Two(!) Good To Be True

Sergiu Hart

July 2013
Two(!) Good To Be True

Sergiu Hart
Center for the Study of Rationality
Dept of Economics Dept of Mathematics
The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart
Joint work with

Phil Reny
Department of Economics
University of Chicago

Noam Nisan
Department of Computer Science
Hebrew University & Microsoft Research
Sergiu Hart and Phil Reny
“Revenue Maximization in Two Dimensions”
(2010, in preparation)
Sergiu Hart and Phil Reny
“Revenue Maximization in Two Dimensions”
(2010, in preparation)

Sergiu Hart and Phil Reny
“Maximizing Revenue with Multiple Goods: Nonmonotonicity and Other Observations”
(2011)
www.ma.huji.ac.il/hart/abs/monot-m.html
Sergiu Hart and Phil Reny
“Implementation of Reduced Form Mechanisms: A Simple Approach and a New Characterization” (2011)
www.ma.huji.ac.il/hart/abs/q-mech.html
Sergiu Hart and Noam Nisan
“Approximate Revenue Maximization with Multiple Items”
(2012)
www.ma.huji.ac.il/hart/abs/m-approx.html
Sergiu Hart and Noam Nisan
“Approximate Revenue Maximization with Multiple Items”
(2012)
www.ma.huji.ac.il/hart/abs/m-approx.html

Sergiu Hart and Noam Nisan
“The Menu-Size Complexity of Auctions”
(2013)
www.ma.huji.ac.il/hart/abs/m-corr.html
1 SELLER
A Simple Problem

1 SELLER

1 BUYER
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

1 SELLER
1 BUYER
k GOODS (ITEMS)

OBJECTIVE:
MAXIMIZE the REVENUE of the SELLER
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:

\[x = (x_1, x_2, \ldots, x_k) \]
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:
\[x = (x_1, x_2, \ldots, x_k) \]

additive valuation
(good 1 and good 2 = \(x_1 + x_2 \))
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:
\[x = (x_1, x_2, \ldots, x_k) \]

additive valuation
(good 1 and good 2 = \[x_1 + x_2 \])

BUYER knows the value \(x \)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
- values of GOODS to BUYER: $x = (x_1, x_2, \ldots, x_k)$
- additive valuation
 (good 1 and good 2 = $x_1 + x_2$)
- BUYER knows the value x
- SELLER does not know the value x
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:
\[x = (x_1, x_2, \ldots, x_k) \]

additive valuation
(good 1 and good 2 = \(x_1 + x_2 \))

BUYER knows the value \(x \)

SELLER does not know the value \(x \)

\(x \) distributed according to \(\mathcal{F} \) (c.d.f. on \(\mathbb{R}_+^k \))
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
 - values of GOODS to BUYER: $x = (x_1, x_2, \ldots, x_k)$
 - additive valuation
 (good 1 and good 2 = $x_1 + x_2$)
 - BUYER knows the value x
 - SELLER does not know the value x
 - x distributed according to \mathcal{F} (c.d.f. on \mathbb{R}_+^k)
 - SELLER knows the distribution \mathcal{F} of x
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

SELLER and BUYER:

quasi-linear utilities (i.e., additive in monetary payments)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:
- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
 (or: linear in quantities)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

SELLER and BUYER:

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
 (or: linear in quantities)

SELLER:

- no value and no cost for the GOODS
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

OBJECTIVE:

MAXIMIZE the REVENUE of the SELLER
ONE GOOD ($k = 1$):
ONE GOOD ($k = 1$):
ONE GOOD ($k = 1$):

- **SELLER** posts a **PRICE** p
ONE GOOD ($k = 1$):

- **SELLER posts** a **PRICE** p
- **BUYER chooses** between:
 - get the good and pay p, or
 - get nothing and pay nothing

Myerson 1981
ONE GOOD \((k = 1)\):

- **SELLER** posts a **PRICE** \(p\)
- **BUYER** chooses between:
 - get the good and pay \(p\), or
 - get nothing and pay nothing

\(p\) such that \(\text{REVENUE } R = p \cdot \Pr[X > p] = p \cdot (1 - F(p))\) is **MAXIMAL**

Myerson 1981
One Good: Solution

One Good ($k = 1$):

- **Seller posts** a price p
- **Buyer chooses** between:
 - get the good and pay p, or
 - get nothing and pay nothing

p such that Revenue $R = p \cdot \Pr[X > p]$

$= p \cdot (1 - F(p))$ is maximal

$$\text{Rev}(F) = \max_p p \cdot (1 - F(p))$$

Myerson 1981
$X \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases}$
$X \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases}$

$p = 10 \rightarrow R = 10 \cdot 1 = 10$
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

\[\begin{align*}
p = 10 & \implies R = 10 \cdot 1 = 10 \\
p = 22 & \implies R = 22 \cdot 1/2 = 11
\end{align*} \]
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- \(p = 10 \rightarrow R = 10 \cdot 1 = 10 \)
- \(p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \)
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

\[p = 10 \rightarrow R = 10 \cdot 1 = 10 \]

\[p = 22 \rightarrow R = 22 \cdot \frac{1}{2} = 11 \]

\[\text{Rev}(F) = 11 \quad p = 22 \]
Two Goods ($k = 2$)
Two Goods ($k = 2$), Independent
Two Goods ($k = 2$), Independent

sell separately:
Two Goods $(k = 2)$, Independent

- sell separately:

 \[
 \text{PRICE} = p_1 \quad \text{for good 1} \\
 \text{PRICE} = p_2 \quad \text{for good 2}
 \]
Two Goods

Two Goods ($k = 2$), Independent
Two Goods: Example

Two Goods \((k = 2)\), Independent
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases} 10 & \text{with probability } \frac{1}{2} \\ 22 & \text{with probability } \frac{1}{2} \end{cases} \]

\[\text{REV}(X_1) = \text{REV}(X_2) = 11 \]
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

\[\text{REV}(X_1) = \text{REV}(X_2) = 11 \]

\[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

\[\text{REV}(X_1) = \text{REV}(X_2) = 11 \]

\[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]

\[\text{REV}(X_1) + \text{REV}(X_2) = 11 + 11 = 22 \]
Two Goods: Example

Two Goods ($k = 2$), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- $\text{REV}(X_1) = \text{REV}(X_2) = 11$
 \[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]
- $\text{REV}(X_1) + \text{REV}(X_2) = 11 + 11 = 22$
- sell the two goods together ("bundle") for the price $p_{12} = 32$:
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- \(\text{Rev}(X_1) = \text{Rev}(X_2) = 11 \)
- \(\max(10 \cdot 1, 22 \cdot 1/2) = 11 \)
- \(\text{Rev}(X_1) + \text{Rev}(X_2) = 11 + 11 = 22 \)

sell the two goods together ("bundle") for the price \(p_{12} = 32 \):

\[R = 32 \cdot 3/4 = 24 > 22 \]
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- \(\text{Rev}(X_1) = \text{Rev}(X_2) = 11\)
 \[\max(10 \cdot 1, \ 22 \cdot 1/2) = 11\]
- \(\text{Rev}(X_1) + \text{Rev}(X_2) = 11 + 11 = 22\)
- sell the two goods together ("bundle") for the price \(p_{12} = 32\):
 \[R = 32 \cdot 3/4 = 24 > 22\]
OUTCOME:
OUTCOME:

$q_i = \text{probability that } \text{BUYER gets good } i$
OUTCOME:

$$q_i = \text{probability that BUYER gets good } i$$

$$q = (q_1, \ldots, q_k) \in [0, 1]^k$$
OUTCOME:

- q_i = probability that BUYER gets good i

 $q = (q_1, \ldots, q_k) \in [0, 1]^k$

- s = payment from BUYER to SELLER ("REVENUE")
General Mechanism

OUTCOME:

- \(q_i \) = probability that BUYER gets good \(i \)
 \[q = (q_1, \ldots, q_k) \in [0, 1]^k \]

- \(s \) = payment from BUYER to SELLER ("REVENUE")

PAYOFF (utility) of BUYER when his valuation is

\[x = (x_1, \ldots, x_k) \]
General Mechanism

OUTCOME:

- \(q_i \) = probability that \textbf{BUYER} gets good \(i \)
- \(q = (q_1, \ldots, q_k) \in [0, 1]^k \)
- \(s \) = payment from \textbf{BUYER} to \textbf{SELLER} ("REVENUE")

PAYOFF (utility) of \textbf{BUYER} when his valuation is \(x = (x_1, \ldots, x_k) \):

- \(b = q_1 \cdot x_1 + \ldots + q_k \cdot x_k - s \)
General Mechanism

OUTCOME:

- q_i = probability that BUYER gets good i

 $q = (q_1, ..., q_k) \in [0, 1]^k$

- s = payment from BUYER to SELLER
 ("REVENUE")

PAYOFF (utility) of BUYER when his valuation is $x = (x_1, ..., x_k)$:

- $b = q_1 \cdot x_1 + ... + q_k \cdot x_k - s = q \cdot x - s$
Simple Mechanism

MENU \mathcal{M}: a SET of possible OUTCOMES
Simple Mechanism

MENU \mathcal{M}: a set of possible outcomes

$$\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$
Simple Mechanism

MENU \mathcal{M}: a set of possible outcomes

$\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$

- **SELLER posts a MENU** \mathcal{M}
Simple Mechanism

MENU \mathcal{M}: a **SET** of possible **OUTCOMES**

$$\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- **SELLER posts** a **MENU** \mathcal{M}
- **BUYER chooses** one **OUTCOME** in **MENU** \mathcal{M}:
Simple Mechanism

MENU \mathcal{M}: a set of possible outcomes

$$\mathcal{M} = \{ (q, s) \} \subset [0, 1]^k \times \mathbb{R}$$

- **seller** posts a **MENU** \mathcal{M}
- **buyer** chooses one outcome in **MENU** \mathcal{M}:
 - outcome chosen by buyer when his valuation is x: $(q(x), s(x)) \in \mathcal{M}$
Simple Mechanism

MENU \mathcal{M}: a SET of possible OUTCOMES

$$\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- SELLER posts a MENU \mathcal{M}
- BUYER chooses one OUTCOME in MENU \mathcal{M}:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in \mathcal{M}$
 - payoff of SELLER: $s(x)$
Simple Mechanism

MENU \(\mathcal{M} \): a SET of possible OUTCOMES

\[\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R} \]

