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Abstract. In this note we consider crossed modules of groups (N → G, G→ Aut(N)), as
a homotopy version of the inclusion N ⊂ G of a normal subgroup. Our main observation is a
characterization of the underlying map N → G of a crossed module, in terms of a simplicial
group structure on the associated bar construction. This approach allows for “natural”
generalizations to other monoidal categories, in particular we consider briefly what we call
‘normal maps’ between simplicial groups.

1. Introduction and main results

In this note we consider a well-know relation between crossed modules and simplicial
groups [Lo, B, Con, CC]. Our aim is to reformulate this association in terms of homotopy
co-limits. More specifically, we associate to a given crossed module an explicit simplicial
group structure on the bar construction. This allows for natural definitions and results for
similar concepts in the category of loop spaces and in fact, in any monoidal category. It
yields, for example, a better understanding of the localization of principal fibrations under
monoidal functors [P]. Further, we find in §6 that this reformulation makes the higher
versions of crossed modules such as Loday’s diagram of groups easier to approach.

Our main Theorem 1.1 below states that a crossed module structure G → Aut(N) on a
group map N → G, yields directly a simplicial group structure on the usual bar construction
(taken here as a model of the homotopy quotient), namely on the simplicial set Bar(G,N) =
(G×Nk)k≥0. Thus Bar(G,N) is isomorphic, as a simplicial set, to a simplicial group which,
moreover, is compatible with the natural action of G on the bar construction (see Remark
2.4.3). Moreover this process is reversible. In fact, we give an explicit constructive recipes
to pass from the cross module structure to the group structure on the bar construction and
back.

From this point of view, it is tempting to regard a map of groups N → G which underlies a
crossed module, as a (homotopy) normal map, since in some sense it generalizes the inclusion
of a normal subgroup N ⊂ G (see Lemma 2.5.3 and the discussion in Remark 2.5.2). Indeed
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we show that the crossed module map ` : G→ Aut(N), which we call a normal structure on
the map N → G is inversely associated with a compatible group structure on the homotopy
quotient G//N := hocolimNG. As noted above, we take G//N to be a specific simplicial
set, namely the bar construction Bar(G,N).

In subsection 2.4 we define the notion of a normal simplicial group structure on Bar(G,N).
In the following theorem we give two mutually inverse associations: let n : N → G be
a group homomorphism. Given a normal structure on the map n we construct in §4 a
normal simplicial group structure on Bar(G,N). Conversely, given a normal simplicial group
structure on Bar(G,N) we show in §3 that it yields a crossed module structure on the map
n. The short subsection 4.2 shows that the above associations are mutual inverses.

Theorem 1.1. Given a group homomorphism n : N → G, a crossed module structure on the
map n gives a normal simplicial group structure on Bar(G,N), and conversely, any normal
simplicial group structure on Bar(G,N) determines a crossed module structure on the map
n. These two explicit associations are mutual inverses.

Notice that the homotopy type of the underlying space of the simplicial group associated
to a cross module (i.e., taken as a simplicial set, forgetting the simplicial group structure)
depends only on the underlying map N → G, and not on the normal structure. The normal
structure determines the loop-type or the homotopy type of G//N as a simplicial group. See
also Remark 2.1.1 below.

Remark 1.2. There is a rich literature on crossed modules in the context of discrete groups,
it goes back to the relation between the first and second homotopy groups of a pointed pair
of spaces: Here the main example of a crossed module is the boundary map π2(X,A)→ π1A
naturally associated to any inclusion of pointed spaces A ⊆ X. In this context, the discussion
above is closely related to results and proofs in [Con, Lo].

1.3. Extensions and natural questions. The above characterization of a crossed module
structure suggests a generalization of the notions of a normal map to maps between say
n-loop spaces or E∞-spaces, or even for a normal map between two normal maps considered
in [Lo, (5.3)], and of a normal structure on these maps.

