Two(!) Good To Be True

Sergiu Hart

October 2014
Two(!) Good To Be True

Sergiu Hart
Center for the Study of Rationality
Dept of Economics Dept of Mathematics
The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart
Joint work with

Phil Reny
Department of Economics
University of Chicago

Noam Nisan
Department of Computer Science
Hebrew University
and Microsoft Research
Sergiu Hart and Phil Reny
“Revenue Maximization in Two Dimensions”
(2010, in preparation)
• Sergiu Hart and Phil Reny
 “Revenue Maximization in Two Dimensions”
 (2010, in preparation)

• Sergiu Hart and Phil Reny
 “Maximizing Revenue with Multiple Goods:
 Nonmonotonicity and Other Observations”
 (2011)
 Theoretical Economics (forthcoming)
 www.ma.huji.ac.il/hart/abs/abs/monot-m.html
Sergiu Hart and Phil Reny
“Implementation of Reduced Form Mechanisms: A Simple Approach and a New Characterization”
(2011)
Economic Theory Bulletin (forthcoming)
www.ma.huji.ac.il/hart/abs/q-mech.html
Sergiu Hart and Noam Nisan
“Approximate Revenue Maximization with Multiple Items”
(2012)
www.ma.huji.ac.il/hart/abs/m-approx.html
Sergiu Hart and Noam Nisan
“Approximate Revenue Maximization with Multiple Items”
(2012)
www.ma.huji.ac.il/hart/abs/m-approx.html

Sergiu Hart and Noam Nisan
“The Menu-Size Complexity of Auctions”
(2013)
www.ma.huji.ac.il/hart/abs/m-corr.html
Sergiu Hart and Noam Nisan
“How Good are Simple Mechanisms for Selling Multiple Goods?”
(2014)
www.ma.huji.ac.il/hart/abs/m-simple.html
A Simple Problem

1 SELLER
A Simple Problem

- 1 SELLER
- 1 BUYER
A Simple Problem

- 1 SELLER
- 1 BUYER
- \(k \) GOODS (ITEMS)
A Simple Problem

- 1 SELLER
- 1 BUYER
- \(k \) GOODS (ITEMS)

OBJECTIVE:
MAXIMIZE the REVENUE of the SELLER
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

1 SELLER

1 BUYER

\(k \) GOODS (ITEMS)

values of GOODS to BUYER:

\[X = (X_1, X_2, ..., X_k) \]
A Simple Problem

- **1 SELLER**
- **1 BUYER**
- **k GOODS (ITEMS)**
 - values of GOODS to BUYER: $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good 2 = $X_1 + X_2$)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:

$$X = (X_1, X_2, \ldots, X_k)$$

additive valuation

(good 1 and good 2 = $X_1 + X_2$)

BUYER knows the value X
A Simple Problem

- **1 SELLER**
- **1 BUYER**
- **k GOODS (ITEMS)**
 - **values** of GOODS to BUYER: \(X = (X_1, X_2, \ldots, X_k) \)
 - **additive** valuation
 (good 1 and good 2 = \(X_1 + X_2 \))
 - **BUYER knows** the value \(X \)
 - **SELLER does not know** the value \(X \)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:

$$X = (X_1, X_2, \ldots, X_k)$$

additive valuation

(good 1 and good 2 = $X_1 + X_2$)

BUYER knows the value X

SELLER does not know the value X

X distributed according to c.d.f. \mathcal{F} on \mathbb{R}_+^k
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER: $X = (X_1, X_2, ..., X_k)$

additive valuation

(good 1 and good 2 = $X_1 + X_2$)

BUYER knows the value X

SELLER does not know the value X

X distributed according to c.d.f. F on \mathbb{R}_+^k

SELLER knows the distribution F of X
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

values of GOODS to BUYER:

\[X = (X_1, X_2, \ldots, X_k) \] (random variable)

additive valuation

(good 1 and good 2 = \(X_1 + X_2 \))

BUYER knows the value \(X \)

SELLER does not know the value \(X \)

\(X \) distributed according to c.d.f. \(F \) on \(\mathbb{R}_+^k \)

SELLER knows the distribution \(F \) of \(X \)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)
A Simple Problem

1 SELLER

1 BUYER

k GOODS (ITEMS)

SELLER and BUYER:

quasi-linear utilities (i.e., additive in monetary payments)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:

- **quasi-linear** utilities (i.e., additive in monetary payments)
- **risk-neutral** (i.e., linear in probabilities)
A Simple Problem

- 1 SELLER
- 1 BUYER
- k GOODS (ITEMS)

SELLER and BUYER:
- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities) (or: linear in quantities)
A Simple Problem

1 SELLER

1 BUYER

\(k \) GOODS (ITEMS)

SELLER and BUYER:

- **quasi-linear** utilities (i.e., additive in monetary payments)
- **risk-neutral** (i.e., linear in probabilities) (or: linear in quantities)

SELLER:

- **no value** and **no cost** for the GOODS
A Simple Problem

- 1 SELLER
- 1 BUYER
- \(k \) GOODS (ITEMS)
A Simple Problem

1 SELLER

1 BUYER

\(k \) GOODS (ITEMS)

OBJECTIVE:

MAXIMIZE the REVENUE of the SELLER
ONE GOOD ($k = 1$):
ONE GOOD ($k = 1$):

Myerson 1981
ONE GOOD ($k = 1$):

- SELLER posts a PRICE p
ONE GOOD ($k = 1$):

- **SELLER** posts a **PRICE** p
- **BUYER** chooses between:
 - get the good and pay p, or
 - get nothing and pay nothing

Myerson 1981
ONE GOOD ($k = 1$):

- **SELLER posts** a PRICE p
- **BUYER chooses** between:
 - get the good and pay p, or
 - get nothing and pay nothing
- p such that \(R = p \cdot \text{Pr}[X > p] \) \(= p \cdot (1 - F(p)) \) is MAXIMAL

Myerson 1981
ONE GOOD ($k = 1$):

- **SELLER** posts a **PRICE** p
- **BUYER** chooses between:
 - get the good and pay p, or
 - get nothing and pay nothing

p such that **REVENUE** $R = p \cdot \Pr[X > p]$

$= p \cdot (1 - F(p))$ is **MAXIMAL**

$$\operatorname{Rev}(X) = \max_p p \cdot (1 - F(p))$$

Myerson 1981
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]
One Good: Example

\[X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases} \]

\[p = 10 \rightarrow R = 10 \cdot 1 = 10 \]
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

- \(p = 10 \rightarrow R = 10 \cdot 1 = 10 \)
- \(p = 22 \rightarrow R = 22 \cdot \frac{1}{2} = 11 \)
One Good: Example

\[X \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- \(p = 10 \rightarrow R = 10 \cdot 1 = 10 \)
- \(p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \)
One Good: Example

\[X \sim \left\{ \begin{array}{l}
10 \quad \text{with probability } \frac{1}{2} \\
22 \quad \text{with probability } \frac{1}{2}
\end{array} \right. \]

- \(p = 10 \rightarrow R = 10 \cdot 1 = 10 \)
- \(p = 22 \rightarrow R = 22 \cdot \frac{1}{2} = 11 \)

\[\text{REV}(X) = 11 \quad p = 22 \]
Two Goods ($k = 2$)
Two Goods

Two Goods \((k = 2)\), Independent
Two Goods ($k = 2$), Independent

sell separately:
Two Goods ($k = 2$), Independent
sell separately:

\[
\text{PRICE} = p_1 \quad \text{for good 1}
\]
\[
\text{PRICE} = p_2 \quad \text{for good 2}
\]
Two Goods ($k = 2$), Independent
Two Goods: Example

Two Goods \((k = 2)\), Independent
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

\(\text{REV}(X_1) = \text{REV}(X_2) = 11 \)
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

\[\text{REV}(X_1) = \text{REV}(X_2) = 11\]

\[\max(10 \cdot 1, 22 \cdot 1/2) = 11\]
Two Goods: Example

Two Goods \((k = 2) \), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- \(\text{REV}(X_1) = \text{REV}(X_2) = 11 \)
- \(\max(10 \cdot 1, 22 \cdot 1/2) = 11 \)
- \(\text{REV}(X_1) + \text{REV}(X_2) = 11 + 11 = 22 \)
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases} \]

- \(\text{Rev}(X_1) = \text{Rev}(X_2) = 11\)
- \(\max(10 \cdot 1, 22 \cdot 1/2) = 11\)
- \(\text{Rev}(X_1) + \text{Rev}(X_2) = 11 + 11 = 22\)
- sell the two goods together ("bundle") for the price \(p_{12} = 32\) :
Two Goods: Example

Two Goods ($k = 2$), Independent

$$X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases}$$

- $\text{REV}(X_1) = \text{REV}(X_2) = 11$
 $$\max(10 \cdot 1, 22 \cdot 1/2) = 11$$