- **SELLER** posts a MENU \(\mathcal{M} \)
- **BUYER** chooses one OUTCOME in MENU \(\mathcal{M} \):
 - OUTCOME chosen by **BUYER** when his valuation is \(x \):
 \[(q(x), s(x)) \in \mathcal{M} \]
 - payoff of **SELLER**: \(s(x) \)
 - payoff of **BUYER**: \(b(x) = q(x) \cdot x - s(x) \)
"Menu" Mechanism

MENU \(\mathcal{M} \): a **SET** of possible **OUTCOMES**

\[
\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}
\]

- **SELLER** posts a **MENU** \(\mathcal{M} \)
- **BUYER** chooses one **OUTCOME** in **MENU** \(\mathcal{M} \):
 - OUTCOME chosen by **BUYER** when his valuation is \(x \):
 \[
 (q(x), s(x)) \in \mathcal{M}
 \]
 - payoff of **SELLER**: \(s(x) \)
 - payoff of **BUYER**: \(b(x) = q(x) \cdot x - s(x) \)
"Menu" Mechanism

MENU \(\mathcal{M} \): a set of possible outcomes

\[\mathcal{M} = \{ (q, s) \} \subset [0, 1]^k \times \mathbb{R} \]

- **Seller posts a menu** \(\mathcal{M} \)
- **Buyer chooses** one outcome in menu \(\mathcal{M} \):
 - outcome chosen by buyer when his valuation is \(x \):
 \[(q(x), s(x)) \in \mathcal{M} \]
 - payoff of seller:
 \[s(x) \]
 - payoff of buyer:
 \[b(x) = q(x) \cdot x - s(x) \]

The Revelation Principle:
"Menu" Mechanism

MENU \(\mathcal{M} \): a set of possible outcomes
\[
\mathcal{M} = \{ (q, s) \} \subset [0, 1]^k \times \mathbb{R}
\]

- **SELLER** posts a **MENU** \(\mathcal{M} \)

- **BUYER** chooses one **OUTCOME** in **MENU** \(\mathcal{M} \):
 - **OUTCOME** chosen by **BUYER** when his valuation is \(x \):
 \[
 (q(x), s(x)) \in \mathcal{M}
 \]
 - payoff of **SELLER**: \(s(x) \)
 - payoff of **BUYER**: \(b(x) = q(x) \cdot x - s(x) \)

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM**
"Menu" Mechanism

MENU \(\mathcal{M} \): a set of possible outcomes
\[
\mathcal{M} = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}
\]

- **Seller posts** a **MENU** \(\mathcal{M} \)
- **Buyer chooses** one outcome in **MENU** \(\mathcal{M} \):
 - **Outcome** chosen by **Buyer** when his valuation is \(x \):
 \[
 (q(x), s(x)) \in \mathcal{M}
 \]
 - Payoff of **Seller**: \(s(x) \)
 - Payoff of **Buyer**: \(b(x) = q(x) \cdot x - s(x) \)

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM** ("direct mechanism")
Incentive Compatibility (IC)
Incentive Compatibility (IC)

\[q_1(x) \cdot x_1 + \cdots + q_k(x) \cdot x_k - s(x) \geq 0 \]

\[q_1(y) \cdot x_1 + \cdots + q_k(y) \cdot x_k - s(y) \]

(for all \(x \) and \(y \))
- **Incentive Compatibility (IC)**

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]

\[q_1(y) \cdot x_1 + \ldots + q_k(y) \cdot x_k - s(y) \]

(for all \(x \) and \(y \))

- **Individual Rationality (IR) / Participation**
Incentive Compatibility (IC)

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]

\[q_1(y) \cdot x_1 + \ldots + q_k(y) \cdot x_k - s(y) \]

(for all \(x \) and \(y \))

Individual Rationality (IR) / Participation

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]

(for all \(x \))
Maximize Revenue:
Maximize Revenue:

\[
R = \mathbb{E}_{x \sim F}[s(x)] = \int s(x)d\mathcal{F}(x)
\]
Maximize Revenue:

maximize

\[R = \mathbb{E}_{x \sim F}[s(x)] = \int s(x) dF(x) \]

subject to

\((q, s)\) satisfies IC & IR
Incentive Compatibility (IC)
Incentive Compatibility (IC)

\(b(x) \) is a convex function of \(x \)
Incentive Compatibility (IC)

- \(b(x) \) is a convex function of \(x \)

Proof
Incentive Compatibility (IC)

- \(b(x) \) is a convex function of \(x \)

Proof

- for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
Incentive Compatibility (IC)

- $b(x)$ is a convex function of x

Proof

- for every y: $q(y) \cdot x - s(y)$ affine in x
- $b(x) = \max_y \{ q(y) \cdot x - s(y) \}$ convex in x
Incentive Compatibility (IC)

- $b(x)$ is a convex function of x

Proof

- for every y: $q(y) \cdot x - s(y)$ affine in x
- $b(x) = \max_y \{q(y) \cdot x - s(y)\}$ convex in x
- $b(x) = q(x) \cdot x - s(x)$
Incentive Compatibility

Incentive Compatibility (IC)

- \(b(x) \) is a convex function of \(x \)

Proof

- for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
- \(b(x) = \max_y \{ q(y) \cdot x - s(y) \} \) convex in \(x \)
- \(b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x) \)
Incentive Compatibility

Incentive Compatibility (IC) \iff

\begin{itemize}
 \item \(b(x) \) is a convex function of \(x \) and
 \item \(q_i(x) = \partial b(x)/\partial x_i \) for a.e. \(x \) and all \(i \)
 \item \(q(x) = \nabla b(x) \) for a.e. \(x \)
\end{itemize}

Proof

\begin{itemize}
 \item for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
 \item \(b(x) = \max_y \{q(y) \cdot x - s(y)\} \) convex in \(x \)
 \item \(b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x) \)
\end{itemize}
Incentive Compatibility (IC) \iff

- \(b(x) \) is a convex function of \(x \) and
- \(q_i(x) = \partial b(x) / \partial x_i \) for a.e. \(x \) and all \(i \)
- \(q(x) = \nabla b(x) \) for a.e. \(x \)

Proof

- for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
- \(b(x) = \max_y \{ q(y) \cdot x - s(y) \} \) convex in \(x \)
- \(b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x) \)
- \(s(x) = \nabla b(x) \cdot x - b(x) \)
Incentive Compatibility (IC) ⇔

- $b(x)$ is a convex function of x and
- $q_i(x) = \frac{\partial b(x)}{\partial x_i}$ for a.e. x and all i
- $q(x) = \nabla b(x)$ for a.e. x

$$s(x) = \nabla b(x) \cdot x - b(x)$$
Incentive Compatibility (IC) \iff

- \(b(x) \) is a convex function of \(x \) and
- \(q_i(x) = \frac{\partial b(x)}{\partial x_i} \) for a.e. \(x \) and all \(i \)
- \(q(x) = \nabla b(x) \) for a.e. \(x \)
- \(s(x) = \nabla b(x) \cdot x - b(x) \)
\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]
\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \to \mathbb{R}_+ \text{ s.t.} \]

\[b \text{ is a convex function} \]
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \to \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)
$\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.}

- b \text{ is a convex function, } b(0) = 0
- 0 \leq \partial b(x)/\partial x_i \leq 1 \text{ for a.e. } x$
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] \]
$B^k = \text{ set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.} $

- b is a convex function, $b(0) = 0$
- $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1$ for a.e. x

$R(b, \mathcal{F}) = \mathbb{E}_{\mathcal{F}}[\nabla b(x) \cdot x - b(x)]$

$= \mathbb{E}_{\mathcal{F}}[b'(x; x) - b(x)]$
Maximal Revenue

- \(\mathcal{B}^k \) = set of all functions \(b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

- \(R(b, \mathcal{F}) = E_\mathcal{F}[\nabla b(x) \cdot x - b(x)] \)
 = \(E_\mathcal{F}[b'(x; x) - b(x)] \)

- \(\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^k} R(b, \mathcal{F}) \)
Maximal Revenue

\[\mathcal{B}_k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] = \mathbb{E}_\mathcal{F}[b'(x; x) - b(x)] \]

\[\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}_k} R(b, \mathcal{F}) \]

- \(\mathcal{B}_k \) is a closed convex set
Maximal Revenue

\(\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^+_k \rightarrow \mathbb{R}_+ \text{ s.t.} \)

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] = \mathbb{E}_\mathcal{F}[b'(x; x) - b(x)] \]

\[\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^k} R(b, \mathcal{F}) \]

- \(\mathcal{B}^k \) is a closed \textbf{convex} set
- \(R(b, \mathcal{F}) \) is \textbf{linear} in \(b \)
Maximal Revenue

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.}$
- b is a convex function, $b(0) = 0$
- $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \text{ for a.e. } x$

\[
R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] = \mathbb{E}_\mathcal{F}[b'(x; x) - b(x)]
\]

$\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^k} R(b, \mathcal{F})$

- \mathcal{B}^k is a closed convex set
- $R(b, \mathcal{F})$ is linear in b

$\text{REV}(\mathcal{F}) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, \mathcal{F})$

(EXT = set of extreme points)
Maximal Revenue: One Good

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] \]

\[\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^k} R(b, \mathcal{F}) \]
Maximal Revenue: One Good

- \(B^1 \) = set of all functions \(b : \mathbb{R}_+^1 \to \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)
- \(R(b, \mathcal{F}) = \mathbb{E}_\mathcal{F}[\nabla b(x) \cdot x - b(x)] \)
- \(\text{REV}(\mathcal{F}) = \max_{b \in B^1} R(b, \mathcal{F}) \)
Maximal Revenue: One Good

\[\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}^1_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[R(b, \mathcal{F}) = \mathbb{E}_{\mathcal{F}}[\nabla b(x) \cdot x - b(x)] \]

\[\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^1} R(b, \mathcal{F}) \]
Maximal Revenue: One Good

- $\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+^1 \rightarrow \mathbb{R}_+ \text{ s.t.}$
- b is a convex function, $b(0) = 0$
- $0 \leq b'(x) \leq 1 \text{ for a.e. } x$

- $R(b, \mathcal{F}) = E_{\mathcal{F}}[b'(x) \cdot x - b(x)]$
- $\text{REV}(\mathcal{F}) = \max_{b \in \mathcal{B}^1} R(b, \mathcal{F})$
Maximal Revenue: One Good

- $\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \text{ s.t.}
 - b \text{ is a convex function, } b(0) = 0
 - 0 \leq b'(x) \leq 1 \text{ for a.e. } x$