In §5 below we do this generalization in the category of simplicial groups. This can be
extended to a notion of a normal map of n−loop spaces Ωn : ΩnX → ΩnY : it is a map
such that the associated homotopy quotient ΩnY//ΩnX has a “compatible” n− loop space
structure. A topological result analogous to the above would characterize normal maps in
terms of simplicial spaces. Thus, any functor that preserves finite products up to homotopy,
will be shown to preserve normal maps between n-loop spaces. This would alow one to
consider questions such as: Given a normal map of loop spaces ΩX → ΩY, is the induced
map gotten by taking the n-Postnikov sections PnΩX → PnΩY also normal – as defined in
Definition 5.1 below? What functors would yield a normal map, when applied to a normal
map ΩX → ΩY of loop space? These results have direct implications regarding the behavior
of principle fibrations under such functors, in particular localizations and completions. This
last question was the origin of the present note, see [DF, P].
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2. Some background material

In this section we describe the basic notions that this paper is involved with. We note
that throughout this paper maps are always applied from left to right and are often applied
on the right of the variable. We start with:

2.1. The homotopy quotient as a space.

For any map of groups h : H → G the space hocolimHG which is the homotopy colimit of
the discrete space G under the action of H, (via H 3 a : g 7→ g(ah)) is denoted here by
G//H. The Borel construction on G, namely EH ×H G gives one possible version of G//H.
It has the homotopy type of a disjoint union of identical copies of K(π, 1)-spaces:

G//H ≈
∐

G/Im(h)

K(kerh, 1).

The quotient G/Im(h) above is the quotient set (i.e. the set of cosets). Of course, for a
general map H → G, this homotopy quotient space is not equivalent to a loop space, namely
it is not homotopy equivalent to a topological (or a simplicial) group.

Remark 2.1.1. We note that the mere fact that the homotopy quotient G//H is homo-
topically equivalent as a simplicial set to a simplicial group is only a necessary condition for
having a crossed module structure (see subsection 2.5 ahead) on h : H → G, but it is not
sufficient. It is not sufficient since for any inclusion of groups H ⊆ G, the action of H on G
is free, so the homotopy quotient is the usual quotient set G/H (i.e. the set of cosets), taken
as a constant simplicial set, and hence it trivially posses some simplicial group structure,
but if H is not a normal subgroup of G, there is no crossed module structure on h.

2.2. Simplicial sets and groups.

A simplicial set X consists of a collection of sets

Xk, k = 0, 1, 2, . . .

together with face maps di = d
(k)
i : Xk → Xk−1, k ≥ 1 and i ∈ [0, k], and degeneracy maps

si = s
(k)
i : Bk → Bk+1, k ≥ 0 and i ∈ [0, k], such that the following simplicial identities hold.

(Recall that we are composing maps from left to right.)

(1) djdi = didj−1, if i < j.

(2) sjdi = disj−1, if i < j.

(3) sjdj = id = sjdj+1.
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(4) sjdi = di−1sj if i > j + 1.

(5) sjsi = sisj+1 if i ≤ j.

We say that the simplicial set X is a simplicial group if Xk is a group, for all k and the
face and degeneracy maps are homomorphisms.

2.3. The simplicial set Bar(X,N).

Let N be a group acting on a set X. Denote this action by a : x → xa, where a ∈ N and
x ∈ X. Recall that the bar construction (see e.g. [Cur, Mac])

B := Bar(X,N),

is the simplicial set consisting of the following data.

(1) For each integer k ≥ 0, a set Bk which is defined by B0 = X, and Bk := X ×Nk, for
k ≥ 1, together with

(2) the face maps d
(k)
i ≡ di : Bk → Bk−1, for all k ≥ 1 and 0 ≤ i ≤ k, defined by:

(i) d0 : (x, a1, . . . , ak) 7→ (xa1, a2, . . . , ak);
(ii) di : (x, a1, . . . , ai, ai+1, . . . , ak) 7→ (x, a1, . . . , ai · ai+1, . . . , ak), for 1 ≤ i < k;
(iii) dk : (x, a1, . . . , ak) 7→ (x, a1, . . . , ak−1),

(3) and together with degeneracy maps s
(k)
i = si : Bk → Bk+1, defined by

si : (x, a1, . . . , ak) 7→ (x, a1, . . . , ai, 1, ai+1, . . . , ak), for all k ≥ 0 and 0 ≤ i ≤ k.

