, if some player, say player i, were to get less than

ri, then, given the other players’ strategies, i could find a reply that gives

him a payoff of at least ri in each period and thus also in the long run—which

means that player i has a profitable deviation, in contradiction to the Nash

equilibrium requirement.

The other direction introduces two basic ingredients of repeated games:

a “plan,” and “punishments” (or “threats”). Let a be a feasible and individ-

ually rational payoff vector of G; from the definitions of these two notions

we immediately obtain:

(i) There exists a sequence of pure action combinations in G whose pay-

off in G∗ is precisely a (in the above example, to get (2, 2), alternate

between TL in odd periods, t = 1, 3, 5, ..., and BR in even periods,

t = 2, 4, 6, ...)—this is the “plan.”

(ii) For each player i there exist (mixed) actions of the other players in G

such that no matter what i plays his payoff in G cannot exceed ri—

these constitute the “punishment of i.”

Now define for each player j a strategy in G∗ as follows: play according to the

plan (i.e., play the sequence of actions in (i) above), so long as everyone did

so in the past; if someone deviated from the plan, say player i was the first to

do so, at some period9 d, then at every period thereafter, t = d + 1, d + 2, ...,

punish player i (i.e., play the mixed action as defined in (ii) above which

guarantees that, whatever player i does, his payoff will be at most ri).

The combination of these strategies results in all players following the

plan, and so the payoff is indeed a by (i). Moreover, it constitutes a Nash

equilibrium of G∗ since any deviation by a player i will make the punishments

against him go into effect,10 which will reduce his long-run payoff in G∗ to

at most ri (which is less than or equal to the payoff ai that he is getting

9If more than one player deviated at the same time, choose one of them.
10Since the plan consists of a sequence of pure actions, any deviation is immediately

detected.
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under the plan)—so no increase in payoff is possible. Thus the threat of

punishment ensures that each player fulfils his part of the joint plan.

We will refer to the special Nash equilibria constructed above as “canon-

ical equilibria.”

The Import of the Folk Theorem

By their nature, repeated games are complex objects—for players to play,

and for theorists to analyze. There are a huge number of possible strategies,

even when the game is repeated just a few times11; in addition, many of

these strategies are extremely complex. This makes the equilibrium analysis

appear, at first, unmanageable.

The Folk Theorem shows that in fact this is not so. The resulting geomet-

ric characterization of the equilibrium outcomes is extremely simple (again,

see Figure 1). What is more important however is the resulting behavioral

characterization: every equilibrium of G∗ is outcome-equivalent to a canoni-

cal equilibrium, which consists of a coordinated plan, supported by the threat

of appropriate punishments.12

The most valuable insight from the analysis is the connection that is es-

tablished between the so-called “noncooperative” and “cooperative” theories.

The Folk Theorem relates noncooperative behavior in the repeated game

(i.e., equilibrium in G∗) to cooperative behavior in the one-stage game (i.e.,

joint feasibility in G). This is best descibed in a survey of Aumann:

“The theory of repeated games of complete information is con-

cerned with the evolution of fundamental patterns of interaction

between people (or for that matter, animals; the problems it at-

tacks are similar to those of social biology). Its aim is to account

for phenomena such as cooperation, altruism, revenge, threats

(self-destructive or otherwise), etc.—phenomena which may at

11The number of strategies is doubly exponential in the number of repetitions.
12The “Revelation Principle” in mechanism design is of a similar type: everything that

can be implemented can also be implemented by a simple “direct mechanism.”
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first seem irrational—in terms of the usual “selfish” utility-maxi-

mizing paradigm of game theory and neoclassical economics. [...]

The significance of the Folk Theorem is that it relates coopera-

tive behavior in the game G to non-cooperative behavior in its

supergame G∗. This is the fundamental message of the theory of

repeated games of complete information; that cooperation may

be explained by the fact that the “games people play”—i.e., the

multiperson decision situations in which they are involved—are

not one-time affairs, but are repeated over and over. In game-

theoretic terms, an outcome is cooperative if it requires an outside

enforcement mechanism to make it “stick.” Equilibrium points

are self-enforcing; once an equilibrium point is agreed upon, it is

not worthwhile for any player to deviate from it. Thus it does

not require any outside enforcement mechanism, and so repre-

sents non-cooperative behavior. On the other hand, the general

feasible outcome does require an enforcement mechanism, and so

represents the cooperative approach. In a sense, the repetition it-

self, with its possibilities for retaliation, becomes the enforcement

mechanism.” (Aumann 1981 [Section 1])

Thus, the Folk Theorem shows, first, that one can succinctly analyze

complex repeated interactions; second, that simple, natural, and familiar

behaviors emerge; and third, how noncooperative strategic behavior brings

about cooperation. This emergence of cooperation from a noncooperative

setup makes repeated games a fascinating and important topic.

The result of the Folk Theorem has turned out to be extremely robust.

The extensions and generalizations are concerned with varying the equilib-

rium concept, the long-run evaluation of the payoffs, imposing restrictions on

strategies, bounded rationality, modifying the structure of the game, intro-

ducing asymmetric information, imperfect monitoring, and so on. It should

be emphasized that many of the results in this vast literature are not just

simple extensions; they almost always embody new ideas and important in-

sights, while overcoming the many conceptual, and at times also technical,
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complexities of the models.

