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1. Introduction

1.1. Ergodic theory has proven itself to be a powerful method to tackle
difficult number theoretical problems, particularly problems which in-
volve equidistribution.

A typical application involves three parts: (a) translating the number
theoretical problems into a problem about specific algebraically defined
actions; (b) classifying invariant measures for the action; (c) deducing
the desired equidistribution statement from this measure classification.

1.2. All the actions we will consider are of the following form: the space
on which the action takes place is a quotient space X = Γ\G where G
is a linear algebraic group, and Γ < G a lattice1. Any subgroup H of
the group of affine transformations2 on G mapping Γ-cosets to Γ-cosets
acts on X. In particular, any subgroup H < G acts on X by right
translations h.x = xh−1.

This is a fairly broad class of actions. Typically, for specific number
theoretic applications one needs to consider on the a specific action. For
example, in §3 we give a proof of Furstenberg to the equidistribution
of n2α mod 1 by studying the Z action generated by the affine map
(x, y) 7→ (x + α, y + 2x + α) on the space X = R2/Z2. Margulis
proved the long-standing Oppenheim conjecture by studying the action
of SO(2, 1), i.e. the group of linear transformations preserving a fixed
indefinite quadratic form (say x2

1 + x2
2− x2

3) in three variables, on X =
SL(3, Z)\ SL(3, R), the space of covolume one lattices in R3. In §6 we
present results from [EKL04] towards Littlewood’s conjecture regarding
simultaneous Diophantine approximations by studying the action of the
group of 3× 3 diagonal matrices of determinant one on the same space
X = SL(3, Z)\ SL(3, R).

Date: June 16, 2006.
1I.e. a discrete subgroup of finite covolume.
2I.e. the group of maps G → G generated by right translations and automor-

phisms.
1
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1.3. Weyl’s original proof the equidistribution of n2α mod 1 is not very
complicated and unlike most ergodic theoretic methods gives quan-
titative results regarding equidistribution rates, but the elegance of
Furstenberg’s proof is quite striking. Furthermore, it is a good illus-
tration of the general scheme discussed in §1.1 and serves as a simple
model for the other, more complicated, results we discuss and quote
later.

1.4. A very general measure classification theorem which lies at the
heart of numerous deep number theoretical applications is Ratner’s
measure classification theorem (§4.6). We discuss this theorem, and
particularly how it can be applied to prove equidistribution in §4. Re-
turning to the general scheme presented in §1.1, the first step of trans-
lating a number theoretic question to one related to dynamics seems
to be more of an art than a science. Ratner’s measure classification
theorem is a deep and complicated theorem. The reader could cer-
tainly profit from learning some of the ideas involved but this seems
beyond the scope of this paper; besides, the recent book [Mor05] seems
to cover this quite well. Therefore we focus on the third part of the gen-
eral scheme, namely how to use this measure classification effectively;
techniques introduced by Dani and Margulis seem to be particularly
useful in this respect. Even with regard to this part, we only attempt
to illustrate clearly the issues that need to be patent; their reader who
really wants to master this important technique should study in detail
one of the papers quoted where such an application is carried out.

1.5. Ratner theorem does not cover all algebraic actions which arise
naturally from number theoretic problems. A good example is the ac-
tion of the full diagonal group on SL(n, Z)\special ∈ yourgroup(n, R).

A good understanding of entropy theory is absolutely essential to
applying what results we have regarding invariant measures for these
actions to number theory. Therefore we devote considerable space in
§5 to present some of the fundamentals regarding entropy. After that
we present in detail in §6 one application due to Einsiedler, Katok
and the author [EKL04] of a partial measure classification result to
estimating the set of possible exceptions to Littlewood’s conjecture.
Our treatment is quite close to that of [EKL04] though some of the
results are presented in a slightly more explicit form.

1.6. Finally, in §7 we explain how measure classification is related to
the behavior of Laplacian eigenfunctions on arithmetic quotient spaces
— specifically the arithmetic quantum unique ergodicity question. At
first sight the measure classification problem one is led to does not seem
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to be a promising one as there are too many invariant measures, but
hidden symmetries and restrictions save the day.

1.7. This paper was written with a fairly narrow aim: to aid graduate
students who are interested in understanding the interplay between
ergodic theory and number theory and are willing to spend some effort
doing so. Of course, other people may find this paper helpful or at
least entertaining.

This paper is certainly not a survey, in the traditional sense of the
word. Some topics are given detailed even technical treatment, while
some are discussed only superficially. It is certainly not meant to be
comprehensive and the choice of topics is fairly subjective and arbitrary.
While I have made some effort to give correct attributions, doubtless
some inaccuracies remain — the reader interested in a detailed histor-
ical account should look elsewhere.

It is the author’s intention to continue updating this tutorial, and
eventually to publish an expanded and more detailed version elsewhere.
As it is, it already contains quite a bit of material and (supplemented
with pertinent references) can probably be used as a basis for a one
semester graduate course on homogeneous dynamics and applications.

1.8. A word about notations: the paragraphs in this paper are num-
bered, and this numbering is logically identified with the numbering of
theorems, definitions, etc.; e.g. “Ratner’s measure classification the-
orem (§4.6)” and “Theorem 4.6” are synonyms. Hopefully this will
survive the typesetting.

2. Dynamical systems: some background

2.1. Definition. Let X be a locally compact space, equipped with
an action of a noncompact (but locally compact) group1 H. An H-
invariant probability measure µ on X is said to be ergodic if one of the
following equivalent conditions holds:

(i) Suppose A ⊂ X is an H-invariant set, i.e. h.A = A for every
h ∈ H. Then µ(A) = 0 or µ(A{) = 0.

(ii) Suppose f is a measurable function on X with the property
that for every h ∈ H, for µ-a.e. x, f(h.x) = f(x). Then f is
constant a.e.

(iii) µ is an extreme point of the convex set of all H-invariant Borel
probability measures on X.

1All groups will be assumed to be second countable locally compact, all mea-
sures Borel probability measures unless otherwise specified.
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2.2. A stronger condition which implies ergodicity is mixing:

Definition. Let X, H and µ be as in Definition 2.1. The action of
H is said to be mixing if for any sequence hi → ∞ in H1 and any
measurable subsets A, B ⊂ X,

µ(A ∩ hi.B) → µ(A)µ(B) as i →∞.

2.3. A basic fact about H-invariant measures is that any H-invariant
measure is an average of ergodic measures, i.e. there is some auxiliary
probability space (Ξ, ν) and a (measurable) map attaching to each ξ ∈
Ξ an H-invariant and ergodic probability measure µξ on X so that

µ =

∫
Ξ

µξdν(ξ).

2.4. Definition. An action of a group H on a locally compact topo-
logical space X is said to be uniquely ergodic if there is only one H-
invariant probability measure on X.

2.5. The simplest example of a uniquely ergodic transformation is the
map Tα : x 7→ x + α on the one dimensional torus T = R/Z where α is
irrational. Clearly Lebesgue measure m on T is Tα-invariant; we need
to show it is the only such probability measure.

To prove this, let µ be an arbitrary Tα-invariant probability measure.
Since µ is Tα-invariant,

µ̂(n) =

∫
T
e(nx)dµ(x) =

∫
T
e(n(x + α))dµ(x) = e(nα)µ̂(n),

where as usual e(x) = exp(2πix). Since α is irrational, e(nα) 6= 1 for
all n 6= 0, hence µ̂(n) = 0 for all n 6= 0 and µ = m.

2.6. Definition. Let X be a locally compact space, and suppose that
H = {ht} ∼= R acts continuously on X. Let µ be a H-invariant measure
on X. We say that x ∈ X is generic for µ if for every f ∈ C0(X) we
have2:

1

T

∫ T

0

f(ht.x) dt →
∫

X

f(y) dµ(y) as T →∞.

Equidistribution is another closely related notion:

1I.e. a sequence so that for any compact C ⊂ H only finitely many of the hi

are in C.
2Where C0(X) denotes the space of continuous functions on X which decay at

infinity, i.e. so that for any ε > 0 the set {x : |f(x)| ≥ ε} is compact.
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2.7. Definition. A sequence of probability measures µn on a locally
compact space X is said to be equidistributed with respect to a (usually
implicit) measure m if they converge to m in the weak∗ topology, i.e. if∫

f dµn →
∫

f dm for every f ∈ Cc(X).
A sequence of points {xn} in X is said to be equidistributed if the

sequence of probability measures µN = N−1
∑N

n=1 δxn is equidistributed,
i.e. if for every f ∈ C0(X)

1

N

N∑
n=1

f(xn) →
∫

X

f(y) dm(y) as N →∞.

Clearly there is a lot of overlap between the two definitions, and
in many situations“ equidistributed” and “generic” can be used inter-
changeably.

2.8. For an arbitrary H ∼= R-invariant measure µ on X, the Birkhoff
pointwise ergodic theorem shows that µ-almost every point x ∈ X
is generic with respect to some H-invariant and ergodic probability
measure on X. If µ is ergodic, mu-a.e. x ∈ X is generic for µ.