It is easy to check that Bar(X,N) is a simplicial set.

Remark 2.3.1. It is “well-known” that under the present conditions (i.e. X,N are discrete)
the simplicial set Bar(X,N) has only two non-trivial homotopy sets: The set π0Bar(X,N)
and the fundamental groups of the components, all of which are isomorphic to the stabilizer
groups of the action of G on X, see also section 2.1 above. In the case where this simplicial
set admits a simplicial group structure, as is claimed for normal maps, see below, then its
classifying space is connected and has only two non-trivial homotopy groups in dimension
one and two. Further, it is known that any such space comes, up to homotopy, from a
simplicial group associated to some cross module. We are interested in underlying the direct
relation to the bar construction that is associated to any map of groups N → G; where G
takes the role of X and N acts on G as in the next paragraph.

Suppose that X = G is a group and N acts on G via a homomorphism n : N → G, i.e. the
action is a : g 7→ g(an), for all a ∈ N and g ∈ G, we denote the resulting simplicial set by

(2.3.1) Bar(G,N),

suppressing the map n since it is understood from the context.
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2.4. A normal simplicial group structure on Bar(G,N).

In this subsection N and G are groups,

n : N → G,

is a group homomorphism, and Bar(G,N) is the simplicial set defined in subsection 2.3 (see
eq. (2.3.1)).

Definition 2.4.1. Let B := Bar(G,N). By a normal simplicial group structure on B we
mean the following.

(i) B0 = G is the group G.
(ii) Bk is endowed with a group structure for all k ≥ 1, we denote the multiplication in

Bk by

(2.4.1) (g, a1, . . . , ak) ∗ (h, b1, . . . , bk).

(iii) The face maps d
(k)
i and the degeneracy maps s

(k)
i are group homomorphisms.

(iv) (g, 1, . . . , 1) ∗ (h, a1, . . . , ak) = (gh, a1, . . . , ak), for all g ∈ G and (h, a1, . . . , ak) ∈ Bk,
where multiplication takes place in Bk.

Remark 2.4.2. By straight-forward calculations one shows that condition (iv) of Definition
2.4.1 follows from the same condition for k = 1. We omit these calculations for the sake of
brevity.

Remark 2.4.3. By the natural action of G on Bar(G,N) we mean g : (h, a1, . . . , ak) 7→
(gh, a1, . . . , ak), for all k ≥ 0, (h, a1, . . . , ak) ∈ Bk and g ∈ G. When we say that the mul-
tiplication in Bar(G,N) is compatible with the natural action of G, we mean that condition
(iv) of Definition 2.4.1 holds.

Notation 2.4.4. Let k ≥ 1, we denote

(1) Gk := {(g, 1, . . . , 1) | g ∈ G} ≤ Bk.
(2) Nk := {(1, a1, . . . , ak) | ai ∈ N} ≤ Bk.

Lemma 2.4.5. Suppose that Bar(G,N) is endowed with a normal simplicial group structure.
Let k ≥ 1, then Gk is a subgroup of Bk which is isomorphic to G, Nk is a normal subgroup
of Bk , Bk = GkNk and Gk ∩Nk = 1.

Proof. Gk is the image of Gk−1 under sk−1, so, by induction it is a subgroup of Bk, and since
sk−1 is injective, it is isomorphic to G. Also, Nk is the kernel of dk ◦ dk−1 ◦ · · · ◦ d1, so it is a
normal subgroup of Bk. Clearly Gk ∩Nk = 1 and Bk = GkNk by condition (iv) of Definition
2.4.1. �
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2.5. Crossed modules, normal maps and normal structure.

A crossed module consists of a group homomorphism

n : N → G,

which we call here a normal map (see Remark 2.5.2 below), together with a homomorphism

` : G→ Aut(N),

which we call here a normal structure (or a crossed module structure) on n, such that when
denoting by ag the image of a ∈ N under `(g) for g ∈ G, the following two requirement are
satisfied.