- $\text{REV}(F) = \max_{b \in \mathcal{B}^1} \mathbb{E}_F[b'(x) \cdot x - b(x)]$
Maximal Revenue: One Good

\[\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

\[b \text{ is a convex function, } b(0) = 0 \]

\[0 \leq b'(x) \leq 1 \text{ for a.e. } x \]

\[\text{REV}(F) = \max_{b \in \mathcal{B}^1} \mathbb{E}_F[b'(x) \cdot x - b(x)] \]
Maximal Revenue: One Good

- \(\mathcal{B}^1 \) = set of all functions \(b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

- \(\text{REV}(F) = \max_{b \in \mathcal{B}^1} \mathbb{E}_F[b'(x) \cdot x - b(x)] \)

- \(\mathcal{B}^1 = \) closed convex hull of \(\{b_p\}_{p \geq 0} \) where \(b_p(x) = \max\{0, x - p\} \)
Maximal Revenue: One Good

- $\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+ \to \mathbb{R}_+ \text{ s.t.}$
 - b is a convex function, $b(0) = 0$
 - $0 \leq b'(x) \leq 1$ for a.e. x

- $\text{REV}(F) = \max_{b \in \mathcal{B}^1} E_F[b'(x) \cdot x - b(x)]$

- $\mathcal{B}^1 = \text{closed convex hull of } \{b_p\}_{p \geq 0}$ where
 - $b_p(x) = \max\{0, x - p\}$

- $\text{REV}(F) = \max_{p \geq 0} E_F[b_p'(x) \cdot x - b_p(x)]$
Maximal Revenue: One Good

- \(\mathcal{B}^1 \) = set of all functions \(b : \mathbb{R}_+ \to \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

- \(\text{REV}(F) = \max_{b \in \mathcal{B}^1} \mathbb{E}_F[b'(x) \cdot x - b(x)] \)

- \(\mathcal{B}^1 = \) closed convex hull of \(\{b_p\}_{p \geq 0} \) where
 \(b_p(x) = \max\{0, x - p\} \)

- \(\text{REV}(F) = \max_{p \geq 0} \mathbb{E}_F[b'_p(x) \cdot x - b_p(x)] \)
 \(= \max_{p \geq 0} \mathbb{E}_F[(x - (x - p))1_{x \geq p}] \)
Maximal Revenue: One Good

- \(\mathcal{B}^1 \) = set of all functions \(b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

- \(\text{REV}(F) = \max_{b \in \mathcal{B}^1} \mathbb{E}_F[b'(x) \cdot x - b(x)] \)

- \(\mathcal{B}^1 = \) closed convex hull of \(\{b_p\}_{p \geq 0} \) where \(b_p(x) = \max\{0, x - p\} \)

- \(\text{REV}(F) = \max_{p \geq 0} \mathbb{E}_F[b'_p(x) \cdot x - b_p(x)] \)
 \[= \max_{p \geq 0} \mathbb{E}_F[(x - (x - p))1_{x \geq p}] \]
 \[= \max_{p \geq 0} p \cdot (1 - F(p)) \]
Maximal Revenue: \(k \geq 2 \) Goods
Maximal Revenue: $k \geq 2$ Goods

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- b is a convex function, $b(0) = 0$
- $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1$ for a.e. x
Maximal Revenue: $k \geq 2$ Goods

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+$ s.t.
 - b is a convex function, $b(0) = 0$
 - $0 \leq \partial b(x)/\partial x_i \leq 1$ for a.e. x

- $\text{REV}(\mathcal{F}) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, \mathcal{F})$
Maximal Revenue: $k \geq 2$ Goods

\[\mathcal{B}_k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- b is a convex function, $b(0) = 0$
- $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1$ for a.e. x

\[\text{REV}(\mathcal{F}) = \max_{b \in \text{EXT}(\mathcal{B}_k)} R(b, \mathcal{F}) \]

\[\text{EXTREME points of } \mathcal{B}_k = ? \]
Maximal Revenue: $k \geq 2$ Goods

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \to \mathbb{R}_+ \text{ s.t.} \$
 - b is a convex function, $b(0) = 0$
 - $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \text{ for a.e. } x$

- $\text{REV}(\mathcal{F}) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, \mathcal{F})$

- EXTREME points of $\mathcal{B}^k = ?$

EXTREMELY COMPLEX!
Two Goods: Example 1
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{Rev}(X) + \text{Rev}(Y) \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{Rev}(X) + \text{Rev}(Y) \]
\[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:
\[
REV(X) + REV(Y) = 11 + 11 = 22 \\
\max(10 \cdot 1, 22 \cdot 1/2) = 11
\]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]
Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

- Separate:
 \[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]

- Bundled:
 \[\text{REV}(X + Y) \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(X + Y) \]
 \[\max(20 \cdot 1, 32 \cdot 3/4, 44 \cdot 1/4) = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- Separate:
 \[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]

- Bundled:
 \[\text{REV}(X + Y) = 32 \cdot 3/4 = 24 \]
 \[\max(20 \cdot 1, 32 \cdot 3/4, 44 \cdot 1/4) = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(X + Y) = 32 \cdot 3/4 = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases} \]

- **Separate:**
 \[\text{REV}(X) + \text{REV}(Y) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(X + Y) = 32 \cdot 3/4 = 24 \]
 \(\text{PRICE FOR THE BUNDLE} \)
Two Goods: Example 2
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:
\[\text{REV}(X) + \text{REV}(Y) \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 50 & \text{with probability } 1/2 \end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) \]
\[\max(10 \cdot 1, 50 \cdot 1/2) = 25 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases} 10 & \text{with probability } \frac{1}{2} \\ 50 & \text{with probability } \frac{1}{2} \end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]
\[\max(10 \cdot 1, 50 \cdot \frac{1}{2}) = 25 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{REV}(X + Y) \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{Rev}(X) + \text{Rev}(Y) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{Rev}(X + Y) = \max(20 \cdot 1, 60 \cdot 3/4, 100 \cdot 1/4) = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]

Bundled:

\[\text{REV}(X + Y) = 60 \cdot 3/4 = 45 \]
\[\max(20 \cdot 1, 60 \cdot 3/4, 100 \cdot 1/4) = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{REV}(X + Y) = 60 \cdot \frac{3}{4} = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[X, Y \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{REV}(X) + \text{REV}(Y) = 25 + 25 = 50 \]

Bundled:

\[\text{REV}(X + Y) = 60 \cdot 3/4 = 45 \]

PRICE FOR EACH GOOD
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]

Separate:
\[\max(0 \cdot 1, 1 \cdot \frac{2}{3}, 2 \cdot \frac{1}{3}) = \frac{2}{3} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}
\]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
\[\max(0 \cdot 1, 1 \cdot \frac{2}{3}, 2 \cdot \frac{1}{3}) = \frac{2}{3} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

Separate: \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)}
\]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:**
 \[\max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9}) \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[
\max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9}) = \frac{4}{3}
\]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}

- Separate: \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)

- Bundled: \(R = \frac{4}{3} \)
 \[
 \max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9}) = \frac{4}{3}
 \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)}
\]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[R = \frac{4}{3} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \quad \text{(IID)} \\
2 & \text{w/probability } 1/3
\end{cases} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)
- \(b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \)
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3 \\
\end{cases} \quad \text{(IID)} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)

\(b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \)

\[
\begin{align*}
 s(2, 0) &= s(0, 2) = 2 \\
 s(2, 1) &= s(1, 2) = s(2, 2) = 3
\end{align*}
\]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 \text{ w/probability } 1/3 \\
1 \text{ w/probability } 1/3 \\
2 \text{ w/probability } 1/3
\end{cases} \]

(IID)

Separate: \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)

Bundled: \(R = \frac{4}{3} \)

\[b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \]

\[s(2, 0) = s(0, 2) = 2 \]

\[s(2, 1) = s(1, 2) = s(2, 2) = 3 \]

\[R = 2 \cdot \frac{2}{9} + 3 \cdot \frac{3}{9} = \frac{13}{9} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \] (IID)

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)
- \(b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \)
 \[R(b) = \frac{13}{9} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}
\]

- Separate: \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- Bundled: \[R = \frac{4}{3} \]

\[b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \]

\[R(b) = \frac{13}{9} \]
Two Goods: Example 3

\[X, Y \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[R = \frac{4}{3} \]

\[b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \]

\[R(b) = \frac{13}{9} = \text{REV}(X, Y) \]

THE UNIQUE OPTIMAL MECHANISM
Two Goods: Example 3

\[X, Y \sim \begin{cases} 0 & \text{w/probability } \frac{1}{3} \\ 1 & \text{w/probability } \frac{1}{3} \\ 2 & \text{w/probability } \frac{1}{3} \end{cases} \quad \text{(IID)} \]

\[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]

\[b(x, y) = \max(0, x - 2, y - 2, x + y - 3) \]

\[R(b) = \frac{13}{9} = \text{Rev}(X, Y) \]

The unique optimal mechanism

Price for each good and for bundle
Two Goods: Example 4

\((X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \)
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2} x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2} x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - ___)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - \ldots)\]

\[b_0(x, y) = \max(0, y - 2, x + y - \ldots)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{Rev}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - 4)\]

\[b_0(x, y) = \max(0, y - 2, x + y - \quad)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - 4)\]

\[b_0(x, y) = \max(0, y - 2, x + y - 5)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2} x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{Rev}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - 4)\]

\[R(b_1) = 2.33...\]

\[b_0(x, y) = \max(0, y - 2, x + y - 5)\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases} (1, 0) & \text{w/probability } 1/3 \\ (0, 2) & \text{w/probability } 1/3 \\ (3, 3) & \text{w/probability } 1/3 \end{cases} \]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(x, y) = \max(0, x - 1, y - 2, x + y - 4)\]

\[R(b_1) = 2.33\ldots\]

\[b_0(x, y) = \max(0, y - 2, x + y - 5)\]

\[R(b_0) = 2.33\ldots\]
Two Goods: Example 4

\[(X, Y) \sim \begin{cases}
(1, 0) \text{ w/probability } 1/3 \\
(0, 2) \text{ w/probability } 1/3 \\
(3, 3) \text{ w/probability } 1/3
\end{cases}\]

\[b(x, y) = \max(0, \frac{1}{2}x - \frac{1}{2}, y - 2, x + y - 5)\]

\[R(b) = 2.5 = \text{REV}(X, Y)\]

THE UNIQUE OPTIMAL MECHANISM

PRICE FOR LOTTERIES ON GOODS
Two Goods: Example 4’

\[X, Y \sim \begin{cases}
1 & \text{w/ probability } 1/6 \\
2 & \text{w/ probability } 1/2 \\
4 & \text{w/ probability } 1/3
\end{cases} \quad \text{(IID)} \]
Two Goods: Example 4’

\[X, Y \sim \begin{cases}
1 & \text{w/probability } 1/6 \\
2 & \text{w/probability } 1/2 \\
4 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}

