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Abstract

We prove that any Borel measurable proper dense subgroup of SU(2)
has Hausdorff dimension zero.

1 Introduction

In 1966, Erdős and Volkmann [8], after constructing additive subgroups of R of
arbitrary dimension, made the following conjecture: “There is no proper Borel
measurable subring of R of positive Hausdorff dimension.” Note that without
the measurability assumption, this conjecture is false, as was first observed by
Davies [6], who constructed non measurable subrings of R of arbitrary dimen-
sion, using the continuum hypothesis (see also [10]).

Some partial progress on the Erdős-Volkmann Ring Conjecture was made
in 1984 by Falconer [9], but it was only in 2002 that a complete solution was
given by Edgar and Miller [7]. Shortly after their paper appeared, Bourgain
[1, 2], building on previous work of Katz and Tao [11], found an alternative
approach to the Ring Conjecture. A byproduct of Bourgain’s proof, which is
more difficult than that of Edgar and Miller, is an important result sometimes
refereed to as Bourgain’s Discretized Sum-Product Theorem, which has found
many applications, in particular in the work of Bourgain-Gamburd [3, 4] on
spectral gap for averaging operators on compact semisimple Lie groups and in
the work of Bourgain, Furman, Lindenstrauss and Mozes [5] on quantitative
equidistribution of orbits of semigroups on the torus.

Here we prove an analog of the Erdős-Volkmann Ring Conjecture for the
group SU(2):

Theorem 1.1. Any Borel measurable proper dense subgroup of SU(2) has Haus-
dorff dimension zero.

∗Both authors were supported by ERC AdG Grant 267259. E. L. was supported also by
ISF Grant 983/09.
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In fact, the proof yields a more precise statement, a dimensional inequality
on product sets:

Proposition 1.2. Let α ∈ (0,dimG). There exists ε > 0 such that if A is a
symmetric Borel subset of G of Hausdorff dimension α which is not included in
a torus, then the product set A32 has Hausdorff dimension at least α+ ε.

Those statements can be put into contrast with the results of [13], where
subgroups of arbitrary dimension are constructed in nilpotent Lie groups. In
the case we consider here, however, the semisimple structure provides much less
flexibility.

In our proof we use a basic ingredient of the paper [3]: Bourgain-Gamburd’s
Product Theorem in SU(2). This theorem is used by Bourgain and Gamburd
to prove an L2-Flattening Lemma regarding the L2-norm of a convolution µ ∗µ
of probability measures on the group. We also want to apply an L2-flattening
lemma, but unfortunately, as it stands, the measures we need to consider (Frost-
man measures on an arbitrary positive dimensional Borel set A) need not sat-
isfy the conditions imposed in Bourgain and Gamburd’s flattening lemma unless
dimH A > 1. In that case, a straightforward application of the results of [3] give
that if A is a Borel subset of SU(2) with dimH A > 1, then dimH AA > dimH A
and consequently, SU(2) has no Borel measurable subgroup of dimension larger
than 1.

To prove Theorem 1.1, starting from the Bourgain-Gamburd Product Theo-
rem, we need to push one step further the combinatorial analysis. By a careful
choice of an appropriate “expanding word” and making use (among other in-
gredients) of the Balog-Szemerédi-Gowers Lemma already at the combinatorial
level, we get a statement strong enough to imply flattening for any measure
satisfying a Frostman condition. In order to avoid the obvious complication of
the convolved measure remaining trapped on a subgroup, our expanding word
involves two parameters — elements of G, considered as fixed, in general posi-
tion. Once the appropriate flattening statement is proven, Theorem 1.1 follows
easily, by standard Hausdorff dimension techniques.

The structure of the paper is as follows. In section 2, we give the general
setting of our work, together with some elementary observations on the geometry
of SU(2). Then, we prove a discretized combinatorial statement, using the
Bourgain-Gamburd Product Theorem in SU(2) as well as some additional basic
results of additive combinatorics; this can be considered the core of the proof,
and is contained in section 3. Finally, after establishing an appropriate L2-
flattening statement (Proposition 4.2) in section 4, we explain in section 5 how
to translate it into statements about Hausdorff dimension of product sets.

Acknowledgements. This problem was raised during N.S.’s doctoral thesis
in Orsay, under the supervision of Emmanuel Breuillard. It is our pleasure to
thank him here for many helpful discussions since then. N.S. also thanks Yves
Benoist for his very encouraging remarks at an early stage of this project.
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2 General setting and preliminary lemmas

We will denote by G the group SU(2), endowed with the invariant metric d
defined by

d(x, y) = ‖x− y‖,

where, for any complex numbers a, b, c and d,∥∥∥∥(a b
c d

)∥∥∥∥ = |a|2 + |b|2 + |c|2 + |d|2.