- $\text{REV}(X_1) + \text{REV}(X_2) = 11 + 11 = 22$

- sell the two goods together ("bundle") for the price $p_{12} = 32$:
 $$R = 32 \cdot 3/4 = 24 > 22$$
Two Goods: Example

Two Goods \((k = 2)\), Independent

\[X_1, X_2 \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

\[\text{Rev}(X_1) = \text{Rev}(X_2) = 11 \]

\[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]

\[\text{Rev}(X_1) + \text{Rev}(X_2) = 11 + 11 = 22 \]

sell the two goods together ("bundle") for the price \(p_{12} = 32\) :

\[R = 32 \cdot 3/4 = 24 > 22 \]
OUTCOME:
OUTCOME:

$q_i = \text{probability that } \text{BUYER gets good } i$
OUTCOME:

- \(q_i \) = probability that **BUYER** gets good \(i \)
- \(q = (q_1, \ldots, q_k) \in [0, 1]^k \)
OUTCOME:

- $q_i = \text{probability that BUYER gets good } i$
- $q = (q_1, \ldots, q_k) \in [0, 1]^k$
- $s = \text{payment from BUYER to SELLER ("REVENUE")}$
OUTCOME:

- $q_i =$ probability that BUYER gets good i

 $q = (q_1, \ldots, q_k) \in [0, 1]^k$

- $s =$ payment from BUYER to SELLER ("REVENUE")

PAYOFF (utility) of BUYER when his valuation is $x = (x_1, \ldots, x_k)$:
General Mechanism

OUTCOME:
- $q_i =$ probability that **BUYER** gets good i
 \[q = (q_1, \ldots, q_k) \in [0, 1]^k \]
- $s =$ payment from **BUYER** to **SELLER**
 ("REVENUE")

PAYOFF (utility) of **BUYER** when his valuation is
 \[x = (x_1, \ldots, x_k) : \]
- $b = q_1 \cdot x_1 + \ldots + q_k \cdot x_k - s$
General Mechanism

OUTCOME:
- \(q_i \) = probability that **BUYER** gets good \(i \)
- \(q = (q_1, ..., q_k) \in [0, 1]^k \)
- \(s \) = payment from **BUYER** to **SELLER**
 ("REVENUE")

PAYOFF (utility) of **BUYER** when his valuation is \(x = (x_1, ..., x_k) \):
- \(b = q_1 \cdot x_1 + ... + q_k \cdot x_k - s = q \cdot x - s \)
Simple Mechanism

MENU M: a SET of possible OUTCOMES
Simple Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$
MENU \(M \): a **SET** of possible **OUTCOMES**

\[M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R} \]

SELLER posts a MENU \(M \)
Simple Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- **SELLER** posts a **MENU** M
- **BUYER** chooses one **OUTCOME** in **MENU** M:
Simple Mechanism

MENU M: a set of possible outcomes

$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$

- **Seller posts** a **MENU** M
- **Buyer chooses** one outcome in **MENU** M:
 - **Outcome** chosen by **Buyer** when his valuation is x: $(q(x), s(x)) \in M$
Simple Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- **SELLER** posts a **MENU** M
- **BUYER** chooses one **OUTCOME** in **MENU** M:
 - **OUTCOME** chosen by **BUYER** when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of **SELLER**: $s(x)$
Simple Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^{k} \times \mathbb{R}$$

- **SELLER posts** a **MENU** M
- **BUYER chooses** one **OUTCOME** in **MENU** M:
 - **OUTCOME** chosen by **BUYER** when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of **SELLER**: $s(x)$
 - payoff of **BUYER**: $b(x) = q(x) \cdot x - s(x)$
"Menu" Mechanism

MENU M: a **SET** of possible **OUTCOMES**

\[M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R} \]

- **SELLER** posts a **MENU** M

- **BUYER** chooses one **OUTCOME** in **MENU** M:
 - **OUTCOME** chosen by **BUYER** when his valuation is x: \((q(x), s(x)) \in M\)
 - payoff of **SELLER**: $s(x)$
 - payoff of **BUYER**: $b(x) = q(x) \cdot x - s(x)$
"Menu" Mechanism

MENU M: a set of possible outcomes

$$M = \{ (q, s) \} \subset [0, 1]^k \times \mathbb{R}$$

- **Seller** posts a **MENU** M
- **Buyer** chooses one **outcome** in **MENU** M:
 - **Outcome** chosen by **Buyer** when his valuation is x: $$(q(x), s(x)) \in M$$
 - Payoff of **Seller**: $s(x)$
 - Payoff of **Buyer**: $$b(x) = q(x) \cdot x - s(x)$$

The Revelation Principle:
"Menu" Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- **SELLER posts** a **MENU** M
- **BUYER chooses** one **OUTCOME** in **MENU** M:
 - **OUTCOME** chosen by **BUYER** when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of **SELLER**: $s(x)$
 - payoff of **BUYER**: $b(x) = q(x) \cdot x - s(x)$

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM**
"Menu" Mechanism

MENU M: a **SET** of possible **OUTCOMES**

$$M = \{(q, s)\} \subset [0, 1]^k \times \mathbb{R}$$

- **SELLER** posts a **MENU** M
- **BUYER** chooses one **OUTCOME** in **MENU** M:
 - **OUTCOME** chosen by **BUYER** when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of **SELLER**: $s(x)$
 - payoff of **BUYER**: $b(x) = q(x) \cdot x - s(x)$

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM** ("direct mechanism")
Incentive Compatibility (IC)
Incentive Compatibility (IC)

\[q_1(x) \cdot x_1 + \cdots + q_k(x) \cdot x_k - s(x) \geq 0 \]
\[q_1(y) \cdot x_1 + \cdots + q_k(y) \cdot x_k - s(y) \geq 0 \]
(for all \(x \) and \(y \))
Incentive Compatibility (IC)

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]

\[q_1(y) \cdot x_1 + \ldots + q_k(y) \cdot x_k - s(y) \]

(for all \(x \) and \(y \))

Individual Rationality (IR) / Participation
Incentive Compatibility (IC)

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]
\[q_1(y) \cdot x_1 + \ldots + q_k(y) \cdot x_k - s(y) \geq 0 \]

(for all \(x \) and \(y \))

Individual Rationality (IR) / Participation

\[q_1(x) \cdot x_1 + \ldots + q_k(x) \cdot x_k - s(x) \geq 0 \]

(for all \(x \))
Maximize Revenue:
Maximize Revenue:

\[
\text{maximize} \quad R = \mathbb{E}[s(X)] = \int s(x) d\mathcal{F}(x)
\]
Maximize Revenue:

maximize

$$R = \mathbb{E}[s(X)] = \int s(x) d\mathcal{F}(x)$$

subject to

$$(q, s) \text{ satisfies IC & IR}$$
Incentive Compatibility (IC)
Incentive Compatibility (IC)

\[b(x) \] is a convex function of \(x \)
Incentive Compatibility (IC)

\[b(x) \] is a convex function of \(x \)

Proof
Incentive Compatibility (IC)

- $b(x)$ is a convex function of x

Proof

- for every y: $q(y) \cdot x - s(y)$ affine in x
Incentive Compatibility

Incentive Compatibility (IC)

- $b(x)$ is a convex function of x

Proof

- for every y: $q(y) \cdot x - s(y)$ affine in x
- $b(x) = \max_y \{q(y) \cdot x - s(y)\}$ convex in x
Incentive Compatibility (IC)

- \(b(x) \) is a convex function of \(x \)

Proof

- for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
- \(b(x) = \max_y \{ q(y) \cdot x - s(y) \} \) convex in \(x \)
- \(b(x) = q(x) \cdot x - s(x) \)
Incentive Compatibility (IC)

- $b(x)$ is a convex function of x

Proof

- for every y: \[q(y) \cdot x - s(y) \] affine in x
- $b(x) = \max_y \{q(y) \cdot x - s(y)\}$ convex in x
- $b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x)$
Incentive Compatibility (IC) \iff

- $b(x)$ is a convex function of x and
- $q_i(x) = \frac{\partial b(x)}{\partial x_i}$ for a.e. x and all i
- $q(x) = \nabla b(x)$ for a.e. x

Proof

- for every y: $q(y) \cdot x - s(y)$ affine in x
- $b(x) = \max_y \{q(y) \cdot x - s(y)\}$ convex in x
- $b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x)$
Incentive Compatibility

Incentive Compatibility (IC) \iff

\begin{itemize}
 \item \(b(x) \) is a convex function of \(x \) and \[b(x) = \max_y \{ q(y) \cdot x - s(y) \} \] convex in \(x \)
 \item \(q_i(x) = \frac{\partial b(x)}{\partial x_i} \) for a.e. \(x \) and all \(i \)
 \item \(q(x) = \nabla b(x) \) for a.e. \(x \)
\end{itemize}