THE UNIQUE OPTIMAL MECHANISM:

\[b(x, y) = \max(0, \frac{1}{2}x - 1, \frac{1}{2}y - 1, x + y - 4) \]
Two Goods: Example 4’

\[X, Y \sim \begin{cases}
1 & \text{w/probability } 1/6 \\
2 & \text{w/probability } 1/2 \\
4 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}

THE UNIQUE OPTIMAL MECHANISM:

\[b(x, y) = \max(0, \frac{1}{2}x - 1, \frac{1}{2}y - 1, x + y - 4) \]

PRICE FOR LOTTERIES ON GOODS
Revenue maximizing mechanisms:
Multiple Goods

Revenue maximizing mechanisms:

1. post a price for each good separately
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
Multiple Goods

Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries

1 – 3: deterministic mechanisms
4: stochastic mechanisms
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries

Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1: b(x) = \max(0, x_1 - \frac{1}{2}) \)
Multiple Goods, I.I.D. Uniform

$X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$

- $k = 1$: $b(x) = \max(0, x_1 - \frac{1}{2})$
- $k = 2$: $b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3})$
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1 \): \(b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2 \):
 \[b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \]
- \(k = 3 \): \(b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \)
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1: b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2: b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}) \)
- \(k = 3: b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6 - \sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \)

where \(s = \frac{9}{4} - \frac{\sqrt{6}}{4} \cos\left(\frac{1}{3} \arctan\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\right) \)

\[-\frac{3\sqrt{2}}{4} \sin\left(\frac{1}{3} \arctan\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\right) \]
Multiple Goods, I.I.D. Uniform

\(X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \)

- \(k = 1: \ b(x) = \max(0, \ x_1 - \frac{1}{2}) \)
- \(k = 2: \)
 \[
 b(x) = \max(0, \ x_i - \frac{2}{3}, \ x_1 + x_2 - \frac{4-\sqrt{2}}{3})
 \]
- \(k = 3: \ b(x) = \max(0, \ x_i - \frac{3}{4}, \ x_i + x_j - \frac{6-\sqrt{2}}{4}, \ x_1 + x_2 + x_3 - s) \)

where \(s \approx 1.2257... \) = solution of 3rd degree equation with coefficients in \(\mathbb{Q}[\sqrt{2}] \)
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1: \quad b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2: \quad b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \)
- \(k = 3: \quad b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \)

 \[\ldots \]
Multiple Goods, I.I.D. Uniform

$X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$

- $k = 1$: $b(x) = \max(0, x_1 - \frac{1}{2})$
- $k = 2$:
 \[
 b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3})
 \]
- $k = 3$: $b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \ldots$

Manelli & Vincent 2006, Hart & Reny 2010
Monotonicity
If valuations of **BUYER** increase
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $y > x$.
If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $y > x$.

$$q(x)x - s(x) \geq q(y)x - s(y) \quad (\text{IC: } x \rightarrow y)$$
Monotonicity

If valuations of BUYER increase then maximal revenue of SELLER increases (weakly)

Proof for $k = 1$: Let $y > x$.

\[q(x)x - s(x) \geq q(y)x - s(y) \quad (\text{IC: } x \rightarrow y) \]
\[q(y)y - s(y) \geq q(x)y - s(x) \quad (\text{IC: } y \rightarrow x) \]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $y > x$.

\[
q(x)x - s(x) \geq q(y)x - s(y) \quad \text{(IC: } x \rightarrow y) \\
q(y)y - s(y) \geq q(x)y - s(x) \quad \text{(IC: } y \rightarrow x) \\
\Rightarrow (q(y) - q(x))(y - x) \geq 0 \quad \text{(add)}
\]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \): Let \(y > x \).

\[
q(x)x - s(x) \geq q(y)x - s(y) \quad \text{(IC: } x \rightarrow y) \\
q(y)y - s(y) \geq q(x)y - s(x) \quad \text{(IC: } y \rightarrow x) \\
\Rightarrow (q(y) - q(x))(y - x) \geq 0 \quad \text{(add)} \\
\Rightarrow q(y) \geq q(x) \quad \text{(} y > x \text{)}
\]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \): Let \(y > x \).

\[
\begin{align*}
q(x)x - s(x) & \geq q(y)x - s(y) \quad \text{(IC: } x \rightarrow y) \\
q(y)y - s(y) & \geq q(x)y - s(x) \quad \text{(IC: } y \rightarrow x) \\
\Rightarrow (q(y) - q(x))(y - x) & \geq 0 \quad \text{(add)} \\
\Rightarrow q(y) & \geq q(x) \quad \text{(} y > x \text{)} \\
s(y) - s(x) & \geq (q(y) - q(x))x \quad \text{(IC: } x \rightarrow y)
\end{align*}
\]
Monotonicity

If valuations of **BUYER** *increase* then maximal revenue of **SELLER** *increases* (weakly)

Proof for $k = 1$: Let $y > x$.

\[q(x)x - s(x) \geq q(y)x - s(y) \quad \text{(IC: } x \rightarrow y) \]
\[q(y)y - s(y) \geq q(x)y - s(x) \quad \text{(IC: } y \rightarrow x) \]
\[\Rightarrow (q(y) - q(x))(y - x) \geq 0 \quad \text{(add)} \]
\[\Rightarrow q(y) \geq q(x) \quad (y > x) \]
\[s(y) - s(x) \geq (q(y) - q(x))x \quad \text{(IC: } x \rightarrow y) \]
\[\Rightarrow s(y) - s(x) \geq 0 \]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $y > x$.

\[\Rightarrow s(y) - s(x) \geq 0 \]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:

- $y > x \Rightarrow s(y) \geq s(x)$
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:

- $y > x \Rightarrow s(y) \geq s(x)$
- Every **IC** mechanism has **monotonic** s
Monotonicity

If valuations of BUYER increase then maximal revenue of SELLER increases (weakly)

Proof for $k = 1$:

- $y > x \Rightarrow s(y) \geq s(x)$
- Every IC mechanism has monotonic s
- \Rightarrow Revenue of every IC mechanism is monotonic w.r.t. to BUYER valuations
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:

- $y > x \implies s(y) \geq s(x)$
- Every **IC** mechanism has **monotonic** s
- \implies Revenue of every **IC** mechanism is **monotonic** w.r.t. **BUYER** valuations
- \implies Maximal revenue is **monotonic** w.r.t. **BUYER** valuations
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:

- $y > x \implies s(y) \geq s(x)$
- Every **IC** mechanism has monotonic s
- \implies Revenue of every **IC** mechanism is monotonic w.r.t. to **BUYER** valuations
- \implies Maximal revenue is monotonic w.r.t. **BUYER** valuations

Proof for $k > 1$?
$b(x, y) = \max(0, x - 10, y - 20, x + y - 40)$
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]

(12, 24) : \(y - 20 \)

(18, 26) : \(x - 10 \)
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]

- **(12, 24)**: \(y - 20 \)
- **(18, 26)**: \(x - 10 \)

- **x** increases
- **y** increases
- \(s \) **DECREASES**!
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]

There exist distributions \(\mathcal{F} \) for which this \(b \) MAXIMIZES REVENUE.
Non-Monotonicity: Example

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]

There exist distributions \(F \) for which this \(b \) **MAXIMIZES REVENUE**
(moreover: unique maximizer; robust)
Non-Monotonicity

\[b(x, y) = \max(0, x - 10, y - 20, x + y - 40) \]

- There exist distributions \(F \) for which this \(b \) **MAXIMIZES REVENUE** (moreover: unique maximizer; robust)

- **NON-MONOTONICITY** occurs also for **I.I.D.**
Summary: Multiple Goods
Maximizing revenue with multiple goods:
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
Maximizing revenue with multiple goods:

- many of the results for **ONE GOOD** are **FALSE** for **MULTIPLE GOODS**
- is an extremely complex problem (even for simple distributions)
- “**what we have learned from one good is too good to be true for two goods**”
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
- ?
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”

APPROXIMATION using SIMPLE mechanisms?
Two Goods, Independent
MAXIMAL REVENUE of selling SEPARATELY:

\[S \text{Rev}(F_1 \times F_2) = \text{Rev}(F_1) + \text{Rev}(F_2) \]
Two Goods, Independent

MAXIMAL REVENUE of selling SEPARATELY:

\[
\text{SRev}(F_1 \times F_2) = \text{Rev}(F_1) + \text{Rev}(F_2)
\]

Theorem 1. For any two independent goods:

\[
\text{SRev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2)
\]
Two Goods, Independent

MAXIMAL REVENUE of selling SEPARATELY:

\[\text{SRev}(F_1 \times F_2) = \text{Rev}(F_1) + \text{Rev}(F_2) \]

Theorem 1. For any two independent goods:

\[\text{SRev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2) \]

Theorem 2. For any two i.i.d. goods:

\[\text{SRev}(F \times F) \geq \frac{e}{e+1} \text{Rev}(F \times F) \]

\[\frac{e}{e+1} \approx 73\% \]
Theorem 2. For any two i.i.d. goods:

\[\text{SREV}(F \times F) \geq \frac{e}{e+1} \text{REV}(F \times F) \]

\[\frac{e}{e+1} \approx 73\% \]
Theorem 2. For any two i.i.d. goods:

\[\text{SRev}(F \times F) \geq \frac{e}{e+1} \text{Rev}(F \times F) \]

\[\frac{e}{e+1} \approx 73\% \]
Theorem 2. For any two i.i.d. goods:

\[
\text{SRev}(F \times F) \geq \frac{e}{e+1} \text{Rev}(F \times F)
\]

\[
\frac{e}{e+1} \approx 73\%
\]

\[
\text{SRev}(F \times F) = 2 \text{Rev}(F) = 2p^* \cdot (1 - F(p^*))
\]
Two Goods, I.I.D.