This metric induces a metric on the space of closed subsets of G, called the
Hausdorff metric, also denoted by d, and defined by

d(X,Y ) = max{min
x∈X

d(x, Y ),min
y∈Y

d(y,X)}.

The group G is compact and hence admits an invariant Haar measure | · |,
normalized by |G| = 1. As G is also a Lie group of dimension 3, we have, for
r ∈ (0, 1), for any x in G

|B(x, r)| ' r3.

If X is a closed subset of G, we will denote by X(ρ) the ρ-neighborhood of C,
i.e.

X(ρ) = {x ∈ G | d(x,X) ≤ ρ}.

Lemma 2.1 (Commutators and distance to a torus). For a 6= I and b in G,
denote [a, b] = aba−1b−1. We have

d(a, {±I}) · d(b, Ta) ≤ d([a, b], I),

where Ta is the unique maximal torus containing a.

Proof. Choose a basis in which

a =

(
eiθ 0
0 e−iθ

)
,

with θ ∈ (0, π). In that basis, write

b =

(
x y
z t

)
,

so that

d([a, b], I) = d(aba−1, b) =

∥∥∥∥( 0 (e2iθ − 1)y
(e−2iθ − 1)z 0

)∥∥∥∥
= 2| sin θ|

√
y2 + z2

≥ d(a, {±I}). d(b, Ta).
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Lemma 2.2. If two tori T1 and T2 satisfy d(T1, T2) ≥ r, then the intersection

T
(ρ)
1 ∩T (ρ)

2 is contained in the union of the two balls of radius ρ(1 + 3
r ) centered

at I and −I.

Proof. First, fix b ∈ T2 such that d(b, T1) ≥ r. Now assume x ∈ T (ρ)
1 ∩T (ρ)

2 . Let
x1 ∈ T1 such that d(x, x1) ≤ ρ. Now write

r.d(x1, {±I}) ≤ d(b, T1).d(x1, {±I})
≤ d([b, x1], I)

≤ d([b, x], I) + 2ρ

≤ 3ρ,

so that

d(x, {±I}) ≤ d(x1, {±I}) + ρ ≤ ρ.(1 +
3

r
).

Lemma 2.3 (Intersection of neighborhoods of cosets of tori). Let r > 8ρ > 0.
If C1 and C2 are two cosets of tori with d(C1, C2) > r, then the intersection

C
(ρ)
1 ∩ C(ρ)

2 is contained in the union of two balls of radius 2ρ(1 + 12
r ).

Proof. Write C1 = x1T1 and C2 = x2T2. We distinguish two cases.

First case: d(T1, T2) < r
4

In this case we must have d(x1, x2) > 3r
4 , so that x1T

( 3r
8 )

1 and x2T
( 3r

8 )
1 are

disjoint. But, as d(T1, T2) ≤ r
4 , we have

x2T
(ρ)
2 ⊂ x2T

( r4 +ρ)
1 ⊂ x2T

( 3r
8 )

1

so that
C

(ρ)
1 ∩ C(ρ)

2 = ∅.

Second case: d(T1, T2) ≥ r
4

Assuming C
(ρ)
1 ∩C(ρ)

2 is nonempty, fix a point x in it. Now suppose y also is in

C
(ρ)
1 ∩ C(ρ)

2 . Write,

x = x1t1 = x2t2 and y = x1s1 = x2s2

with t1, s1 ∈ T (ρ)
1 and t2, s2 ∈ T (ρ)

2 .

Then we get that x−1y = t−1
1 s1 = t−1

2 s2 is in the intersection T
(2ρ)
1 ∩ T (2ρ)

2 .
As the distance from T1 to T2 is at least r

4 , this intersection is included in

B(±I, 2ρ(1 + 12
r )). Hence C

(ρ)
1 ∩ C(ρ)

2 is contained in B(±x, 2ρ(1 + 12
r )).

Notation. If A is a subset of a metric space, for δ > 0, N(A, δ) denotes the
minimal number of balls of radius δ needed to cover A. For basic properties
of that quantity in this context, we refer the reader to [15]. For a (Borel) set
A ⊂ G we will write |A| to denote the Haar measure of A, normalized to be a
probability measure.
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For convenience, we make the following definition.

Definition 2.4. A small scale δ > 0 being fixed, a subset A of G will be called
a (α, κ, ε)-set if it satisfies the following

1. δ−α+ε < N(A, δ) < δ−α−ε;

2. ∀x ∈ G,∀r ∈ (δ, 1), N(A ∩B(x, r), δ) ≤ rκδ−εN(A, δ).

Finally, we will also make use of two classical notations.