A Historical Note

The Folk Theorem was essentially known to most people working in the

area in the late fifties. However, it had not been published. Perhaps it was

considered too simple a result; perhaps, too complicated to write rigorously.13

The discounted repeated Prisoner’s Dilemma with discount factor close

enough to 1 is mentioned in Luce and Raiffa (1957 [page 102]) as having

equilibria yielding efficient outcomes; Shubik (1959b [Section 10.4]) presents

a more detailed analysis.

Aumann (1959, 1960, 1961) was the first to provide an extensive analysis

of infinitely repeated games. After setting up the model in an explicit and

rigorous manner, he showed that the two approaches—noncooperative for

the repeated game G∗, and cooperative for the one-shot game G—lead to the

same solution.14 The 1959 paper of Aumann is the fundamental paper on

repeated games; while it goes beyond the classical folk theorem, it addresses

and resolves the basic issues that were necessary for the development of this

area.

Credibility and Perfect Equilibria

The “canonical equilibria” of G∗ (recall the end of the section The Clas-

sical Folk Theorem above) entail punishments that are constructed so as to

decrease the payoff of a deviating player. However, these punishment actions

may hurt some of the punishers as well. In such a case, after a deviation

of a player i, a punishing player j may find it to his own advantage not to

punish i, since j’s own payoff would decrease as a consequence. The threat

of punishment appears not to be rational, and thus not credible.15

13Luce and Raiffa (1957 [top of page 102]) point out that there are difficulties here in
translating intuition into precise arguments.

14See the section Coalitions and Strong Equilibria below.
15Aumann (1959 [beginning of Section 10]) points out that there are difficulties with

equilibria that entail unrelenting punishment, which moreover may also hurt the punishers,
and that there are other, more reasonable equilibrium points, “which give deviating players
a chance to return to the fold.”
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But wouldn’t the equilibrium requirements take care of this problem?

After all, in equilibrium any player, in particular player j, cannot increase

his payoff by modifying his strategy. But the payoff is determined by the plan

alone; deviations do not occur along the equilibrium play. Therefore changes

in the strategy of player j following a deviation by player i do not affect

player j’s payoff. This (perhaps slightly technical) argument shows that the

equilibrium requirements have no implication for the behavior of the players

in the punishment phase. In equilibrium, the threat of punishment deters

player i from deviating; but once i has in fact deviated, a punishing player j

may benefit by not carrying out the punishment.

What this suggests is a need to supplement the notion of equilibrium with

additional requirements, namely, that after every history of play—whether

or not it occurs in equilibrium—no player should be able to increase his

payoff in the continuation of the game by unilaterally changing his strategy

there. These conditions are embodied in the concept of (subgame) perfect

equilibrium (Selten16 1965, 1975), which requires the combination of strate-

gies to constitute an equilibrium not only in the whole game but also in every

continuation game (“subgame”).17

A strengthening of the Folk Theorem, due to Aumann and Shapley (1976)

and to Rubinstein (1976, 1979), in independent work, shows that in the

repeated game G∗, the equilibrium outcomes and the perfect equilibrium

outcomes in fact coincide.

The Perfect Folk Theorem (Aumann–Shapley 1976, Rubin-

stein 1976). The set of perfect Nash equilibrium outcomes of the

repeated game G∗ is precisely the set of feasible and individually

rational outcomes of the one-shot game G.

The idea is to refine the construction of equilibrium, so that the result-

16Reinhard Selten was awarded the 1994 Nobel Prize in Economics for this work.
17In the special case where the punishments form a Nash equilibrium of the one-shot

game, like the Bertand equilibrium in a duopoly model, or the Battle of the Sexes game,
the canonical equilibria of the classical Folk Theorem turn out to be in fact perfect (since
punishing is now an equilibrium in the continuation game); see Friedman (1971).
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ing “canonical perfect equilibria” entail punishments that last only finitely

many periods (during which the one-period gain made by a deviation from

the cooperative plan is essentially wiped out), after which everyone returns

to the plan. The return to the plan makes it rational for each player to

punish all deviations by other players—and the equilibrium is indeed per-

fect (there are some subtleties here). In short: a plan, punishments—and

also “forgiveness”; punishing is not forever, but just long enough to make

deviations unprofitable.

The importance of the Perfect Folk Theorem is that the threats now

become credible—they will indeed be carried out if needed—which makes

the cooperative plan much more reasonable and robust.

Coalitions and Strong Equilibria

Another strengthening of the equilibrium requirements considers devia-

tions by groups of players (rather than just single players). A strong equilib-

rium, a concept introduced by Aumann (1959), is a combination of strategies

from which no group of players can profitably deviate. Aumann (1959) shows

that the outcomes of the strong equilibria of the repeated game G∗ consti-

tute a cooperative solution of the one-shot game G, namely, the appropriate

“core”18 of G.

The Strong Folk Theorem (Aumann 1959). The set of strong

Nash equilibrium outcomes of the repeated game G∗ is precisely

the core of the one-shot game G.

