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Abstract. We survey some aspects of homogeneous dynamics — the study of alge-
braic group actions on quotient spaces of locally compact groups by discrete subgroups.
We give special emphasis to results pertaining to the distribution of orbits of explicitly
describable points, especially results valid for the orbits of all points, in contrast to re-
sults that characterize the behavior of orbits of typical points. Such results have many
number theoretic applications, a few of which are presented in this note. Quantitative
equidistribution results are also discussed.
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1. Introduction

1.1. In this note we discuss a certain very special class of dynamical systems of
algebraic origin, in which the space is the quotient of a locally compact group G
by a discrete subgroup Γ and the dynamics is given by the action of some closed
subgroup H < G on G/Γ by left translations, or more generally by the action of a
subgroup of the group of affine transformations on G that descends to an action on
G/Γ. There are several natural classes of locally compact groups one may consider
— connected Lie groups, linear algebraic groups (over R, or Qp, or perhaps general
local field of arbitrary characteristic), finite products of linear algebraic groups over
different fields, or the closely related case of linear algebraic groups over adeles of
a global field such as Q.

1.2. Such actions turn out to be of interest for many reasons, but in particular
are intimately related to deep number theoretic questions. They are also closely
connected to another rich area: the spectral theory of such quotient spaces, also
known as the theory of automorphic forms, which has so many connections to both
analytic and algebraic number theory that they are hard to separate.

∗The research presented was supported by the NSF (most recently by grants DMS-0554345
and DMS-0800345) and the Israel Science Foundation.
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From the point of view of these connections between dynamics and number
theory, perhaps the most interesting quotient space is the space Xd of lattices
in Rd up to homothety, which is naturally identified with PGL(d,R)/PGL(d,Z).
There are several historical sources for the use of this space in number theory.
One prominent historical source is H. Minkowski’s work on Geometry of Numbers
c. 1895; and while (like most mathematical research areas) it is hard to draw
the precise boundaries of the Geometry of Numbers, certainly at its heart is a
systematic use of lattices, and implicitly the space of lattices, to the study of
number theoretic problems of independent interest.

The use of tools and techniques of ergodic theory and dynamical systems, and
perhaps no less importantly the use of the dynamical point of view, to study these
actions has proven to be a remarkably powerful method with applications in several
rather diverse areas in number theory and beyond, but in particular for many of the
problems considered in the Geometry of Numbers. This is a very active direction of
current research sometimes referred to as Flows on Homogeneous Spaces, though
the shorter term Homogeneous Dynamics seems to be gaining popularity.

1.3. We present below a Smörg̊asbord of topics from the theory. The selection is
somewhat arbitrary, and is biased towards aspects that I have personally worked
on. A brief overview of the topics discussed in each section is given below:

§2. Actions of unipotent and diagonalizable groups are discussed. Thanks to the
deep work of several mathematicians the actions of unipotent groups are quite
well understood (at least on a qualitative level). The actions of diagonalizable
groups are much less understood. These diagonalizable actions behave quite
differently depending on whether the acting group is one dimensional or of
higher dimensions; in the latter case there are several long-standing conjectures
and a few partial results toward these conjectures that are powerful enough to
have applications of independent interest.

§3. We consider why the rigidity properties of an action of a multiparameter diag-
onalizable group is harder to understand than actions of unipotent groups (or
groups generated by unipotents), and highlight one difference between these
two classes of groups: growth rates of the Haar measure of norm-balls in these
groups.

§4. Three applications of the measure classification results for multiparameter di-
agonalizable groups are presented: results regarding Diophantine approxima-
tions and Littlewood’s Conjecture, Arithmetic Quantum Unique Ergodicity,
and an equidistribution result for periodic orbits of the diagonal group in X3

(a problem considered by Linnik with strong connections to L-functions and
automorphic forms).

§5. We present recent progress in the study of actions of another natural class
of groups that share with unipotent groups the property of large norm-balls:
Zariski dense subgroups of semisimple groups or more generally groups gener-
ated by unipotents.
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§6. We conclude with a discussion of the quantitative aspects of the density and
equidistribution results presented in the previous sections regarding orbits of
group actions on homogeneous spaces.

2. Actions of unipotent and diagonalizable groups

2.1. Part of the beauty of the subject is that for a given number theoretic appli-
cation one is led to consider a very concrete dynamical system. Perhaps the best
way to illustrate this point is by example. An important and influential milestone
in the theory of flows on homogeneous spaces has been Margulis’ proof of the
longstanding Oppenheim Conjecture in the mid 1980’s [Mar87]. The Oppenheim
Conjecture states that if Q(x1, . . . , xd) is an indefinite quadratic form in d ≥ 3
variables, not proportional to a form with integral coefficients, then

(2.1) inf
{
|Q(v)| : v ∈ Zd r {0}

}
= 0.

By restricting Q to a suitably chosen rational subspace, it is easy to reduce the
conjecture to the case of d = 3, and instead of considering the values of an arbitrary
indefinite ternary quadratic form on the lattice Zd one can equivalently consider the
values an arbitrary lattice ξ in Rd attains on the fixed indefinite ternary quadratic
form, say Q0(x, y, z) = 2xz − y2. The symmetry group

SO(1, 2) =
{
h ∈ SL(3,R) : Q0(v) = Q0(hv) for all v ∈ R3

}
is a noncompact semisimple group. By the definition of H, for every h ∈ H =
SO(1, 2) and ξ ∈ X3 the set of values Q0 attains at nonzero vectors of the lattice
ξ coincides with the set of values this quadratic form attains at nonzero vectors
of the lattice h.ξ, i.e. the lattice obtained from ξ by applying the linear map h
on each vector. It is now an elementary observation, using Mahler’s Compactness
Criterion, that for ξ ∈ X3,

inf {|Q0(v)| : v ∈ ξ r {0}} = 0 ⇐⇒ the orbit H.ξ is unbounded.

G. A. Margulis established the conjecture by showing that any orbit of H on X3

is either periodic or unbounded (see [DM90a] for a highly accessible account); the
lattices corresponding to periodic orbits are easily accounted for, and correspond
precisely to indefinite quadratic forms proportional to integral forms. Here and
throughout, an orbit of a group H acting on a topological space X is said to be
periodic if it is closed and supports a finite H-invariant measure.