If X is compact, and if the action of H ∼= R on X is uniquely ergodic
with µ being the unique H-invariant measure, then something much
stronger is true: every x ∈ X is generic for µ!

Indeed, let µT be the probability measures

µT =
1

T

∫ T

0

δht.x dt

then any weak∗ limit of the µT will be H-invariant. But there is only
one H-invariant probability measure on X, namely µ, so µT → µ, i.e.
x is generic for µ.

3. Equidistribution of n2α mod 1

3.1. A famous theorem of Weyl states that for any irrational α, the
sequence n2α mod 1 is equidistributed. In this section we give an al-
ternative proof, due to Furstenberg, which proves this theorem by clas-
sifying invariant measures on a suitable dynamical system. We follow
Furstenberg’s treatment in [Fur81, §3.3].

3.2. The dynamical system we will study is the following: the space
will simply be the 2-torus T2 = R2/Z2, and the action will be the one
generated by the map

(3.2.a) T : (x, y) 7→ (x + α, y + 2x + α).
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One easily proved using induction that

(3.2.b) T n(x, y) = (x + nα, y + 2nx + n2α).

We will prove below that (T2, T ) is uniquely ergodic. By §2.8, it
follows that for every (x, y) the orbit {T n(x, y)}∞n=1 is equidistributed.
In particular, the orbit of the point (0, 0) is equidistributed, i.e.{

(nα mod 1, n2α mod 1) : n ∈ N
}

is equidistributed. We see that unique egodicity of T implies not
only equidistribution of n2α mod 1 but the stronger fact that (nα mod
1, n2α mod 1) is equidistributed in T2.

The same proof, with minor modifications, can be used to show
equidistribution of p(n) mod 1 for any polynomial with an irrational
leading coefficient (see Exercise 3.8 below).

3.3. The proof that (X,T ) is uniquely ergodic is harder than for irra-
tional rotations on T (cf. §2.5). The basic scheme, which is not unusual
in such proofs, is that we first prove that Lebesgue measure m on T2,
which is obviously invariant under T , is also ergodic. A separate argu-
ment is then used to bootstrap the ergodicity of Lebesgue measure to
unique ergodicity.

3.4. Proposition. Lebesgue measure m on T2 is ergodic under T .

Proof. Let f ∈ L2(m) be T -invariant. Expand f to a Fourier series

f(x, y) =
∑
n,m

f̂n,me(nx + my).

By T -invariance,

(3.4.a) f̂n,m = f̂n+2m,me((n + m)α).

In particular,
∣∣∣f̂n,m

∣∣∣ =
∣∣∣f̂n+2m,m

∣∣∣. By the Riemann-Lebesgue Lemma,

f̂n,m → 0 as (n, m) →∞, hence f̂n,m = 0 if m 6= 0.

For m = 0, however, (3.4.a) becomes f̂n,0 = e(nα)f̂n,0, so f̂n,m = 0
for all (n, m) 6= 0.

It follows that f is constant a.e., and m is ergodic. �

This argument cannot be applied directly for T -invariant probability
measures, as the Fourier transform of a measure does not satisfy the
Riemann-Lebesgue Lemma.
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3.5. The bootstrapping argument which we use to upgrade ergodicity
to unique ergodicity is a simple positivity argument.

Proposition. Let g be a measurable function T → T, and Tg : T2 → T2

be the map

Tg(x, y) = (x + α, y + g(x))

with α irrational. Then if the Lebesgue measure m is Tg-ergodic, then
in fact it is the only Tg-invariant probability measure, i.e. (T2, Tg) is
uniquely ergodic.

Proof. Suppose µ 6= m is another Tg-invariant probability measure on
T2. Let Ra denote the map (x, y) 7→ (x, y + a). Then since Tg and
Ra commute, for any a ∈ T, (Ra)∗µ is also Tg-invariant. Consider the
measure

(3.5.a) m′ =

∫
T2

(Ra)∗µ.

Clearly m′ is invariant under Ra for every a, and its projection to
the first coordinate has to be a probability measure invariant under
the rotation x 7→ x + α, hence Lebesgue. It follows that m′ = m.
But by assumption, m is ergodic, and hence is an extreme points in
the convex set of Tg invariant probability measures on T2. Therefore
m cannot be presented as a nontrivial linear combination of other Tg

invariant probability measures, in contradiction to (3.5.a). �

3.6. Proposition 3.4 and Proposition 3.5 together clearly imply

Corollary. The map T : (x, y) 7→ (x+α, y +2x+α) on T2 is uniquely
ergodic for every irrational α.

As discussed in §3.2, equidistribution of {n2α mod 1} is now an easy
consequence of this corollary.

3.7. The proof we have given for the equidistribution of {n2α mod 1}
is very elegant, but it has one serious drawback compared to Weyl’s
original method: it does not give rates. The ambitious reader is en-
couraged to try and figure out how to modify Furstenberg’s proof to
obtain a more quantitative result regarding the rate of equidistribution.
Such a quantification of a qualitative ergodic theoretic argument is of-
ten referred to as effectivization, and often can be quite entertaining
and worthwhile.

3.8. Exercise. Generalize this argument to give an ergodic theoretic
proof for the equidistribution of p(n) mod 1 for any polynomial p(n)
with an irrational leading coefficient.
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4. Unipotent flows and Ratner’s theorems

4.1. A very general and important measure classification theorem has
been proved by Ratner, in response to conjectures by Dani and Raghu-
nathan. For simplicity, we restrict our treatments to the case of Lie
groups, even though the extension of Ratner’s theorems to products of
real and p-adic groups [Rat95, MT94] is just as important for number
theoretical applications; for a recent and striking example, see [EV06]).

4.2. Definition. An element g ∈ GL(n, R) is said to be unipotent if
all its (real or complex) eigenvalues are equal to one. An element g
in a Lie group G is said to be Ad-unipotent if Ad(g) is a unipotent
element of GL(g), with g the Lie algebra of G.

4.3. Definition. Let X be a topological space, and H a locally compact
group acting continuously on X. An orbit H.x is said to be periodic if
it has a finite H-invariant measure.1

Example. Suppose H = Z, and that the action of H on X is generated
by the map T : X → X. Then x has a periodic H-orbit iff T nx = x
for some n ∈ N.

4.4. We remark that in the locally homogeneous context, i.e. X = Γ\G
and H a subgroup of G acting on X by right translations, every periodic
H-orbit is also a closed subset of X [Rag72, Theorem 1.13].

4.5. Let G be a Lie group, Γ < G a discrete subgroup, and H <
G. One obvious class of H invariant probability measures on Γ\G
are L-invariant probability measures on single periodic L-orbits for
(closed) subgroups L < G containing H. We shall call such measures
homogeneous ; equally common in this context is the adjective algebraic.

4.6. Theorem (Ratner’s measure classification theorem [Rat91a]).
Let G be a Lie group, Γ < G a discrete subgroup, and H < G a closed
connected subgroup generated by Ad-unipotent one parameter groups.
Then any H-invariant and ergodic probability measure on Γ\G is ho-
mogeneous (in the sense of §4.5).

While the statement of Theorem 4.6 the group Γ is not assumed to be
a lattice2, for most applications this assumption is necessary, as other-
wise the assumption that the H-invariant measure under consideration
is a probability measure is not a natural one.

1More formally, there is a nontrivial finite H-invariant measure ν on X so that
ν(X −H.x) = 0.

2I.e. a discrete subgroup of finite covolume
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For the remainder of this section, unless otherwise specified, Γ will
be a lattice in G.

4.7. The proof of Theorem 4.6 is beyond the scope of this paper. The
ambitious reader is encouraged to study the proof; helpful references are
the recent book [Mor05] (particularly Chapter 1), Ratner’s treatment
of a “baby case” in [Rat92], and a simplified self contained proof of
the special case H ∼= SL(2, R) (but general G and Γ) in [Ein06]. A
more advanced reference (in addition to Ratner’s original papers) is
Margulis and Tomanov’s proof of this result [MT94] which in particular
uses entropy theory as a substitute to some of Ratner’s arguments. A
useful survey paper which covers much of what we discuss in this section
is [KSS02], particularly [KSS02, §3].

4.8. Consider for simplicity first the case of H itself a unipotent one
parameter flow (in particular, as an abstract group, H ∼= R). If there
are no H-invariant probability measures on Γ\G other than the G-
invariant measure, then as we have seen in §2.8 it is fairly straightfor-
ward to deduce from the measure classification theorem information
regarding how each individual orbit is distributed, and in particular
classify the possible orbit closures (which in the uniquely ergodic case
can be only Γ\G itself, i.e. the H-flow is minimal).

4.9. Exercise. (i) Let G = SL(2, R) and Γ < G a cocompact

lattice. Let H be the group

{(
1 t
0 1

)}
. Deduce from Ratner’s

theorem that the action H on Γ\G is uniquely ergodic.
(ii) Let H < G be as in (i), but take Γ = SL(2, Z). What are the

H-invariant measures in this case?