- The Landau notation: O(ε) stands for a quantity bounded in absolute
value by C.ε, for some absolute constant C. Slightly abusing this notation,
we will denote by O(ε) a quantity that is bounded by an absolute constant
only when δ (which throughout the paper will denote the scale in which
we shall be working) is small enough.

- The Vinogradov notation: we write x � y if, x ≤ C.y for some absolute
constant C, and x�p y if the constant C depends on some parameter p.
We will also write x ' y if x� y and x� y, and similarly for x 'p y. For
two real valued functions ϕ and ψ on G, we write ϕ � ψ if there exists
an absolute constant C such that for all x in G, ϕ(x) ≤ C · ψ(x).

3 Combinatorial statement

The combinatorial lemma we are aiming at is the following:

Proposition 3.1. Let α ∈ (0,dimG) and κ > 0, and fix {g1, g2} a pair of
non-commuting elements of G. There exists ε > 0, such that, for δ > 0 small
enough, if A is a (α, κ, ε)-set and Ω ⊂ A8 satisfies N(Ω, δ) ≥ δ−8α+ε, then

N(w(Ω), δ) ≥ δ−α−ε,

where w : (a1, . . . , a8) 7→ w(a1, . . . , a8, g1, g2) is a word in the letters {ai} ∪
{g1, g2}.

The main ingredient in the proof of that lemma will be the Bourgain-
Gamburd Product Theorem:

Theorem 3.2 (Bourgain-Gamburd, [3]). Given α ∈ (0, 3) and κ > 0, there
exists τ > 0 and ε > 0 such that, for δ > 0 sufficiently small, if A ⊂ G is
a (α, κ, ε)-set satisfying N(AAA, δ) ≤ δεN(A, δ), then A is included in a δτ -
neighborhood of a torus.

For a (α, κ, ε)-set A, this theorem enables us to control the set of “trouble-
makers”, elements ξ in G for which there exists a large part of A × A whose
image under the map mξ : (a, b) 7→ aξb is not much larger than A:
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Corollary 3.3. Let α ∈ (0, 3) and κ > 0. There exists η = η(α, κ) > 0 and
ε0 = ε0(α, κ) > 0 such that for all ε ∈ (0, ε0), the following holds.
Suppose A is a (α, κ, ε)-set and denote Ξ the set of elements ξ in G such
that there exists Ω ⊂ A × A with N(Ω, δ) ≥ δεN(A, δ)2 and N(mξ(Ω), δ) ≤
δ−εN(A, δ). Then, Ξ is included in a union of at most δ−O(ε) neighborhoods of
cosets of tori of size δη.

The proof of that corollary is based on the following lemma.

Lemma 3.4. Let α ∈ (0, 3) and κ > 0. There exists τ = τ(α, κ) > 0 and
ε0 = ε0(α, κ) > 0 such that for all ε ∈ (0, ε0), the following holds.
Let A be a (α, κ, ε)-set and denote C the set of “rich cosets”:

C = {C |C is a left coset of a torus and N(C(δτ ) ∩A, δ) ≥ δεN(A, δ)}.

Then N(C, δ κτ20 ) ≤ δ−O(ε).

Proof. Without loss of generality, we may assume κ < 5.
Choose in C a δ

κτ
20 -separated subset {Ci}1≤i≤n of maximal cardinality. Note

that for any ρ > 0, the whole set of left cosets of tori can be covered by ρ−5

balls of radius ρ (in the Hausdorff metric), so that n = N(C, δ κτ20 ) ≤ δ−κτ4 .
From the inclusion-exclusion principle, we have

N(A, δ) ≥ N(

n⋃
i=1

A ∩ C(δτ )
i , δ)

≥
n∑
i=1

N(A ∩ C(δτ )
i , δ)−

∑
i6=j

N(A ∩ C(δτ )
i ∩ C(δτ )

j , δ)

≥ n.δεN(A, δ)−
∑
i 6=j

N(A ∩ C(δτ )
i ∩ C(δτ )

j , δ).

However, by Lemma 2.3 applied to ρ = δτ and r = δ
τ
4 < δ

κτ
20 (κ < 5), for i 6= j,

C
(δτ )
i ∩ C(δτ )

j is included in two balls of radius 25δ
3τ
4 < δ

τ
2 so that, using the

fact that A is a (α, κ, ε)-set, we have (assuming ε < τ
2 )

N(A ∩ C(δτ )
i ∩ C(δτ )

j , δ) ≤ 2δ
κτ
2 N(A, δ).