Proof

\begin{itemize}
 \item for every \(y \): \(q(y) \cdot x - s(y) \) affine in \(x \)
 \item \(b(x) = \max_y \{ q(y) \cdot x - s(y) \} \) convex in \(x \)
 \item \(b(x) = q(x) \cdot x - s(x) = \nabla b(x) \cdot x - s(x) \)
 \item \(s(x) = \nabla b(x) \cdot x - b(x) \)
\end{itemize}
Incentive Compatibility (IC) \iff \begin{align*} b(x) & \text{ is a convex function of } x \quad \text{ and} \\ q_i(x) &= \frac{\partial b(x)}{\partial x_i} \quad \text{for a.e. } x \text{ and all } i \\ q(x) &= \nabla b(x) \quad \text{for a.e. } x \\ s(x) &= \nabla b(x) \cdot x - b(x) \end{align*}
Incentive Compatibility (IC) \[\iff\]

- \(b(x) \) is a convex function of \(x \) and
- \(q_i(x) = \frac{\partial b(x)}{\partial x_i} \) for a.e. \(x \) and all \(i \)
- \(q(x) = \nabla b(x) \) for a.e. \(x \)
- \(s(x) = \nabla b(x) \cdot x - b(x) \)
\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_{+}^k \rightarrow \mathbb{R}_{+} \text{ s.t.} \]
Maximal Revenue

$\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.}$

b is a convex function
\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] \]
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] = \mathbb{E}[b'(X; X) - b(X)] \]
Maximal Revenue

- \(\mathcal{B}^k \) = set of all functions \(b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq \partial b(x)/\partial x_i \leq 1 \) for a.e. \(x \)

- \(R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] \)
 = \(\mathbb{E}[b'(X; X) - b(X)] \)

- \(\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X) \)
Maximal Revenue

\(\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \)

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] \]
\[= \mathbb{E}[b'(X; X) - b(X)] \]

\[\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X) \]

- \(\mathcal{B}^k \) is a closed convex set
Maximal Revenue

\(\mathcal{B}^k = \) set of all functions \(b : \mathbb{R}^+_k \rightarrow \mathbb{R}_+ \) s.t.

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[
R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] = \mathbb{E}[b'(X; X) - b(X)]
\]

\[
\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X)
\]

\(\mathcal{B}^k \) is a closed \textbf{convex} set

\(R(b, X) \) is \textbf{linear} in \(b \)
Maximal Revenue

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \to \mathbb{R}_+ \text{ s.t.}$
- b is a convex function, $b(0) = 0$
- $0 \leq \partial b(x)/\partial x_i \leq 1$ for a.e. x

- $R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)]$
 $= \mathbb{E}[b'(X; X) - b(X)]$

- $\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X)$
 - \mathcal{B}^k is a closed convex set
 - $R(b, X)$ is linear in b

- $\text{REV}(X) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, X)$
 ($\text{EXT} = \text{set of extreme points}$)
Maximal Revenue

\[\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \) for a.e. \(x \)

\[R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] = \mathbb{E}[b'(X; X) - b(X)] \]

\[\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X) \]

- \(\mathcal{B}^k \) is a closed convex set
- \(R(b, X) \) is linear in \(b \)

\[\text{REV}(X) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, X) \]

Manelli & Vincent 2007
Maximal Revenue: One Good

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+ \text{ s.t. }$
 - b is a convex function, $b(0) = 0$
 - $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1$ for a.e. x

- $R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)]$

- $\text{REV}(X) = \max_{b \in \mathcal{B}^k} R(b, X)$
Maximal Revenue: One Good

- $\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+^1 \rightarrow \mathbb{R}_+ \text{ s.t.}$

- b is a convex function, $b(0) = 0$

- $0 \leq \frac{\partial b(x)}{\partial x_i} \leq 1 \text{ for a.e. } x$

- $R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)]$

- $\text{REV}(X) = \max_{b \in \mathcal{B}^1} R(b, X)$
Maximal Revenue: One Good

\[B^1 = \text{set of all functions } b : \mathbb{R}_+^1 \rightarrow \mathbb{R}_+ \text{ s.t.} \]

\[b \text{ is a convex function, } b(0) = 0 \]

\[0 \leq b'(x) \leq 1 \text{ for a.e. } x \]

\[R(b, X) = \mathbb{E}[\nabla b(X) \cdot X - b(X)] \]

\[\text{REV}(X) = \max_{b \in B^1} R(b, X) \]
Maximal Revenue: One Good

\[B^1 = \text{set of all functions } b : \mathbb{R}^1_+ \to \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[R(b, X) = \mathbb{E}[b'(X) \cdot X - b(X)] \]

\[\text{REV}(X) = \max_{b \in B^1} R(b, X) \]
Maximal Revenue: One Good

\[\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+ \to \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[\text{REV}(X) = \max_{b \in \mathcal{B}^1} \mathbb{E}[b'(X) \cdot X - b(X)] \]
Maximal Revenue: One Good

\[\mathcal{B}^1 = \text{set of all functions } b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[\text{REV}(X) = \max_{b \in \mathcal{B}^1} \mathbb{E}[b'(X) \cdot X - b(X)] \]
Maximal Revenue: One Good

\[B^1 = \text{set of all functions } b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \text{ s.t.} \]

- \(b \) is a convex function, \(b(0) = 0 \)
- \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[\text{REV}(X) = \max_{b \in B^1} E[b'(X) \cdot X - b(X)] \]

\[B^1 = \text{closed convex hull of } \{b_p\}_{p \geq 0} \text{ where } \]
\[b_p(x) = \max\{0, x - p\} \]
Maximal Revenue: One Good

- \(\mathcal{B}^1 = \) set of all functions \(b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[
\text{REV}(X) = \max_{b \in \mathcal{B}^1} E[b'(X) \cdot X - b(X)]
\]

- \(\mathcal{B}^1 = \) closed convex hull of \(\{b_p\}_{p \geq 0} \) where
 \(b_p(x) = \max\{0, x - p\} \)

\[
\text{REV}(X) = \max_{p \geq 0} E[b'_p(X) \cdot X - b_p(X)]
\]
Maximal Revenue: One Good Good

- \(\mathcal{B}^1 \) = set of all functions \(b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) s.t.
 - \(b \) is a convex function, \(b(0) = 0 \)
 - \(0 \leq b'(x) \leq 1 \) for a.e. \(x \)

\[\text{REV}(X) = \max_{b \in \mathcal{B}^1} \mathbb{E}[b'(X) \cdot X - b(X)] \]

\[\mathcal{B}^1 = \text{closed convex hull of } \{b_p\}_{p \geq 0} \text{ where } \]
\[b_p(x) = \max\{0, x - p\} \]

\[\text{REV}(X) = \max_{p \geq 0} \mathbb{E}[b'_p(X) \cdot X - b_p(X)] \]
\[= \max_{p \geq 0} \mathbb{E}[(X - (X - p))1_{X \geq p}] \]
Maximal Revenue: One Good Good

- \mathcal{B}^1 = set of all functions $b : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ s.t.
- b is a convex function, $b(0) = 0$
- $0 \leq b'(x) \leq 1$ for a.e. x

$$\text{REV}(X) = \max_{b \in \mathcal{B}^1} \mathbb{E}[b'(X) \cdot X - b(X)]$$

- \mathcal{B}^1 = closed convex hull of $\{b_p\}_{p \geq 0}$ where $b_p(x) = \max\{0, x - p\}$

$$\text{REV}(X) = \max_{p \geq 0} \mathbb{E}[b'_p(X) \cdot X - b_p(X)]$$

$$= \max_{p \geq 0} \mathbb{E}[(X - (X - p))1_{X \geq p}]$$

$$= \max_{p \geq 0} p \cdot (1 - F(p))$$
Maximal Revenue: $k \geq 2$ Goods
Maximal Revenue: $k \geq 2$ Goods

$\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}_+^k \rightarrow \mathbb{R}_+ \text{ s.t.}

- b \text{ is a convex function, } b(0) = 0
- 0 \leq \partial b(x)/\partial x_i \leq 1 \text{ for a.e. } x$
Maximal Revenue: $k \geq 2$ Goods

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \rightarrow \mathbb{R}_+$ s.t.
 - b is a convex function, $b(0) = 0$
 - $0 \leq \partial b(x)/\partial x_i \leq 1$ for a.e. x

- $\mathbf{REV}(X) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, X)$
Maximal Revenue: $k \geq 2$ Goods

- $\mathcal{B}^k =$ set of all functions $b : \mathbb{R}^k_+ \to \mathbb{R}_+$ s.t.
- b is a convex function, $b(0) = 0$
- $0 \leq \partial b(x) / \partial x_i \leq 1$ for a.e. x