The proof that H acting on Γ\G in (i) above is uniquely ergodic
predated Ratner’s theorem by about 20 years and is due to Furstenberg
[Fur73]. The classification in (ii) is due to Dani [Dan78]. There are
much simpler proofs now, the simplest (and quite quantitative) proof
is via the mixing of the geodesics flow.

4.10. In most cases of interest, however, there is more than one in-
variant measure in Theorem 4.6, and in this case deducing information
about individual orbits from a measure classification theorem is far less
obvious (cf. Exercise 4.15 below). Nonetheless measure classification is
the main ingredient in the proof of the following two important results
of Ratner:

4.11. Theorem (Ratner’s genericity theorem [Rat91b]). Let G be a
Lie group, Γ a lattice, and H a unipotent one parameter subgroup of G.
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Then every x ∈ Γ\G is generic for a homogeneous measure supported
on a periodic orbit L.y containing x.

4.12. Theorem (Ratner’s orbit closure classification theorem [Rat91b]).
Let G be a Lie group, Γ be a lattice in G, and H < G closed connected
subgroup generated by Ad-unipotent one parameter groups. Then for
any x ∈ Γ\G, the orbit closure H.x is a single periodic orbit for some
group H ≤ L ≤ G.

4.13. Ratner’s theorems give us very good understanding of the dy-
namics of groups generated by unipotents on finite volume quotients
Γ\G. Much less is known about the case when Γ is a discrete subgroup
with infinite covolume. For example, we do not know how to clas-
sify Radon measures1 invariant under unipotent groups in the infinite
covolume case, and we do not understand orbit closures in this case
except in very special cases (for example, see [Bur90, LS05a, Rob03]).

The action of groups H which are not generated by unipotents on
Γ\G (even in the finite covolume case) is also not well understood at
present. This topic will be discussed in detail in §6.

4.14. Ratner’s proof of Theorem 4.12 via measure classification is not
the only approach to classifying orbit closures. In particular, for the
important special case of H = SO(2, 1)2 Dani and Margulis [DM89]
(following earlier work of Margulis) classified all possible orbit closures
H.x in SL(3, Z)\ SL(3, R) before Ratner’s work.

The action of this group H = SO(2, 1) on SL(3, Z)\ SL(3, R) is
closely connected to the Oppenheim conjecture regarding values of in-
definite quadratic forms which was posed in the 1920’s, and was only
solved in the 1980’s by Margulis (see e.g. [Mar89]) using a partial clas-
sification of orbit closures of this action. An accessible self-contained
treatment of this result is [DM90].

It is not clear (at least to me) exactly what is the limit of these
topological methods, and whether they can be pushed to give a full
proof of Theorem 4.12.

4.15. Exercise. Let X = {0, 1}Z and σ : X → X be the shift map
(σ(x))i = xi+1. Let ni ↑ ∞ be an increasing sequence of integers
with ni/i → 0. Define Y to be the set of those sequences x ∈ X
with the property that for every i ∈ N, the sequence “01” does not

1I.e. locally finite but possibly infinite measures.
2I.e. the group of determinant one matrices preserving a fixed quadratic form

of signature 2,1 — e.g. Q(x1, x2, x3) = x2
1 + x2

2 − x2
3.
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appear more than i times in any stretch of ni + 1-digits, i.e. if B =
{x ∈ X : x0 = 0, x1 = 1},

Y =

{
x ∈ X : ∀i ∈ N, max

j

j+ni−1∑
k=j

1B(σkx) ≤ i

}
.

(i) Show that there are precisely two σ-invariant and ergodic prob-
ability measures on Y . What are they?

(ii) Prove that there are y ∈ Y which are not generic for any σ-
invariant probability measure on Y .

(iii) Show that there are uncountably many possible orbit closures

for σ (i.e. sets of the form {σny : n ∈ Z} with y ∈ Y ).

4.16. Exercise 4.15 shows that one cannot deduce Ratner’s strong
rigidity statements about individual orbit from her measure classifi-
cation theorem by purely formal means. We follow the approach of
Dani and Margulis [DM93] to these issues which give more uniform
and flexible versions of Theorem 4.11 that are often highly useful in
number theoretic applications. See also [Sha94] for other closely re-
lated results.

4.17. The main difficulty in passing from a measure classification the-
orem to a theorem about behavior of individual orbits is that orbits
may for some stretch of time behave according to some invariant mea-
sure, and then after a relatively short transition period start behaving
according to a different invariant measure.

There is an extra difficulty in the locally homogeneous context in that
more often than not the space we consider is not compact, bringing in
another complication: to pass from measure classification to statements
regarding individual orbits one needs to be able to control how much
time an orbit spends far away (i.e. outside big compact sets). Both
of these difficulties (which are closely related) can be addressed by the
following basic estimates.

4.18. Definition. Let G be a Lie group and Γ < G a discrete subgroup.
For any subgroup H < G define the singular set relative to H, denoted
by S(H), as the union of all periodic orbits in X = Γ\G of all closed
subgroups L < G containing H.

If H is a one parameter Ad-unipotent group then by Theorem 4.11,
S(H) is precisely the set of all x ∈ X which fail to be generic for the
G-invariant measure on X with respect to the action of H.

It is worthwhile to delve a bit into the structure of this singular
set S(H). Suppose that L1.x is a periodic orbit with L1 > H and
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x = πΓ(g). Let L = gL1 where we use the notations gL = gLg−1 and
Lg = g−1Lg. Then since L1.x has finite volume, ΓL = L∩Γ is a lattice
in L. Let

X(L, H) =
{
h ∈ G : hHh−1 ⊂ L

}
.

For any h ∈ G, since L1.x is periodic, the orbit of y = πΓ(h) under

L2 = h−1

L is periodic. If h ∈ X(gL, H), we have that the natural
probability measure on this periodic orbit L2.y is H-invariant. In this
way we get a “tube” of periodic orbits πΓL

(X(L, H)) on ΓL\G which
descends to a family of periodic orbits πΓ(X(L, H)) on X. Of course,
for some L and H this family may be empty or consist of a single
periodic orbit.

By [DM93, Proposition 2.3],

S(H) =
⋃

L∈H

πΓ(X(L, H))

where H is a countable collection of closed connected subgroups of G1.

Exercise. Work this decomposition out explicitly for G = SL(2, R),

Γ = SL(2, Z), and H =

{(
1 t
0 1

)}
.

4.19. A careful understanding of this singular set (cf. [DM90, §3]) is
important to control the amount of time a unipotent trajectory can
spend near a lower dimensional invariant subspace. For instance, it
can be used to show the following:

Theorem (Dani and Margulis [DM93, Theorem 1]). Let H be a closed
connected subgroup of G generated by Ad-unipotent elements. Let F ⊂
X − S(H) be compact. Then for any ε > 0, there is a neighborhood Ω
of S(H) such that for any Ad-unipotent one parameter subgroup {ut}
of G, any x ∈ F , and any T ≥ 0,

Leb ({t ∈ [0, T ] : ut.x ∈ Ω}) ≤ εT.

Note that typically S(H) is dense so the condition on F above is
rather harsh. A more precise result is [DM93, Theorem 7.3] which
essentially shows that the only way the trajectory {ut.πΓ(g) : t ∈ [0, T ]}
spends a substantial amount of time near the singular set is if g is so
close to some X(L0, H) so that for all t ∈ [0, T ] the point gu−t is close
to X(L0, H).

1Namely, the collection of all closed connected subgroups L < G satisfying that
(a) dim L < dim G, (b) L∩Γ is a lattice in L, and (c) the image of Γ∩L under the
adjoint representation is Zariski dense in the image of L.
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4.20. In order to control the related question of how much time an
arbitrary orbit of the one parameter unipotent subgroup spends in
a neighborhood of infinity we have the following, which follows from
several papers of Dani and Margulis starting with [Mar71].

Theorem (Dani and Margulis [DM93, Theorem 6.1]). Let G be a Lie
group and Γ < G a lattice. Then for any compact F ⊂ Γ\G and any
ε > 0 there is a compact C ⊂ X so that for any Ad-unipotent one
parameter subgroup {ut} of G, any x ∈ F and any T > 0

Leb ({t ∈ [0, T ] : ut.x 6∈ C}) ≤ εT.

There are many extensions and variations on this result, some of
them quite important. A nice place to read about some of these devel-
opments (and indeed also about the basic method) is [KM98].

4.21. As a basic example of how Theorems 4.19 and 4.20 can be used,
we show how with the aid of these theorems, Ratner’s theorem about
generic points (Theorem 4.11) can be deduced from her measure clas-
sification theorem (Theorem 4.6)1.

Proof. Let x ∈ X, and for any T > 0 set µT to be the probability
measure

µT =
1

T

∫ T

0

δut.x dt.

Without loss of generality, we may assume that x 6∈ S({ut}) for oth-
erwise we may replace X (and G and Γ accordingly) with a (lower
dimensional) periodic orbit containing {ut.x}.