Like the classical Folk Theorem, this result demonstrates the connection

between the noncooperative approach (the strong equilibria of G∗) and the

cooperative approach (the core of G). In fact, this work led Aumann and

others to the development of the theory of general cooperative games—“non-

transferable utility” games19—which are most important in economic theory

(see Aumann 1967).

18Specifically, the so-called “β-core.”
19Prior to this, only “transferable utility” or “side payment” games were studied.
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Asymmetric Information

A most important and fascinating extension of the Folk Theorem is to

the case of asymmetric information, where different players possess different

knowledge of the relevant parameters of the one-shot game that is repeatedly

played; for instance, a player may not know the utility functions of the other

players.

Now, information is valuable. But how should it be used advantageously—

to gain a competitive edge, to attain mutual benefits through cooperation,

or both?

To illustrate the issues involved, assume for concreteness that one player,

call him the “informed player,” has private information which the other play-

ers do not possess. In a one-shot interaction, the informed player will clearly

utilize his information so as to gain as much as possible; this will often require

him to play different actions depending on his private information. However,

if the situation is repeated, then the other players, by observing the action

taken by the informed player, may infer what his information was. But then

the informed player will no longer have an informational advantage in future

periods. So, what good is private information to the informed player if he

cannot use it to his benefit? The problem here is to find the right balance:

to use the information as much as possible, while revealing it as little as

possible.

This is one side of the coin. The other is that there are situations where

the informed player would like to convey his information to the others, so that

their resulting actions will benefit him. But that is not always easy to do;

can the uninformed players trust him? (Should one trust a shop owner who

claims that buying from him is a good “deal”? Wouldn’t he claim the same

even if it weren’t so?) The problem is how to make the revealed information

credible, so that everyone benefits. Of course, repetition—i.e., the long-term

relationship—is essential here.

In the mid-sixties, following the Harsanyi20 (1967–1968) model of incom-

plete information games, Aumann and Michael Maschler founded and devel-

20John C. Harsanyi was awarded the 1994 Nobel Prize in Economics for this work.
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oped the theory of repeated games with incomplete information. In a series

of path-breaking reports written in 1966, 1967, and 1968,21 Aumann and

Maschler set up the basic models, and showed how the complex issues in the

use of information alluded to above can actually be resolved in an explicit

and elegant way.

As suggested by the Folk Theorem, there are two issues that need to be

addressed: individual rationality and feasibility. We will deal with each in

turn.

Individual Rationality and the Optimal Use of Information

We start with individual rationality: determining how much a player

can guarantee (no matter what the other players do). We will illustrate the

issues involved with three simple examples. In each example there will be two

players who repeatedly play the same one-shot game, and we will consider

individual rationality from the point of view of the row player.22 The row

player’s payoffs are given by either the matrix M1 or the matrix M2; the

row player is informed of which matrix is the “true matrix,” but the column

player is not—he only knows that the two matrices are equally likely. After

each stage both players observe the actions taken, but not the payoffs.23

The first example is

21These unpublished reports to the Mathematica Institute were widely circulated in the
profession. They are now collected in one book, Aumann and Maschler (1995), together
with very extensive notes on the subsequent developments.

22The game may thus be thought of as a zero-sum game, with the row player as the
maximizer of his payoffs, and the column player as the minimizer.

23Thus information is trasmitted only through actions (if the column player were to
observe the payoffs, he could determine immediately which matrix is the true matrix).
This is a simplifying assumption that allows a clear analysis. Once these games are
studied and well understood, one goes on to the general model with so-called “signalling
matrices” (where each combination of actions generates a certain signal to each player;
the signal could include the payoff, or be more or less general; this is discussed already in
Aumann 1959 [Section 6, second paragraph]).
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Game 1

M1 (probability = 1/2) :

L R

T 4 0

B 0 0

M2 (probability = 1/2) :

L R

T 0 0

B 0 4

Again, the question we ask is, How much can the row player guarantee? If

he were to play optimally in each matrix, i.e., T when the true matrix is M1,

and B when it is M2 (this is the only way he may get positive payoffs), then

his action would reveal which matrix is the true matrix. Were the column

player to play R after seeing T, and L after seeing B, the row player would

get a payoff of24 0. If, instead, the row player were to ignore his information,

he would face the “average non-revealing game” with payoff matrix25

1/2 M1 + 1/2 M2 :

L R

T 2 0

B 0 2

Here the best he can do is to randomize equally between T and B, which

would guarantee him a payoff of 1. This is better than 0, and it turns out

that 1 is in fact the most the row player can guarantee in the long run here

(the proof is by no means immediate). So, in Game 1, the row player can

24Except, perhaps, in the first period (which is negligible in the long run).
25In each cell, the payoff is the average of the corresponding payoffs in the two matrices.
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guarantee the most by concealing his information and playing as if he did not

know which matrix is the true matrix.