- $\text{REV}(X) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, X)$

- EXTREME points of $\mathcal{B}^k =$?
Maximal Revenue: $k \geq 2$ Goods

- $\mathcal{B}^k = \text{set of all functions } b : \mathbb{R}^k_+ \to \mathbb{R}_+ \text{ s.t.}$
- b is a convex function, $b(0) = 0$
- $0 \leq \partial b(x)/\partial x_i \leq 1$ for a.e. x

$$\text{REV}(X) = \max_{b \in \text{EXT}(\mathcal{B}^k)} R(b, X)$$

- EXTREME points of $\mathcal{B}^k = ?$
- EXTREMELY COMPLEX!
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:
\[\text{REV}(Y) + \text{REV}(Z) \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

Separate:
\[\text{Rev}(Y) + \text{Rev}(Z) \]
\[\max(10 \cdot 1, 22 \cdot 1/2) = 11 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

Separate:

\[\text{REV}(Y) + \text{REV}(Z) = 11 + 11 = 22 \]
\[\max(10 \cdot 1, 22 \cdot \frac{1}{2}) = 11 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

Separate:

\[\text{REV}(Y) + \text{REV}(Z) = 11 + 11 = 22 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
22 & \text{with probability } \frac{1}{2}
\end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(Y + Z) \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases} \]

- **Separate:**
 \[\text{Rev}(Y) + \text{Rev}(Z) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{Rev}(Y + Z) \]
 \[\max(20 \cdot 1, 32 \cdot 3/4, 44 \cdot 1/4) = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(Y + Z) = 32 \cdot 3/4 = 24 \]
 \[\max(20 \cdot 1, 32 \cdot 3/4, 44 \cdot 1/4) = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
22 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{REV}(Y + Z) = 32 \cdot 3/4 = 24 \]
Two Goods: Example 1

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases} \]

- **Separate:**
 \[\text{Rev}(Y) + \text{Rev}(Z) = 11 + 11 = 22 \]

- **Bundled:**
 \[\text{Rev}(Y + Z) = 32 \cdot \frac{3}{4} = 24 \]

PRICE FOR THE BUNDLE
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- Separate:
 \[\text{Rev}(Y) + \text{Rev}(Z) \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[
\text{Rev}(Y) + \text{Rev}(Z) = \max(10 \cdot 1, 50 \cdot 1/2) = 25
\]
Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
50 & \text{with probability } \frac{1}{2}
\end{cases} \]

Separate:

\[
\text{Rev}(Y) + \text{Rev}(Z) = 25 + 25 = 50
\]

\[
\max(10 \cdot 1, 50 \cdot 1/2) = 25
\]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

Separate:

\[\text{Rev}(Y) + \text{Rev}(Z) = 25 + 25 = 50 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } \frac{1}{2} \\
50 & \text{with probability } \frac{1}{2}
\end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{REV}(Y + Z) \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- Separate:
 \[\text{Rev}(Y) + \text{Rev}(Z) = 25 + 25 = 50 \]

- Bundled:
 \[\text{Rev}(Y + Z) \]
 \[\max(20 \cdot 1, 60 \cdot 3/4, 100 \cdot 1/4) = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{Rev}(Y) + \text{Rev}(Z) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{Rev}(Y + Z) = 60 \cdot 3/4 = 45 \]
 \[\max(20 \cdot 1, 60 \cdot 3/4, 100 \cdot 1/4) = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 50 & \text{with probability } 1/2 \end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{REV}(Y + Z) = 60 \cdot \frac{3}{4} = 45 \]
Two Goods: Example 2

Independent and Identically Distributed (IID)

\[Y, Z \sim \begin{cases}
10 & \text{with probability } 1/2 \\
50 & \text{with probability } 1/2
\end{cases} \]

- **Separate:**
 \[\text{REV}(Y) + \text{REV}(Z) = 25 + 25 = 50 \]

- **Bundled:**
 \[\text{REV}(Y + Z) = 60 \cdot \frac{3}{4} = 45 \]

PRICE FOR EACH GOOD
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \quad \text{(IID)} \\
2 & \text{w/probability } 1/3
\end{cases} \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

Separate:

\[
\max(0 \cdot 1, 1 \cdot \frac{2}{3}, 2 \cdot \frac{1}{3}) = \frac{2}{3}
\]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

Separate:
\[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
\[\max(0 \cdot 1, 1 \cdot \frac{2}{3}, 2 \cdot \frac{1}{3}) = \frac{2}{3} \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]

Separate: \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
Two Goods: Example 3

\[Y, Z \sim \begin{cases} 0 & \text{w/probability } 1/3 \\ 1 & \text{w/probability } 1/3 \quad \text{(IID)} \\ 2 & \text{w/probability } 1/3 \end{cases} \]

Separate: \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)

Bundled:
\[
\max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9})
\]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 \text{ w/probability } 1/3 \\
1 \text{ w/probability } 1/3 \quad \text{(IID)} \\
2 \text{ w/probability } 1/3
\end{cases} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:**
 \[
 \max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9}) = \frac{4}{3}
 \]
Two Goods: Example 3

\[\begin{align*}
Y, Z \sim & \begin{cases}
0 \text{ w/probability } 1/3 \\
1 \text{ w/probability } 1/3 \\
2 \text{ w/probability } 1/3
\end{cases} \quad \text{(IID)}
\end{align*}\]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)

\[\max(0 \cdot 1, 1 \cdot \frac{8}{9}, 2 \cdot \frac{6}{9}, 3 \cdot \frac{3}{9}, 4 \cdot \frac{1}{9}) = \frac{4}{3}\]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/ probability } \frac{1}{3} \\
1 & \text{w/ probability } \frac{1}{3} \quad \text{(IID)} \\
2 & \text{w/ probability } \frac{1}{3}
\end{cases} \]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[R = \frac{4}{3} \]

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]

\[s(2, 0) = s(0, 2) = 2 \]
\[s(2, 1) = s(1, 2) = s(2, 2) = 3 \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)

\(b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \)

\[
\begin{align*}
s(2, 0) &= s(0, 2) = 2 \\
s(2, 1) &= s(1, 2) = s(2, 2) = 3 \\
R &= 2 \cdot \frac{2}{9} + 3 \cdot \frac{3}{9} = \frac{13}{9}
\end{align*}
\]
Two Goods: Example 3

\[
Y, Z \sim \begin{cases}
0 & \text{w/probability } \frac{1}{3} \\
1 & \text{w/probability } \frac{1}{3} \\
2 & \text{w/probability } \frac{1}{3}
\end{cases} \quad \text{(IID)}
\]

Separate: \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]

Bundled: \[R = \frac{4}{3} \]

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]

\[R(b) = \frac{13}{9} \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[R = \frac{4}{3} \]

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]

\[R(b) = \frac{13}{9} \]
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \\
2 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]

- **Separate:** \(R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
- **Bundled:** \(R = \frac{4}{3} \)

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]

\[R(b) = \frac{13}{9} = \text{REV}(Y, Z) \]

THE UNIQUE OPTIMAL MECHANISM
Two Goods: Example 3

\[Y, Z \sim \begin{cases}
0 & \text{w/probability } 1/3 \\
1 & \text{w/probability } 1/3 \quad \text{(IID)} \\
2 & \text{w/probability } 1/3
\end{cases} \]

- **Separate:** \[R = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \]
- **Bundled:** \[R = \frac{4}{3} \]

\[b(y, z) = \max(0, y - 2, z - 2, y + z - 3) \]

\[R(b) = \frac{13}{9} = \text{REV}(Y, Z) \]

THE UNIQUE OPTIMAL MECHANISM

PRICE FOR EACH GOOD AND FOR BUNDLE
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2} y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) \text{ w/probability } 1/3 \\
(0, 2) \text{ w/probability } 1/3 \\
(3, 3) \text{ w/probability } 1/3
\end{cases} \]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5) \]

\[R(b) = 2.5 = \text{REV}(Y, Z) \]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{REV}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) \quad \text{w/probability } 1/3 \\
(0, 2) \quad \text{w/probability } 1/3 \\
(3, 3) \quad \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{REV}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(y, z) = \max(0, y - 1, z - 2, y + z - __)\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \REV(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(y, z) = \max(0, y - 1, z - 2, y + z -)\]

\[b_0(y, z) = \max(0, z - 2, y + z -)\]
Two Goods: Example 4

\((Y, Z) \sim \begin{cases}
(1, 0) \text{ w/probability } 1/3 \\
(0, 2) \text{ w/probability } 1/3 \\
(3, 3) \text{ w/probability } 1/3
\end{cases} \)

\[
b(y, z) = \max(0, \frac{1}{2} y - \frac{1}{2}, z - 2, y + z - 5)
\]

\[
R(b) = 2.5 = \text{REV}(Y, Z)
\]