So we find

N(A, δ) ≥ nδεN(A, δ)− 2n2.δ
κτ
2 N(A, δ)

≥ nδεN(A, δ)− 2N(A, δ),

from which we indeed get

n = N(C, δ κτ20 ) ≤ 3δ−ε = O(δε) = δ−O(ε).
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Proof of corollary 3.3. Suppose ξ is given, satisfying the above condition, for
some large set Ω in A×A. Then, by the non-commutative version of the Balog-
Szemerédi-Gowers Lemma (Tao [15], Theorem 6.10), there exist two subsets A1

and B1 in A such that:

• N((A1 ×B1) ∩ Ω, δ) ≥ δO(ε)N(A, δ)2

• N(A1ξB1, δ) ≤ δO(ε)N(A, δ).

Then, by the structure of small doubling sets (Tao [15], Theorem 6.9) we know
that there exists a δO(ε)-approximate subgroup H, together with a finite set X
such that

• N(A, δ) = δO(ε)N(H, δ)

• cardX ≤ δ−O(ε)

• A1 ⊂ XH and ξB1 ⊂ HX.

In particular, there exist x and y in X such that N(xH ∩ A, δ) ≥ δO(ε)N(A, δ)
and N(ξ−1Hy ∩A, δ) ≥ δO(ε)N(A, δ).
Finally, by the Product Theorem 3.2, the approximate subgroup H must be
included in T , a δτ -neighborhood of a torus, for which we therefore have

N(A ∩ xT, δ) ≥ δO(ε)N(A, δ) and N(A ∩ ξ−1Ty, δ) ≥ δO(ε)N(A, δ).

From Lemma 3.4, the set of ξ satisfying such a condition is included in a union
of at most δ−O(ε) neighborhoods of cosets of tori of size δ

κτ
20 . This concludes the

proof, taking η = κτ
20 .

We are now ready to show that, using appropriate products, one can escape
the set Ξ of “trouble-makers” for A. Fix {g1, g2} a pair of non-commuting
elements of G. For i ∈ {0, 1, 2} (with g0 = 1), we define the map

πi :
G×G → G
(x, y) 7→ xgiy.

We also denote π3(x, y) = x and π4(x, y) = y.

Lemma 3.5. Let α ∈ (0, 3) and κ > 0. Then there exists ε > 0 such that,
for δ > 0 sufficiently small, if A is a (α, κ, ε)-set, and Ω ⊂ A × A satisfies
N(Ω, δ) ≥ δεN(A, δ)2, then there exists i ∈ {0, . . . , 4} such that πi(Ω) is not
included in Ξ.

Proof. Let ρ = δη, where η > 0 is the parameter given by corollary 3.3. We
know that Ξ is included in a union of few ρ-neighborhoods of cosets of tori:

Ξ ⊂
δ−O(ε)⋃
k=1

C
(ρ)
k .
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If either π3(Ω) or π4(Ω) is not included in Ξ, then we are done. Otherwise, there
must exist k and l such that

N(Ω ∩ (C
(ρ)
k × C(ρ)

l ), δ) ≥ δO(ε)N(Ω, δ) ≥ δO(ε)N(A, δ)2.

Write Ck = xkTk and Cl = Tlxl. As g1 and g2 do not commute with each
other, for at least one gi, i ∈ {0, 1, 2}, the distance between the two tori Tk and
giTlg

−1
i is larger than c = c(g1, g2) > 0. We will now check that for such i,

πi(Ω) cannot be included in Ξ, or rather, that it cannot be covered by as few
as δ−O(ε) neighborhoods of size ρ of cosets of tori.

Let X = πi(Ω∩(C
(ρ)
k ×C

(ρ)
l )). First observe that if C = xT is a coset of a torus,

then T cannot be close to both Tk and giTlg
−1
i . Without loss of generality, we

way assume that d(T, Tk) ≥ c(g1,g2)
2 > 0; we then have

N(C(ρ) ∩X, ρ) =
∑

x∈[C
(ρ)
l ∩π4(Ω)]ρ

N(xC
(ρ)
k ∩ C(ρ) ∩X, ρ)

≤
∑

x∈[C
(ρ)
l ∩π4(Ω)]ρ

C(g1, g2)

�g1,g2 N(C
(ρ)
l ∩ π4(Ω), ρ).

However, as Tk and giTlg
−1
i are at distance at least c(g1,g2)

2 from each other, we
also have

N(πi(Ω), ρ) ≥ N(X, ρ)�g1,g2 N(C
(ρ)
k ∩ π3(Ω), ρ) ·N(C

(ρ)
l ∩ π4(Ω), ρ)

≥ δO(ε)ρ−κN(C
(ρ)
l ∩ π4(Ω), ρ)

≥ δ−κη+O(ε)N(C
(ρ)
l ∩ π4(Ω), ρ),

so that πi(Ω) cannot be covered by less than δ−κη+O(ε) neighborhoods of size ρ
of cosets of tori. Choosing ε > 0 sufficiently small (depending only on κ and α)
gives what we were looking for: πi(Ω) is not included in Ξ.