What we want to prove is that for any f ∈ C0(X)

(4.21.a)

∫
X

f dµT
?→
∫

X

f dm as T →∞

where m is the G invariant probability measure on X, i.e. that µT

converge weak∗ to m.
By Theorem 4.20 applied to F = {x}, for any ε > 0 there is a

compact set C ⊂ X so that for all T we have µT (C) > 1− ε. It follows
that there is a sequence of Ti ↑ ∞ for which µTi

converge in the weak∗

topology to a probability measure µ∞.
This limiting measure µ∞ is invariant under ut. By Theorem 4.6 and

the ergodic decomposition, µ∞ is a linear combination of m and the
natural probability measures on periodic orbits of groups L containing
H. In particular, µ∞ = αm + (1− α)µ′ with µ′ a probability measure
on S({ut}).

1This is not how Ratner proved Theorem 4.11!
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Applying Theorem 4.19 to F = {x}, we get for any ε > 0 an open
set Ω ⊃ S({ut}) with µT (Ω) < ε for all T . It follows that

µ∞(Ω) ≤ lim
i→∞

µTi
(Ω) ≤ ε

and so α ≥ 1 − ε. Since ε was arbitrary, we see that µ∞ = m and
Theorem 4.11 follows. �

4.22. Exercise. Use Theorem 4.20 to show that (4.21.a) holds for
any continuous bounded f (not necessarily decaying at infinity). This
slightly stronger form of Theorem 4.11 is the one given in [Rat91b].

4.23. Exercise. Use a similar arguments to prove the following ([DM90,
Theorem 2]):

Let ut, u
(1)
t , u

(2)
t , . . . be one parameter Ad-unipotent subgroups of G

with u
(i)
t → ut, xi be a sequence of points in X converging to x ∈

X − S({ut}), and Ti ↑ ∞. Then for any continuous bounded f

1

Ti

∫ Ti

0

f(u
(i)
t .xi) dt →

∫
X

f dm.

Hint: show first that without loss of generality we can assume xi 6∈
S({ut}).

4.24. We end this section with an interesting application, presented
in the form of an exercise, of Ratner’s theorems and the related results
of Dani-Margulis to equidistribution of the points of Hecke correspon-
dences. This application was first suggested by Burger and Sarnak
[BS91] and a detailed proof was given by Dani and Margulis in [DM93].
Recently Eskin and Oh [EO06] gave a further generalization of this ap-
proach.

All these results are quite general, but we consider only the simplest
case of X = Γ\ SL(2, R). This case is also discussed in Venkatesh’
contribution to these proceedings [Ven06].

4.25. We begin our discussion by defining the Hecke correspondences
for the case of G = SL(2, R), Γ = SL(2, Z); as usual let X = Γ\G.
We say that an integer matrix γ ∈ M2(Z) is irreducible if there is no
nontrivial integer dividing all its coefficients.

Definition. Let n be an integer ≥ 2. The n-Hecke correspondence is
a map which assigns to a point x = πΓ(g) ∈ X a finite subset Tn(x) of
X (with the number of points in Tn(x) depending only on n) by

Tn(x) =

{
πΓ(n−

1
2γg) : γ ∈ M2(Z) irreducible with det γ = n

}
.
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While it is not completely obvious from the formula, Tn(x) is a finite
collection of points of X, and its cardinality can be given explicitly and
depends only on n.

Using the Hecke correspondence we can define operators (also de-
noted Tn) on L2(X) by

Tn(f)[x] = cn

∑
y∈Tn(x)

f(y);

where we take1 cn = |Tn(x)|−1.

4.26. For example2, if n = p is prime, and x = πΓ(g) as above, Tp(x)
consists of the p + 1 points

Tp(x) =

{
πΓ

(
p−1/2

(
p 0
0 1

)
g

)
, πΓ

(
p−1/2

(
p 0
1 1

)
g

)
, . . . ,

πΓ

(
p−1/2

(
p 0

p− 1 1

)
g

)
, πΓ

(
p−1/2

(
1 0
0 p

)
g

)}
;

and for any n, the set Tn2(x), which contains roughly n2 points, contains
in particular the φ(n) points

πΓ

((
1 k/n
0 1

)
g

)
(k, n) = 1.

The operators Tn respects the action of G = SL(2, R) by translations
on X, i.e. Tn(g.x) = g.Tn(x). For future reference, we note that
this shows that the Hecke operators Tn descend to correspondences on
Γ\H ∼= Γ\G/K with K = SO(2, R).

4.27. The following theorem was discussed in Venkatesh’ contribution
to these proceedings:

Theorem. For any x ∈ X, the points of the Hecke correspondences
Tn(x) become equidistributed 3 as n →∞.

There a spectral approach to the theorem is discussed, using the
known bounds towards the Ramanujan Conjecture, which gives much
sharper results than what one can presently get using ergodic theory.
However, it is quite instructive to deduce this equidistribution state-
ment from Ratner’s theorems.

1This is not the standard normalization; the standard normalization is cn =
n−1/2.

2Which the reader should verify!
3To be more precise, the sequence of probability measures |Tn(x)|−1∑

y∈Tn(x) δy

become equidistributed in a sense of Definition 2.7.
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4.28. Exercise. Let G2 = G × G, Γ2 = Γ × Γ, X2 = Γ2\G2 and

G∆ < G2 the subgroup G∆ = {(g, g) : g ∈ G}. Also let u(t) =

(
1 t
0 1

)
and u∆(t) = (u(t), u(t)). Let mX and denote the G invariant measure
on X and similarly for X2.

The purpose of this exercise1 is to prove the following, which is es-
sentially equivalent2 to the equidistribution of Tn2(x0) for every x0 ∈ X
as n →∞ along the lines of [BS91, DM93]

For any f, g ∈ L2(X), we have that

(4.28.a)

∫
Tn2(f)g dmX →

∫
f dmX

∫
g dmX as n →∞.

Let α ∈ (0, 1)−Q be arbitrary, and let k(n) be a sequence of integers
satisfying (a) (k(n), n) = 1 and (b) k(n)/n → α.

(i) Let y2
n = πΓ2

((
1 k(n)/n
0 1

)
, e

)
, with e denoting the identity.

Show that

G∆.y2
n = {(x, y) : x ∈ X, y ∈ Tn2(x)} .

Let y2
∞ = πΓ2

((
1 α
0 1

)
, e

)
.

(ii) Let µn denote the natural measure on the periodic orbit G∆.y2
n.

Show, using the well known ergodicity of the action of u(t) on
Λ\G (for any lattice Λ), that u∆(t) acts ergodically on µn.

(iii) Deduce from Theorem 4.20, the fact that y2
n → y2

∞, the ergod-
icity of u∆(t) acting on µn and the pointwise ergodic theorem
that µn converge weak∗ to a probability measure µ.

(iv) Show that y2
∞ 6∈ S(G∆), and deduce similarly from Theo-

rem 4.19 that µ(S(G∆)) = 0.
(v) Use Ratner’s measure classification theorem (§4.6) to deduce

µ = mX2 .
(vi) Consider F (x, y) = f(x)g(y). Show that∫

F (x, y) dµn =

∫
Tn2(f)gdmX .

Deduce (4.28.a).

1This exercise is somewhat advanced and may use more than we assume in the
rest of this paper.

2Only in this particular instance, because of the equivariance of Tp under G.
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4.29. The reader is encouraged to look at other applications of Rat-
ner’s theorem to equidistribution and counting problems, for example
[EMS96, EMM98, EM04, EO].

5. Entropy of dynamical systems: some more background

5.1. A very basic and important invariant in ergodic theory is entropy.
It can be defined for any action of a (not too pathological) unimodular
amenable group H preserving a probability measure [OW87], but for
our purposes we will only need (and only consider) the case H ∼= R or
H ∼= Z.

Entropy was lurking behind the scenes already in the study of the
action of unipotent groups considered in §41, but plays a much more
prominent role in the study of diagonalizable actions which we will
consider in the next section.

5.2. Let (X, µ) be a probability space. The entropy Hµ(P) of a finite
or countable partition of X is defined to be

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ).

One basic property of entropy is sub-additivity; the entropy of the
refinement P ∨Q = {P ∩Q : P ∈ P , Q ∈ Q} satisfies

(5.2.a) Hµ(P ∨Q) ≤ Hµ(P) + Hµ(Q).

However, this is just a starting point for many more natural identities
and properties of entropy, e.g. equality holds in (5.2.a) if and only if P
and Q are independent.

5.3. The ergodic theoretic entropy hµ(T ) associated to a measure pre-
serving map T : X → X can be defined using the entropy function Hµ

as follows:

Definition. Let µ be a probability measure on X and T : X → X a
measurable map preserving µ. Let P be either a finite partition of X or
a countable partition with Hµ(P) < ∞. The entropy of the four-tuple
(X, µ, T,P) is defined to be2

(5.3.a) hµ(T,P) = lim
N→∞

1

N
Hµ

(
N−1∨
n=0

T−nP

)
.