THE UNIQUE OPTIMAL MECHANISM

\[
b_1(y, z) = \max(0, y - 1, z - 2, y + z - 4)
\]

\[
b_0(y, z) = \max(0, z - 2, y + z - \quad)
\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{REV}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(y, z) = \max(0, y - 1, z - 2, y + z - 4)\]

\[b_0(y, z) = \max(0, z - 2, y + z - 5)\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2} y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{REV}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(y, z) = \max(0, y - 1, z - 2, y + z - 4)\]

\[R(b_1) = 2.33\ldots\]

\[b_0(y, z) = \max(0, z - 2, y + z - 5)\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases} \]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{Rev}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

\[b_1(y, z) = \max(0, y - 1, z - 2, y + z - 4)\]

\[R(b_1) = 2.33...\]

\[b_0(y, z) = \max(0, z - 2, y + z - 5)\]

\[R(b_0) = 2.33...\]
Two Goods: Example 4

\[(Y, Z) \sim \begin{cases}
(1, 0) & \text{w/probability } 1/3 \\
(0, 2) & \text{w/probability } 1/3 \\
(3, 3) & \text{w/probability } 1/3
\end{cases}\]

\[b(y, z) = \max(0, \frac{1}{2}y - \frac{1}{2}, z - 2, y + z - 5)\]

\[R(b) = 2.5 = \text{REV}(Y, Z)\]

THE UNIQUE OPTIMAL MECHANISM

PRICE FOR LOTTERIES ON GOODS
Two Goods: Example 4’
Two Goods: Example 4’

\[Y, Z \sim \begin{cases}
1 & \text{w/probability } 1/6 \\
2 & \text{w/probability } 1/2 \\
4 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)} \]
Two Goods: Example 4’

\[Y, Z \sim \begin{cases}
1 & \text{w/probability } 1/6 \\
2 & \text{w/probability } 1/2 \\
4 & \text{w/probability } 1/3
\end{cases} \quad \text{(IID)}
\]

THE UNIQUE OPTIMAL MECHANISM:

\[b(y, z) = \max(0, \frac{1}{2}y - 1, \frac{1}{2}z - 1, y + z - 4) \]
Two Goods: Example 4’

\[Y, Z \sim \begin{cases}
1 & \text{w/probability } \frac{1}{6} \\
2 & \text{w/probability } \frac{1}{2} \quad \text{(IID)} \\
4 & \text{w/probability } \frac{1}{3}
\end{cases} \]

THE UNIQUE OPTIMAL MECHANISM:

\[b(y, z) = \max(0, \frac{1}{2}y - 1, \frac{1}{2}z - 1, y + z - 4) \]

PRICE FOR LOTTERIES ON GOODS
Revenue maximizing mechanisms:
Revenue maximizing mechanisms:
1. post a price for each good separately
Multiple Goods

Revenue maximizing mechanisms:
1. post a price for each good separately
2. post a price for the bundle
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
Multiple Goods

Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries
Revenue maximizing mechanisms:

1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries

1 – 3: deterministic mechanisms
4: stochastic mechanisms
Revenue maximizing mechanisms:
1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries
Multiple Goods

Revenue maximizing mechanisms:
1. post a price for each good separately
2. post a price for the bundle
3. post prices for each good separately and for the bundle
4. post prices for various lotteries

$X_1, X_2, ..., X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$
Multiple Goods, I.I.D. Uniform

\(X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}\)

\(k = 1: \quad b(x) = \max(0, \ x_1 - \frac{1}{2})\)
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1 \): \[b(x) = \max(0, x_1 - \frac{1}{2}) \]
- \(k = 2 \): \[b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \]
Multiple Goods, I.I.D. Uniform

\(X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \)

- \(k = 1 \): \(b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2 \):
 \[
 b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3})
 \]
- \(k = 3 \):
 \[
 b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s)
 \]
Multiple Goods, I.I.D. Uniform

\(X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}\)

- \(k = 1: b(x) = \max(0, x_1 - \frac{1}{2})\)
- \(k = 2:\)
 \[b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3})\]
- \(k = 3: b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s)\)

where \(s = \frac{9}{4} - \frac{\sqrt{6}}{4} \cos\left(\frac{1}{3} \arctan\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\right) - \frac{3\sqrt{2}}{4} \sin\left(\frac{1}{3} \arctan\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\right)\)
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1: \quad b(x) = \max(0, \ x_1 - \frac{1}{2}) \)
- \(k = 2: \quad b(x) = \max(0, \ x_i - \frac{2}{3}, \ x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \)
- \(k = 3: \quad b(x) = \max(0, \ x_i - \frac{3}{4}, \ x_i + x_j - \frac{6-\sqrt{2}}{4}, \ x_1 + x_2 + x_3 - s) \)

where \(s \approx 1.2257... = \text{solution of 3rd degree equation with coefficients in } \mathbb{Q}[^{\sqrt{2}}] \)
\(X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \)

- \(k = 1: b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2: \)
 \[b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \]
- \(k = 3: b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \)

 \[\ldots \]
Multiple Goods, I.I.D. Uniform

\[X_1, X_2, \ldots, X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.} \]

- \(k = 1 \): \(b(x) = \max(0, x_1 - \frac{1}{2}) \)
- \(k = 2 \):
 \[b(x) = \max(0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4-\sqrt{2}}{3}) \]
- \(k = 3 \): \(b(x) = \max(0, x_i - \frac{3}{4}, x_i + x_j - \frac{6-\sqrt{2}}{4}, x_1 + x_2 + x_3 - s) \)

 \[\ldots \]

Monotonicity

If valuations of **BUYER** increase
Monotonicity

If valuations of **BUYER** *increase* then maximal revenue of **SELLER** *increases* (weakly)
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \):
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

$$q(x)x - s(x) \geq q(x')x - s(x')$$ (IC: $x \rightarrow x'$)
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

\[q(x) x - s(x) \geq q(x') x - s(x') \]
\[(IC: x \rightarrow x') \]

\[q(x') x' - s(x') \geq q(x) x' - s(x) \]
\[(IC: x' \rightarrow x) \]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

$q(x) \cdot x - s(x) \geq q(x') \cdot x - s(x')$ (IC: $x \rightarrow x'$)

$q(x') \cdot x' - s(x') \geq q(x) \cdot x' - s(x)$ (IC: $x' \rightarrow x$)

$\Rightarrow (q(x') - q(x))(x' - x) \geq 0$ (add)
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

$$q(x) \cdot x - s(x) \geq q(x') \cdot x - s(x') \quad \text{(IC: } x \rightarrow x')$$

$$q(x') \cdot x' - s(x') \geq q(x) \cdot x' - s(x) \quad \text{(IC: } x' \rightarrow x)$$

$$\Rightarrow (q(x') - q(x))(x' - x) \geq 0 \quad \text{(add)}$$

$$\Rightarrow q(x') \geq q(x) \quad \text{ (} x' > x)$$
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \): Let \(x' > x \).

\[
q(x) x - s(x) \geq q(x') x - s(x') \quad \text{(IC: } x \rightarrow x')
\]
\[
q(x') x' - s(x') \geq q(x) x' - s(x) \quad \text{(IC: } x' \rightarrow x)
\]
\[
\Rightarrow (q(x') - q(x))(x' - x) \geq 0 \quad \text{(add)}
\]
\[
\Rightarrow q(x') \geq q(x) \quad \text{ (} x' > x \text{)}
\]
\[
s(x') - s(x) \geq (q(x') - q(x)) x \quad \text{(IC: } x \rightarrow x')
\]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

\[q(x)x - s(x) \geq q(x')x - s(x') \quad (\text{IC: } x \rightarrow x') \]
\[q(x')x' - s(x') \geq q(x)x' - s(x) \quad (\text{IC: } x' \rightarrow x) \]
\[\Rightarrow (q(x') - q(x))(x' - x) \geq 0 \quad \text{(add)} \]
\[\Rightarrow q(x') \geq q(x) \quad (x' > x) \]
\[s(x') - s(x) \geq (q(x') - q(x))x \quad (\text{IC: } x \rightarrow x') \]
\[\Rightarrow s(x') - s(x) \geq 0 \]
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$: Let $x' > x$.

$$\Rightarrow s(x') - s(x) \geq 0$$
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for $k = 1$:

- $x' > x \implies s(x') \geq s(x)$
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \):

- \(x' > x \Rightarrow s(x') \geq s(x) \)
- Every IC mechanism has **monotonic** \(s \)
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \):

- \(x' > x \Rightarrow s(x') \geq s(x) \)
- Every **IC** mechanism has **monotonic** \(s \)
- \(\Rightarrow \) Revenue of every **IC** mechanism is **monotonic** w.r.t. to **BUYER** valuations
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \):

- \(x' > x \Rightarrow s(x') \geq s(x) \)
- Every **IC** mechanism has monotonic \(s \)
- \(\Rightarrow \) Revenue of every **IC** mechanism is **monotonic** w.r.t. to **BUYER** valuations
- \(\Rightarrow \) Maximal revenue is **monotonic** w.r.t. **BUYER** valuations
Monotonicity