Now that we explained how to escape from Ξ, we can obtain the combina-
torial statement announced at the beginning of the section.

Proposition 3.6. Let α ∈ (0, 3) and κ > 0. There exists ε > 0, such that, for
δ > 0 sufficiently small (depending on g1, g2), if A is a (α, κ, ε)-set and Ω ∈ A8

satisfies N(Ω, δ) ≥ δ−8α+ε, then

N(w(Ω), δ) ≥ δ−α−ε,

where

w(ω) = ω3π0(ω1, ω2)ω4π1(ω1, ω2)ω5π2(ω1, ω2)ω6π3(ω1, ω2)ω7π4(ω1, ω2)ω8.
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Notation. If I ⊂ {1, . . . , 8}, we denote by pI the projection map

pI :
A8 → AI

(ai)1≤i≤8 7→ (ai)i∈I

Also, for (ωi)i∈I ∈ pI(Ω) we denote by Ω(ωi)i∈I the set

Ω(ωi)i∈I = {(ωi)i 6∈I | (ωi)1≤i≤8 ∈ Ω}.

Proof of Proposition 3.6. First note that we may assume without loss of gener-
ality that Ω is a union of balls of radius δ. Then, losing a harmless factor 1

2 in
the cardinality of Ω, we may restrict Ω to the set

Ω′ = {(ωi)1≤i≤8 |N(Ω(ω1,ω2), δ) ≥
δ−6α+ε

2
}. (1)

Now p12(Ω) is a subset of A×A with N(p12(Ω), δ) ≥ δ−2α+ε, so, by Lemma 3.5,
there exists (ω1, ω2) ∈ p12(Ω) and i ∈ {0, . . . , 4} such that πi(ω1, ω2) 6∈ Ξ.
Assume for simplicity that i = 4.
By (1),

N(Ω(ω1,ω2), δ) ≥
δ−6α+ε

2
,

so we may choose (ω3, ω4, ω5, ω6) such that

N(Ω(ω1,...,ω6), δ) ≥
δ−2α+ε

2
.

Then, as ξ := πi(ω1, ω2) 6∈ Ξ, we have

N(mξ(Ω(ω1,...,ω6)), δ) ≥ δ−εN(A, δ).

As

ω3π0(ω1, ω2)ω4π1(ω1, ω2)ω5π2(ω1, ω2)ω6π3(ω1, ω2)mξ(Ω(ω1,...,ω6
)) ⊂ w(Ω),

this implies
N(w(Ω), δ) ≥ δ−εN(A, δ).

4 Flattening of measures

Mimicking the proof of Bourgain-Gamburd’s l2-Flattening Lemma, but starting
from the combinatorial statement above, we prove in this section the flattening
of measures announced in the introduction.

Notation. For δ > 0, we denote Pδ =
1B(I,δ)

|B(I,δ)| the normalized indicator function

of the ball of radius δ centered at I. If µ is a Borel measure on G, we also denote

µδ = µ ∗ Pδ.

The measure µδ is absolutely continuous with respect to the Haar measure.
With a slight abuse of notation, we will also write µδ for its density function.
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Definition 4.1. Let α ∈ (0, 3). A Borel measure on G will be called α-Frostman
if it satisfies, for some C ≥ 0, for all r > 0, for all x ∈ G,

µ(B(x, r)) ≤ C.rα.

The flattening occurs for α-Frostman measures to which one applies the map
w of Proposition 3.6:

Lemma 4.2. Let α ∈ (0, 3) and {g1, g2} a pair of non-commuting elements in
G. There exists ε = ε(α) > 0 and a neighborhood V of I in G such that the
following holds:
Let µ be a α-Frostman Borel probability measure supported on V . Then the
pushforward ν of the measure µ⊗8 under the map w defined in Proposition 3.6
above, satisfies, for all δ > 0 sufficiently small (depending on g1, g2)

‖νδ‖22 ≤ δ3−α+ε.

The proof will be by contradiction: starting from a measure µ such that for
some δ > 0 (arbitrarily small), and for some small ε > 0,

‖νδ‖22 ≥ δ3−α+ε,

we will construct a set Ω violating Proposition 3.6. We start by some elementary
observations on how to approximate µδ by dyadic level sets.

Definition 4.3. We will say that a family of subsets (Si)i∈I in G has bounded
multiplicity if there exists an absolute constantK such that for any {i1, . . . , iK} ⊂
I, ∩Kk=1Sik = ∅. Alternatively, we will also say that the union

⋃
i∈I Si is essen-

tially disjoint.