1In particular, in [MT94] Margulis and Tomanov give a substantially shorter
proof of Ratner’s measure classification theorem using entropy theory.

2Note that by the subadditivity of the entropy function Hµ the limit in (5.3.a)
exists and is equal to infN

1
N Hµ(

∨N−1
n=0 T−nP).
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The ergodic theoretic entropy of (X, µ, T ) is defined to be

hµ(T ) = sup
P:Hµ(P)<∞

hµ(T,P).

The ergodic theoretic entropy was introduced by A. Kolmogorov and
Ya. Sinai and is often called the Kolmogorov-Sinai entropy; it is also
somewhat confusingly called the metric entropy (even though it has
nothing to do with any metric that might be defined on X!).

If µ is a T -invariant but not necessarily ergodic measure, it can be
shown that the entropy of µ is the average of the entropy of its ergodic
components: i.e. if µ has the ergodic decomposition µ =

∫
µξdν(ξ),

then

(5.3.b) hµ(T ) =

∫
hµξ

(T )dν(ξ).

5.4. A partition P is said to be a generating partition for T and µ if
the σ-algebra

∨∞
n=−∞ T−nP (i.e. the σ-algebra generated by the sets

{T nP : n ∈ Z, P ∈ P}) separates points; that is, for µ-almost every x,
the atom of x with respect to this σ-algebra is {x}.1 The Kolmogorov-
Sinai theorem asserts the non-obvious fact that hµ(T ) = hµ(T,P)
whenever P is a generating partition.

5.5. We also want to define the ergodic theoretic entropy also for flows
(i.e. for actions of groups H ∼= R). Suppose H = {at} is a one
parameter group acting on X. Then it can be (fairly easily) shown
that for s 6= 0, 1

|s|hµ(x 7→ as.x) is independent of s. We define the

entropy of µ with respect to {at}, denoted hµ(a•), to be this common
value of 1

|s|hµ(x 7→ as.x).2

5.6. Suppose now that (X, d) is a compact metric space, and that
T : X → X is a homeomorphism (the pair (X, T ) is often implic-
itly identified with the generated Z-action and is called a dynamical
system).

Definition. The Z action on X generated by T is said to be expansive
if there is some δ > 0 so that for every x 6= y ∈ X there is some n ∈ Z
so that d(T nx, T ny) > δ.

If X is expansive then any measurable partition P of X for which
the diameter of every element of the partition is < δ is generating (with
respect to any measure µ) in the sense of §5.4.

1Recall that the atom of x with respect to a countably generated σ-algebra A
is the intersection of all B ∈ A containing x and is denoted by [x]A.

2Note that hµ(a•) depends not only on H as a group but on the particular
parametrization at.
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5.7. For the applications presented in the next section, an important
fact is that for many dynamical systems (X, T ) the map µ 7→ hµ(T )
defined on the space of T -invariant probability measures on X is semi-
continuous. This phenomenon is easiest to see when (X, T ) is expan-
sive.

Proposition. Suppose (X, T ) is expansive, and that µi, µ are T -invariant
probability measures on X with µi → µ in the weak∗ topology. Then

hµ(T ) ≥ lim
i→∞

hµi
(T ).

In less technical terms, for expansive dynamical systems, a “com-
plicated” invariant measure might be approximated by a sequence of
“simple” ones, but not vice versa.

Proof. Let P be a partition of X such that for each P ∈ P
(i) µ(∂P ) = 0
(ii) P has diameter < δ (δ as in the definition of expansiveness).

Since µ(∂P ) = 0 and µi → µ weak∗, for every P ∈ P we have that
µi(P ) → µ(P ). Then

1

N
Hµ

(
N−1∨
n=0

T−nP

)
= lim

i→∞

1

N
Hµi

(
N−1∨
n=0

T−nP

)
≥ lim

i→∞
hµi

(T,P)
(by (ii))

= lim
i→∞

hµi
(T ).

Taking the limit as N →∞ we get

hµ(T ) = hµ(T,P) = lim
N→∞

1

N
Hµ

(
N−1∨
n=0

T−nP

)
≥ lim

i→∞
hµi

(T ).

�

Note that we have used both (ii) and expansiveness only to establish

(ii′) hν(T ) = hν(T,P) for ν = µ, µ1, . . . .

We could have used the following weaker condition: for every ε, there
is a partition P satisfying (i) and

(ii′′) hν(T ) ≤ hν(T,P) + ε for ν = µ, µ1, . . . .

5.8. We are interested in dynamical systems of the form X = Γ\G (G
a connected Lie group and Γ < G a lattice) and T : x 7→ g.x. If G
has rank ≥ 2,1 this system will not be expansive, and furthermore in
the most interesting case of X = SL(n, Z)\ SL(n, R) the space X is not
compact.

1For example, G = SL(n, R) for n ≥ 3.
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Even worse, e.g. on X = SL(2, Z)\ SL(2, R) one may have a se-
quence of probability measures µi ergodic and invariant under the one

parameter group

{
at =

(
et/2 0
0 e−t/2

)}
with limi→∞ hµi

(a•) > 0 con-

verging weak∗ to a measure µ which is not a probability measure and
furthermore has zero entropy1.

However, one has the following “folklore theorem”2 :

Proposition. Let G be a connected Lie group, Γ < G a lattice, and
H = {at} a one parameter subgroup of G. Suppose that µi, µ are H-
invariant probability measures on X with µi → µ in the weak∗ topology.
Then

hµ(a•) ≥ lim
i→∞

hµi
(a•).

For X compact (and possibly by some clever compactification also for
general X), this follows from deep (and complicated) work of Yomdin,
Newhouse and Buzzi (see e.g. [Buz97] for more details); however
Proposition 5.8 can be established quite elementarily. In order to prove
this proposition, one shows that any sufficiently fine finite partition of
X satisfies §5.7.(ii′′).

5.9. The following example shows that this semicontinuity does not
hold for a general dynamical system:

Example. Let S =
{
1, 1

2
, 1

3
, . . . , 0

}
, and X = SZ (equipped with the

usual Tychonoff topology). Let σ : X → X be the shift map3.
Let µn be the probability measure on X obtained by taking the

product of the probability measures on S giving equal probability to
0 and 1

n
, and δ0 the probability measure supported on the fixed point

0 = (. . . , 0, 0, . . . ) of σ. Then µn → δ0 weak∗, hµn(σ) = log 2 but
hδ0(σ) = 0.

5.10. Let (X, d) be a compact metric space, T : X → X continuous4.
Two points x, x′ ∈ X are said to be k, ε-separated if for some 0 ≤ ` < k
we have that d(T `.x, T `.x′) ≥ ε. Let N(X, T, k, ε) denote the maximal
cardinality of a k, ε-separated subset of X.

1Strictly speaking, we define entropy only for probability measures, so one needs
to rescale µ first.

2Which means in particular that there seems to be no good reference for it. A
special case of this proposition is proved in [EKL04, Section 9]. The proof of this
proposition is left as an exercise to the energetic reader.

3See Exercise 4.15 for a definition of the shift map.
4For X which is only locally compact, one can extend T to a map T̃ on its one-

point compactification X̃ = X ∪ {∞} fixing ∞ and define htop(X, T ) = htop(X̃, T̃ )
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Definition. The topological entropy of (X, T ) is defined by

H(X, T, ε) = lim
k→∞

log N(X, T, k, ε)

k

htop(X, T ) = lim
ε→0

H(X,T, ε).

The topological entropy of a flow {at} is defined as in §5.5 and de-
noted by htop(X, a•).

5.11. Topological entropy and the ergodic theoretic entropy are related
by the variational principle (see e.g. [Gla03, Theorem 17.6] or [KH95,
Theorem 4.5.3])

Proposition. Let X be a compact metric space and T : X → X a
homeomorphism.1 Then

htop(X, T ) = sup
µ

hµ(T )

where the sup runs over all T -invariant probability measures supported
on X.

Note that when µ 7→ hµ(T ) is upper semicontinuous (see §5.7) the
supremum is actually attained by some T -invariant measure on X.

6. Diagonalizable actions and the set of exceptions to
Littlewood’s conjecture

6.1. As we have seen in §4, the action of a group H on a locally ho-
mogeneous space X = Γ\G for H generated by unipotent subgroups is
quite well understood. The action of one parameter Ad-diagonalizable
groups is also reasonably well understood; at least sufficiently well un-
derstood to see that there is no useful measure classification theorem
in this case, since there are simply too many invariant measures (but
cf. [LS05b, Question 1] and in a different direction §7).

Our understanding of the action of multidimensional groups H which
are not generated by (Ad-)unipotents is much less satisfactory. If H
contains some unipotents one can typically get quite a bit of mileage
by investigating first the action of the subgroup generated by these
unipotent elements (see e.g. [MT96]). A typical case which is at present
not well understood is the action of abelian groups H which are Ad-
diagonalizable2 over R with dim H ≥ 2, in which case one expects a
“Ratner like” measure classification theorem should be true.