(NM1) (ag)n = g−1(an)g, for all g ∈ G and a ∈ N .

(NM2) abn = b−1ab, for all a, b ∈ N .

Remark 2.5.1. The following (seemingly not “well-known”) diagram may clarify these
formulae. Given a map of groups n : N → G one can always associate with it the following
solid arrows square:

N
conj //

n

��

Aut(N)

��

G
conj //

`

;;v
v

v
v

v
v

v
v

v
v

v
Homgps(N,G)

where the map G
conj // Homgps(N,G) is the map G 3 g 7→ (a 7→ g−1(an)g, ∀a ∈ N) and

the map Aut(N) // Homgps(N,G) is the map Aut(N) 3 σ 7→ (a 7→ (aσ)n, ∀a ∈ N). A

cross module structure ` : G → Aut(N) is simply a (dashed) diagonal lift ` rendering the
diagram commutative where the lower right triangle is (NM1) and the upper left triangle is
(NM2).

Remark 2.5.2. Let G be a group and let N be a subgroup of G. Let n : N → G be the
inclusion map and let G/N be the set of left cosets of N in G. Then there is a natural action
of G on the set G/N via left multiplication and it is easy to check that the following are
equivalent.

(i) N C G.
(ii) There exists ` : G→ Aut(N) such that (NM1) and (NM2) hold.
(iii) There exists a group structure (G/N, ∗) on G/N which is compatible with the natural

group action of G on G/N , i.e.

g · (hN) = (gN) ∗ (hN), for all g, h ∈ G,
where g · (hN) is of course (gh)N .
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We mention this since we indicated in the introduction that Theorem 1.1 is a generalization of
the above observation to the case where n is not injective. This also explains our terminology:
normal map and normal structure.

Notice the following well known basic property:

Lemma 2.5.3. Let n : N → G be a normal map and let ` : G → Aut(N), be a normal
structure on n, then

(1) n(N) is normal in G;

(2) kern ≤ Z(N);

(3) kern is invariant under `(G).

3. From a normal simplicial group structure on Bar(G,N) to a
normal structure on the map n : N → G

In this section N and G are groups and

n : N → G,

is a group homomorphism. The purpose of this section is to prove that we can recover
the normal structure on a map, from a normal simplicial group structure on the associated
bar construction. The following lemma shows how to define the crossed module structure
` : G→ Aut(N).

Proposition 3.1. Assume that Bar(G,N) is endowed with a normal simplicial group struc-
ture. Then

(1) (1, a) ∗ (1, b) = (1, ab), for all a, b ∈ N , where multiplication takes place in N1 (see
notation 2.4.1, 2.4.4 ).

(2) The map ` : G→ Aut(N) defined by: `(g) : a→ ag, where

(1, ag) := (g−1, 1) ∗ (1, a) ∗ (g, 1).

is a normal structure on n (see subsection 2.5).

Note that Proposition 3.1(1) together with Lemma 2.4.5 imply that the map ` above is a
well defined action of G on N .

We assume that Bar(G,N) is endowed with a normal simplicial group structure as defined
in subsection 2.4, and we adopt the notation of that subsection (see eq. (2.4.1) and Notation
2.4.4).

Lemma 3.2. Let k ≥ 0 and let a, b ∈ N . Then

(1) The identity element of Bk is (1, . . . , 1);
(2) (1, a−1, a) ∗ (1, 1, b) = (1, a−1, ab);
(3) (n(a−1), a) ∗ (1, b) = (n(a−1), ab);
(4) (1, a) ∗ (1, b) = (1, ab).
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Proof. (1): By definition, the identity element of B0 = G is the identity element 1 of G.
Then, by induction, since s0 : Bk → Bk+1 is a group homomorphism, for all k ≥ 0, part (1)
follows.

(2& 3): Applying d
(2)
2 and using (1) we get that (1, a−1, a) ∗ (1, 1, b) = (1, a−1, x). Applying

d
(2)
1 and using (1) again we get that (1, b) = (1, a−1x), so x = ab and (2) holds. Part (3)

follows from (2) by applying d
(2)
0 .