We note that the homogeneous space approach for studying values of quadratic
forms was noted by M.S. Raghunathan who also gave a much more general con-
jecture in this direction regarding orbit closures of connected unipotent groups in
the quotient space G/Γ. In retrospect one can identify a similar approach in the
remarkable paper [CSD55] by Cassels and Swinnerton-Dyer.
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2.2. This example illustrates an important point: in most cases it is quite easy to
understand how a typical orbit behaves, e.g. to deduce from the ergodicity of H
acting on X3 that for almost every ξ the orbit H.ξ is dense in X3; but for many
number theoretical applications one needs to know how orbits of individual points
behave — in this case, one needs to understand the orbit H.ξ for all ξ ∈ X3.

2.3. Raghunathan’s Conjecture regarding the orbit closures of groups generated
by one parameter unipotent subgroups, as well as an analogous conjecture by
S.G. Dani regarding measures invariant under such groups [Dan81] have been
established in their entirety1 in a fundamental series of papers by M. Ratner
[Ra91a,Ra90a,Ra90b,Ra91b].

Theorem 1 (Ratner). Let G be a real Lie group, H < G a subgroup generated by
one parameter Ad-unipotent groups, and Γ a lattice in G. Then:

(i) Any H-invariant and ergodic probability measure µ on G/Γ is an L-invariant
measure supported on a single periodic L-orbit of some subgroup L ≤ G con-
taining H

(ii) For any x ∈ G/Γ, the orbit closure H.x is a periodic orbit of some subgroup
L ≤ G containing H.

A measure µ as in (i) above will be said to be homogeneous .
This fundamental theorem of Ratner, which in applications is often used in

conjunction with the work of Dani and Margulis on nondivergence of unipotent
flows [Mar71, Dan86] and related estimates on how long a unipotent trajectory
can spend near a periodic trajectory of some other group (e.g. as developed in
[DM90b, DM93] or [Ra91b]) give us very good (though non-quantitative) under-
standing of the behavior of individual orbits of groups H generated by one pa-
rameter unipotent subgroups, such as the group SO(1, 2) considered above. It
has been extended to algebraic groups over Qp and to S-algebraic groups (prod-
ucts G =

∏
p∈S Gi(Qp) with the convention that Q∞ = R) by Ratner [Ra95] and

Margulis-Tomanov [MT94].

2.4. These theorems on unipotent flows have numerous number theoretical appli-
cations, much too numerous to list here. A random sample of such applications,
to give a flavor of their diverse nature, is the substantial body of work regarding
counting of integer and rational points on varieties, e.g. Eskin, Mozes and Shah
[EMS96] who give the asymptotic behavior as T → ∞ of the number of elements
γ ∈ SL(d,Z) with a given characteristic polynomial satisfying ‖γ‖ < T (see also
H. Oh’s survey [Oh10] for some more recent counting results of interest); Vatsal’s
proof of a conjecture of Mazur regarding non-vanishing of certain L-functions asso-
ciated to elliptic curves at the critical point [Vat02]; Elkies and McMullen’s study
of gaps in the sequence

√
n mod 1 [EM04]; and Ellenberg and Venkatesh theorems

on representing positive definite integral quadratic forms by other forms [EV08].

1Special cases of Raghunathan’s Conjecture were established by Dani and Margulis [DM90b]
using a rather different approach.
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2.5. The action of one parameter diagonalizable groups on homogeneous spaces,

such as the action of at =

(
et/2 0

0 e−t/2

)
on X2 is fairly well understood (at least

in some aspects), but these R-actions behave in a drastically different way than e.g.
one parameter unipotent groups. The case of at acting on X2 is particularly well
studied. There is a close collection between this action and the continued fraction
expansion of real numbers that has been used already by E. Artin [Art24], and
was further elucidated by C. Series [Ser85] and others, that essentially allows one
to view this system as a flow over a simple symbolic system. Any ergodic measure
preserving flow of sufficiently small entropy can be realized as an invariant measure
for the action of at on X2, and there is a wealth of irregular orbit closures. There is
certainly also a lot of mystery remaining regarding this action and in particular due
to the lack of rigidity it is extremely hard to understand the behavior of specific
orbits of the action, e.g.:

Question 1. Is the orbit of the lattice(
1 3
√

2
0 1

)
Z2

under the semigroup {at : t ≥ 0} dense in X2?

Even showing that this orbit is unbounded is already equivalent to the continued
fraction expansion of 3

√
2 being unbounded, a well known and presumably difficult

problem. While Artin constructs in [Art24] a point in X2 which has a dense at-
orbit in a way that can be said to be explicit, I do not know of any construction of
a lattice in X2 generated by vectors with algebraic entries that is known to have a
dense at-orbit.

2.6. Actions of higher rank diagonal groups are much more rigid than one param-
eter diagonal group, though not quite as rigid as the action of groups generated
by unipotents. Many of the properties such actions are expected to satisfy are
still conjectural, though there are several quite usable partial results that can be
used to obtain nontrivial number theoretic consequences. A basic example of such
actions is the action of the (d− 1)-dimensional diagonal group A < PGL(d,R) on
the space of lattices Xd for d ≥ 3. A similar phenomenon is exhibited in a some-
what more elementary setting by the action of a multiplicative semigroup Σ of
integers containing at least two multiplicative independent elements on the 1-torus
T = R/Z. This surprising additional rigidity of multidimensional diagonalizable
groups has been discovered by Furstenberg [Fur67] in the context of multiplicative
semigroups acting on T, and is in a certain sense implicit in the work of Cassels
and Swinnerton-Dyer [CSD55].

2.7. Actions of diagonalizable groups also appear naturally in many contexts. In
the aforementioned paper of Cassels and Swinnerton-Dyer [CSD55] the following
conjecture is given:
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Conjecture 2. Let F (x1, . . . , xd) =
∏d
i=1

(∑d
j=1 gijxj

)
be a product of d-linearly

independent linear forms in d variables, not proportional to an integral form (as a
homogeneous polynomial in d variables), with d ≥ 3 . Then

(2.2) inf
{
|F (v)| : v ∈ Zd r {0}

}
= 0.

This conjecture in shown in [CSD55] to imply Littlewood’s Conjecture (see
§4.1), and seems to me to be the more fundamental of the two. As pointed out by
Margulis, e.g. in [Mar97], Conjecture 2 is equivalent to the following:

Conjecture 2’. Any A-orbit A.ξ in Xd for d ≥ 3 is either periodic or unbounded.