We modify the payoffs and get the second example:

Game 2

M1 (probability = 1/2) :

L R

T 4 4

B 4 0

M2 (probability = 1/2) :

L R

T 0 4

B 4 4

In this game, if the row player ignores his information, then the average game

is

1/2 M1 + 1/2 M2 :

L R

T 2 4

B 4 2

in which he can guarantee a payoff of 3 (by randomizing equally between T

and B). If, however, the row player were to play T when the true matrix

is M1 and B when it is M2, he would be guaranteed a payoff of 4, which

clearly is the most he can get in this game. So, in Game 2, the row player

can guarantee the most by using—and thus fully revealing—his information.
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The third example is

Game 3

M1 (probability = 1/2) :

L C R

T 4 2 0

B 4 −2 0

M2 (probability = 1/2) :

L C R

T 0 −2 4

B 0 2 4

Using his information fully—playing T when the true matrix is M1 and B

when it is M2—guarantees only a payoff of 0 to the row player (the column

player plays R after seeing T, and L after seeing B). Ignoring the information

leads to the average game

1/2 M1 + 1/2 M2 :

L C R

T 2 0 2

B 2 0 2

in which the row player can again guarantee only a payoff of 0 (the column

player plays C). At this point it may appear that the row player cannot

guarantee more than 0 in this game (since 0 is the most he is guaranteed,

whether concealing or revealing the information). But that turns out to be

false: by partially using his information—and thus partially revealing it—the

row player can guarantee more. Indeed, consider the following strategy σ for
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the row player:

Strategy σ of the row player

If M1 :

{
play T forever, with probability 3/4 ,

play B forever, with probability 1/4 .

If M2 :

{
play T forever, with probability 1/4 ,

play B forever, with probability 3/4 .

To see what happens, consider the case where the randomization yielded

“play T forever.” After the first period (in which T was played), the posterior

probability that the true matrix is M1 is now, by Bayes’ rule,

P(M1|T) =
P(T|M1) · P(M1)

P(T|M1) · P(M1) + P(T|M2) · P(M2)

=
3/4 ·

1/2
3/4 · 1/2 + 1/4 · 1/2

= 3/4 ,

and, for matrix M2, it is P(M2|T) = 1/4. The “average game” following T

in the first period is thus

3/4 M1 + 1/4 M2 :

L C R

T 3 1 1

B 3 −1 1

in which playing T guarantees 1 to the row player. A similar computation

applies to the case of “play B forever,” where P(M1|T) = 1/4 and P(M2|T) =
3/4, and playing B guarantees also 1. Therefore the strategy σ guarantees to

the row player a payoff of 1—strictly more than either full revelation or full
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concealment—which turns out to be the most he can guarantee in this game.

Note that the choice between the two options of “play T forever” and “play

B forever” is made by the row player only once, in the first period, based on

the information he has: the probabilities depend on which matrix is the true

matrix.26 However, the action of the row player reveals his information only

partially : the prior probability of 1/2 on M1 now becomes either the posterior

probability 3/4 (after T) or 1/4 (after B).27 So, in Game 3, the partial use of

information—and thus the ensuing partial revelation—is the only way that

the row player guarantees the most.

To summarize the three examples: in some games the informed player uses

his information and reveals it fully; in others he does not use his information

at all and thus conceals it; and in still others he uses and reveals it partially.

When exactly does each case occur? The following general result gives a

precise answer. Some notations: let M1 and M2 be two matrices of the

same size, viewed as two-person zero-sum games;28 one of them is chosen,

with probabilities p and 1 − p, respectively. Let G(p) := pM1 + (1 − p)M2

be the one-shot average game, and let G∗(p) be the supergame when the row

player is informed of the chosen matrix and the column player is not (this is

called “information on one side”).

Theorem (Aumann–Maschler 1966). The minimax value func-

tion of the repeated two-person zero-sum game with information

on one side G∗ equals the concavification of the minimax value

function of the one-shot average game G:

val G∗ =
̂

val G.

That is, for every prior probability p, let w(p) := val G(p) be the minimax

26In all subsequent periods, he “forgets” his private information and just plays the same
action as in the first period.

27The posteriors contain more information than the prior (they are closer to full infor-
mation, i.e., to 1 and 0, respectively).

28The result applies to any number of matrices; we present it here for two matrices for
simplicity.
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value of the one-shot average game G(p); let ŵ denote the “concavification” of

w, i.e., the minimal concave function that is everywhere greater than or equal

to w (i.e., ŵ(p) ≥ w(p) for all 0 ≤ p ≤ 1); the Aumann–Maschler Theorem

says that val G∗(p), the value of the repeated game G∗(p), is precisely ŵ(p),

the evaluation at p of the concavification ŵ of w. Figure 2 illustrates this

for our third example, Game 3 (note how the value of G∗(p) depends on the

values of G(p′) for p′-s that are different from p).

p

val G(p)

1/20 1

1

p

val G∗(p)

1 b

1/2
1/4

3/40 1

prior

b b

posteriors

Figure 2: Value function of the one-shot average game (left), and of the
repeated game (right, bold line) in Game 3

This is a striking result. It tells the precise amount of information that

is optimal for the informed player to reveal. In some cases, he should use

the information fully, by playing differently according to his information: a

“completely revealing” or “separating” strategy. In other cases, he should

conceal the information and play the same actions no matter what his infor-

mation is: a “non-revealing” or “pooling” strategy. And there are still other

cases where it is strictly better for him to use the information partially, by

mixing it with an appropriate random “noise;” this yields posterior proba-

bilities that are more informative than the prior probabilities, but not fully

informative. The difficult problem turns out to have a precise, elegant—and
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at times surprising—solution.29

Feasibility and Strategic Communication

Unlike the complete information case, where the feasible outcomes were

all those obtained from an action combination or from a (weighted) average

of these, here one needs to take into account the informational issues. Not

every physically possible outcome can arise in equilibrium; for instance, if

an informed player is called upon to reveal his information, he needs to be

motivated to do so.