If valuations of **BUYER** increase then maximal revenue of **SELLER** increases (weakly)

Proof for \(k = 1 \):

- \(x' > x \Rightarrow s(x') \geq s(x) \)

- Every **IC** mechanism has **monotonic** \(s \)

- \(\Rightarrow \) Revenue of every **IC** mechanism is **monotonic** w.r.t. to **BUYER** valuations

- \(\Rightarrow \) Maximal revenue is **monotonic** w.r.t. **BUYER** valuations

Proof for \(k > 1 \) ?
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

\[
\begin{align*}
& (10, 23) : z - 20 \\
& (20, 27) : y - 10
\end{align*}
\]
Non-Monotonicity: Example

\[
b(y, z) = \max(0, y - 10, z - 20, y + z - 40)
\]

\[(10, 23) : z - 20 \]

\[(20, 27) : y - 10 \]

\[y \text{ increases} \]
\[z \text{ increases} \]
\[s \text{ DECREASES!} \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

There exist 2-good valuations \(X = (Y, Z) \) for which this \(b \) MAXIMIZES REVENUE
Non-Monotonicity: Example

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

There exist 2-good valuations \(X = (Y, Z) \) for which this \(b \) MAXIMIZES REVENUE (moreover: unique maximizer; robust)
Non-Monotonicity

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

- There exist 2-good valuations \(X = (Y, Z) \) for which this \(b \) MAXIMIZES REVENUE (moreover: unique maximizer; robust)

- There exist 2-good valuations \(X, X' \) s.t.
 \[X' \geq X \text{ but } Rev(X') < Rev(X) \]
Non-Monotonicity

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

- There exist 2-good valuations \(X = (Y, Z) \) for which this \(b \) **MAXIMIZES REVENUE** (moreover: unique maximizer; robust)

- There exist 2-good valuations \(X, X' \) s.t.
 \[X' \geq X \text{ but } \text{Rev}(X') < \text{Rev}(X) \]

- There exists 2-good **I.I.D.** valuations \(X, X' \)
Non-Monotonicity

\[b(y, z) = \max(0, y - 10, z - 20, y + z - 40) \]

- There exist 2-good valuations \(X = (Y, Z) \) for which this \(b \) **MAXIMIZES REVENUE** (moreover: unique maximizer; robust)

- There exist 2-good valuations \(X, X' \) s.t.
 \[X' \geq X \] but \(\text{Rev}(X') < \text{Rev}(X) \)

- There exists 2-good **I.I.D.** valuations \(X, X' \)
 \[X_1, X_2 \sim \text{i.i.d.-}F, \quad X'_1, X'_2 \sim \text{i.i.d.-}G \]
 \[X'_1 \geq X_1, X'_2 \geq X_2, \quad \text{Rev}(X') < \text{Rev}(X) \]
Problem:

- Maximize revenue
- 2 goods, 1 buyer
- Each good has 10 possible values
Problem:
- Maximize revenue
- 2 goods, 1 buyer
- Each good has 10 possible values

Solution:
- $3 \times 10 \times 10 = 300$ numbers
 (Linear Programming)
Problem:
- Maximize revenue
- 2 goods, 1 buyer
- Each good has 10 possible values

Solution:
- $3 \times 10 \times 10 = 300$ numbers
 (Linear Programming)

What is the **STRUCTURE** of the solution?
Does \textsc{Computational Complexity} capture all the difficulty of a problem?
Does **COMPUTATIONAL COMPLEXITY** capture all the difficulty of a problem?

Even after computing the precise solution, one may not understand what it is, what it means, what it represents ...
Does **COMPUTATIONAL COMPLEXITY** capture all the difficulty of a problem?

Even after computing the precise solution, one may not understand what it is, what it means, what it represents ...

⇒ "**CONCEPTUAL COMPLEXITY**"
Does **COMPUTATIONAL COMPLEXITY** capture all the difficulty of a problem?

Even after computing the precise solution, one may not understand what it is, what it means, what it represents ...

⇒

“CONCEPTUAL COMPLEXITY”

= complexity of the **STRUCTURE** of the solution
Summary: Multiple Goods
Maximizing revenue with multiple goods:
Maximizing revenue with multiple goods:
many of the results for ONE GOOD
are FALSE for MULTIPLE GOODS
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
- ?
Summary: Multiple Goods

Maximizing revenue with multiple goods:

- many of the results for **ONE GOOD** are **FALSE** for **MULTIPLE GOODS**
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
- ?
- HOW GOOD are **SIMPLE** mechanisms for **MULTIPLE GOODS**?
Two Independent Goods
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

\[\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2) \]
Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\%\right)$$
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

($\frac{e}{e+1} \approx 73\%$)

Theorem 2. If X_1 and X_2 are INDEPENDENT:
Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\%\right)$$

Theorem 2. If X_1 and X_2 are INDEPENDENT:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{1}{2} \text{REV}(X_1, X_2)$$
Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\%\right)$$
Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\% \right)$$
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{REV}(X_1) + \text{REV}(X_2) \geq \frac{e}{e+1} \text{REV}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\%\right)$$

$$\text{REV}(X_1) + \text{REV}(X_2) = 2 \text{REV}(X_1)$$
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{Rev}(X_1) + \text{Rev}(X_2) \geq \frac{e}{e+1} \text{Rev}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\% \right)$$

$$\text{Rev}(X_1) + \text{Rev}(X_2) = 2 \text{Rev}(X_1)$$

$$= 2p^* \cdot (1 - F(p^*))$$
Two Independent Goods

Theorem 1. If X_1 and X_2 are INDEPENDENT AND IDENTICALLY DISTRIBUTED:

$$\text{Rev}(X_1) + \text{Rev}(X_2) \geq \frac{e}{e+1} \text{Rev}(X_1, X_2)$$

$$\left(\frac{e}{e+1} \approx 73\%\right)$$

$$\text{Rev}(X_1) + \text{Rev}(X_2) = 2 \text{Rev}(X_1) = 2p^* \cdot (1 - F(p^*))$$

Posting the optimal one-good price per unit guarantees at least 73% of the optimal revenue.
Theorem 2. If Y and Z are INDEPENDENT:

$$\operatorname{Rev}(Y) + \operatorname{Rev}(Z) \geq \frac{1}{2} \operatorname{Rev}(Y, Z)$$
Theorem 2. If Y and Z are INDEPENDENT:

$$\text{Rev}(Y) + \text{Rev}(Z) \geq \frac{1}{2} \text{Rev}(Y, Z)$$

Proof.
Theorem 2: Proof

Theorem 2. If Y and Z are INDEPENDENT:

$$\text{REV}(Y) + \text{REV}(Z) \geq \frac{1}{2} \text{REV}(Y, Z)$$

Proof. Let (q, s) be IC&IR for $x = (y, z)$.
Theorem 2: Proof

Theorem 2. If Y and Z are INDEPENDENT:

\[
\text{Rev}(Y) + \text{Rev}(Z) \geq \frac{1}{2} \text{Rev}(Y, Z)
\]

Proof. Let (q, s) be IC&IR for $x = (y, z)$.

\[
E[s(Y, Z)] \leq E[s(Y, Z) 1_{Y \geq Z}] + E[s(Y, Z) 1_{Z \geq Y}]
\]
Theorem 2: Proof

Theorem 2. If Y and Z are INDEPENDENT:

$$\text{REV}(Y) + \text{REV}(Z) \geq \frac{1}{2} \text{REV}(Y, Z)$$

Proof. Let (q, s) be IC&IR for $x = (y, z)$.

- $E[s(Y, Z)] \leq E[s(Y, Z) 1_{Y \geq Z}] + E[s(Y, Z) 1_{Z \geq Y}]$

- Claim. $E[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{REV}(Y)$
Theorem 2: Proof

Theorem 2. If Y and Z are INDEPENDENT:

$$\text{REV}(Y) + \text{REV}(Z) \geq \frac{1}{2} \text{REV}(Y, Z)$$

Proof. Let (q, s) be IC&IR for $x = (y, z)$.

- $E[s(Y, Z)] \leq E[s(Y, Z)1_{Y \geq Z}] + E[s(Y, Z)1_{Z \geq Y}]$

- Claim. $E[s(Y, Z)1_{Y \geq Z}] \leq 2 \text{REV}(Y)$
 $E[s(Y, Z)1_{Z \geq Y}] \leq 2 \text{REV}(Z)$
Theorem 2: Proof

Theorem 2. If \(Y \) and \(Z \) are INDEPENDENT:

\[
\text{REv}(Y) + \text{REv}(Z) \geq \frac{1}{2} \text{REv}(Y, Z)
\]

Proof. Let \((q, s)\) be IC&IR for \(x = (y, z) \).