2.8. A somewhat more elementary action with similar features was studied by
Furstenberg [Fur67]. Let Σ be the multiplicative semigroup of N generated by two
multiplicative independent integers a, b (i.e. log a/ log b 6∈ Q). In stark contrast
to cyclic multiplicative semigroups, Furstenberg has shown that any Σ-invariant
closed subset X ⊂ T = R/Z is either finite or T and gave the following influential
conjecture:

Conjecture 3. Let Σ = {anbk : n, k ≥ 0} be as above. The only Σ-invariant
probability measure on R/Z with no atoms is the Lebesgue measure.

This conjecture can be phrased equivalently in terms of measures on G/Γ invari-
ant under left translation by a rank two diagonalizable group H for an appropriate
solvable group G and lattice Γ < G; e.g. if a, b are distinct primes, we can take

H =
{

(s, t, r) : s ∈ R×, t ∈ Q×a , r ∈ Q×r , |s| · |t|a · |r|b = 1
}

G = H× n (R×Qa ×Qb)
Γ = {(s, s, s) : s = anbm, n,m ∈ Z}n {(t, t, t) : t ∈ Z[ 1

ab ]}.

2.9. Ergodic theoretic entropy is a key invariant in ergodic theory whose introduc-
tion in the late 1950s by Kolmogorov and Sinai completely transformed the subject.
At first sight it seems quite unrelated to the type of questions considered above.
However, it has been brought to the fore in the study of multiparameter diago-
nalizable actions by D. Rudolph (based on earlier work of R. Lyons [Lyo88]), who
established an important partial result towards Furstenberg’s Conjecture (Con-
jecture 3): Rudolph classified such measures under a positive entropy condition
[Rud90]. A. Katok and R. Spatzier were the first to extend this type of results
to flows on homogeneous spaces [KS96], but due to a subtle question regarding
ergodicity of subactions their results do not seem to be applicable in the number
theoretic context.

2.10. Some care needs to be taken when stating the expected measure classifica-
tion result for actions of multiparameter diagonalizable groups on a quotient space
G/Γ, even for G = PGL(3,R) and A the full diagonal group, since as pointed
out by M. Rees [Ree82] (see also [EK03, §9]), any such conjecture should take
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into account possible scenarios where the action essentially degenerates into a one
parameter action where no such rigidity occurs. An explicit conjecture regarding
measures invariant under multiparameter diagonal flows was given by Margulis in
[Mar00, Conjecture 2]; a similar but less explicit conjecture by Katok and Spatzier
was given in [KS96], and by Furstenberg (unpublished). For the particular case of
the action of the diagonal group A on the space of lattice in Xd such degeneration
cannot occur2 and one has the following conjecture:

Conjecture 4. Let µ be an A-invariant and ergodic probability measure on Xd for
d ≥ 3 (and A < PGL(3,R) the group of diagonal matrices). Then µ is homogeneous
(cf. §2.3).

More generally, we quote the following from [EL06]:

Conjecture 5. Let S be a finite set of places for Q and for every v ∈ S let Gv
be a linear algebraic group over Qv. Let GS =

∏
v∈S Gv, G ≤ GS closed, and

Γ < G discrete. For each v ∈ S let Av < Gv be a maximal Qv-split torus, and let
AS =

∏
v∈S Av. Let A be a closed subgroup of AS∩G with at least two independent

elements. Let µ be an A-invariant and ergodic probability measure on G/Γ. Then
at least one of the following two possibilities holds:

(i) µ is homogeneous, i.e. is the L-invariant measure on a single, finite volume,
L-orbit for some closed subgroup A ≤ L ≤ G.

(ii) There is some S-algebraic subgroup LS with A ≤ LS ≤ GS, an element x ∈
G/Γ, an algebraic homeomorphism φ : LS → L̃S onto some S-algebraic group
L̃S, and a closed subgroup H < L̃S with H ≥ φ(Γ) so that (i) µ((LS∩G).xΓ) =
1, (ii) φ(A) does not contain two independent elements and (iii) the image of
µ to L̃S/H is not supported on a single point.

2.11. To obtain a measure classification result in the homogeneous spaces set-
ting with only an entropy assumption and no assumptions regarding ergodicity
of subactions (which are nearly impossible to verify in most applications of the
type considered here) requires a rather different strategy of proof than [KS96],
using two different and complementary methods. The first, known as the high
entropy method, was developed by M. Einsiedler and Katok [EK03] and utilizes
non-commutativity of the unipotent subgroups normalized by the acting group,
and e.g. in the case of A acting on Xd for d ≥ 3 allows one to conclude that any
measure of sufficiently high entropy (or positive entropy in “sufficiently many di-
rections”) is the uniform measure. The other method, the low entropy method, was
developed by the author [Lin06] where in particular an analogue to Rudolph’s the-
orem for the action of the maximal R-split torus3 on SL(2,R)×SL(2,R)/Γ is given.
Even though the measure under study is invariant under a diagonalizable group
and a priori has no invariance under any unipotent element, ideas from the theory

2For probability measures; there are non-homogeneous A-invariant and ergodic Radon mea-
sures on Xd.

3Which in this case is simply the product of the diagonal group from each factor
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of unipotent flows, particularly from a series of papers of Ratner on the horocycle
flow [Ra82a, Ra82b, Ra83], are used in an essential way. These two methods can
be combined successfully as was done in a joint paper with Einsiedler and Katok
[EKL06] where the following partial result toward Conjecture 4 is established:

Theorem 2 ([EKL06]). Let A be the group of diagonal matrices as above and
d ≥ 3. Let µ be an A-invariant and ergodic probability measure on Xd. If for some
a ∈ A the entropy hµ(a) > 0 then µ is homogeneous.

2.12. The high entropy method was developed further by Einsiedler and Katok in
[EK05] and the low entropy method was developed further by Einsiedler and myself
in [EL08]; these can be combined to give in particular the following theorem, which
we state for simplicity for real algebraic groups but holds in the general S-algebraic
setting of Conjecture 5 (see [EL06, §2.1.4] for more details4):

Theorem 3. Let G be a semisimple real algebraic group, A < G the connected
component of a maximal R-split torus, and Γ < G an irreducible lattice. Let µ be
an A-invariant and ergodic probability measure on G/Γ. Assume that:

(i) the R-rank of G is ≥ 2

(ii) there is no reductive proper subgroup L < G so that µ is supported on a single
periodic L-orbit

(iii) there is some a ∈ A for which hµ(a) > 0.