Consider the following example, which has the same structure as the three

games above:

Game 4

M1 (probability = 1/3) :

L R

T 3, 3 0, 0

B 3, 3 0, 0

M2 (probability = 2/3) :

L R

T 4, 0 3, 3

B 4, 0 3, 3

Two players repeatedly play a one-shot game with payoffs given by either

the bimatrix M1 or the bimatrix M2 (this is now a “non-zero-sum game”).

M2 is twice as likely as M1, and only the row player is informed of whether

M1 or M2 is the true bimatrix; finally, the actions, but not the payoffs, are

observed after each stage.30

29The Aumann–Maschler result provides optimal strategies also for the uninformed col-
umn player; we do not discuss this here.

30The payoffs correspond to a standard signalling setup, as in principal-agent interac-
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The outcome (3, 3) appears in both bimatrices; to obtain it, the informed

row player must communicate to the uninformed column player whether the

true bimatrix is M1 or M2, e.g., by playing T in the first period if it is M1,

and B if it is M2; after T the column player will play L, and after B he will

play R. However, this plan is not “incentive-compatible”: the row player will

“cheat” and play T in the first period also when the true bimatrix is M2,

since he prefers that the column player choose L rather than R also when it

is M2 (he gets a payoff of 4 rather than 3)! Thus the communication of the

row player cannot be trusted. It turns out that the row player has no way

to transmit his information credibly to the column player, and the outcome

(3, 3) is not reachable. (The only feasible outcome is for the column player

always to play R, which yields an expected payoff vector of only (2, 2).) Thus

the presence of asymmetric information hinders cooperation—even when it

is to the mutual advantage of both players. The informed player wants to

convey his information, but he cannot do so credibly.

The above example is due to Aumann, Maschler, and Stearns (1968),

where this theory is first developed. That paper exhibits equilibria that con-

sist of a number of periods of “information transmission” (by the informed

player) interspersed with randomizations (by both players), which ultimately

lead to certain combinations of actions (like (i) in the section The Classical

Folk Theorem above); this whole “plan” (of communications and actions) is

sustained in equilibrium by appropriate punishments when a deviation is ob-

served (like (ii) in the same section, based on the individual rationality results

above). The complete characterization of all equilibria, and their canonical

representation in terms of communications, joint plans, and punishments, is

provided by Hart (1985) (see also Aumann and Maschler 1995 [Postscript to

Chapter 5] and, for a related setup, Aumann and Hart 2003).

The study of repeated games of incomplete information—which has flour-

ished since the pioneering work of Aumann and Maschler—clarifies in a beau-

tiful way the strategic use of information: how much to reveal, how much to

tions: the row player possesses the information and the column player determines the
outcome (the two rows yield identical payoffs, so the informed player’s actions have no
direct effect on the outcome).
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conceal, how much of the revealed information to believe.

Summary – Repeated Games

The model of repeated games is an extremely simple, fundamental, and

universal model of multi-stage interactions. It allows participants truly to

interact and react to one another; their behavior may be simple—or highly

intricate and complex. The analysis is deep and challenging, both conceptu-

ally and technically. In the end, the results are elegant and most insightful:

simple and natural behavior emerges.

Aumann has been the leader in this area. The highlights of his contribu-

tion are (in chronological order):

(A) The initial study of repeated games : showing how to analyze repeated

games, and, most importantly, showing how repeated interaction yields

cooperative outcomes (the classical Folk Theorem, and Aumann 1959).

(B) Asymmetric information: introducing the essential ingredient of infor-

mation, and showing how to use information optimally and rationally

in long-run strategic interactions (Aumann and Maschler 1966, and

Aumann, Maschler, and Stearns 1968).

(C) Credible threats and perfectness: making the equilibria more natural

and robust and thus of much wider applicability, which paved the way

for their wide use, in particular in economics (Aumann and Shapley

1976, and Rubinstein 1976).

Each one of these three on its own is a landmark contribution; taken to-

gether, they complement and strengthen one another, providing a cohesive

and significant “big picture”: the evolution of cooperative (and other) pat-

terns of behavior in repeated interactions between rational utility-maximizing

individuals.

For further reading, see Aumann’s highly influential surveys and lecture

notes throughout the years (1967, 1981, 1985, 1987b, 1992); and, more re-

cently, Mertens, Sorin, and Zamir (1994), the Handbook of Game Theory,
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with Economic Applications, in particular the chapters of Sorin (1992), Za-

mir (1992), and Forges (1992), the extended postscripts of Aumann and

Maschler (1995), and the chapters in Part C of Hart and Mas-Colell (1997).

III. Knowledge, Rationality and Equilibrium

In this section we discuss the two topics of correlated equilibrium and inter-

active knowledge, together with a beautiful connection between them—all

introduced by Aumann.