- \(\mathbb{E}[s(Y, Z)] \leq \mathbb{E}[s(Y, Z)1_{Y \geq Z}] + \mathbb{E}[s(Y, Z)1_{Z \geq Y}] \)

- Claim. \(\mathbb{E}[s(Y, Z)1_{Y \geq Z}] \leq 2 \text{REv}(Y) \)
 \(\mathbb{E}[s(Y, Z)1_{Z \geq Y}] \leq 2 \text{REv}(Z) \)

\(\implies \mathbb{E}[s(Y, Z)] \leq 2 \text{REv}(Y) + 2 \text{REv}(Z) \)

\(\implies \text{REv}(Y, Z) \leq 2 \text{REv}(Y) + 2 \text{REv}(Z) \)
Claim. \(\mathbb{E} [s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{Rev}(Y) \)
Theorem 2: Proof

Claim. $\mathbb{E}[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{Rev}(Y)$
Theorem 2: Proof

Claim. \(E[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{REV}(Y) \)

Proof.
Theorem 2: Proof

Claim. \[\mathbb{E}[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{REV}(Y) \]

Proof. For every fixed \(z \):
Theorem 2: Proof

Claim. $\mathbb{E}[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{Rev}(Y)$

Proof. For every fixed z:

- Instead of giving z with probability q_2, give a "monetary refund" of $q_2 \cdot z$
Theorem 2: Proof

Claim. \(\mathbb{E}[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{Rev}(Y) \)

Proof. For every fixed \(z \):

- Instead of giving \(z \) with probability \(q_2 \), give a "monetary refund" of \(q_2 \cdot z \), i.e.
 - \(\tilde{q}(y) := q_1(y, z) \)
 - \(\tilde{s}(y) := s(y, z) - q_2(y, z) \cdot z \)
Theorem 2: Proof

Claim. $E[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{Rev}(Y)$

Proof. For every fixed z:

- Instead of giving z with probability q_2, give a "monetary refund" of $q_2 \cdot z$, i.e.
 - $\tilde{q}(y) := q_1(y, z)$
 - $\tilde{s}(y) := s(y, z) - q_2(y, z) \cdot z$

Then: (\tilde{q}, \tilde{s}) is IC&IR for good y.
Theorem 2: Proof

Claim. \(\mathbb{E}[s(Y, Z) \mathbf{1}_{Y \geq Z}] \leq 2 \text{REV}(Y) \)

Proof. For every fixed \(z \):

- Instead of giving \(z \) with probability \(q_2 \),
 give a "monetary refund" of \(q_2 \cdot z \), i.e.
 \[
 \tilde{q}(y) := q_1(y, z)
 \]
 \[
 \tilde{s}(y) := s(y, z) - q_2(y, z) \cdot z
 \]
 Then: \((\tilde{q}, \tilde{s}) \) is IC&IR for good \(y \).

- \[
 s(y, z) = \tilde{s}(y) + q_2(y, z) \cdot z \leq \tilde{s}(y) + z
 \]
Theorem 2: Proof

Claim. \(\mathbb{E}[s(Y, Z) 1_{Y \geq Z}] \leq 2 \text{Rev}(Y) \)

Proof. For every fixed \(z \):

- Then: \((\tilde{q}, \tilde{s})\) is IC&IR for good \(y \).
- \(s(y, z) = \tilde{s}(y) + q_2(y, z) \cdot z \leq \tilde{s}(y) + z \)
Claim. \(\mathbb{E}[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{Rev}(Y) \)

Proof. For every fixed \(z \):

- \((\tilde{q}, \tilde{s})\) is IC&IR for good \(y \).
- \(s(y, z) \leq \tilde{s}(y) + z \)
Theorem 2: Proof

Claim. \(\mathbb{E}[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{Rev}(Y) \)

Proof. For every fixed \(z \):

- \((\tilde{q}, \tilde{s})\) is IC&IR for good \(y \).
- \(s(y, z) \leq \tilde{s}(y) + z \)
- \(\mathbb{E}[s(Y, z) 1_{Y \geq z}] \leq \mathbb{E}[\tilde{s}(Y) 1_{Y \geq z}] + \mathbb{E}[z 1_{Y \geq z}] \)
Theorem 2: Proof

Claim. \(\mathbb{E}[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{Rev}(Y) \)

Proof. For every fixed \(z \):

- \((\tilde{q}, \tilde{s})\) is IC&IR for good \(y \).
- \(s(y, z) \leq \tilde{s}(y) + z \)
- \(\mathbb{E}[s(Y, z) 1_{Y \geq z}] \leq \mathbb{E}[\tilde{s}(Y) 1_{Y \geq z}] + \mathbb{E}[z 1_{Y \geq z}] \leq \text{Rev}(Y) + z \mathbb{P}[Y \geq z] \)
Theorem 2: Proof

Claim. $E[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{Rev}(Y)$

Proof. For every fixed z:

- (\tilde{q}, \tilde{s}) is IC&IR for good y.
- $s(y, z) \leq \tilde{s}(y) + z$
- $E[s(Y, z) 1_{Y \geq z}] \leq E[\tilde{s}(Y) 1_{Y \geq z}] + E[z 1_{Y \geq z}]$
 \[\leq \text{Rev}(Y) + zP[Y \geq z] \]
 \[\leq \text{Rev}(Y) + \text{Rev}(Y) \]
Theorem 2: Proof

Claim. $\mathbb{E}[s(Y, Z) 1_{Y \geq z}] \leq 2 \text{REV}(Y)$

Proof. For every fixed z:

- (\tilde{q}, \tilde{s}) is IC&IR for good y.
- $s(y, z) \leq \tilde{s}(y) + z$
- $\mathbb{E}[s(Y, z) 1_{Y \geq z}] \leq \mathbb{E}[\tilde{s}(Y) 1_{Y \geq z}] + \mathbb{E}[z 1_{Y \geq z}]$
 \[\leq \text{REV}(Y) + z \mathbb{P}[Y \geq z]\]
 \[\leq \text{REV}(Y) + \text{REV}(Y)\]

- Take expectation over the values z of Z
A class of IC&IR mechanisms $\mathbf{\checkmark}$
A class of IC&IR mechanisms \mathcal{N}

A family of valuations X (distributions)
A class of IC&IR mechanisms \mathcal{N}

A family of valuations \mathcal{X} (distributions)

Guaranteed Fraction of Optimal Revenue
A class of IC&IR mechanisms \mathcal{N}
A family of valuations X (distributions)

GUARANTEED FRACTION OF OPTIMAL REVENUE
A class of IC&IR mechanisms \mathcal{N}

A family of valuations \mathbb{X} (distributions)

Guaranteed Fraction of Optimal Revenue

= maximal fraction α in $[0, 1]$ such that for every valuation X in \mathbb{X} there is a mechanism ν in \mathcal{N} satisfying

$$R(\nu, X) \geq \alpha \cdot \text{Rev}(X)$$
A class of IC&IR mechanisms \mathcal{N}

A family of valuations \mathbf{X} (distributions)

Guaranteed Fraction of Optimal Revenue

= maximal fraction α in $[0, 1]$ such that for every valuation X in \mathbf{X} there is a mechanism ν in \mathcal{N} satisfying

$$R(\nu, X) \geq \alpha \cdot \text{REV}(X)$$

$$\text{GFOR} = \inf_{X \in \mathbf{X}} \frac{\mathcal{N} - \text{REV}(X)}{\text{REV}(X)}$$
A class of IC&IR mechanisms \mathcal{N}

A family of valuations X (distributions)

Guaranteed Fraction of Optimal Revenue

= maximal fraction α in $[0, 1]$ such that for every valuation X in X there is a mechanism ν in \mathcal{N} satisfying

$$R(\nu, X) \geq \alpha \cdot \text{REV}(X)$$

$$\text{GFOR} = \inf_{X \in X} \frac{\mathcal{N} \cdot \text{REV}(X)}{\text{REV}(X)} = \inf_{X \in X} \frac{\sup_{\nu \in \mathcal{N}} R(\nu, X)}{\sup_{\mu \in M} R(\mu, X)}$$

($M = \text{class of all IC&IR mechanisms}$)
GFOR: Two Goods

- SEPARATE selling of I.I.D. goods:
SEPARATE selling of I.I.D. goods:

\[73\% \leq \text{GFOR} \]
GFOR: Two Goods

- **SEPARATE** selling of **I.I.D.** goods:

 \[73\% \leq GFOR \]

- **SEPARATE** selling of **INDEPENDENT** goods:
GFOR: Two Goods

- **SEPARATE** selling of I.I.D. goods:
 \[73\% \leq \text{GFOR} \]

- **SEPARATE** selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \]
GFOR: Two Goods

1 BUYER, 2 GOODS

● SEPARATE selling of I.I.D. goods:

\[73\% \leq \text{GFOR} \]