Then µ is the uniform measure on G/Γ.

If (ii) does not hold, one can reduce the classification of A-invariant measures µ
on this periodic L-orbit to the classification of A ∩ [L,L]-invariant and ergodic
measures µ′ on [L,L]/Λ, with Λ a lattice in [L,L]. If Λ is reducible, up to finite
index, [L,L]/Λ =

∏s
i=1 Li/Λi and µ =

∏s
i=1 µ

′
i, with µ′i anA∩Li-invariant measure

on Li/Λi. As long as there is some Li with R-rank ≥ 2 and some element a′ ∈ A∩Li
with hµ′i(a

′) > 0, one can apply Theorem 3 recursively to obtain a more explicit,
but less concise measure classification result.

New ideas seem to be necessary to extend Theorem 3 to non-maximally split
tori; in part this seems to be related to the fact that for non-maximal A much
more general groups L, even solvable ones, need to be considered in case (ii).

3. A remark on invariant measures, individual or-
bits, and size of groups

4There is a slight inaccuracy in the statement of [EL06, Thm. 2.4]: either one needs to assume
to begin with that hµ(a) > 0 for some a ∈ A or one needs to allow the trivial group H = {e} in
the first case listed there.
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3.1. One important difference between a group H generated by unipotent one
parameter subgroups (considered as a subgroup of some ambient algebraic group
G, which for simplicity we assume in this paragraph to be simple) and diagonal-
izable groups such as the group A of diagonal matrices in G = PGL(d,R) is the
size of norm-balls in the groups H or A respectively under any nontrivial finite
dimensional representation ρ of G (in particular, the adjoint representation): if λH
and λA denote Haar measure on H and A respectively,

(3.1) λH ({h ∈ H : ‖ρ(h)‖ < T}) ≥ CTα for some α = α(ρ) > 0

while

(3.2) λA ({a ∈ A : ‖ρ(a)‖ < T}) � (log T )d−1.

We shall loosely refer to groups as in (3.1) for which the volume of norm-balls is
polynomial as thick in G, and groups where this volume is polylogarithmic as in
(3.2) as thin.

3.2. Such norm balls appear naturally when one studies how orbits of nearby
points x and y diverge — an important element of Ratner’s proof of Theorem 1.
Suppose e.g. G is a linear algebraic group over R, Γ < G a lattice and H < G some
closed subgroup . If x = exp(w).y for w ∈ Lie(G) small, h.x = exp(Adh(w)).h.y

and these will still be reasonably close for all h ∈ H with ‖Ad(h)‖ < ‖w‖−1
. One

can gain in the range of usable elements of H by allowing h.x to be compared
with a more carefully chosen point h′.y ∈ H.y, but in any case the range of usable
h ∈ H includes elements of norm bounded at most by a polynomial in ‖w‖−1

. The
entropy condition of Theorems 2 and 3 can be thought of as a partial compensation
for the fact that the acting group is thin.

3.3. The size of norm-balls also plays an important role in another important
aspect of the dynamics, namely the extent to which the behavior of individual
orbits relates to any possible classification of invariant measures. We recall the
following definition due to Furstenberg:

Definition 1. Let X be a locally compact space, and H an amenable group acting
continuously on X. A point x ∈ X will be said to be generic for an H-invariant
measure µ along a Følner sequence5 {Fn} in H (that is usually kept implicit) if
for any f ∈ Cc(X)

lim
n→∞

∫
Fn
f(h.x) dλH(h)

λH(Fn)
→
∫
X

f(y) dµ(y)

where λH is the left invariant Haar measure on H.

5A sequence of sets Fn ⊂ H is said to be a Følner sequence if for any compact K ⊂ G we
have that λH(Fn4KFn)/λH(Fn) → 0 as n → ∞; a group H is said to be amenable if it has a
Følner sequence.
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By the pointwise ergodic theorem (which in this generality can be found in
[Lin01]) and separability of Cc(X), if {Fn} is a sufficiently nice Følner sequence
(e.g. for H = Rk, Fn can be taken to be any increasing sequence of boxes whose
shortest dimension → ∞ as n → ∞), and if µ is an H-invariant and ergodic
probability measure, then µ almost every x ∈ X is generic for µ along {Fn}.

3.4. As is well-known, if X is uniquely ergodic, i.e. there is a unique H-invariant
probability measure µ on X (which will necessarily be also H-ergodic, as the
ergodic measures are the extreme points of the convex set of all H-invariant prob-
ability measures) then something much stronger is true: every x ∈ X is generic
for µ along any Følner sequence (we will also say in this case that the H-orbit of
x is µ-equidistributed in X along any Følner sequence).

Even if there are only two H-invariant and ergodic probability measures on X,
or even if there is a unique H-invariant and ergodic probability measure on X but
X is not compact, individually orbits may behave in somewhat complicated ways,
failing to be generic for any measure on X. The most one can say is that if {Fn}
is Følner sequence, for large n the push forward of (λH(Fn))−1λH |Fn

restricted
to a large Følner set Fn under the map h 7→ h.x is close to a linear combination
(depending on n) of the two H-invariant and ergodic measures in the former case,
or to c times the unique H-invariant probability measure in the latter case for some
c ∈ [0, 1] (which again may depend on n).

3.5. For unipotent flows, the connection between distribution properties of indi-
vidual orbits and the ensemble of invariant probability measures is exceptionally
sharp. In [Ra91b] Ratner has shown that if ut is a one parameter unipotent group,
G a real Lie group, and Γ < G a lattice then any x ∈ G/Γ is generic for some
homogeneous measure µ whose support contains x. A uniform version where one
is allowed to vary the unipotent group as well as the starting point was given by
Dani and Margulis [DM93, Thm. 2]. Another useful result in the same spirit by
Mozes and Shah [MS95] classifies limits of sequences of homogeneous probability
measures (mi)i in G/Γ that are invariant and ergodic under some one parame-
ter unipotent subgroup of G (possibly different for different i); such a limiting
measure is also a homogeneous probability measure. Often if the volume of the
corresponding sequence of periodic orbits goes to ∞ one can show that these ho-
mogeneous probability measures converge to the uniform measure on G/Γ. In the
proof of all these results, the thickness of unipotent groups (and groups generated
by unipotents), under the guise of the polynomial nature of unipotent flows, plays
a crucially important role.