Correlated Equilibrium

Consider a given and known game, and assume that, before playing it,

each player receives a certain signal that does not affect the payoffs of the

game. Can such signals affect the outcome?

Indeed, they can: players may use these signals to “correlate” their

choices. Aumann (1974) defined the notion of correlated equilibrium: it is a

Nash equilibrium of the game with the signals. When the signals are (stochas-

tically) independent, this is just a Nash equilibrium of the given game. At

the other extreme, when the signals are perfectly correlated—for instance,

when everyone receives the same “public” signal (such as “sunspots”)—it

amounts to an average of Nash equilibria (this is called a publicly correlated

equilibrium). But in general, when the signals are private and partially cor-

related, it leads to new equilibria, which may lie outside the convex hull of

the Nash equilibria of the game.

For example, take the two-person “Chicken” game

leave stay

leave 4, 4 2, 5

stay 5, 2 0, 0

There are two pure Nash equilibria, (stay, leave) and (leave, stay),

and also a mixed Nash equilibrium where each player plays leave with
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probability 2/3 and stay with probability 1/3; the payoffs are, respectively,

NE1 = (5, 2), NE2 = (2, 5), and NE3 = (3 1/3, 3
1/3); see Figure 3.

Payoff to player 1

Payoff to player 2

b

b

NE3

NE1

NE2

CE2

CE1

Figure 3: Nash equilibria and correlated equilibria for the game of Chicken
(see text; figure not drawn to scale)

Consider now a public fair-coin toss (i.e., the common signal is either “h”

or “t,” with probabilities 1/2−
1/2); assume that after “h” the row player plays

stay and the column player plays leave, whereas after “t” they play leave

and stay, respectively. This is easily seen to constitute a Nash equilibrium

of the extended game (with the signals), and so it is a publicly correlated

equilibrium of the original Chicken game. The probability distribution of
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outcomes is

leave stay

leave 0 1/2

stay 1/2 0

and the payoffs are CE1 = (3 1/2, 3
1/2) (see Figure 3; the set of payoffs of all

publicly correlated equilibria, which is the convex hull of the Nash equilibrium

payoffs, is the grey area there).

But there are other correlated equilibria, in particular, one that results

in each action combination except (stay, stay) being played with an equal

probability of 1/3:

leave stay

leave 1/3
1/3

stay 1/3 0

Indeed, let the signal to each player be “l” or “s”; think of this as a “recom-

mendation” to play leave or stay, respectively. When the row player gets

the signal l, he assigns a (conditional) probability of 1/2 to each one of the

two pairs of signals (l, l) and (l, s); so, if the column player follows his rec-

ommendation, then the row player gets an expected payoff of 3 = 1/2 ·4+ 1/2 ·2

from playing leave, and only of 2 1/2 = 1/2 · 5 + 1/2 · 0 from deviating to stay.

When the row player gets the signal s, he deduces that the pair of signals is

necessarily (s, l), so if the column player indeed follows his recommendation

and plays leave then the row player is better off choosing stay. Similarly

for the column player. So altogether both players always follow their rec-

ommendations, and we have a correlated equilibrium. The payoffs of this

correlated equilibrium are CE2 = (3 2/3, 3
2/3), which lies outside the convex

hull of the Nash equilibrium payoffs (again, see Figure 3).

The notion of correlated equilibrium is most natural and arises in many

setups. It is embodied in situations of communication and coordination,
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when there are mediators or mechanisms, and so on. In fact, signals are all

around us, whether public or private; it is unavoidable that they will find

their way into the equilibrium notion.

Common Knowledge and Interactive Epistemology

In multi-agent interactive environments, the behavior of an agent depends

on what he knows. Since the behavior of the other agents depends on what

they know, it follows that what an agent knows about what the others know

is also relevant; hence the same is true of what one knows about what the

others know about what he knows—and so on. This leads to the notions of

interactive knowledge and interactive beliefs, which are fundamental to the

understanding of rationality and equilibrium.

An “event” E is common knowledge among a set of agents if everyone

knows E, and everyone knows that everyone knows E, and everyone knows

that everyone knows that everyone knows E, and so on. This concept was

introduced by the philosopher David Lewis (1969) and, independently, by

Aumann (1976). Aumann’s work went far beyond this, formalizing the con-

cept and exploring its implications.

Formally, the information of an agent in a certain “state of the world”

ω is described by the set of all states that he considers possible when ω is

the true state, i.e., those states ω′ that his information does not allow him

to distinguish from ω. An event E is identified with the set of states where

it occurs. The agent knows an event E at a state ω if all states that he

considers possible at ω lie in E (i.e., E occurs at all these states). The event

E is common knowledge at a state ω if, at ω, all agents know E, and all

agents know (the event) that all know E, and so on (as Aumann showed, all

this can be succinctly expressed using the algebra of partitions).