Lemma 4.4. Let µ be a α-Frostman Borel probability measure on G and δ > 0.
There exist subsets Ai, 0 ≤ i ≤ (3− α) log 1

δ such that

1. µδ �
∑
i 2i1Ai � µ4δ

2. Each Ai is an essentially disjoint union of balls of radius δ.

Moreover, if for some i and some ε > 0, 2i|Ai| ≥ δε and 2i ≥ δ−3+α+ε, then Ai
is a (α, α,O(ε))-set.

Proof. Take a C a maximal δ-separated subset of G. Then, the collection of
balls {B(x, δ)}x∈C covers G. This gives

µδ ≤
∑
x∈C

µδ · 1B(x,δ).

Now, for ξ ∈ B(x, δ), we have

µδ(ξ) =
µ(B(ξ, δ))

|B(I, δ)|
≤ µ(B(x, 2δ))

|B(I, δ)|
� µ(B(x, 2δ))

|B(I, 2δ)|
= µ2δ(x),
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so that
µδ �

∑
x∈C

µ2δ(x)1B(x,δ) (2)

On the other hand, the balls {B(x, δ2 )}x∈C are disjoint, so that a ball of radius

2δ can contain at most C = |B(I,2δ)|
|B(I, δ2 )| of them. Therefore, a point y in G cannot

belong to more than C balls of the cover {B(x, δ)}x∈C . It follows that∑
x∈C

µ2δ(x)1B(x,δ) �
∑
x∈C

µ4δ1B(x,δ) � µ4δ. (3)

Finally, set
Ci =

{
x ∈ C | 2i ≤ µ2δ(x) < 2i+1

}
and

Ai =
⋃
x∈Ci

B(x, δ).

Equations (2) and (3) imply that indeed

µδ �
∑
i

2i1Ai � µ4δ.

Now suppose that for some i, 2i|Ai| ≥ δε and 2i ≥ δ−3+α+ε. By construction,
we must also have 2i � δ−3+α, so that

δ−α−ε ≥ N(Ai, δ) ' δ−3|Ai| � δ−α.

Moreover, for r ∈ (δ, 1) and x ∈ G,

N(Ai ∩B(x, r), δ) ≤ δ−3|Ai ∩B(x, r + δ)|
≤ δ−3|Ai ∩B(x, 2r)|
� δ−32−iµ(Ai ∩B(x, 2r)),

which implies, as µ is α-Frostman,

N(Ai ∩B(x, r), δ) = δ−α+O(ε)(2r)α

= rαδO(ε)N(Ai, δ),

and so, Ai is a (α, α,O(ε))-set.

Before starting the proof of Proposition 4.2, we give some technical estimates
on the pushforward of µ under the map w.
Denote

w′(a1, . . . , a7) = a3π0(a1, a2)a4π1(a1, a2)a5π2(a1, a2)a6π3(a1, a2)a7π4(a1, a2),

so that
w(a1, . . . , a8) = w′(a1, . . . , a7)a8.
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Lemma 4.5. There exists a neighborhood V of I in G, and an absolute constant
C > 0 such that if g1 and g2 are in V , then for all 1 ≤ j ≤ 7, for all {ai}i6=j ∈ V 6

and x in G, the map
aj 7→ w′(a1, . . . , a7)−1x,

is a diffeomorphism from V on its image with Jacobian Jϕ satisfying

∀aj ∈ V,
1

C
≤ |Jϕ(aj)| ≤ C.

Proof. This is an immediate consequence of the Local Inverse Theorem, and of
the fact that the map (a1, . . . , a7, g1, g2, x) 7→ Jϕ(aj) is continuous, and takes
a nonzero integer value (concretely, 1 or 4 depending on j) on (I, . . . , I, x) for
any x ∈ G.

If µ is a Borel probability measure on G, we can estimate:

I(x) =

∫
V

µ⊗7({(a2, . . . , a8) |w(a1, . . . , a8) ∈ B(x, δ)}) da1

=

∫
G6

(∫
V

µ({a8 |w(a1, . . . , a8) ∈ B(x, δ)}) da1

)
dµ⊗6(a2, . . . , a7)

=

∫
G6

(∫
V

µ(B(w′(a1, . . . , a7)−1x, δ)) da1

)
dµ⊗6(a2, . . . , a7)

=

∫
G6

(∫
ϕ(V )

µ(B(u, δ))|Jϕ−1(u)| du

)
dµ⊗6(a2, . . . , a7),

so that if µ is supported on V , the previous lemma implies, uniformly in x,

I(x) ≤
∫
G6

Cδ3 dµ⊗6(a2, . . . , a7) = C.δ3. (4)

Similarly, one bounds, uniformly in a1,

J(a1) =

∫
G

µ⊗7({(a2, . . . , a8) |w(a1, . . . , a8) ∈ B(x, δ)}) dx ≤ C.δ3. (5)

We can now make our first step in the direction of Proposition 4.2:

Lemma 4.6. Let µ be a α-Frostman Borel measure on G and write µδ �∑
i 2i1Ai � µ4δ as in the previous lemma. If ν = w∗(µ

⊗8) satisfies ‖ν8δ‖22 ≥
δ−3+α+ε, then there exists (i1, . . . , i8) such that,

w∗(2
i11Ai1

⊗ · · · ⊗ 2i81Ai8 ) ≥ δ−3+α+O(ε),

and each Aik is a (α, α,O(ε))-set.