Theorem 2. For any two i.i.d. goods:

\[\text{SRev}(F \times F) \geq \frac{e}{e+1} \text{Rev}(F \times F) \]

\[\frac{e}{e+1} \approx 73\% \]

\[\text{SRev}(F \times F) = 2 \text{Rev}(F) = 2 p^* \cdot (1 - F(p^*)) \]

Posting the optimal one-good price per unit guarantees at least 73% of the optimal revenue.
Two Goods: Theorem 1
Two Goods: Theorem 1

\[S_{\text{REV}}(F_1 \times F_2) \geq \frac{1}{2} R_{\text{REV}}(F_1 \times F_2) \]
Two Goods: Theorem 1

\[\text{SR}_{\text{EV}}(F_1 \times F_2) \geq \frac{1}{2} \text{REV}(F_1 \times F_2) \]

Proof.
Two Goods: Theorem 1

$$\text{SREV}(F_1 \times F_2) \geq \frac{1}{2} \text{REV}(F_1 \times F_2)$$

Proof. Let $X \sim F_1$, $Y \sim F_2$, independent
Two Goods: Theorem 1

SRev(\(F_1 \times F_2\)) \(\geq\) \(\frac{1}{2}\) **Rev**(\(F_1 \times F_2\))

Proof. Let \(X \sim F_1, Y \sim F_2\), independent

\[
\text{Rev}(X, Y) \\
\leq \text{Rev}((X, Y)1_{x \geq y}) + \text{Rev}((X, Y)1_{y \geq x})
\]
Two Goods: Theorem 1

\[\text{SERev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2) \]

Proof. Let \(X \sim F_1, \ Y \sim F_2 \), independent

- \(\text{Rev}(X, Y) \)
 \[\leq \text{Rev}((X, Y)1_{X \geq Y}) + \text{Rev}((X, Y)1_{Y \geq X}) \]

- **Claim.** \(\text{Rev}((X, Y)1_{X \geq Y}) \leq 2 \text{Rev}(X) \)
Two Goods: Theorem 1

\[\text{SREV}(F_1 \times F_2) \geq \frac{1}{2} \text{REV}(F_1 \times F_2) \]

Proof. Let \(X \sim F_1, \ Y \sim F_2, \) independent

\[\text{REV}(X, Y) \leq \text{REV}((X, Y)1_{X \geq Y}) + \text{REV}((X, Y)1_{Y \geq X}) \]

Claim. \[\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \]
\[\text{REV}((X, Y)1_{Y \geq X}) \leq 2 \text{REV}(Y) \]
Two Goods: Theorem 1

\[\text{SR}_{\text{REV}}(F_1 \times F_2) \geq \frac{1}{2} \text{REV}(F_1 \times F_2) \]

Proof. Let \(X \sim F_1, Y \sim F_2 \), independent

- \(\text{REV}(X, Y) \)
 \[\leq \text{REV}((X, Y)1_{X \geq Y}) + \text{REV}((X, Y)1_{Y \geq X}) \]

Claim. \(\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \)
\(\text{REV}((X, Y)1_{Y \geq X}) \leq 2 \text{REV}(Y) \)

\[\Rightarrow \text{REV}(X, Y) \leq 2 \text{REV}(X) + 2 \text{REV}(Y) \]
Two Goods: Theorem 1

\[\text{SRev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2) \]

Proof. Let \(X \sim F_1, \ Y \sim F_2 \), independent

\[\text{Rev}(X, Y) \leq \text{Rev}((X, Y)1_{X \geq Y}) + \text{Rev}((X, Y)1_{Y \geq X}) \]

Claim. \(\text{Rev}((X, Y)1_{X \geq Y}) \leq 2 \text{Rev}(X) \)
\(\text{Rev}((X, Y)1_{Y \geq X}) \leq 2 \text{Rev}(Y) \)

\[\Rightarrow \text{Rev}(X, Y) \leq 2 \text{Rev}(X) + 2 \text{Rev}(Y) = 2 \text{SRev}(X, Y) \]
Two Goods: Theorem 1

Claim. \(\text{REV}((X, Y) \mathbb{1}_{X \geq Y}) \leq 2 \text{REV}(X) \)
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$
Claim. $\text{REV}((X, Y)_{1_{X \geq Y}}) \leq 2 \text{REV}(X)$

Proof.
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof.

Let (q, s) be IC&IR for (X, Y).
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof.

Let (q, s) be IC&IR for (X, Y). For every fixed y:
Claim. \(\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \)

Proof.

Let \((q, s)\) be IC&IR for \((X, Y)\).
For every fixed \(y\):
Instead of giving \(y\) with probability \(q_2\),
give a "monetary refund" = \(q_2y\):
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof.

Let (q, s) be IC&IR for (X, Y). For every fixed y:

Instead of giving y with probability q_2, give a "monetary refund" $= q_2 y$:

- $\tilde{q}(x) := q_1(x, y)$
- $\tilde{s}(x) := s(x, y) - q_2(x, y)y$
Claim. $\text{REV}((X, Y)_{1_{X \geq Y}}) \leq 2 \text{REV}(X)$

Proof.

Let (q, s) be IC&IR for (X, Y). For every fixed y:
- Instead of giving y with probability q_2, give a "monetary refund" $= q_2y$:

 $\tilde{q}(x) := q_1(x, y)$
 $\tilde{s}(x) := s(x, y) - q_2(x, y)y$

Then: (\tilde{q}, \tilde{s}) is IC&IR for X.
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof.

- Let (q, s) be IC&IR for (X, Y).
 For every fixed y:
 Instead of giving y with probability q_2, give a "monetary refund" $= q_2 y$:

- $\tilde{q}(x) := q_1(x, y)$
- $\tilde{s}(x) := s(x, y) - q_2(x, y)y$

Then: (\tilde{q}, \tilde{s}) is IC&IR for X.

$\text{REV}(X) \geq \mathbb{E}[\tilde{s}(X)]$
Claim. \(\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \)

Proof.

\(\tilde{s}(x) = s(x, y) - q_2(x, y)y \)

\(\text{REV}(X) \geq E[\tilde{s}(X)] \)
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof. For every y:

- $\tilde{s}(x) = s(x, y) - q_2(x, y)y$
- $\text{REV}(X) \geq \mathbb{E}[\tilde{s}(X)] \geq \mathbb{E}[\tilde{s}(X)1_{X \geq y}]$
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof. For every y:

1. $\tilde{s}(x) = s(x, y) - q_2(x, y)y$
2. $\text{REV}(X) \geq E[\tilde{s}(X)] \geq^* E[\tilde{s}(X)1_{X \geq y}]$
Two Goods: Theorem 1

Claim. $\text{REV}((X, Y)^1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof. For every y:

1. $\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y$

2. $\text{REV}(X) \geq E[\tilde{s}(X)] \geq E[\tilde{s}(X)^1_{X \geq y}]$
Two Goods: Theorem 1

Claim. \(\text{REV}((X, Y)^1_{X \geq Y}) \leq 2 \text{REV}(X) \)

Proof. For every \(y \):

- \(\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y \)
- \(\text{REV}(X) \geq E[\tilde{s}(X)] \geq E[\tilde{s}(X)^1_{X \geq y}] \geq E[s(X, y)^1_{X \geq y}] - y E[1_{X \geq y}] \)
Two Goods: Theorem 1

Claim. \(\text{REV}(\{(X, Y) \mid X \geq Y\}) \leq 2 \text{REV}(X) \)

Proof. For every \(y \):

\[\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y \]

\[\text{REV}(X) \geq \mathbb{E}[\tilde{s}(X)] \geq \mathbb{E}[\tilde{s}(X)1_{X \geq y}] \]
\[\geq \mathbb{E}[s(X, y)1_{X \geq y}] - y \mathbb{E}[1_{X \geq y}] \]
\[= \mathbb{E}[s(X, y)1_{X \geq y}] - y \mathbb{P}[X \geq y] \]
Two Goods: Theorem 1

Claim. \(\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \)

Proof. For every \(y \):

\[\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y \]

\[\text{REV}(X) \geq E[\tilde{s}(X)] \geq^* E[\tilde{s}(X)1_{X \geq y}] \]

\[\geq E[s(X, y)1_{X \geq y}] - y E[1_{X \geq y}] \]

\[= E[s(X, y)1_{X \geq y}] - y \Pr[X \geq y] \]

\[\geq E[s(X, y)1_{X \geq y}] - \text{REV}(X) \]
Claim. $\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X)$

Proof. For every y:

- $\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y$

- $\text{REV}(X) \geq E[\tilde{s}(X)] \geq E[\tilde{s}(X)1_{X \geq y}]$
 $\geq E[s(X, y)1_{X \geq y}] - yE[1_{X \geq y}]$
 $= E[s(X, y)1_{X \geq y}] - y\Pr[X \geq y]$
 $\geq E[s(X, y)1_{X \geq y}] - \text{REV}(X)$

- $E[s(X, y)1_{X \geq y}] \leq 2 \text{REV}(X)$
Two Goods: Theorem 1

Claim. \(\text{REV}((X, Y)1_{X \geq Y}) \leq 2 \text{REV}(X) \)

Proof. For every \(y \):

1. \(\tilde{s}(x) = s(x, y) - q_2(x, y)y \geq s(x, y) - y \)
2. \(\text{REV}(X) \geq E[\tilde{s}(X)] \geq* E[\tilde{s}(X)1_{X \geq y}] \)
 \(\geq E[s(X, y)1_{X \geq y}] - y E[1_{X \geq y}] \)
 \(= E[s(X, y)1_{X \geq y}] - y \Pr[X \geq y] \)
 \(\geq E[s(X, y)1_{X \geq y}] - \text{REV}(X) \)
3. \(E[s(X, y)1_{X \geq y}] \leq 2 \text{REV}(X) \)
4. Take expectation over \(y \sim Y \)
 \((X \text{ and } Y \text{ are independent}) \)
Theorem 1. For every one-dimensional F_1, F_2:

$$\text{SRev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2)$$
Theorem 1. For every one-dimensional F_1, F_2:

\[\text{SREV}(F_1 \times F_2) \geq \frac{1}{2} \text{REV}(F_1 \times F_2) \]

Theorem 2. For every one-dimensional F:

\[\text{SREV}(F \times F) \geq 73\% \text{REV}(F \times F) \]
Theorem 1. For every one-dimensional F_1, F_2:

$$\text{SRev}(F_1 \times F_2) \geq \frac{1}{2} \text{Rev}(F_1 \times F_2)$$

Theorem 2. For every one-dimensional F:

$$\text{SRev}(F \times F) \geq 73\% \text{Rev}(F \times F)$$

Proposition. There is a one-dimensional F:

$$\text{SRev}(F \times F) \approx 78\% \text{Rev}(F \times F)$$
Two Goods

Theorem 1. For every one-dimensional F_1, F_2:

$$SREV(F_1 \times F_2) \geq \frac{1}{2} REV(F_1 \times F_2)$$

Theorem 2. For every one-dimensional F:

$$SREV(F \times F) \geq 73\% \REV(F \times F)$$

Proposition. There is a one-dimensional F:

$$SREV(F \times F) \approx 78\% \REV(F \times F)$$

Hart and Nisan (2012)
A class of IC&IR mechanisms
A class of IC&IR mechanisms \mathbb{M}
A family of distributions \mathcal{F}
A class of IC&IR mechanisms M