1This proposition also easily implies the analogous statement for flows {at}.
2I.e. groups H whose image under the adjoint representation is diagonalizable

over R
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6.2. Following is an explicit conjecture (essentially this is [Mar00, Con-
jecture 2]; similar conjectures were given by Katok and Spatzier in
[KS96] and Furstenberg (unpublished)):

Conjecture. let G be a connected Lie group, Γ < G a lattice, and
H < G a closed connected group generated by elements which are Ad-
diagonalizable over R. Let µ be a H-invariant and ergodic probability
measure. Then at least one of the following holds:

(i) µ is homogeneous (cf. §4.5)
(ii) µ is supported on a single periodic orbit L.x which has an al-

gebraic rank one factor.1

6.3. The existence of the second, not quite algebraic, alternative in
Conjecture 6.2 (§6.2.(ii)) is a complication (one of many. . . ) we have
not encountered in the theory of unipotent flows. Fortunately in some
cases, in particular in the case we will focus on in this section of the
full diagonal group acting on SL(n, Z)\ SL(n, R), this complication can
be shown not to occur, e.g. by explicitly classifying the possible H-
invariant periodic orbits (not necessarily of the group H) and verifying
none of them have rank one factors.2

6.4. The study of such multiparameter diagonalizable actions has a
long history and there are contributions by many authors. Instead of
surveying this history we refer the reader to [Lin05b, EL06]. Rather
we focus here on a specific case: G = SL(n, R), Γ = SL(n, Z), and
H < G the group of all diagonal matrices, mostly for n = 3, and
present results from one paper [EKL04]. For the remainder of this
section, we set Xn = SL(n, Z)\ SL(n, R).

6.5. In this case, Conjecture 6.2 specializes to the following:

Conjecture. Let H be the group of diagonal matrices in SL(n, R),
n ≥ 3. Then any H-invariant and ergodic probability measure µ on Xn

is homogeneous.

It is not hard to classify the possible homogeneous measures (see
e.g. [LW00]). For n prime, the situation is particularly simple: any
H-invariant homogeneous measure on Xn is either the natural measure
on a H-periodic orbit, or the G invariant measure m on Xn.

1Formally: there exists a continuous epimorphism φ of L onto a Lie group F
such that φ(stabL(x)) is closed in F and φ(H) is a one parameter subgroup of F
containing no nontrivial Ad-unipotent elements.

2This complication does occur [Ree82] when classifying invariant probability
measures for certain other lattices Γ in SL(n, R) (and H the full group of diago-
nal matrices), and even in SL(n, Z)\SL(n, R) if one considers also infinite Radon
measures.
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6.6. In [EKL04] we give the following partial result towards Conjec-
ture 6.5:

Theorem (Einsiedler, Katok and L.[EKL04, Theorem 1.3]). Let H
be the group of diagonal matrices as above and n ≥ 3. Let µ be an
H-invariant and ergodic probability measure on Xn. Then one of the
following holds:

(i) µ is an H-invariant homogeneous measure which is not sup-
ported on a periodic H-orbit.

(ii) for every one-parameter subgroup {at} < H, hµ(a•) = 0.

By the classification of H-invariant homogeneous measures alluded
to in §6.5, if (i) holds µ is not compactly supported.

6.7. Theorem 6.6 is proved by combining two techniques: a “low en-
tropy” method developed in [Lin06] and a “high entropy” method de-
veloped in [EK03]. Techniques introduced by Ratner in her study of
horocycle flows in [Rat82] and subsequent papers are used in the former
method. Ratner’s measure classification theorem (§4.6) is also used in
the proof.

As in §4, the proof of Theorem 6.6 is beyond the scope of this paper;
some hints on these methods can be found in [Lin05b], but the reader
who wants study the proof should consult [EK03, Lin06, EKL04].

6.8. In §4 the fact that there were many invariant measures, even
though they were explicitly given and came from countably many nice
families had caused considerable difficulties when we tried to actually
use this measure classification. One would think that the partial mea-
sure classification given in Theorem 6.6 would be even more difficult to
use. Fortunately, this is not the case, and the key is the semicontinuity
of entropy (§5.8). Using the semicontinuity one can sometimes, such
as in the case of arithmetic quantum unique ergodicity considered in
§7, verify positive entropy of a limiting measure by other means (see
also [ELMV06a]), and sometimes, such as in the case of Littlewood’s
conjecture considered in this section or [ELMV06b] obtain partial but
meaningful results which at present cannot be obtained using alterna-
tive techniques.

6.9. The following is a well known conjecture of Littlewood:

Conjecture (Littlewood (c. 1930)). For every u, v ∈ R,

(6.9.a) lim
n→∞

n‖nu‖‖nv‖ = 0,

where ‖w‖ = minn∈Z |w − n| is the distance of w ∈ R to the nearest
integer.
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It turns out that this conjecture would follow from Conjecture 6.5.
The reduction is nontrivial and is essentially due to Cassels and Swinnerton-
Dyer [CSD55], though there is no discussion of invariant measures in
that paper1.

We need the following criterion for when α, β satisfy (6.9.a):

6.10. Proposition. (α, β) satisfy (6.9.a) if and only if the orbit of

xα,β = πΓ

1 α β
0 1 0
0 0 1


under the semigroup

H+ = {a(s, t) : s, t ≥ 0} a(s, t) =

es+t 0 0
0 e−s 0
0 0 e−t


is unbounded2. Moreover, for any δ > 0 there is a compact Cδ ⊂ X3,
so that if limn→∞ n ‖nα‖ ‖nβ‖ ≥ δ then H+.xα,β ⊂ Cδ.

6.11. Before we prove Proposition 6.10 we need to understand better
what it means for a set E ⊂ X3 to be bounded. For this one has the
following important criterion (see e.g. [Rag72, Chapter 10]):

Proposition (Mahler’s compactness criterion). Let n ≥ 2. A set E ⊂
Xn is bounded if and only if there is some ε > 0 so that for any x =
πΓ(g) ∈ Xn there is no vector v in the lattice spanned by the rows of g
with ‖v‖∞ < ε.

6.12. We now prove Proposition 6.10.

Proof. We prove only that H+.xα,β unbounded =⇒ (6.9.a); the re-
maining assertions of this proposition follow similarly and are left as
an exercise to the reader.

Let ε ∈ (0, 1/2) be arbitrary. By Mahler’s compactness criterion (§6.11),
if H+.xα,β is unbounded, there is a h ∈ H+ such that in the lattice gen-
erated by the rows of xα,βh−1 there is a nonzero vector v with ‖v‖∞ < ε.
This vector v is of the form

v = (ne−s−t, (nα−m)es, (nβ − k)et)

1It is worthwhile to note that this remarkable paper appeared in 1955, many
years before Conjectures 6.2 and 6.5 were made, and even before 1967 when Fursten-
berg made his related discoveries about scarcity of invariant sets and measures for
the maps x 7→ 2x mod 1 and x 7→ 3x mod 1 on R/Z! The same paper also im-
plicitly discusses the connection between Oppenheim’s conjecture and the action of
SO(2, 1) on X3.

2I.e. H+.xα,β is not compact.
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where n,m, k are integers at least one of which is nonzero, and s, t ≥ 0.
Since ‖v‖∞ < 1/2, n 6= 0 and ‖nα‖ = (nα − m), ‖nβ‖ = (nβ − k).
Without loss of generality n > 0 and

n ‖nα‖ ‖nβ‖ ≤ ‖v‖3
∞ < ε3.

�

6.13. We now turn to answering the following question: With the
partial information given in Theorem 6.6, what information, if any, do
we get regarding Littlewood’s conjecture?

Theorem (Einsiedler, Katok and L. [EKL04, Theorem 1.5]). For any
δ > 0, the set

Ξδ =

{
(α, β) ∈ [0, 1]2 : lim

n→∞
n ‖nα‖ ‖nβ‖ ≥ δ

}
has zero upper box dimension1,2.

6.14. We present a variant of the proof of this theorem given in [EKL04].
The first step of the proof, which is where Theorem 6.6 is used, is an
explicit sufficient criterion for a single point α, β to satisfy Littlewood’s
conjecture (§6.9).

Let aσ,τ (t) = a(σt, τt), with a(s, t) as in §6.10.

Proposition. Let α, β be such that for some σ, τ ≥ 0, the topological
entropy of aσ,τ acting on

{aσ,τ (t).xα,β : t ∈ R+}
is positive. Then α, β satisfies (6.9.a).

6.15. It will be useful for us to prove a slightly stronger result:

Proposition. Let σ, τ ≥ 0, and suppose that for x0 ∈ X3, the topo-
logical entropy of the action of aσ,τ on {aσ,τ (t).x0 : t ∈ R+} is positive.
Then H+.x0 is unbounded.

Note that by Proposition 6.10 the proposition above does indeed
imply Proposition 6.14.