Proof. By definition of the Ai’s we have

ν8δ � w∗(µδ ⊗ · · · ⊗ µδ)

�
∑

i1,...,i8

w∗(2
i11Ai1

⊗ · · · ⊗ 2i81Ai8 ).

12



Thus, the lower bound on ‖ν8δ‖2 together with the triangle inequality imply
that there exists (i1, . . . , i8) such that

‖2i1+···+i8w∗(1Ai1 ⊗ · · · ⊗ 1Ai8 )‖22 ≥
1

(log 1
δ )8

δ−3+α+ε ≥ δ−3+α+O(ε). (6)

Remains to show that for each k = 1, . . . , 8, the set Aik is a (α, α,O(ε))-set. By
Lemma 4.4, it suffices to check that for each k,

2ik |Aik | ≥ δO(ε) and 2ik ≥ δ−3+α+O(ε). (7)

For notational convenience, we consider the case k = 1, the other cases can
be handled in the same way, mutatis mutandis. Write

δ−3+α+O(ε) ≤ ‖w∗(2i11Ai1 ⊗ · · · ⊗ 2i81Ai8 )‖22
≤ ‖w∗(2i11Ai1 ⊗ µδ ⊗ · · · ⊗ µδ)‖

2
2

= 22i1δ−6

∫
G

w∗(1Ai1 ⊗ µ⊗ · · · ⊗ µ)(B(x, δ))2 dx

= 22i1δ−6

∫
G

(∫
V

1Ai1
(a1)µ⊗7({(a2, . . . , a8) |w(a1, . . . , a8) ∈ B(x, δ)}) da1

)2

dx.

By Jensen’s inequality applied to the inner squared integral, this gives

δ−3+α+O(ε) ≤ 22i1δ−6

∫
G

∫
V

1Ai1
(a1)µ⊗7({(a2, . . . , a8) |w(a1, . . . , a8) ∈ B(x, δ)})I(x) da1 dx,

which yields, using successively estimates (4) and (5) above,

δ−3+α+O(ε) � 22i1δ−3

∫
G

∫
V

1Ai1
(a1)µ⊗7({(a2, . . . , a8) |w(a1, . . . , a8) ∈ B(x, δ)}) da1 dx

� 22i1

∫
G

1Ai1
(a1) da1,

whence
δ−3+α+O(ε) ≤ 22i1 |Ai1 |. (8)

As 2i11Ai1 � µ4δ, taking the integral, we find 2i1 |Ai1 | � 1, and so,

2i1 ≥ δ−3+α+O(ε).

By construction of the Ai’s we have 2i1 � δ−3+α, and therefore (8) also implies

2i1 |Ai1 | ≥ δO(ε).

We are finally ready to prove our flattening statement.
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Proof of Proposition 4.2. Under the hypothesis of the proposition, assume for
contradiction that for ε > 0 arbitrarily small,

‖ν8δ‖22 ≥ δ−3+α+ε.

Let Ai1 , . . . , Ai8 be the (α, α,O(ε))-sets given by the previous lemma. Denote
ν̃ = w∗(2

i11Ai1
⊗ · · · ⊗ 2i81Ai8 ) and ϕ its density function. On one hand we

have
‖ϕ‖22 ≥ δ−3+α+O(ε),

and on the other hand,

ν̃ � w∗(µ4δ ⊗ · · · ⊗ µ4δ︸ ︷︷ ︸
8 times

) = w′∗(µ4δ ⊗ · · · ⊗ µ4δ︸ ︷︷ ︸
7 times

) ∗ µ4δ,

whence, using the fact that µ4δ is α-Frostman,

‖ϕ‖∞ � δ−3+α.

Also, as µ4δ is a probability measure ‖ϕ‖1 � 1. Now let

D =

{
x ∈ G |ϕ(x) ≥ ‖ϕ‖

2
2

2‖ϕ‖1

}
.

We have,

δ−3+α+O(ε) ≤ ‖ϕ‖22

≤
∫
D

ϕ(x)2 dx+

∫
Dc

‖ϕ‖22 ϕ(x)

2‖ϕ‖1
dx

≤
∫
D

ϕ(x)2 dx+
‖ϕ‖22

2

so that

ν̃(D) =

∫
D

ϕ(x) dx ≥ 1

‖ϕ‖∞

∫
D

ϕ(x)2 dx ≥ δO(ε).