A family of distributions F

Guaranteed Fraction of Optimal Revenue
A class of IC&IR mechanisms \mathbb{M}

A family of distributions \mathbb{F}

GUARANTEED FRACTION OF OPTIMAL REVENUE
A class of IC&IR mechanisms \mathcal{M}

A family of distributions \mathcal{F}

GUARANTEED FRACTION OF OPTIMAL REVENUE

= maximal fraction α in $[0, 1]$ such that for every distribution \mathcal{F} in \mathcal{F} there is a mechanism \mathcal{M} in \mathcal{M} with

$$R(\mathcal{M}, \mathcal{F}) \geq \alpha \text{Rev}(\mathcal{F})$$

GFOR

- A class of IC&IR mechanisms \mathcal{M}
- A family of distributions \mathcal{F}

Guaranteed Fraction of Optimal Revenue

$= \text{maximal fraction } \alpha \text{ in } [0, 1] \text{ such that for every distribution } \mathcal{F} \text{ in } \mathcal{F} \text{ there is a mechanism } \mathcal{M} \text{ in } \mathcal{M}$

with

\[
R(\mathcal{M}, \mathcal{F}) \geq \alpha \text{ Rev}(\mathcal{F})
\]

\[
\text{GFOR} = \inf_{\mathcal{F} \in \mathcal{F}} \frac{\text{M-Rev}(\mathcal{F})}{\text{Rev}(\mathcal{F})}
\]
A class of IC&IR mechanisms \mathcal{M}

A family of distributions \mathcal{F}

Guaranteed Fraction of Optimal Revenue

$= \text{maximal fraction } \alpha \text{ in } [0, 1] \text{ such that for every distribution } \mathcal{F} \text{ in } \mathcal{F} \text{ there is a mechanism } \mathcal{M} \text{ in } \mathcal{M} \text{ with}$

$$R(\mathcal{M}, \mathcal{F}) \geq \alpha \text{ Rev}(\mathcal{F})$$

$$\text{GFOR} = \inf_{\mathcal{F} \in \mathcal{F}} \frac{\text{M-Rev}(\mathcal{F})}{\text{Rev}(\mathcal{F})} = \inf_{\mathcal{F} \in \mathcal{F}} \frac{\sup_{\mathcal{M} \in \mathcal{M}} R(\mathcal{M}, \mathcal{F})}{\sup_{\mathcal{M}} R(\mathcal{M}, \mathcal{F})}$$
GFOR: Two Goods
GFOR: Two Goods

- **SEPARATE** selling of **INDEPENDENT** goods:
GFOR: Two Goods

- **SEPARATE** selling of **INDEPENDENT** goods:

\[0.50 \leq \text{GFOR} \]
GFOR: Two Goods

- **SEPARATE** selling of **INDEPENDENT** goods:

 \[0.50 \leq GFOR \]

- **SEPARATE** selling of **IID** goods:
GFOR: Two Goods

- **SEPARATE** selling of **INDEPENDENT** goods:
 \[0.50 \leq \text{GFOR} \]

- **SEPARATE** selling of **IID** goods:
 \[0.73 \leq \text{GFOR} \]
GFOR: Two Goods

1 **BUYER**, 2 **GOODS**

- **SEPARATE** selling of **INDEPENDENT** goods:

 \[0.50 \leq \text{GFOR} \]

- **SEPARATE** selling of **IID** goods:

 \[0.73 \leq \text{GFOR} \]
1 BUYER, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:

 \[0.50 \leq \text{GFOR} \]

- SEPARATE selling of IID goods:

 \[0.73 \leq \text{GFOR} \]

\(n \) BUYERS, 2 GOODS
GFOR: Two Goods

1 BUYER, 2 GOODS

- **SEPARATE** selling of INDEPENDENT goods:

 \[0.50 \leq \text{GFOR} \]

- **SEPARATE** selling of IID goods:

 \[0.73 \leq \text{GFOR} \]

\(n \) BUYERS, 2 GOODS

- **SEPARATE** selling of INDEPENDENT goods:
GFOR: Two Goods

1 BUYER, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:

 \[0.50 \leq \text{GFOR} \]

- SEPARATE selling of IID goods:

 \[0.73 \leq \text{GFOR} \]

n BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:

 \[0.50 \leq \text{GFOR} \]
1 BUYER, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:
 \[0.50 \leq \text{GFOR} \leq 0.78 \]

- SEPARATE selling of IID goods:
 \[0.73 \leq \text{GFOR} \leq 0.78 \]

n BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:
 \[0.50 \leq \text{GFOR} \leq 0.78 \]
GFOR: \(n \) Buyers, Two Goods

\[n \text{ BUYERS, 2 GOODS} \]

- \(\text{SEPARATE selling of INDEPENDENT goods:} \)

\[0.50 \leq \text{GFOR} \]
n Buyers, Two Goods

$\begin{align*}
\text{n \ BUYERS, 2 \ GOODS} \\
\text{\bullet SEPARATE selling of INDEPENDENT goods:} \\
0.50 \leq \text{GFOR}
\end{align*}$

Holds for:
GFOR: \(n \) Buyers, Two Goods

\[\begin{align*}
\text{\(n \) BUYERS, 2 GOODS} \\
\text{\(\bullet \) SEPARATE selling of INDEPENDENT goods:} \\
\text{\(0.50 \leq \text{GFOR} \)} \\
\text{Holds for:} \\
\text{\(\bullet \) BAYESIAN-NASH implementation}
\end{align*} \]
n BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:

\[0.50 \leq \text{GFOR} \]

Holds for:

- BAYESIAN-NASH implementation
- DOMINANT-STRATEGY implementation
GFOR: n Buyers, Two Goods

n BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:

$$0.50 \leq \text{GFOR}$$

Holds for:

- BAYESIAN-NASH implementation
- DOMINANT-STRATEGY implementation

(in each case: use the same implementation for single goods and for the two goods)
Notations:
Notations:

F : c.d.f. on \mathbb{R}_+
Notations:

- $F : \text{c.d.f. on } \mathbb{R}_+$
- $F^\times_k \equiv F \times \ldots \times F$

\[k \]
Many Goods

Notations:

- F : c.d.f. on \mathbb{R}_+
- $F^\times k \equiv F \times \ldots \times F$
- $\text{REV}(F^\times k)$: MAXIMAL REVENUE from k goods distributed *independently*, each one according to F
Many Goods

Notations:

- F : c.d.f. on \mathbb{R}_+
- $F^{\times k} \equiv F \times \ldots \times F$

- $\text{Rev}(F^{\times k})$: MAXIMAL REVENUE from k goods distributed *independently*, each one according to F

- $\text{BRev}(F^{\times k})$: MAXIMAL REVENUE selling the k goods BUNDLED
Many Goods

Notations:

- F: c.d.f. on \mathbb{R}_+
- $F^{\times k} \equiv F \times \ldots \times F$

- $\text{Rev}(F^{\times k})$: MAXIMAL REVENUE from k goods distributed \textit{independently}, each one according to F

- $\text{BRev}(F^{\times k})$: MAXIMAL REVENUE selling the k goods \textbf{BUNDLED} \rightarrow PRICE p_k for all the k goods together
Many Goods: $k \rightarrow \infty$
Theorem 3. For every one-dimensional F with finite expectation ($\mathbb{E}(F) < \infty$):
Theorem 3. For every one-dimensional F with finite expectation ($\mathbb{E}(F) < \infty$):

$$\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1$$
Theorem 3. For every one-dimensional F with finite expectation ($\mathbb{E}(F) < \infty$):

$$\lim_{k \to \infty} \frac{\text{BREV}(F^\times k)}{\text{REV}(F^\times k)} = 1$$

Armstrong (1999), Bakos & Brynjolfsson (1999)
Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F \times^k)}{\text{REV}(F \times^k)} = 1
\]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BR} \\text{EV}(F \times k)}{\text{REV}(F \times k)} = 1
\]
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BR}_{\text{EV}}(F \times^k)}{\text{REV}(F \times^k)} = 1 \]

Proof.
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof.

- \(\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \)
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{B} \text{R} \text{E} \text{V}(F \times k)}{\text{R} \text{E} \text{V}(F \times k)} = 1
\]

Proof.

\[\text{B} \text{R} \text{E} \text{V}(F \times k) \leq \text{R} \text{E} \text{V}(F \times k) \leq k \ \text{E}(F) \]

Proof:

\[
s(x) = q(x) \cdot x - b(x) \leq x_1 + \ldots + x_k \text{ (IR)}
\]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F^\times k)}{\text{REV}(F^\times k)} = 1
\]

Proof. Let \(X_i \) be i.i.d.-\(F \).

- \(\text{BREV}(F^\times k) \leq \text{REV}(F^\times k) \leq k \text{E}(F) \)

Proof:

\[
s(x) = q(x) \cdot x - b(x) \leq x_1 + \ldots + x_k \quad (\text{IR})
\]
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof. Let \(X_i \) be i.i.d. \(F \).

\[\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \mathbb{E}(F) \]

Proof:

\[s(x) = q(x) \cdot x - b(x) \leq x_1 + \ldots + x_k \text{ (IR)} \]

\[\mathbb{E}(s(X)) \leq \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_k) = k \mathbb{E}(F) \]
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof. Let \(X_i \) be i.i.d.-\(F \).

- \(\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \)
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof. Let \(X_i \) be i.i.d.-\(F \). Let \(\epsilon > 0 \).

\[\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \]
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BREV}(F \times^k)}{\text{REV}(F \times^k)} = 1 \]

Proof. Let \(X_i \) be i.i.d.-\(F \). Let \(\epsilon > 0 \).