Part (4) follows by a similar calculation. �

Notice that B1 = Gn` N is a semidirect product of N by G, that is, the product in B1 is
given by

(h, a) ∗ (g, b) = (hg, agb), g, h ∈ G, a, b ∈ N.
Recall hypotheses (NM1) and (NM2) from subsection 2.5.

Lemma 3.3. The map ϕ : Gn`N → G defined by ϕ : (g, a)→ g(an) is a homomorphism if
and only if n satisfies (NM1) above.

Proof. We have
[(h, a)(g, b)]ϕ = (hg, agb)ϕ = hg(agb)n,

while
(h, a)ϕ(g, a)ϕ = h(an)g(bn),

hence

[(h, a)(g, b)]ϕ = (h, a)ϕ(g, a)ϕ ⇐⇒
(an)g = g(ag)n ⇐⇒
(ag)n = (an)g. �

Lemma 3.4. Consider the action of N on itself via conjugation, c : N → Aut(N), and form
the semidirect product N nc N with respect to this action. Thus

(a, b)(c, d) = (ac, bcd), a, b, c, d ∈ N.
Then the map ψ : N ncN → Gn`N defined by (a, b) 7→ (n(a), b), is a homomorphism, iff n
satisfies (NM2).

Proof. This follows by a straightforward calculation. �

Lemma 3.5. Let a, b ∈ N . Then

(1) for all k ≥ 1 and all a1, . . . , ak, b1, . . . , bk ∈ N , we have:

(1, a1, . . . , ak) ∗ (1, b1, . . . , bk) =

(1, a1b1, ab12 b2, ab1b23 b3, . . . , a
b1···bk−1

k bk).

(2) Let g ∈ G and let (1, a1, . . . , ak) ∈ Nk. Then

(1, a1, . . . , ak)
(g,1,...,1) = (1, ag1, . . . , a

g
k).
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Proof. We prove (1) by induction on k. For k = 1, this is Lemma 3.2(4). Then applying dk
using induction we see that

(1, a1, . . . , ak) ∗ (1, b1, . . . , bk) = (1, a1b1, . . . , a
b1···bk−2

k−1 bk−1, x),

Applying dk−1 using induction once more we get that

(1, a1b1, . . . , a
b1···bk−2

k−1 bk−1x) = (1, a1, . . . , ak−1ak) ∗ (1, b1, . . . , bk−1bk)

= (1, a1b1, . . . , a
b1···bk−3

k−2 bk−2, (ak−1ak)
b1···bk−2bk−1bk).

It follows that bk−1x = a
b1···bk−2

k bk−1bk, so x = a
b1···bk−1

k bk.
Part (2) follows by a similar calculation. �

Lemma 3.6. The homomorphisms n and ` satisfy (NM1) and (NM2).

Proof. Since B1 = G n` N , and since the homomorphism d0 : B1 → B0 is defined by
d0 : (g, a) 7→ g(an), Lemma 3.3 implies that (NM1) holds.

Next notice that by Lemma 3.5(1), the group N2 (see Notation 2.4.4) is isomorphic to
N nc N , where N nc N is as in Lemma 3.4. Further the map d0 restricted to N2 is given
by d0 : (1, a, b) 7→ (n(a), b), and it is a homomorphism from N nc N to G n` N . Hence, by
Lemma 3.4, (NM2) holds. �

Proposition 3.7. Let (g, a1, . . . , ak), (h, b1, . . . , bk) ∈ Bk, then

(g, a1, . . . , ak) ∗ (h, b1, . . . , bk) =

(gh, ah1b1, a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk).

Proof. First, by Lemma 3.6, (NM1) and (NM2) hold for n and `. Using Lemma 3.5(1) we
get

(1, a1, . . . , ak) ∗ (1, b1, . . . , bk) = (1, a1b1, ab1n2 b2, a
(b1b2)n
3 b3, . . . , a

(b1···bk−1)n
k bk).