Even for G = SL(2,R), the connection between invariant measures and distri-
bution properties of individual orbits for the action of unipotent groups on infi-
nite volume quotients is not well understood outside the geometrically finite case,
though there is some interesting work in this direction, e.g. [SS08].

3.6. For diagonalizable flows, the connection between invariant measures and be-
havior of individual orbits is much more tenuous. Certainly if X = G/Γ is com-
pact then for any ξ ∈ X the A-orbit closure A.ξ supports an A-invariant measure:
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but this measure may not be unique, nor does the support of µ have to coincide
with A.ξ. Counterexamples given by Maucourant [Mau10] to the topological coun-
terpart of Conjecture 5 in [Mar00] are of precisely this type: they give an A orbit
whose limit set is the support of two (or more) different homogeneous measures.
An example in a similar spirit has been given by U. Shapira [Sha10,LS10] for the
action of the full diagonal group A on X3: Here ξ is the lattice

ξ =

1 a 0
0 1 0
0 a 1

Z3

which for a typical a ∈ R will spiral between two infinite homogeneous measures
supported on the closed orbits through the standard lattice Zd of the groups

H1 =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 and H2 =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 .

3.7. In special cases isolation results give a weak substitute for diagonal actions
to the “linearization” techniques used in [DM93,MS95,Ra91b] for unipotent flows.
An isolation result of this type for the action of A on Xd for d ≥ 3 by Cassels and
Swinnerton-Dyer [CSD55]6 gives in particular that if ξ, ξ0 ∈ Xd, with

(3.3) A.ξ0 ⊂ A.ξ r (A.ξ) and A.ξ0 periodic

then A.ξ is unbounded; this has been strengthened by Barak Weiss and myself
[LW01] to show that under the same assumptions A.ξ is a periodic orbit of some
closed connected group H with A ≤ H ≤ PGL(d,R) (such periodic orbits are easily
classified and in particular unless H = A are unbounded). Results of this nature
under somewhat less restrictive conditions than (3.3), along with some Diophantine
applications, were recently given by U. Shapira and myself [LS10].

Using the Cassels Swinnerton-Dyer isolation result it is easy to show that Con-
jecture 4 implies Conjecture 2: indeed, if A.ξ is a bounded orbit in Xd then A.ξ
supports an A-invariant probability measure, and hence by the ergodic decompo-
sition A.ξ supports an A-invariant and ergodic probability measure. Assuming
Conjecture 4 this measure will be homogeneous, and by the classification alluded
to in the previous paragraph the only compactly supported A-invariant homo-
geneous probability measures are the probability measures on periodic A-obits.
Thus A.ξ contains an A-periodic measure, and unless A.ξ is itself periodic we get
a contradiction to the Cassels-Swinnerton-Dyer Isolation Theorem.

3.8. The field of arithmetic combinatorics has witnessed dramatic progress over
the last few years with remarkable applications. One of the basic results is the fol-
lowing exponential sum estimate by Bourgain, Glibichuk and Konyagin [BGK06]:

6In the paper, Cassels and Swinnerton-Dyer treat only the case of d = 3, but the general case
is similar.
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for any δ there are c, ε > 0 so that if p is prime, H̃ a subgroup of (Z/pZ)× with
|H̃| > pδ,

max
b∈(Z/pZ)×

∣∣∑
h∈H̃ e(bh/p)

∣∣
|H̃|

< cp−ε

with e(x) = exp(2πix). Bourgain has proved a similar estimate with p replaced by
an arbitrary integer N ; this involves considerable technical difficulties since one is
interested in a result in which the error term does not depend on the decomposition
of N into primes. If H̃ is the reduction modulo N of some multiplicative semigroup
H ⊂ Z×, we can interpret this estimate as saying that for any 0 ≤ b < N , the

periodic H-orbit
{
hb
N mod 1 : h ∈ H̃

}
is close to being equidistributed in T in a

quantitative way provided |H̃| > Nδ.

3.9. Of particular interest to us is the semigroup H =
{
anbk : n, k ∈ N

}
where a, b

are multiplicatively independent integers. For a certain sequence of Ni (relatively
prime to ab) it may well happens that |H mod N | > Nδ for a fixed δ, even though
H is a thin sequence in the sense of §3.1. For such a sequence Ni and any choice
of bi ∈ (Z/NiZ)×, the sequence of periodic H-orbits H. biNi

mod 1 would become
equidistributed in a quantitative way as i→∞ by the theorem of Bourgain quoted
above (§3.8). However there are sequences of N for which |H mod N | is rather
small — (logN)c log log logN [APR83]. A trivial lower bound on |H mod N | is

|H mod N | ≥ (logaN)(logbN)/2,

and if there were infinitely many Ni with |H mod Ni| � (logNi)
2 then the orbits

H. 1
Ni

mod 1 would spend a positive proportion of their mass very close to 0, and
hence fail to equidistribute.

Using the Schmidt Subspace Theorem (more precisely, its S-algebraic extension
by Schlickewei) in an elegant and surprising way Bugeaud, Corvaja and Zannier
[BCZ03] show that

lim
N→∞

|H mod N |
(logN)2

→∞

giving credence to the following conjecture, presented as a question by Bourgain
in [Bou09]:

Conjecture 6. Let H =
{
anbk : n, k ∈ N

}
, with a, b multiplicatively independent.

Then for any sequence {(bi, Ni)} with Ni → ∞ and bi ∈ (Z/NiZ)× the sequence
of H-periodic orbits H. biNi

mod 1 becomes equidistributed as i → ∞, i.e. for any
f ∈ C(T),

|H|−1
∑
h∈H

f

(
h.
bi
Ni

)
→
∫
T
fdx.

Even if one assumes (or proves) Conjecture 3 regarding H-invariant measures, this
conjecture seems challenging due to the absence of a strong connection between
individual orbits and invariant measures for diagonalizable group actions (cf. §3.6).
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4. Some applications of the rigidity properties of
diagonalizable group actions

4.1. The partial measure classification results for actions of diagonalizable groups
mentioned above, e.g. Theorems 2 and 3, have several applications. We give below
a sample of three theorems, in the proof of which one of the major ingredients is
the classification of positive entropy invariant measures. Several other applications
are discussed in Einsiedler’s notes for his lecture at this ICM [Ein10]7.