The fascinating result in Aumann’s paper is

The Agreement Theorem (Aumann 1976). Consider two peo-

ple who start with the same prior beliefs and may receive different

information. If their posterior probabilities for some event A are

common knowledge, then these posteriors must be identical.
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That is, in a state where each one knows the other one’s posterior, and

knows that the other one knows his own posterior, and knows that the other

one knows that he knows the other one’s posterior, and so on (and all this

has been taken into account when computing the posteriors), the agents must

have identical posteriors. Formally, let α and β be two numbers, and consider

all states where the posterior probability for A of the first agent is α, and

that of the second agent is β; this set of states is an event, call it E. The

Agreement Theorem says that if E is common knowledge at some state, then

necessarily α = β.

This result was the starting point of a whole new area, called interac-

tive epistemology ; it generated a huge literature, in economics (for instance,

the “no trade” results), computer science, logic, philosophy, and beyond.

Aumann went on to provide solid foundations (the so-called “syntactic ap-

proach”) of this whole area; see Aumann (1999a, 1999b).31 It is deep work

that deals with basic questions, such as, Why can one assume without loss

of generality that the information structures are commonly known?

Rationality and Equilibrium

In 1987 Aumann established an intriguing connection between two no-

tions: correlated equilibrium and common knowledge of rationality.

Theorem (Aumann 1987a). Consider a game whose players start

with the same prior beliefs and may receive different information.

If it is common knowledge that all players are Bayesian rational,

then they are playing a correlated equilibrium of the game.

A player is “Bayesian rational” if his action is optimal given his informa-

tion. Let R denote the set of all states where all players are Bayesian rational

(formally, R is an event), and assume that R is common knowledge at some

state. The Aumann (1987a) Theorem says that the prior distribution yields

a correlated equilibrium of the given game.

31These papers were circulated as lecture notes in the eighties.
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It is remarkable that correlated equilibria are obtained from common

knowledge of rationality and a common prior only; no assumptions of equi-

librium behavior are needed.32

IV. Perfect Competition

Perfect competition has always been a central theme in economics. It refers

to a situation where there are many participants and the influence of each

individual on the economy as a whole is negligible. But how should perfect

competition be modelled?

Following various attempts,33 Aumann (1964) introduced the general

model of a continuum of agents.

“The influence of an individual participant on the economy can-

not be mathematically negligible, as long as there are only finitely

many participants. Thus a mathematical model appropriate to

the intuitive notion of perfect competition must contain infinitely

many participants. We submit that the most natural model for

this purpose contains a continuum of participants, similar to the

continuum of points on a line or the continuum of particles in a

fluid. [...]

The continuum can be considered an approximation to the “true”

situation in which there is a large but finite number of particles (or

traders, or strategies, or possible prices). The purpose of adopting

the continuous approximation is to make available the powerful

and elegant methods of the branch of mathematics called “analy-

sis,” in a situation where treatment by finite methods would be

much more difficult or even hopeless (think of trying to do fluid

mechanics by solving n-body problems for large n).” (Aumann

1964 [Section 1])

32Regarding Nash equilibrium, the precise epistemic requirements are studied in Au-
mann and Brandenburger (1995) and Aumann (1995).

33For instance, Shubik (1959a) and Debreu and Scarf (1963).
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The “continuum of agents” idea has turned out to be indispensable to the

advancement of economic theory. As in the natural sciences, it has enabled

precise and rigorous modelling and analysis, which otherwise would have

been very hard or even impossible. Once the continuum model was studied

and understood, one could go back and examine the “true” situations with

finitely many agents, using appropriate approximations and limits.

The foremost result is the equivalence between competitive (or Walrasian)

equilibria and core allocations in perfectly competitive markets: individual

price-taking behavior and social stability yield the same outcomes (Aumann

1964; see the survey of Anderson 1994). This may be viewed as a modern

and rigorous formalization of the “invisible hand” of Adam Smith and the

limit “contract curve” of Edgeworth.

The core is a classical concept of cooperative game theory (recall also the

Strong Folk Theorem above). Another central cooperative concept is that

of value, originally introduced by Shapley (1953). The notion of value em-

bodies standard economic ideas such as “expected outcome” and “marginal

contribution.” Applying it to markets with a continuum of traders yielded a

new equivalence result, this time between the price equilibria and the value

allocations (Aumann and Shapley 1974, Aumann 1975; see the survey of Hart

2002).

All this led to an extensive study of the relationships between competitive

equilibria and various game-theoretic concepts, which led to a very general

“equivalence principle.” To quote Aumann:

“Perhaps the most remarkable single phenomenon in game and

economic theory is the relationship between the price equilibria

of a competitive market economy, and all but one34 of the major

solution concepts for the corresponding game. [...]

Intuitively, the equivalence principle says that the institution of

market prices arises naturally from the basic forces at work in a

market, (almost) no matter what we assume about the way in

34The one exception is the stable set ; see Hart (1974) (more recently, additional excep-
tions are certain NTU-values; see Hart 2002 [Section 5.4]).
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which these forces work.” (Aumann 1987b [Section “1960–1970,”

v])

The end result of the introduction of the continuum model in economics

is that it has led to a much better understanding of perfect competition, its

implications and limitations, from many disparate but converging viewpoints.