Proof. Let x0 be as in the proposition. By the variational principal,
there is a aσ,τ -invariant measure µ supported on {aσ,τ (t).x0 : t ∈ R+}
with hµ(aσ,τ ) > 0.

1I.e., for every ε > 0, for every 0 < r < 1, one can cover Ξδ by Oδ,ε(r−ε) boxes
of size r × r.

2Since (6.9.a) depends only on α, β mod 1 it is sufficient to consider only (α, β) ∈
[0, 1]2.
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Assume in contradiction to the proposition that H+.x0 is bounded.
Define for any S > 0

µS =
1

S2

∫∫ S

0

a(s, t).µ ds dt,

with a(s, t).µ denoting the push forward of µ under the map x 7→
a(s, t).x. Since a(s, t) commutes with the one parameter subgroup aσ,τ ,
for any aσ,τ -invariant measure µ′ the entropy

hµ′(aσ,τ ) = ha(s,t).µ′(aσ,τ ).

If µ has the ergodic decomposition
∫

µξ dν(ξ), the measure µS has

ergodic decomposition S−2
∫∫ S

0

∫
a(s, t).µξ dν(ξ) ds dt and so by §5.3,

for every S

hµS
(aσ,τ ) = hµ(aσ,τ ).

All µS are supported on the compact set H+.x0, and therefore there is
a subsequence converging weak∗ to some compactly supported proba-
bility measure µ∞, which will be invariant under the full group H. By
semicontinuity of entropy (§5.8),

hµ∞(aσ,τ ) ≥ hµ(aσ,τ ) > 0,

hence by Theorem 6.6 the measure µ∞ is not compactly supported1 —
a contradiction. �

6.16. Proposition 6.14 naturally leads us to the question of the size of
the set of (α, β) ∈ [0, 1]2 for which htop(Xα,β, aσ,τ ) = 0. This can be
answered using the following general observation:

Proposition. Let X ′ be a metric space equipped with a continuous R-
action (t, x) 7→ at.x. Let X ′

0 be a compact a•-invariant2 subset of X ′

such that for any x ∈ X ′
0,

htop(Yx, a•) = 0 Yx = {at.x : t ∈ R+}.
Then htop(X

′
0, a•) = 0.

Proof. Assume in contradiction that htop(X
′
0, a•) > 0. By the varia-

tional principle (§5.11), there is some a•-invariant measure µ on X ′
0

with hµ(a•) > 0.

1Notice that a priori there is no reason to believe µ∞ will be H-ergodic, while
Theorem 6.6 deals with H-ergodic measures. So an implicit exercise to the reader is
to understand why we can still deduce from hµ∞(aσ,τ ) > 0 that µ∞ is not compactly
supported.

2Technical point: we only use that at.X
′ ⊂ X ′ for t ≥ 0. The variational

principle (§5.11) is still applicable in this case.
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By the pointwise ergodic theorem, for µ-almost every x ∈ X ′
0 the

measure µ is supported on Yx. Applying the variational principle again
(this time in the opposite direction) we get that

0 = htop(Yx, a•) ≥ hµ(a•) > 0

a contradiction. �

6.17. Corollary. Consider, for any compact C ⊂ X3 the set

XC =
{
x ∈ X3 : H+.x ⊂ C

}
.

Then for any σ, τ ≥ 0, it holds that htop(XC , aσ,τ ) = 0.

Proof. By Proposition 6.15, for any x ∈ XC the topological entropy of
aσ,τ acting on {aσ,τ (t).x : t ∈ R+} is zero. The corollary now follows
from Proposition 6.16. �

6.18. We are now in position to prove Theorem 6.13, or more precisely
to deduce the theorem from Theorem 6.6:

Proof. To show that Ξδ has upper box dimension zero, we need to
show, for any ε > 0, that for any r ∈ (0, 1) the set Ξδ can be covered
by Oε(r

−ε) boxes of side r, or equivalently that any r-seperated set (i.e.
any set S such that for any x, y ∈ S we have ‖x− y‖∞ > r) is of size
Oδ,ε(r

−ε).
Let Cδ be as in Proposition 6.10. Let d denote a left invariant Rie-

mannian metric on G = SL(3, R). Then d induces a metric, also denote
by d on X3. For a, b ∈ R let

ga,b =

1 a b
0 1 0
0 0 1

 .

Since Cδ is compact, and d induced from a left invariant Riemannian
metric, there will be r0, c0 such that for any x ∈ Cδ and |a| , |b| < r0

d(x, ga,b.x) ≥ c0 max(|a| , |b|).
For any α, α′, β, β′ ∈ R we have that

xα,β = gα′−α,β′−β.xα′,β′

and more generally for any t

a1,1(t).xα,β = ge3t(α′−α),e3t(β′−β).a1,1.xα′,β′ .

It follows that if S ⊂ Ξδ is r separated for r = e−3tr0 ∈ (0, r0) then

S ′ = {xα,β : (α, β) ∈ S}
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is (t, c0r0)-separated for a1,1 in the sense of (§5.10). By definition of Cδ

and Ξδ, we have that (in the notations of §6.17) the set S ′ ⊂ XCδ
, a

set which has zero topological entropy with respect to the group a1,1.
It follows that the cardinality of a maximal (t, c0r0)-separated set in S ′

is at most Oδ,ε(exp(εt)); hence for r < r0 the cardinality of a maximal
r-separated subset of Ξδ is Oδ,ε(r

−ε). �

6.19. The alert and optimistic reader1 may hope that there is some
choice of (σ, τ), e.g (1/3, 2/3), for which the condition of Proposi-
tion 6.14 holds for all (α, β) ∈ [0, 1]2. To avoid trivial counterexam-
ples of e.g. α, β ∈ Q, we can require that for every (α, β) ∈ [0, 1]2

either the condition of Proposition 6.14 (and hence Littlewood’s con-
jecture) holds or {aσ,γ(t).xα,β : t ∈ R+} is unbounded (in which case
Littlewood’s conjecture follows readily from Proposition 6.10). Though
I could not immediately come up with a counterexample for (1/3, 2/3),
this is extremely unlikely to be true.

We recall the following well-known conjecture of Furstenberg (which
dates back to the time of [Fur67] but is not stated there; one place
where it is explicitly stated is [Mar00, Conjecture 5]):

Conjecture (Furstenberg). for any irrational x ∈ R/Z

(6.19.a)
htop

(
{2nx : n ∈ N},×2

)
htop(R/Z,×2)

+
htop

(
{3nx : n ∈ N},×3

)
htop(R/Z,×3)

≥ 1;

In particular, the conjecture implies that for any irrational x one of
the entropies in the numerators in (6.19.a) is positive. Even this is not
known.

6.20. In analogy with this conjecture, we give the following, which in
view of Proposition 6.14 would imply Littlewood’s conjecture (§6.9):

Conjecture. Suppose α, β ∈ [0, 1]2 is such that {aσ,τ (t).xα,β : t ∈ R+}
is bounded for both (σ, τ) = (1/3, 2/3) and (σ, τ) = (2/3, 1/3).

Then α, β satisfy the conditions of Proposition 6.142 either for (σ, τ) =
(1/3, 2/3) or for (σ, τ) = (2/3, 1/3) (or both).

One may wonder whether there are any α, β satisfying the bounded-
ness assumptions of the conjecture. It is strongly expected that there
should be many such pairs (α, β), but currently this is an open problem;
indeed even the existence of one such pair is open:

1May he prove many theorems.
2I.e. the topological entropy of aσ,τ acting on {aσ,γ(t).xα,β : t ∈ R+} is positive.
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6.21. Conjecture (W. Schmidt [Sch83, p. 274]). There is some α, β
for which {aσ,τ (t).xα,β : t ∈ R+} is bounded for both (σ, τ) = (1/3, 2/3)
and (σ, τ) = (2/3, 1/3).

The relation between this conjecture and Littlewood’s conjecture is
that if it is false, Littlewood’s conjecture is true1. . .

7. Applications to quantum unique ergodicity

7.1. In this section we present an application of measure classifica-
tion to equidistribution; but it is slightly unusual as we deal not with
equidistribution of points or orbits but of eigenfunctions.

This equidistribution problem, a.k.a. the quantum unique ergodicity
problem, is part of a much larger topic, namely the study of quantum
mechanical behavior of classically chaotic systems. A basic overview
of the subject was given by de Bièvre in this volume [dB06], and a
discussion of quantized versions of toral automorphisms by Rudnick
[Rud06].

Our discussion will be quite brief, in part because of these two con-
tributions, and in part because the topic seems to be well covered by
other sources, e.g. [Lin05a].

7.2. Let M be a compact surface of constant negative curvature. Such
a surface can be presented as M = Γ\H with Γ < SL(2, R) a torsion free
lattice acting on H by Mobius transformations. The hyperbolic plane H
possesses a differential operator, the hyperbolic Laplacian ∆ = y2(∂2

x +
∂2

y), which is invariant under all Mobius transformations. Because of
this invariance property ∆ can be viewed also as a differential operator
also on M .