Multiparameter diagonal groups and Diophantine approxi-
mations.

4.2. Using the variational principle relating topological entropy and ergodic theo-
retic entropy, together with an averaging argument and use of semicontinuity prop-
erties of entropy for measures supported on compact subsets of Xd in [EKL06] the
following partial result towards Conjecture 2 was deduced from Theorem 2 (see
either [EKL06] or [EL10, §12] for more details):

Theorem 4 (Einsiedler, Katok and L. [EKL06]). The set of degree d homogeneous
polynomials F (x1, . . . , xd) that can be factored as a product of d linearly indepen-
dent forms in d variables that fail to satisfy (2.2) have Hausdorff dimension zero.

By Conjecture 2 above, the set of such F is expected to be countable; the trivial
upper bound on the dimension of the set of such F is d(d− 1).

4.3. Recall the following well known conjecture of Littlewood regarding simulta-
neous Diophantine approximations:

Conjecture 7 (Littlewood). For any x, y ∈ R2,

(4.1) inf
{
n |nx−m| |ny − k| : (n,m, k) ∈ Z3, n 6= 0

}
= 0.

Similar ideas as in the proof of Theorem 4 allows one to prove that the Hausdorff
dimension of the set of exceptional pairs (x, y) ∈ R2 that do not satisfy (4.1) is
zero. Indeed, one can be a bit more precise: for a sequence of integers (ak)k∈N
define its combinatorial entropy as

hcomb((ak)) = lim
n→∞

logWn((ak))

n

where Wn((ak)) counts the number of possible n-tuples (ak, ak+1, . . . , ak+n−1) (if
(ak) is unbounded, Wn((ak)) = ∞). Then the techniques of [EKL06] gives the
following explicit sufficient criterion for a real number x to satisfy Littlewood’s
conjecture for all y ∈ R:

7Einsiedler and I have worked together for some years on many aspects of the action of
diagonalizable groups, and there is some overlap between this paper and Einsiedler’s [Ein10], as
well as our joint contribution to the proceedings of the previous ICM in Madrid [EL06]. However
the selection of topics and style is quite different in these three papers.
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Theorem 5. Let x = a1 +
1

a2 +
1

a3 + . . .

be the continued fraction expansion of x ∈

R. If hcomb((ak)) > 0 then for every y ∈ R equation (4.1) holds.

Periodic orbits of diagonal groups.

4.4. Unlike the case for groups generated by unipotents, it is not hard to give a
sequence of A-periodic orbits A.xi in Xd (for any d ≥ 2) so that the associated
probability measures mA.xi

fail to converge to the uniform measure (cf. [ELMV09,
§7]). Indeed, as pointed out to me by U. Shapira, such an example is implicit
already in an old paper by Cassels [Cas52].

4.5. However, when the periodic orbits are appropriately grouped their behavior
improves markedly: define for any A-periodic ξ ∈ Xd an order in the ring D of
d× d (possibly singular) diagonal matrices by

O(ξ) =
{
h ∈ D : h.ξ̄ ⊆ ξ̄

}
where ξ̄ is a lattice representing the homothety equivalence class ξ. This is a
discrete subring of D containing 1; stabA(ξ) = {a ∈ A : a.ξ = ξ} is precisely the
set of invertible elements of O(ξ) and moreover Z[stabA(ξ)] ⊆ O(ξ). Since ξ is
A-periodic, stabA(ξ) contains d − 1-independent units and O(ξ) is a lattice in D
(considered as an additive group), isomorphic as a ring to an order in a totally real
number field K of degree d over Q. For a given order O < D set

C(O) = {A.y : O(y) = O} ;

for any A-periodic ξ ∈ Xd the collection C(O(ξ)) can be shown to be finite.

Theorem 6 (Einsiedler, Michel, Venkatesh and L. [ELMV10]). Let A.xi can be a
sequence of distinct A-periodic orbits in X3, and set Ci = C(O(xi)). Then for any
f ∈ Cc(X3) we have that

1

|Ci| · |A/ stabA(xi)|
∑

A.y∈Ci

∫
A/ stabA(xi)

f(a.y) da→
∫
X3

f.

For d = 2 the corresponding statement is a theorem of Duke [Duk88] proved
using the theory of automorphic forms, with some previous substantial partial
results by Linnik and Skubenko (see [Li68]). Weaker results about the distribution
of periodic A-orbits for d ≥ 3 in substantially greater generality were obtained in
[ELMV09].

4.6. In the case of periodic A-orbits A.ξ whose corresponding order O(ξ) is maxi-
mal (equivalently, is isomorphic to the full integer ring OK of a totally real number
field K), C(ξ) can be identified with the ideal class group of OK , and in particular
has a natural structure of a group. It is quite challenging to make use of the group
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structure of C(ξ) in the dynamical context. In particular, it would be of interest
to prove equidistribution of the collection of A-orbits corresponding to (possibly
quite small) subgroups of the ideal class group.

4.7. We refer the reader to the comprehensive survey [MV06] by Michel and
Venkatesh for more details on this and related equidistribution questions.

Diagonal flows and Arithmetic Quantum Unique Ergodicity.

4.8. In [RS94], Z. Rudnick and P. Sarnak conjectured the following:

Conjecture 8. Let M be a compact Riemannian manifold of negative sectional
curvature. Let φi be an orthonormal sequence of eigenfunctions of the Laplacian
on M . Then

(4.2)

∫
M

f(x) |φi(x)|2 d vol(x)→ 1

vol(M)

∫
M

f(x) d vol(x) ∀f ∈ C∞(M).

There is also a slightly stronger form of this conjecture for test functions in
phase space. Both versions of the conjecture are open, and there does not seem
to be strong evidence for it in high dimensions. However in the special case of
M = H/Γ with Γ an arithmetic lattice of congruence type (either congruence
sublattices of PGL(2,Z) or of PGL(1,O) for O an order in an indefinite quaternion
algebra over Q; in the latter case M is compact) we have a lot of extra symmetry
that aids the analysis: an infinite commuting ensemble of self-adjoint operators,
generated by the Laplacian and, for each prime p outside a possible finite set P of
“bad” primes, a corresponding Hecke operators Tp.