- \(\text{BREV}(F \times^k) \leq \text{REV}(F \times^k) \leq k \cdot \mathbb{E}(F) \)
- \(\text{BREV}(F \times^k) \geq p_k \cdot \alpha_k \)
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1
\]

Proof. Let \(X_i \) be i.i.d.-\(F \). Let \(\epsilon > 0 \).

\[
\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F)
\]

\[
\text{BREV}(F \times k) \geq p_k \cdot \alpha_k
\]

where

\[
p_k = (1 - \epsilon) \ k \ E(F) : \text{ price for bundle}
\]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F^{\times k})}{\text{REV}(F^{\times k})} = 1
\]

Proof. Let \(X_i \) be i.i.d. \(-F\). Let \(\epsilon > 0 \).

\begin{itemize}
 \item \(\text{BREV}(F^{\times k}) \leq \text{REV}(F^{\times k}) \leq k \, \text{E}(F) \)
 \item \(\text{BREV}(F^{\times k}) \geq p_k \cdot \alpha_k \)
\end{itemize}

where

\(p_k = (1 - \epsilon) \, k \, \text{E}(F) \) : price for bundle
\(\alpha_k = \text{Pr} [X_1 + \ldots + X_k \geq p_k] \)
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BR}_{\text{EV}}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof. Let \(X_i \) be i.i.d.-\(F \). Let \(\epsilon > 0 \).

- \(\text{BR}_{\text{EV}}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \)
- \(\text{BR}_{\text{EV}}(F \times k) \geq p_k \cdot \alpha_k \)

where

\[
p_k = (1 - \epsilon) k \ E(F) : \text{ price for bundle}
\]

\[
\alpha_k = \Pr [X_1 + \ldots + X_k \geq p_k]
\]

\[
= \Pr \left[\frac{1}{k} (X_1 + \ldots + X_k) \geq (1 - \epsilon)E(F) \right]
\]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1
\]

Proof. Let \(X_i \) be i.i.d.-\(F \). Let \(\epsilon > 0 \).

\[\bullet \; \text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \; E(F)\]
\[\bullet \; \text{BREV}(F \times k) \geq p_k \cdot \alpha_k\]

where

\[p_k = (1 - \epsilon) \; k \; E(F) : \text{price for bundle}\]
\[\alpha_k = \Pr [X_1 + \ldots + X_k \geq p_k]\]
\[= \Pr \left[\frac{1}{k}(X_1 + \ldots + X_k) \geq (1 - \epsilon)E(F) \right] \to 1\]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1
\]

Proof. Let \(X_i\) be i.i.d.-\(F\). Let \(\epsilon > 0\).

\[\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \]
\[\text{BREV}(F \times k) \geq p_k \cdot \alpha_k \sim p_k \]

where
\[p_k = (1 - \epsilon) k \ E(F) : \text{price for bundle} \]
\[\alpha_k = \text{Pr} [X_1 + \ldots + X_k \geq p_k] \]
\[= \text{Pr} \left[\frac{1}{k}(X_1 + \ldots + X_k) \geq (1 - \epsilon)E(F) \right] \to 1 \]
Proof of Theorem 3

\[
\lim_{k \to \infty} \frac{\text{BREV}(F \times k)}{\text{REV}(F \times k)} = 1
\]

Proof. Let \(X_i\) be i.i.d.-\(F\). Let \(\epsilon > 0\).

- \(\text{BREV}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F)\)
- \(\text{BREV}(F \times k) \geq p_k \cdot \alpha_k \sim p_k = (1 - \epsilon) \ k \ E(F)\)

where

\[
p_k = (1 - \epsilon) \ k \ E(F) : \text{ price for bundle}
\]
\[
\alpha_k = \Pr [X_1 + \ldots + X_k \geq p_k]
\]
\[
= \Pr \left[\frac{1}{k} (X_1 + \ldots + X_k) \geq (1 - \epsilon) E(F) \right] \to 1
\]
Proof of Theorem 3

\[\lim_{k \to \infty} \frac{\text{BR}_{\text{EV}}(F \times k)}{\text{REV}(F \times k)} = 1 \]

Proof. Let \(X_i \) be i.i.d. \(-F\). Let \(\epsilon > 0 \).

- \(\text{BR}_{\text{EV}}(F \times k) \leq \text{REV}(F \times k) \leq k \ E(F) \)
- \(\text{BR}_{\text{EV}}(F \times k) \geq p_k \cdot \alpha_k \sim p_k = (1 - \epsilon) k \ E(F) \)
1 BUYER, k GOODS
1 BUYER, k GOODS

- SEPARATE selling of INDEPENDENT goods:
1 **BUYER**, \(k \) **GOODS**

Separate selling of **INDEPENDENT** goods:

\[
\frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}
\]
GFOR: k Goods

1 BUYER, k GOODS

• SEPARATE selling of INDEPENDENT goods:

$$\frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}$$

(same for IID goods)
1 BUYER, k GOODS

- **SEPARATE** selling of **INDEPENDENT** goods:

$$\frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}$$

(same for **IID** goods)

- **BUNDLED** selling of **INDEPENDENT** goods:
GFOR: k Goods

1 BUYER, k GOODS

- **SEPARATE** selling of INDEPENDENT goods:
 \[
 \frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}
 \]

 (same for IID goods)

- **BUNDLED** selling of INDEPENDENT goods:
 \[
 \frac{c_3}{k} \leq \text{GFOR} \leq \frac{1}{k} + \varepsilon
 \]
GFOR: k Goods

1. **BUYER, k GOODS**

- **SEPARATE** selling of **INDEPENDENT** goods:

\[
\frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}
\]

(same for **IID** goods)

- **BUNDLED** selling of **IID** goods:
GFOR: k Goods

1 BUYER, k GOODS

- **SEPARATE** selling of INDEPENDENT goods:

 \[
 \frac{c_1}{\log^2 k} \leq \text{GFOR} \leq \frac{c_2}{\log k}
 \]

 (same for IID goods)

- **BUNDLED** selling of IID goods:

 \[
 \frac{c_4}{\log k} \leq \text{GFOR} \leq 0.57 + \varepsilon
 \]
2 GOODS, ARBITRARY DEPENDENCE
2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling:
2 GOODS, ARBITRARY DEPENDENCE

SEPARATE selling: $\text{GFOR} = 0$.
for every $\varepsilon > 0$ there is a distribution \mathcal{F} on $[0, 1]^2$ such that: $S\text{Rev}(\mathcal{F}) < \varepsilon \text{Rev}(\mathcal{F})$
GFOR: General

2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \[\text{GFOR} = 0. \]
- **BUNDLED** selling:
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \).
- **BUNDLED** selling: \(\text{GFOR} = 0 \).
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0. \)
- **BUNDLED** selling: \(\text{GFOR} = 0. \)

For every \(\varepsilon > 0 \) there is a distribution \(\mathcal{F} \) on \([0, 1]^2 \) such that \(\text{BRev}(\mathcal{F}) < \varepsilon \text{ Rev}(\mathcal{F}) \)
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \).
- **BUNDLED** selling: \(\text{GFOR} = 0 \).
- **DETERMINISTIC** mechanisms:
2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling: $\text{GFOR} = 0$.
- BUNDLED selling: $\text{GFOR} = 0$.
- DETERMINISTIC mechanisms: $\text{GFOR} = 0$.
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0. \)
- **BUNDLED** selling: \(\text{GFOR} = 0. \)
- **DETERMINISTIC** mechanisms: \(\text{GFOR} = 0. \)

for every \(\varepsilon > 0 \) there is a distribution \(F \) on \([0, 1]\) such that \(\text{DRev}(F) < \varepsilon \text{ Rev}(F) \)
GFOR: General

2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \).
- **BUNDLED** selling: \(\text{GFOR} = 0 \).
- **DETERMINISTIC** mechanisms: \(\text{GFOR} = 0 \).

(same for \(k \) goods)

For every \(\varepsilon > 0 \) there is a distribution \(\mathcal{F} \) on \([0, 1]^2\) such that \(\text{DRev}(\mathcal{F}) < \varepsilon \text{ Rev}(\mathcal{F}) \).
$[m]$-Rev$(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}$
\([m]-\text{Rev}(\mathcal{F})\) = maximal revenue over all mechanisms with \text{AT MOST} \(m\) \text{ OUTCOMES}

\[1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F})\] all \(\mathcal{F}\)
$[m]\text{-Rev}(\mathcal{F})$ = maximal revenue over all mechanisms with at most m outcomes

- $[1]\text{-Rev}(\mathcal{F}) = B\text{Rev}(\mathcal{F})$ all \mathcal{F}
- $[m]\text{-Rev}(\mathcal{F}) \leq m \cdot B\text{Rev}(\mathcal{F})$ all \mathcal{F}
[\textit{m}]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}

\textbullet\; [1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F}

\textbullet\; [\textit{m}]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F}

\textbullet\; [\textit{m}]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F}
Menu Size and GFOR

$[m]_{\text{Rev}}(\mathcal{F}) =$ maximal revenue over all mechanisms with at most m outcomes

- $[1]_{\text{Rev}}(\mathcal{F}) = BR_{\text{Rev}}(\mathcal{F})$ for all \mathcal{F}
- $[m]_{\text{Rev}}(\mathcal{F}) \leq m \cdot BR_{\text{Rev}}(\mathcal{F})$ for all \mathcal{F}
- $[m]_{\text{Rev}}(\mathcal{F}) \geq cm^{1/7} \cdot BR_{\text{Rev}}(\mathcal{F})$ for some \mathcal{F}

Corollary. For BR_{Rev}: $GFOR = 0$.

Sergiu Hart © 2012 – p. 48
$[m]\text{-Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}$

- $[1]\text{-Rev}(\mathcal{F}) = \text{BRRev}(\mathcal{F}) \quad \text{all } \mathcal{F}$
- $[m]\text{-Rev}(\mathcal{F}) \leq m \cdot \text{BRRev}(\mathcal{F}) \quad \text{all } \mathcal{F}$
- $[m]\text{-Rev}(\mathcal{F}) \geq cm^{1/7} \cdot \text{BRRev}(\mathcal{F}) \quad \text{some } \mathcal{F}$

Corollary. For BRRev: $\text{GFOR} = 0$.

Proof.

$$\inf_{\mathcal{F}} \frac{\text{BRRev}}{\text{Rev}}$$
Menu Size and GFOR

\[[m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES} \]

\[[1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m]-\text{Rev}(\mathcal{F}) \geq cm^{1/7} \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

Corollary. For \(\text{BRev} \): \(\text{GFOR} = 0 \).

Proof. For every \(m \)

\[\inf_{\mathcal{F}} \frac{\text{BRev}}{\text{Rev}} \leq \inf_{\mathcal{F}} \frac{\text{BRev}}{[m]-\text{Rev}} \]
Menu Size and GFOR

\([m]^{-Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}\)

- \([1]^{-Rev}(\mathcal{F}) = BRev(\mathcal{F}) \quad \text{all } \mathcal{F}\)
- \([m]^{-Rev}(\mathcal{F}) \leq m \cdot BRev(\mathcal{F}) \quad \text{all } \mathcal{F}\)
- \([m]^{-Rev}(\mathcal{F}) \geq cm^{1/7} \cdot BRev(\mathcal{F}) \quad \text{some } \mathcal{F}\)

Corollary. For \(BRev\): \(GFOR = 0\).