Denoting
Ω = w−1(D) ∩ (Ai1 × · · · ×Ai8),

this implies, using also the fact that for each k, 2ik1Aik≤ µ4δ,

µ⊗8
4δ (Ω) ≥ δO(ε),

and as µ4δ is α-Frostman,

N(Ω, δ) ≥ δ−8α+O(ε).

However, by construction,

N(w(Ω), δ) = N(D, δ) ≤ δ−3+α−O(ε).

Choosing ε > 0 (and hence O(ε)) sufficiently small, this yields the desired con-
tradiction with Proposition 3.6.
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5 Hausdorff dimension and product sets

Here we explain how to obtain results on the Hausdorff dimension of product
sets in G from the flattening statement Proposition 4.2 of the preceding section.
Recall (Definition 4.1) that a Borel measure µ on G is called α-Frostman if it
satisfies, for some C ≥ 0, for all r > 0, for all x ∈ G,

µ(B(x, r)) ≤ C.rα.

The basic tool will be the Frostman Theorem (see [12], Theorem 8.17, p. 120).

Theorem 5.1 (Frostman). Let α ∈ (0, 3) and let A be a Borel measurable subset
of G. If dimH A > α, then there exists an α-Frostman measure whose support
is included in A.

We will also use an L2-version of the easy and well-known converse to this
theorem (we recall the proof for the convenience of the reader):

Lemma 5.2. Let α ∈ (0, 3) and let A be a subset of G. If there exists a measure
on G such that µ(A) = 1 and for all δ > 0 sufficiently small,

‖µδ‖22 ≤ δ−3+α,

then
dimH A ≥ α.

Proof. Suppose dimH A < α. One can write, for k0 arbitrary large (and for
some small ε > 0, e.g. ε = α−dimH A

2 )

A ⊂
⋃
k≥k0

⋃
x∈Sk

B(x, 2−k) with cardSk ≤ 2(α−ε)k.

Therefore,

1 = µ(A) ≤
∑
k≥k0

∑
x∈Sk

µ(B(x, 2−k))

≤
∑
k≥k0

(cardSk)
1
2

√∑
x∈Sk

µ(B(x, 2−k))2

≤
∑
k≥k0

2
(α−ε)k

2

√∑
x∈Sk

µ(B(x, 2−k))2

so there exists k ≥ k0 such that√∑
x∈Sk

µ(B(x, 2−k))2 ≥ k−22−
(α−ε)k

2 ≥ 2−
kα
2 ,

15



assuming k0 (and hence k) large enough.
Now let δ = 2−k, and write:

‖µδ‖22 ' δ−3
∑
x∈[G]δ

µ(B(x, δ))2

≥ δ−3
∑
x∈Sk

µ(B(x, δ))2

≥ δ−3+α.

We are now ready to prove a dimensional growth for product sets.

Proposition 5.3. Let α ∈ (0, 3). There exists ε = ε(α) > 0 such that the
following holds for any symmetric Borel A ⊂ G of Hausdorff dimension larger
than α not included in a torus:

dimH A
32 ≥ α+ ε.

Proof. Suppose first that A is included in the neighborhood V of I defined
in Proposition 4.2. By Frostman’s Theorem, there exists a Borel probability
measure supported on A which is α-Frostman. Choose also g1 and g2 two
non-commuting elements in A. By Proposition 4.2, the pushforward ν of the
measure µ⊗8 under the map w defined in Proposition 3.6 satisfies, for all δ > 0
sufficiently small,

‖νδ‖22 ≤ δ3−α+ε.

Now, w is a word of length 16, so the support of ν is included in A16, and we
may apply Lemma 5.2 to get

dimH A
16 ≥ α+ ε.

If A is not included in the neighborhood V , using that A is symmetric, one sees
that AA∩V has Hausdorff dimension at least α. So we may apply the first part
of the proof to this set, and find

dimH A
32 ≥ α+ ε.

Remark. The symmetry assumption on A is not crucial, it only made it slightly
easier to find a integer k such that dimH A

k ∩ V ≥ α. In the general case, one
could prove that there exists such a k, depending on the choice of the set V
— which can easily be made explicit — and hence get the analogous growth
statement, possibly with a worse exponent in the product set.

Corollary 5.4. There is no dense Borel measurable proper subgroup of SU(2)
of positive Hausdorff dimension.
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Proof. Theorem 5.3 certainly implies that there cannot exist a Borel measurable
subgroup of Hausdorff dimension α ∈ (0, 3). Moreover, by [14], Théorème 4.4,
any Borel subset of G of dimension larger than 2 generates G, so in particular
G has no Borel subgroup of dimension 3.
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