Theorem 7 (Brooks and L. [BL10,Lin06]). Let M = H/Γ be as above, and p 6∈ P ,
with M compact. Then any orthonormal sequence φi of joint eigenfunctions of the
Laplacian and Tp on M satisfies (4.2).

This theorem refines a previous theorem that relied on work by Bourgain and
myself [BL03]. When Γ is a congruence subgroup of SL(2,Z), i.e. M is not compact,
there is an extra complication in that one needs to show that no mass escapes to
the cusp in the limit. Under the assumption of φi being joint eigenfunctions of all
Hecke operators this has been established by Soundararajan [Sou09].

4.9. The proof of Theorem 7 does not quite use multiparameter diagonalizable
flows but rather the following theorem (generalized in [EL08]) of similar but some-
what more general flavor:

Definition 2. Let X be locally compact space, H a locally compact group acting
continuously on X, and µ any σ-finite measure on X (not necessarily H invariant).
Then µ is H-recurrent if for every set B ⊂ X with µ(B) > 0 for almost every x ∈ X
the set {h ∈ H : h.x ∈ B} is unbounded (has noncompact closure).
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Theorem 8 ([Lin06]). Let G = PGL(2,R)× PGL(2,Qp), H = PGL(2,Qp) con-
sidered as a subgroup of G, A1 the diagonal subgroup of SL(2,R) (also considered
as a subgroup of G), and Λ < G an irreducible lattice. Let µ be a probability
measure on G/Λ which is (i) A1-invariant (ii) H-recurrent (iii) a.e. A1-ergodic
component of µ has positive entropy (with respect to A1). Then µ is the uniform
measure on G/Λ.

Note that if µ as in Theorem 8 were invariant under any unbounded subgroup of
H, by Poincaré recurrence it would be H-recurrent.

The connection to Theorem 7 uses the fact that for Γ < PGL(2,R) of con-
gruence type as above and p 6∈ P , H/Γ can be identified with K\G/Λ for G
as in Theorem 8 and K < G the compact subgroup PO(2,R) × PGL(2,Zp); let
π : G/Λ→ H/Γ be the projection corresponding to this identification. The Hecke
operator Tp is related to this construction as follows: for f ∈ L2(H/Γ) and x̃ ∈ G/Λ

[
Tpf

]
(π(x̃)) = p−1/2

∫
PGL(2,Zp)

(
p 0
0 1

)
PGL(2,Zp)

f̃ ◦ π((e, h).x̃) dh.

The crux of both [BL03] and [BL10] is the verification of the entropy assumption
(iii) above, which can be rephrased in terms of decay rates of measures of small
tubes in G/Λ.

4.10. Note that though Theorems 4 and 5 are clearly partial results, in Theo-
rem 6 and Theorem 7 one essentially obtains unconditionally full equidistribution
statements using only the partial measure classification results currently available.

4.11. A more detailed discussion of quantum unique ergodicity in the arithmetic
context can be found in Soundararajan’s contribution to these proceedings [Sou10],
which also include a discussion of some recent exciting results of Holowinsky and
Soundararajan [HS09] regarding an analoguous question for holomorphic forms.

5. Zariski dense subgroups of groups generated by
unipotents

5.1. An important difference between groups generated by unipotent subgroups
and diagonalizable groups is the size of norm balls in these groups. Given a closed
subgroup H < G with large norm balls, i.e. for which

(5.1) λH ({h ∈ H : ‖Ad(h)‖ < T}) ≥ CTα for some α > 0

the discussion in §3 might lead us to hope that we may be able to understand the
behavior of individual H-orbits for the action of H on a quotient space G/Γ for a
lattice Γ < G.
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5.2. A natural class of groups which satisfy the thickness condition (5.1) are
Zariski dense discrete subgroups Λ of semisimple algebraic groups. For instance,
one may look at the action of a subgroup Λ < SL(d,Z) with a large Zariski closure
on Td, or at the action of a subgroup Λ < G with large Zariski closure (in the
simplest case, G) on G/Γ where G is a simple real algebraic group. Two substantial
papers addressing this question appeared in the same Tata Institute Studies volume
by Furstenberg [Fur98] and by N. Shah [Sh98], the latter paper addressing this
question when Λ is generated by unipotent elements.

5.3. In the context of actions of subgroups Λ < SL(d,Z) on Td, under the assump-
tion of strong irreducibility of the Λ-action and that the identity component of the
Zariski closure of Λ is semisimple, Muchnik [Muc05] and Guivarc’h and Starkov
[GS04] show that for any x ∈ Td the orbit Λ.x is either finite or dense, in anal-
ogy with theorems of Furstenberg (cf. §2.8) and Berend [Ber84] who address this
question in the context of the action of two or more commuting automorphisms
of Td.

5.4. Groups Λ as above with a large Zariski closure are not amenable8, and hence
in general there is no reason why the behavior of individual orbits in a continu-
ous action of Λ on a compact (or locally compact) space X should be governed
by Λ-invariant measures, even to the more limited extent manifest by actions of
diagonalizable groups. A natural substitute for invariant measures in this con-
text was suggested by Furstenberg (e.g. in [Fur98]): choose an arbitrary auxiliary
probability measure ν on Λ whose support generates Λ, subject to an integrability
condition, e.g. the finite moment condition

∫
‖g‖δ dν(g) <∞ for some ε > 0 (if Λ

is finitely generated one can take ν to be finitely supported). A measure µ on X
is said to be ν-stationary if

ν ∗ µ :=

∫
g∗µdν(g) = µ.

Unlike invariant measures, even in the nonamenable setting, if X is compact then
for every x ∈ X there is a ν-stationary probability measure supported on Λ.x.

5.5. In analogy with Conjecture 3, one may conjecture that if ν is a measure
on SL(d,Z) whose support generates a subgroup Λ acting strongly irreducibly on
Td and whose Zariski closure is semisimple, in particular if Λ is Zariski dense in
SL(d,R), any ν-stationary probability measure on Td is a linear combination of
Lebesgue measure λTd and finitely supported measures each on a finite Λ-orbit. In
particular, one may hope that any ν-stationary measure is in fact Λ-invariant, a
phenomenon Furstenberg calls stiffness. Guivarc’h posed the following question,
suggesting that a much stronger statement might be true: whether under the
conditions above, for any x ∈ Td with at least one irrational component,

(5.2) ν∗k ∗ δx := ν ∗ · · · ∗ ν︸ ︷︷ ︸
k

∗δx → λTd as k →∞.