Since M is compact, L2(M) is spanned by the Laplacian eigenfunc-
tions, i.e. by functions φi satisfying ∆φi = −λiφi with 0 = λ0 < λ1 ≤
λ2 ≤ . . . ; we also normalize the φi so that ‖φi‖2 = 1.

It is natural to consider the measures µ̃i defined by dµ̃i = |φi|2 dm,
m being the Riemannian area. For example, in quantum mechanics the
eigenfunctions φi correspond to the steady states of a simple2 particle
restricted to the surface M , and given a nice measurable A ⊂ M , µ̃i(A)
is the probability of finding our particle in A (assuming we have some
physical contraption which is able to measure if our particle is in A or
not).

1Of course the converse implication does not hold.
2Nonrelativistic, spinless, etc.
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7.3. Exploiting the connections between quantum and classical me-
chanics, Šnirel′man, Colin de Verdière and Zelditch [Šni74, CdV85,

Zel87] have shown that N−1
∑N−1

i=0 µ̃i converge weak∗ to m(M)−1m.
This phenomenon is called quantum ergodicity. Rudnick and Sarnak
conjectured that there is no need to take the average, i.e.:

Conjecture (Quantum Unique Ergodicity [RS94]). For M = Γ\H we
have that µ̃i converges weak∗ to m(M)−1m.

Both the quantum ergodicity theorem and the quantum unique er-
godicity conjecture extend to more general M : the quantum ergodic-
ity theorem extends to a general compact manifold M for which the
geodesic flow is ergodic1, the conjecture to manifolds with negative
sectional curvature (not necessarily constant) in any dimension. The
quantum unique ergodicity conjecture is not expected to hold in the
full generality of the quantum ergodicity theorem (cf. [Don03]).

7.4. So far no dynamics seem to enter; however, a key point in the
proof of the quantum ergodicity theorem is that the measures µ̃i “lift”
to probability measures on the unit cotangent bundle which become
increasingly invariant under the geodesic flow. Specializing to the case
M = Γ\H we consider, S∗M is essentially equal to2 X = Γ\ SL(2, R),
with the geodesic flow corresponding to the action of the diagonalizable

one parameter group at =

(
et/2 0
0 e−t/2

)
. More formally, the lifting

procedure allows us to define for any i measures measures µi on X so
that

(i) for any f ∈ C∞(M) (viewed as a subspace of C∞(X))∣∣∣∣∫ f dµ̃i −
∫

f dµi

∣∣∣∣→ 0 as i →∞

(ii) for any h ∈ C∞(X),∫
dh(at.x)

dt

∣∣∣∣
t=0

dµi(x) → 0 as i →∞.

We call any weak∗ limit of the lifted measures µi a quantum limit. It
follows from (i) and (ii) above that any quantum limit is at-invariant
and that any weak∗ limit of the measures µ̃i is the image of a quantum
limit under the projection π;K : X → M = X/K where K is the
compact group SO(2, R).

1For the Liouville measure on the unit cotangent bundle of M .
2More precisely, X is a double cover of the unit contangent bundle.
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7.5. Without inputting any additional information on the measures
µ̃i and µi we cannot go further because there is no useful measure
classification theorem for the action of the one parameter group at.
Very recently, Nalini Anantharaman [Ana04] has been able to use the
WKB approximation to obtain additional such information, proving in
particular that any quantum limit has positive entropy1 However, even
with this entropy bound there is no useful measure classification.

7.6. We vary the setting by taking Γ to be a congruence subgroup
of SL(2, Z) or of certain lattices that arise from quaternionic division
algebras over Q that are unramified over R. The latter lattices are
slightly harder to define2 but have the advantage that X is compact.

7.7. In both cases, for all but finitely many primes p, we have a map —
the Hecke correspondence — Tp from X to (p+1)-tuples of points of X,
and a corresponding operator, also denoted by Tp on L2(X) preserving
L2(M) — the Hecke operator. For Γ = SL(2, Z) these are defined in
§4.25. These Hecke operators play a very important role in the spec-
tral theory of M . In particular, the subspace of L2(M) spanned by
L2-eigenfunctions of ∆ is spanned by joint eigenfunctions of ∆ and all
Hecke operators3. Let φi be such a sequence of L2-normalized eigen-
functions of all these operators, and define using the φi measures µ̃i

and µi as above. Any weak∗ limit of the µi will be called an arithmetic
quantum limit.

7.8. In addition to being invariant under the flow at, arithmetic quan-
tum limits have the following subtle additional property (see [Lin06,
§8]: Tp-recurrence.

Definition. A measure µ on X is said to be Tp-recurrent for a fixed
prime p if for any set E ⊂ X with µ(E) > 0, for µ-almost every x ∈ E
and any n, there exists an m so that

(Tp)
m(x) ∩

(
E −

n⋃
k=1

(Tp)
k(x)

)
6= ∅.

An arithmetic quantum limit is Tp-recurrent for every prime p for
which Tp is defined.

1Since quantum limits a priori need not be ergodic, this does not show that
quantum limits give zero measure to an at-periodic orbits. It does, however, show
that e.g. no quantum limits gives full measure to a countable union of at-periodic
orbits.

2We do not do this here; the interested readers is referred to [Lin06] for further
details.

3If M is not compact it is no longer true that L2-eigenfunctions of ∆.
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7.9. This extra recurrence assumption seems to be almost as good as
having invariants under an additional one parameter group. Indeed,
we conjecture the following:

Conjecture. Let Γ be a congruence lattice as in §7.6. Let µ be an at-
invariant probability measure on X = Γ\G1 which is also Tp-recurrent
for a (single) prime p. Then µ is a linear combination of at-invariant
algebraic measures.

As in §6, this is currently known under an entropy assumption:

Theorem ([Lin06, Theorem 1.1]). Let X be as in the conjecture. Let
µ be an at-invariant probability measure on X = Γ\ SL(2, R) which is
also

(i) Tp-recurrent for a (single) prime p
(ii) hµξ

(a•) > 0 for every at-invariant ergodic component µξ of µ.

then µ is the G-invariant probability measure on X.

This theorem is proved using the “low entropy” method mentioned
in §6.7.

7.10. Condition (ii) in Theorem 7.9 was verified for quantum limits
by Bourgain and the author in [BL03] using combinatorial properties
of Hecke points, and using all Hecke operators. No microlocal analysis
was involved. Thus combining the results of [BL03] and [Lin06] one
gets

Theorem. Let Γ be a congruence lattice as in §7.6. Then any arith-
metic quantum limit is of the form cm, m being the G-invariant mea-
sure on X.

One would have liked to prove that c has to be 1/m(X), but this
is currently unknown in the noncompact case (though of course this is
true in the compact case).

7.11. Theorem 7.10 is equivalent to the statement that for any f ∈
C0(X) with

∫
f dm = 0

(7.11.a)

∫
X

f(x) dµi(x) → 0 as i →∞.

In particular, if φi is a sequence of joint (say real) eigenfunctions as
above ∫

M

φj(x)φi(x)2 dx → 0 as i →∞.

1Where as above G = SL(2, R).
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An identity of Watson [Wat01] expresses this triple product in terms
of L-functions; specifically for M = SL(2, Z)\H∣∣∣∣∫

M

φj(x)φi(x)2 dx

∣∣∣∣2 =
π6Λ(1/2, φi × φi × φj)

66Λ(1, Sym2 φi)2Λ(1, Sym2 φj)

with Λ denoting the completed L-function. All the terms in the de-
nominator are well understood, the numerator is much more myste-
rious. Currently our understanding of the numerator is not sufficient
to deduce (7.11.a); but if one knew e.g. the Riemann hypothesis for
Λ(s, φi × φi × φj) one would get (7.11.a) with an optimal1 rate of con-
vergence. Conversely, a more quantative form of (7.11.a) would yield
improved (“subconvex”) estimates on Λ(1/2, φi × φi × φj).

7.12. Anantharaman’s recent results discussed in §7.5 give only the
information on the entropy of µ, i.e. on the average of the entropy of
the ergodic components of µ but use no Hecke operators. This can be
used to give weaker variants of the above theorem even if one assumes
that the φi are eigenfunctions of ∆ and one additional Hecke operator.

7.13. Using the same general strategy, Silberman and Venkatesh have
been able to prove a version of arithmetic quantum unique ergodicity
for other Γ\G/K, specifically for locally symmetric spaces arising from
division algebras of prime degree. While the strategy remains the same,
several new ideas are needed for this extension, in particular a new
micro-local lift for higher rank groups [SV04, Sil05].
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MA, 1983.

[Sha94] Nimish A. Shah. Limit distributions of polynomial trajectories on ho-
mogeneous spaces. Duke Math. J., 75(3):711–732, 1994.



SOME EXAMPLES HOW TO USE MEASURE CLASSIFICATION 37

[Sil05] Lior Silberman. Arithmetic quantum chaos on locally symmetric
spaces, 2005. Ph.D. thesis, Princeton University.
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