● SEPARATE selling of INDEPENDENT goods:

\[50\% \leq \text{GFOR} \]
GFOR: Two Goods

1 BUYER, 2 GOODS

- SEPARATE selling of I.I.D. goods:
 \[73\% \leq \text{GFOR} \]

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \]

\(n \) independent BUYERS, 2 GOODS
GFOR: Two Goods

1 BUYER, 2 GOODS

- SEPARATE selling of I.I.D. goods:

 \[73\% \leq \text{GFOR} \]

- SEPARATE selling of INDEPENDENT goods:

 \[50\% \leq \text{GFOR} \]

\(n \) independent BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:
GFOR: Two Goods

1 BUYER, 2 GOODS

- SEPARATE selling of I.I.D. goods:
 \[73\% \leq \text{GFOR} \]

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \]

\(n \) independent BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \]
GFOR: Two Goods

1 BUYER, 2 GOODS

- SEPARATE selling of I.I.D. goods:
 \[73\% \leq \text{GFOR} \leq 78\% \]

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \leq 78\% \]

\(n \) independent BUYERS, 2 GOODS

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \leq 78\% \]
GFOR: n Buyers, Two Goods

n independent BUYERS, 2 GOODS

SEPARATE selling of INDEPENDENT goods:

$50\% \leq \text{GFOR}$
GFOR: n Buyers, Two Goods

n independent **BUYERS**, 2 **GOODS**

- **SEPARATE** selling of **INDEPENDENT** goods:

 \[50\% \leq \text{GFOR} \]

Holds for:
GFOR: \(n \) Buyers, Two Goods

\(n \) independent \textbf{BUYERS}, 2 \textbf{GOODS}

- \textbf{SEPARATE} selling of \textbf{INDEPENDENT} goods:

\[
50\% \leq \text{GFOR}
\]

Holds for:

- \textbf{BAYESIAN-NASH} implementation
GFOR: n Buyers, Two Goods

n independent **BUYERS**, 2 **GOODS**

- **SEPARATE** selling of **INDEPENDENT** goods:

 \[50\% \leq \text{GFOR} \]

Holds for:

- **BAYESIAN-NASH** implementation
- **DOMINANT-STRATEGY** implementation
\[\text{n independent BUYERS, 2 GOODS} \]

- SEPARATE selling of INDEPENDENT goods:
 \[50\% \leq \text{GFOR} \]

Holds for:
- BAYESIAN-NASH implementation
- DOMINANT-STRATEGY implementation

(in each case: use the same implementation for one good and for two goods)
2 GOODS, ARBITRARY DEPENDENCE
2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling:
2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling: \[\text{GFOR} = 0 \]
2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling: \(\text{GFOR} = 0 \)

for every \(\varepsilon > 0 \) there is a valuation \(X \) in \([0, 1]^2\) such that: \(S\text{REV}(X) < \varepsilon \cdot R\text{EV}(X) \)
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \)
- **BUNDLED** selling:
GFOR: Correlated Goods

2 GOODS, ARBITRARY DEPENDENCE

- SEPARATE selling: $\text{GFOR} = 0$
- BUNDLED selling: $\text{GFOR} = 0$
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \)
- **BUNDLED** selling: \(\text{GFOR} = 0 \)

for every \(\varepsilon > 0 \) there is a valuation \(X \) in \([0, 1]^2 \) such that \(\text{BRRev}(X) < \varepsilon \cdot \text{Rev}(X) \)
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \)
- **BUNDLED** selling: \(\text{GFOR} = 0 \)
- **DETERMINISTIC** mechanisms:
2 GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: \(\text{GFOR} = 0 \)
- **BUNLED** selling: \(\text{GFOR} = 0 \)
- **DETERMINISTIC** mechanisms: \(\text{GFOR} = 0 \)
GFOR: Correlated Goods

2 Goods, Arbitrary Dependence

- **SEPARATE** selling: \(\text{GFOR} = 0 \)
- **BUNDLED** selling: \(\text{GFOR} = 0 \)
- **DETERMINISTIC** mechanisms: \(\text{GFOR} = 0 \)

For every \(\varepsilon > 0 \) there is a valuation \(X \) in \([0, 1]^2\) such that \(\text{DRev}(X) < \varepsilon \cdot \text{Rev}(X) \)
GFOR: Correlated Goods

k GOODS, ARBITRARY DEPENDENCE

- **SEPARATE** selling: $\text{GFOR} = 0$
- **BUNDLED** selling: $\text{GFOR} = 0$
- **DETERMINISTIC** mechanisms: $\text{GFOR} = 0$

The same holds for any $k \geq 2$ goods

for every $\varepsilon > 0$ there is a valuation X in $[0, 1]^k$ such that $\text{DR}_{\text{Rev}}(X) < \varepsilon \cdot \text{Rev}(X)$
$$\text{MRev}^m = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES (i.e., with MENU SIZE } \leq m)$$
Menu Size

\[\text{MRev}^{[m]} = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES} \]

\(\text{(i.e., with MENU SIZE } \leq m \) \)

- \(\text{MRev}^{[m]} \) for fixed \(m \): \(\text{GFOR} = 0 \)
Menu Size

\[\text{MRev}^m = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES (i.e., with MENU SIZE } \leq m) \]

- \(\text{MRev}^m \) for fixed \(m \): \(\text{GFOR} = 0 \)
- \(\text{MRev}^m \) increases with \(m \) (polynomially)
Menu Size

\(\text{MRev}^m = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES (i.e., with MENU SIZE } \leq m) \)

- \(\text{MRev}^m \) for fixed \(m \): \(\text{GFOR} = 0 \)
- \(\text{MRev}^m \) increases with \(m \) (polynomially)

\(\text{DETERMINISTIC-Rev} \sim \text{MRev}^{2^k} \)
Menu Size Complexity

\[\text{MRev}^m = \text{maximal REVENUE from mechanisms with AT MOST } m \text{ OUTCOMES (i.e., with MENU SIZE } \leq m) \]

- \(\text{MRev}^m \) for fixed \(m \): GFOR = 0
- \(\text{MRev}^m \) increases with \(m \) (polynomially)
- DETERMINISTIC-REV \(\sim \) MRev\(^{2^k}\)

MENU SIZE = measure of the COMPLEXITY of mechanisms
GUARANTEED FRACTION OF OPTIMAL REVENUE of SIMPLE mechanisms for two goods:
GUARANTEED FRACTION OF OPTIMAL REVENUE

of SIMPLE mechanisms for two goods:

- INDEPENDENT AND IDENTICALLY DISTRIBUTED (I.I.D.) goods:
Summary: GFOR

Guaranteed Fraction of Optimal Revenue
of SIMPLE mechanisms for two goods:

- **Independent and Identically Distributed (I.I.D.)** goods:

 \[\text{GFOR} \geq 73\% \]
GUARANTEED FRACTION OF OPTIMAL REVENUE
of SIMPLE mechanisms for two goods:

- INDEPENDENT AND IDENTICALLY DISTRIBUTED (I.I.D.) goods:
 \[\text{GFOR} \geq 73\% \]

- INDEPENDENT goods:
Summary: GFOR

Guaranteed Fraction of Optimal Revenue

of **SIMPLE** mechanisms for two goods:

- **Independent and Identically Distributed (I.I.D.)** goods:
 \[\text{GFOR} \geq 73\% \]

- **Independent** goods:
 \[\text{GFOR} \geq 50\% \]
Summary: GFOR

GUARANTEED FRACTION OF OPTIMAL REVENUE
of SIMPLE mechanisms for two goods:

- **INDEPENDENT AND IDENTICALLY DISTRIBUTED (I.I.D.)** goods:
 \[\text{GFOR} \geq 73\% \]

- **INDEPENDENT** goods:
 \[\text{GFOR} \geq 50\% \]

- **CORRELATED** goods:
Summary: GFOR

Guaranteed Fraction of Optimal Revenue of Simple mechanisms for two goods:

- Independent and identically distributed (I.I.D.) goods:
 \[\text{GFOR} \geq 73\% \]

- Independent goods:
 \[\text{GFOR} \geq 50\% \]

- Correlated goods:
 \[\text{GFOR} = 0\% \]
Summary: Multiple Goods
Maximizing revenue with multiple goods:
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
Maximizing revenue with multiple goods:

- many of the results for **ONE GOOD** are **FALSE** for **MULTIPLE GOODS**
- is an extremely complex problem (even for simple distributions)
Maximizing revenue with multiple goods:

- many of the results for ONE GOOD are FALSE for MULTIPLE GOODS
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
Maximizing revenue with multiple goods:

- many of the results for **ONE GOOD** are **FALSE** for **MULTIPLE GOODS**
- is an extremely complex problem (even for simple distributions)
- “what we have learned from one good is too good to be true for two goods”
- **SIMPLE** mechanisms **MAY** yield **UNIFORM APPROXIMATION**
"Are you trying to auction your Brussels sprouts again?"