V. Other Contributions

In the previous three sections we presented three areas of Aumann’s landmark

contributions. But Aumann’s pioneering work goes far beyond these. We can

only list here some of the topics: cooperative games (non-transferable utility

games, value, core, bargaining sets, nucleolus, consistency, bankruptcy and

the Talmud, coalition formation, axiomatization), subjective probability and

utility, power and taxes, games in extensive form, and mathematics (for

example, set-valued functions).

But that is not all. Not only did Aumann lay down and deepen the “mi-

cro” foundations, he always espoused and emphasized the “macro” outlook.

Aumann has been highly influential in providing the philosophical and con-

ceptual groundwork for game theory (see, e.g., Aumann 1985 and 1987b).

Of particular significance is his consistent promotion of the view of a unified

game theory :

“Game Theory may be viewed as a sort of umbrella or “unified

field” theory for the rational side of social science, where “so-

cial” is interpreted broadly, to include human individuals as well

as other kinds of players (collectives such as corporations and

nations, animals and plants, computers, etc.). Unlike other ap-

proaches to disciplines like economics or political science, Game

Theory does not use different, ad-hoc constructs to deal with

various specific issues, such as perfect competition, monopoly,

oligopoly, international trade, taxation, voting, deterrence, ani-

mal behavior, and so on. Rather, it develops methodologies that

apply in principle to all interactive situations, then sees where
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these methodologies lead in each specific application.” (Aumann

and Hart 1992 [Preface, pp. xi–xii])

VI. Aumann Inspires and Teaches

An overview of Aumann’s contributions would not be complete were it to

cover just his own papers. Indeed, Aumann has greatly influenced and in-

spired generations of researchers, directly and indirectly: his students, col-

laborators, colleagues, and the many people who read his work, listened to

his lectures, or conducted discussions with him. His papers are masterly

written, combining deep analysis with informal explanations and intuitions;

his surveys on game theory in general, and on various specific topics, have

largely shaped the field. Aumann has been the driving force behind the de-

velopment of many areas (such as those we have presented above). He has

always applied the most rigorous standards, to his as well as others’ work; at

the same time, he never lost sight of the emerging “big picture”: he aimed for

it, and directed everyone toward it. (For a fascinating glimpse of Aumann’s

scientific as well as personal world, see his interview in Hart 2005.)

Aumann has had, to date, thirteen doctoral students: Bezalel Peleg

(Ph.D., 1964), David Schmeidler (1969), Shmuel Zamir (1971), Elon Kohlberg

(1973), Benyamin Shitovitz (1974), Zvi Artstein (1974), Eugene Wesley (1975),

Sergiu Hart (1976), Abraham Neyman (1977), Yair Tauman (1979), Dov

Samet (1981), Ehud Lehrer (1987), and Yossi Feinberg (1997). All but one

(who pursued a non-academic career) are now leading researchers in their own

right. Aumann is very proud of his scientific “family”—as he calls it—and

we are all proud to be part of it.

VII. A Short Biography of Aumann

Robert John Yisrael Aumann35 was born in 1930 in Frankfurt, Germany.

In 1938 the Aumann family left Germany and came to America. Robert

35Aumann’s curriculum vitae and publications are available at
http://www.ma.huji.ac.il/~raumann.
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Aumann studied at City College in New York, and then at the Massachusetts

Institute of Technology (MIT), where he got his doctoral degree in pure

mathematics in 1955. After two years as a post-doc at Princeton University,

he immigrated to Israel in 1956, and has been at the Hebrew University of

Jerusalem since then. Though now officially retired, Aumann continues his

scientific work, teaches, and supervises students.

In 1991 the multi-disciplinary Center for the Study of Rationality was es-

tablished at the Hebrew University of Jerusalem; the two “founding fathers”

were Aumann and Menahem Yaari. Today Aumann chairs its Academic

Committee. Aumann was also instrumental in the foundation of the inter-

national Game Theory Society, and served as its first president from 1999 to

2003.

Aumann has received many awards and prizes, including the Harvey

Prize, the Israel Prize, the Lanchester Prize, the Nemmers Prize, the EMET

Prize, the von Neumann Prize, and the Nobel Prize.
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Nachfrageträgheit, Zeitschrift für die gesamte Staatswissenschaft 121,

301–324, 667–689.

Selten, R. (1975), Reexamination of the Perfectness Concept for Equilibrium

Points in Extensive Games, International Journal of Game Theory 15,

101–107.

Shapley, L. S. (1953), A Value for n-Person Games, in H. W. Kuhn and A.

W. Tucker (eds.), Contributions to the Theory of Games II, Annals of

Mathematics Study 28, Princeton University Press, Princeton, NJ, 307–

317.

Shubik, M. (1959a), Edgeworth Market Games, in A. W. Tucker and R.

D. Luce (eds.), Contributions to the Theory of Games IV, Annals of

Mathematics Study 40, Princeton University Press, Princeton, NJ, 267–

278.

36



Shubik, M. (1959b), Strategy and Market Structure, Wiley, New York.

Sorin, S. (1992), Repeated Games with Complete Information, Chapter 4 in

Aumann and Hart, Vol. 1 (1992), 72–107.

Zamir, S. (1992), Repeated Games of Incomplete Information: Zero-Sum,

Chapter 5 in Aumann and Hart, Vol. 1 (1992), 109–154.

37