Then the proposition follows using condition (iv) of Definition 2.4.1 and Lemma 3.5(2). �

4. From a normal structure on n : N → G to a normal
simplicial group structure on Bar(G,N)

In this section G and N are groups and

n : N → G, ` : G→ Aut(N),

are group homomorphisms. Recall that we denote

`(g) : a 7→ ag, a ∈ N and g ∈ G.
We assume that ` is a normal structure on n (see subsection 2.5). We let Bar(G,N) denote
the bar construction using the permutation action of N on the set G via g 7→ g(an), for
all g ∈ G and a ∈ N (see eq. (2.3.1)). Our aim in this section is to show that the normal
structure ` leads to a normal simplicial group structure on Bar(G,N).



10 EMMANUEL D. FARJOUN, YOAV SEGEV

We start by defining multiplication on Bk, for all k ≥ 0. For k = 0, B0 = G and the
multiplication is as in G. For k ≥ 1, in view of Proposition 3.7 we define multiplication by:

(g, a1, . . . , ak) ◦ (h, b1, . . . , bk) =(4.1)

= (gh, ah1b1, a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk);

Theorem 4.1. Let k ≥ 0, then

(1) Bk is a group;
(2) the map d0 : (g, a1, . . . ak) 7→ (g(a1n), a2, . . . , ak) is a homomorphism, Bk → Bk−1;
(3) the maps

di : (g, a1, . . . , ak) 7→ (g, a1, . . . , ai−1ai, . . . , ak)

are homomorphism, Bk → Bk−1, for all i ∈ [1, k − 1];
(4) the map dk : (g, a1, . . . , ak) 7→ (g, a1, . . . , ak−1) is a homomorphism Bk → Bk−1;
(5) the maps si : (g, a1, . . . , ai, 1, ai+1, . . . , ak) are homomorphisms, for all i ∈ [0, k].

Proof. (1): For each k ≥ 1 define

nk : (g, a1, . . . , ak)→ g(a1 · · · ak)n, Bk → G.

We prove simultaneously that Bk is a group and that nk is a group homomorphism.
For k = 1 this is Lemma 3.3. Suppose this holds for k − 1. Then Bk−1 acts on N via

(g, a1, . . . , ak−1) : a→ ag(a1···ak−1)n.

Notice that Bk is just the semidirect product of Bk−1 nN with respect to this action, so Bk

is a group.
To show that nk is a group homomorphism we compute

[(g, a1, . . . , ak) ◦ (h, b1, . . . , bk)]nk

= gh[ah1b1 · a
h(b1n)
2 b2 · ah(b1b2)n

3 b3 · · · ah(b1···bk−1)n
k bk]n

= gh(a1n)h(b1n) · (a2n)h(b1n)(b2n) · (a3n)h(b1b2)n(b3n) · · · (akn)h(b1···bk−1)n(bkn)

= (g(a1 · · · ak)n)(h(b1 · · · bk)n)

= (g, a1, . . . , ak)nk(h, b1, . . . , bk)nk.

(2): Let u, v ∈ Bk, u = (g, a1, . . . , ak), v = (h, b1, . . . , bk), then

(u ◦ v)d0 = (gh, ah1b1, a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk)d0

= (gh(ah1b1)n, a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk)

= (g(a1n)h(b1n), a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk)

= (g(a1n)h(b1n), a
h(b1n)
2 b2, a

h(b1n)(b2n)
3 b3, . . . , a

h(b1n)(b2···bk−1)n
k bk)

= (ud0) ◦ (vd0).

so (2) holds.
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(3): Since n satisfies (NM1) we have abn = ab, for all a, b ∈ N so

(u ◦ v)di

= (gh, ah1b1, a
h(b1n)
2 b2, a

h(b1b2)n
3 b3, . . . , a

h(b1···bk−1)n
k bk)di

= (gh, ah1b1, . . . , a
h(b1···bi−1)n
i bia

h(b1···bi)n
i+1 bi+1, . . . , a

h(b1···bk−1)n
k bk)

= (gh, ah1b1, . . . , (aiai+1)
h(b1···bi−1)nbibi+1, . . . , a

h(b1···bk−1)n
k bk)

= (g, a1, . . . , aiai+1, ai+2, . . . , ak) ◦ (h, b1, . . . , bibi+1, bi+2, . . . , bk)

= (udi) ◦ (vdi).