Proof. For every \(m\)

\[\inf_{\mathcal{F}} \frac{BRev}{Rev} \leq \inf_{\mathcal{F}} \frac{BRev}{[m]^{-Rev}} \leq \frac{1}{cm^{1/7}} \rightarrow m \quad 0\]
Menu Size and GFOR

\[[m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES} \]

- \[[1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

Corollary. For BRev: GFOR = 0.
Menu Size and GFOR

\([m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}\]

- \([1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F})\)
 all \(\mathcal{F}\)
- \([m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F})\)
 all \(\mathcal{F}\)
- \([m]-\text{Rev}(\mathcal{F}) \geq cm^{1/7} \cdot \text{BRev}(\mathcal{F})\)
 some \(\mathcal{F}\)

Corollary. For \(\text{BRev}:\) \(\text{GFOR} = 0\).

Corollary. For \([m]-\text{Rev}:\) \(\text{GFOR} = 0\).
[m]-$\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}$

- $[1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F})$ \quad all \mathcal{F}
- $[m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F})$ \quad all \mathcal{F}
- $[m]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot \text{BRev}(\mathcal{F})$ \quad some \mathcal{F}

Corollary. For BRev: \quad $\text{GFOR} = 0$.

Corollary. For $[m]-\text{Rev}$: \quad $\text{GFOR} = 0$.

Proof.

$$\inf_{\mathcal{F}} \frac{[m]-\text{Rev}}{\text{Rev}}$$
Menu Size and GFOR

\[[m] - \text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES} \]

\[[1] - \text{Rev}(\mathcal{F}) = B\text{rev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m] - \text{Rev}(\mathcal{F}) \leq m \cdot B\text{rev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m] - \text{Rev}(\mathcal{F}) \geq c \cdot m^{1/7} \cdot B\text{rev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

Corollary. For \(B\text{rev} \): \(G\text{FOR} = 0 \).

Corollary. For \([m] - \text{Rev} \): \(G\text{FOR} = 0 \).

Proof.

\[\inf_{\mathcal{F}} \frac{[m] - \text{Rev}}{\text{Rev}} \leq m \cdot \inf_{\mathcal{F}} \frac{B\text{rev}}{\text{Rev}} \]
Menu Size and GFOR

Let \([m]-\text{Rev}(\mathcal{F})\) denote the maximal revenue over all mechanisms with at most \(m\) outcomes.

- \([1]-\text{Rev}(\mathcal{F}) = B\text{Rev}(\mathcal{F})\) \quad \text{all } \mathcal{F}
- \([m]-\text{Rev}(\mathcal{F}) \leq m \cdot B\text{Rev}(\mathcal{F})\) \quad \text{all } \mathcal{F}
- \([m]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot B\text{Rev}(\mathcal{F})\) \quad \text{some } \mathcal{F}

Corollary. For \(B\text{Rev}:\) \quad GFOR = 0.

Corollary. For \([m]-\text{Rev}:\) \quad GFOR = 0.

Proof.

\[
\inf_{\mathcal{F}} \frac{[m]-\text{Rev}}{\text{Rev}} \leq m \cdot \inf_{\mathcal{F}} \frac{B\text{Rev}}{\text{Rev}} = 0
\]
Menu Size and GFOR

\[[m] \text{-Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with at most } m \text{ outcomes} \]

- \[[1] \text{-Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m] \text{-Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m] \text{-Rev}(\mathcal{F}) \geq c \cdot m^{1/7} \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

Corollary. For \(\text{BRev} \): \(\text{GFOR} = 0 \).

Corollary. For \([m] \text{-Rev} \): \(\text{GFOR} = 0 \).
Menu Size and GFOR

\([m]\)-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}

- \([1]\)-\text{Rev}(\mathcal{F}) = \text{BR}(\mathcal{F}) \quad \text{all } \mathcal{F}
- \([m]\)-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BR}(\mathcal{F}) \quad \text{all } \mathcal{F}
- \([m]\)-\text{Rev}(\mathcal{F}) \geq cm^{1/7} \cdot \text{BR}(\mathcal{F}) \quad \text{some } \mathcal{F}

Corollary. For \text{BR}: \quad \text{GFOR} = 0.
Corollary. For \([m]\)-\text{Rev}: \quad \text{GFOR} = 0.
Corollary. For \text{DRev}: \quad \text{GFOR} = 0.
Menu Size and GFOR

\([m] \cdot \operatorname{REV}(\mathcal{F}) = \) maximal revenue over all mechanisms with AT MOST \(m\) OUTCOMES

- \(\operatorname{REV}^1(\mathcal{F}) = \operatorname{BR}(\mathcal{F})\) all \(\mathcal{F}\)
- \(\operatorname{REV}(\mathcal{F}) \leq m \cdot \operatorname{BR}(\mathcal{F})\) all \(\mathcal{F}\)
- \(\operatorname{REV}(\mathcal{F}) \geq c m^{1/7} \cdot \operatorname{BR}(\mathcal{F})\) some \(\mathcal{F}\)

Corollary. For \(\operatorname{BR}\): \(\) GFOR = 0.
Corollary. For \([m] \cdot \operatorname{REV}\): \(\) GFOR = 0.
Corollary. For \(\operatorname{DREV}\): \(\) GFOR = 0.

Proof.

\(\operatorname{DREV} \leq [2^k] \cdot \operatorname{REV}\)
[\text{\textit{m}}]-\text{REV}(F) = \text{maximal revenue over all mechanisms with AT MOST } \text{\textit{m}} \text{ OUTCOMES}

- \text{\textit{1}}]-\text{REV}(F) = \text{BRev}(F) \quad \text{all } F
- \text{\textit{m}}]-\text{REV}(F) \leq \text{\textit{m}} \cdot \text{BRev}(F) \quad \text{all } F
- \text{\textit{m}}]-\text{REV}(F) \geq \text{c} \cdot \text{\textit{m}}^{1/7} \cdot \text{BRev}(F) \quad \text{some } F

Corollary. For \text{BRev}: \quad \text{GFOR} = 0.
Corollary. For \text{\textit{m}}]-\text{REV}: \quad \text{GFOR} = 0.
Corollary. For \text{DRev}: \quad \text{GFOR} = 0.
$[m]-\text{Rev}(F) =$ maximal revenue over all mechanisms with AT MOST m OUTCOMES

- $[1]-\text{Rev}(F) = B\text{Rev}(F)$
- $[m]-\text{Rev}(F) \leq m \cdot B\text{Rev}(F)$
- $[m]-\text{Rev}(F) \geq cm^{1/7} \cdot B\text{Rev}(F)$
Menu Size

\([m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}\)

- \([1]-\text{Rev}(\mathcal{F}) = B\text{Rev}(\mathcal{F}) \quad \text{all } \mathcal{F}\)
- \([m]-\text{Rev}(\mathcal{F}) \leq m \cdot B\text{Rev}(\mathcal{F}) \quad \text{all } \mathcal{F}\)
- \([m]-\text{Rev}(\mathcal{F}) \geq c \cdot m^{1/7} \cdot B\text{Rev}(\mathcal{F}) \quad \text{some } \mathcal{F}\)
- \(D\text{Rev}(\mathcal{F}) \leq 2^k \cdot B\text{Rev}(\mathcal{F}) \quad \text{all } \mathcal{F}\)
[\text{Menu Size}]

\[[m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES} \]

- \[[1]-\text{Rev}(\mathcal{F}) = \text{BR}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BR}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[[m]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot \text{BR}(\mathcal{F}) \quad \text{some } \mathcal{F} \]
- \[\text{DRev}(\mathcal{F}) \leq 2^k \cdot \text{BR}(\mathcal{F}) \quad \text{all } \mathcal{F} \]
- \[\text{DRev}(\mathcal{F}) \geq \frac{c}{k} 2^k \cdot \text{BR}(\mathcal{F}) \quad \text{some } \mathcal{F} \]
Menu Size and Complexity

\([m]-\text{Rev}(\mathcal{F}) = \text{maximal revenue over all mechanisms with AT MOST } m \text{ OUTCOMES}\)

\[[1]-\text{Rev}(\mathcal{F}) = \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m]-\text{Rev}(\mathcal{F}) \leq m \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[[m]-\text{Rev}(\mathcal{F}) \geq c m^{1/7} \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

\[\text{DRev}(\mathcal{F}) \leq 2^k \cdot \text{BRev}(\mathcal{F}) \quad \text{all } \mathcal{F} \]

\[\text{DRev}(\mathcal{F}) \geq \frac{c}{k} 2^k \cdot \text{BRev}(\mathcal{F}) \quad \text{some } \mathcal{F} \]

MENU SIZE = measure of the **COMPLEXITY** of mechanisms
$[m] \cdot \text{Rev}(\mathcal{F}) = \text{maximal revenue from mechanisms with at most } m \text{ outcomes}$
$[m]\text{-Rev}(F) = \text{maximal revenue from mechanisms with at most } m \text{ outcomes}$

- $[m]\text{-Rev}$ for fixed m: $G_{\text{FOR}} = 0$
$[m]-\text{Rev}(F) = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES}$

- $[m]-\text{Rev}$ for fixed m: $\text{GFOR} = 0$
- $[m]-\text{Rev}$ increases with m (polynomially)
$[m]\text{-Rev}(\mathcal{F})$ = maximal REVENUE from mechanisms with AT MOST m OUTCOMES

- $[m]\text{-Rev}$ for fixed m: GFOR $= 0$
- $[m]\text{-Rev}$ increases with m (polynomially)
- DETERMINISTIC-REV $\sim [2^k]\text{-Rev}$
Menu Size and Complexity

\[[m]\text{-Rev}(\mathcal{F}) = \text{maximal revenue from mechanisms with AT MOST } m \text{ OUTCOMES} \]

- \([m]\text{-Rev}\) for fixed \(m\): \(G\text{FOR} = 0\)
- \([m]\text{-Rev}\) increases with \(m\) (polynomially)
- Deterministic-Rev \(\sim [2^k]\text{-Rev}\)

MENU SIZE = measure of the **COMPLEXITY** of mechanisms
Summary: Multiple Goods
Maximizing revenue with multiple goods:
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
- SIMPLE mechanisms MAY yield UNIFORM APPROXIMATION
“Are you trying to auction your Brussels sprouts again?”