(4): In any semidirect product, projection onto the first coordinate is a homomorphism.
(5): This holds by a similar calculation. �

We conclude this section by showing that, as claimed in Theorem 1.1, the two associations
given in §3 and in this section are mutual inverses.

4.2. The mutual inverse relation between our two associations.

Let n : N → G be a group homomorphism. In §3 we showed how to start with a normal
simplicial group structure on Bar(G,N) and obtain a normal structure on n, and in this §4
we showed how to start with a normal structure on n and obtain a normal simplicial group
structure on Bar(G,N). The purpose of this brief subsection is to make the observation that
these two associations are mutual inverses.

Assume first that Bar(G,N) is endowed with a normal simplicial group structure, and
denote the multiplication in Bk as in equation (2.4.1) (i.e. by ∗). By Proposition 3.1(2) the
map ` : G → Aut(N) defined by: `(g) : a → ag, where (1, ag) := (g−1, 1) ∗ (1, a) ∗ (g, 1), for
all a ∈ N , is a normal structure on n. Further, given this normal structure on n, equation
(4.1) tells us how to define a normal simplicial group structure on Bk (with multiplication
denoted ◦). But now Proposition 3.7 shows that the multiplication ◦ is the same as the
original multiplication ∗.

Conversely, let ` : G→ Aut(N) be a normal structure on n (denoted g
`−→ (a 7→ ag, ∀a ∈

N). Let ◦ be the multiplication in Bk given in equation (4.1). Let `′ : G → Aut(N) be the
normal structure on n as obtained in Proposition 3.1(2), where in that proposition ∗ should
be replaced by ◦. That is for all g ∈ G, `′(g) : a→ a′, where (1, a′) = (g−1, 1) ◦ (1, a) ◦ (g, 1).
Now by the definition of ◦, we have

(g−1, 1) ◦ (1, a) ◦ (g, 1) = (g−1, a) ◦ (g, 1) = (1, ag).

We thus see that a′ = ag, for all a ∈ N , that is `′(g) = `(g), for all g ∈ G.
This completes the observation that the two associations are mutual inverses.
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5. normal maps between simplicial groups

The purpose of this section is to extend the definition of a normal map and of a normal
structure (see subsection 2.5) from groups to simplicial groups. We refer to this general
definition only in remarks about an application of the present approach to Loday’s result
[Lo, (5.4)] in §6 below.

Definition 5.1. A map n : N• → G• of simplicial groups is called (homotopy) normal if the

induced map BN• → BG• (i.e. WN• → WG•) can be extended to a homotopy fibration
sequence of connected and pointed simplicial sets:

BN•
Bn // BG• // W•.

A homotopy class of maps BG• → W• whose homotopy fibre inclusion map is equivalent
to BN• → BG• is called a normal structure on the map n. A map of normal structures
is a map of pairs of simplicial groups which is a part of a map of the associated fibration

sequences. Here BG• ∼= WG• for any simplicial group G• denotes the standard classifying
space construction [Cur], a space whose loop space is equivalent as a loop space to G•.

It has been observed that a map of discrete groups is normal if and only if there is a
fibration sequence on the connected spaces BN → BG → W , or equivalently, if the given
map has the form π1(E, e)→ π1(X, p(e)) for some principal fibration p : E → X of connected
spaces [B].

5.2. Associated Puppe fibration sequence. Recall that a Puppe sequence is a sequence
of pointed spaces and maps between them such that two adjacent arrows give a fibration
sequence. Note that any map of simplicial groups n : N• → G• yields a five-term Puppe
sequence (the first four arrows of eq. (5.1)). A normal structure on the map n, as in Definition
5.1, extends this sequence by one term

(5.1) N•
n→ G• → G•//N• → BN• → BG•

ν→ W• = B(G•//N•)

The sequence is determined up to equivalence by the last map ν on the right, via successively
taking homotopy fibers.

5.3. A Canonical example. This section uses some standard knowledge of the space of
maps between two spaces. For discrete groups the conjugation map N → Aut(N), is a
typical example of a normal map, with the identity map Aut(N) → Aut(N) as the normal
structure.

Similarly, to pass to topological or simplicial groups, an initially good candidate for the
“canonical example” of a normal map of simplicial groups is the conjugation map:

G• → autG•.

Although this map is well defined for any simplicial group G•, to make good homotopy sense
(since G• is not free) we may proceed as follows:
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One associate to each space X the space autX of all self homotopy equivalences X → X.
This space is known to be of the homotopy type of a topological group or alternatively it
is equivalent to a loop space ΩY for some well defined connected and pointed space Y, the
so called classifying space of autX, which is denoted below by Y = BautX, all spaces are
well defined up to well defined homotopy equivalences. Given a simplicial group G•, the
Puppe sequence required in the definition of normal maps is the well- known sequence of
loop spaces and spaces:

G• → aut∗BG• → autBG• → BG• → Baut∗BG• → BautBG• = W•,

where autBG• is an instance of autX as above, where Baut∗BG• is the classifying space
of pointed self-equivalence of BG•, and where the required space W• is the classifying space
of unpointed self-equivalences of BG•. This fibration (Puppe) sequence hides the equivalence
of spaces of homotopy self equivalences: autG• ∼= aut∗BG•, that holds for a free simplicial
group G•, where the LHS refers to space of loop equivalences and the RHS to space of
pointed self-equivalence.

In other words the canonical topological example of a normal map of loop spaces is the
map ΩX → aut∗X for any pointed connected space X. Geometrically speaking, the last
maps associates to any based loop λ in a well-pointed X, the pointed self-equivalence map
X → X that drags a small neighborhood of the base point around λ and leaves the rest of
X unmoved.

6. A remark on Loday’s cubes of groups

In this section we make some remarks concerning [Lo, (5.4)]. The above homotopy quotient
approach to crossed modules shade some light on Loday’s presentation of spaces with a finite
number of non-zero homotopy groups, i.e. Postnikov sections. Let us look at his presentation
of a connected 3-stage. Namely, a connected space whose homotopy groups above dimension
3 vanish. Consider with Loday the following square of groups in which all maps are normal
maps.

G //

��

X

��
H // Y

The normal structures on these maps are not written or named explicitly. We assume in
addition that these maps define in both directions maps of normal structures, i.e., the maps
preserve these structures. This implies that the induced map on the quotients X//G →
Y//H is a simplicial group map (see subsection 2.1 and section 3.) We now can form the
homotopy quotient

(Y//H)//(X//G),
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to which we will refer as the homotopy double quotient. This is a not necessarily connected
space with vanishing homotopy groups above dimension 2. In fact, it is equivalent to the
homotopy fibre of the induced maps on classifying spaces. The first relevant question is what
non-connected 2-stages can be gotten from a square of normal maps as above as a double
quotient? We then ask further, under what condition the above homotopy double quotient
can be endowed with a “compatible” simplicial group structures. Or, equivalently, under
what conditions the induced map X//G→ Y//H of simplicial groups is normal in the sense
of Definition 5.1. Loday [Lo] gives a sufficient condition via a set of equations, some of which
are quiet involved and the role of each is not very clear at the first sight. But in the present
light it turns out that several of his equations allows the construction of the double quotient
and the rest guarantee the existence of a “compatible” simplicial group structure on the
double quotient. We have checked this for some but not all of Loday’s equations.

We note that it is not hard to see that one has equivalence of simplicial sets (In fact they
have isomorphic diagonals):

(Y//H)//(X//G) ∼= (Y//X)//(H//G)

Our main point is that Loday’s conditions are equivalent to the existence of a group structure,
compatible with the action in the sense explained above, on the double quotient space as
above. The double quotient is well defined as a simplicial set given the equations demanding
the square to be a square of normal maps. It has a compatible simplicial group structure
under Loday’s extra conditions-equations. In that case its classifying space is proven by
Loday to be a general connected 3-stage Postnikov piece.
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