8See footnote on p. 9 for a definition.
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Equation (5.2) clearly implies that if µ is any nonatomic measure, ν∗k ∗ µ→ λTd ,
hence it implies the above classification of ν-stationary measures.

5.6. In joint work with Bourgain, Furman and Mozes, a positive quantitative
answer to Guivarc’h question is given under the assumption that Λ acts totally
irreducibly on Td and has a proximal element9, in particular, if Λ is Zariski dense
in SL(d,R):

Theorem 9 (Bourgain, Furman, Mozes and L. [BFLM10]). Let Λ < SLd(R) satisfy
the assumptions above, and let ν be a probability measure supported on a set of
generators of Λ satisfying the moment condition of §5.4. Then there are constants
C, c > 0 so that if for a point x ∈ Td the measure µn = ν∗n ∗ δx satisfies that for
some a ∈ Zd r {0}

|µ̂n(a)| > t > 0, with n > C · log(
2‖a‖
t

),

then x admits a rational approximation p/q for p ∈ Zd and q ∈ Z+ satisfying

(5.3)

∥∥∥∥x− p

q

∥∥∥∥ < e−cn and |q| <
(

2‖a‖
t

)C
.

This proof uses in an essential way the techniques of arithmetic combinatorics,
particularly a nonstandard projections theorem by Bourgain [Bou10].

5.7. A purely ergodic theoretic approach to classifying Λ-stationary measures,
as well as Λ-orbit closures, has been developed by Y. Benoist and J. F. Quint.
Their approach has a considerable advantage that it is significantly more general
in scope, though the analytic approach of [BFLM10] where applicable gives much
more precise and quantitative information. In particular, in [BQ09] the following
is proved for homogeneous quotients G/Γ:

Theorem 10 (Benoist and Quint). Let G be the connected component of a simple
real algebraic group, Γ a lattice in G. Let ν be a finitely supported probability
measure G whose support generates a Zariski dense subgroup Λ < G then

1. Any non-atomic ν-stationary measure on G/Γ is the uniform measure on
G/Γ.

2. For any x ∈ G/Γ, the orbit Λ.x is either finite or dense. Moreover, in the
latter case the Cesàro averages 1

n

∑n
k=1 ν

∗n∗δx converge weak∗ to the uniform
measure on G/Γ.

It is not known in this case if the sequence ν∗n∗δx converges to the uniform measure.
A technique introduced by Eskin and Margulis [EM04] to establish nondivergence
of the sequence of measures ν∗k ∗ δx on G/Γ and further developed by Benoist and

9 An element g ∈ SL(d,R) is said to be proximal if it has a simple real eigenvalue strictly
larger in absolute value than all other eigenvalues.
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Quint is used crucially in this work, and in particular gives a useful substitute in
this context for the linearization techniques for unipotent flows discussed in §3.5.
Some of the ideas of Ratner’s Measure Classification Theorem (see §2.3) are used
in the proof of Theorem 10, as well as the result itself.

6. Quantitative aspects

6.1. As we have seen, dynamical techniques applied in the context of homogeneous
spaces are extremely powerful, and have many applications in number theory and
other subjects. However they have a major deficiency, in that they are quite hard
to quantify. For example, Margulis’ proof of the Oppenheim conjecture (cf. §2.1)
does not give any information about the size of the smallest v ∈ Z3r{0} satisfying
|Q(v)| < ε for a given indefinite ternary quadratic form Q not proportional to a
rational one (note that necessarily any quantitative statement of this type needs
to be somewhat involved as the qualitative statement fails for integral Q, and any
quantitative statement has to take into account how well Q can be approximated
by forms proportional to rational forms of a given height.)

Contrast this with the proof by Davenport and Heilbronn [DH46] of the Op-
penheim Conjecture for diagonal forms with d ≥ 5 variables (forms of the type
Q(x1, . . . , xd) =

∑
i λix

2
i where not all λi have the same sign) using a variant

of the Hardy-Littlewood circle method, from which it can be deduced10 that the
shortest vector v with |Q(v)| < ε is O(ε−C), and the much more recent work of
Götze and Margulis [GM10] who treat the general d ≥ 5 case using substantially
more elaborate analytic tools and obtain a similar quantitative estimate.

6.2. Overcoming this deficiency is an important direction of research within the
theory of flows on homogeneous spaces. There is one general class in which at
least in principle it had long been known that fairly sharp quantitative equidistri-
bution statements can be given, and that is for the action of horocyclic groups.
Recall that U < G is said to be horocyclic if there is some g ∈ G for which

U = {u ∈ G : gnug−n → e as n→∞}; the prototypical example is U =

(
1 t
0 1

)
in SL(2,R). Such quantitative equidistribution results have been given by Sarnak
[Sar81] and Burger [Bur90, Thm. 2] and several other authors since. Even in this
well-understood case, quantitative equidistribution results have remarkable appli-
cations such as in the work of Michel and Venkatesh on subconvex estimates of
L-functions [Ven05,MV09].

6.3. Another case which is well understood, particularly thanks to the work of
Green and Tao [GT07], is the action of a subgroup of G on G\Γ when G is nilpotent ;
these nilsystems appear naturally in the context of combinatorial ergodic theory,

10At least for forms that are not too well approximated by forms proportional to rational
ones, though by Meyer’s Theorem for d ≥ 5 rational forms should not cause any significant
complication.
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and have a different flavor from the type of dynamics we consider here, e.g. when
G is a semisimple group or a solvable group of exponential growth.

6.4. We list below several nonhorospherical quantitative equidistribution results
closer to the main topics of this note:

(a) Using deep results from the theory of automorphic forms, and under some
additional assumptions that are probably not essential, Einsiedler, Margulis
and Venkatesh were able to give a quantitative analysis of equidistribution of
periodic orbits of semisimple groups on homogeneous spaces [EMV09] with a
polynomial rate of convergence — a result that I suspect should have many
applications.

(b) Let ν be a probability measure on SL(d,Z) as in §5.6. Theorem 9 quoted
above from [BFLM10] gives a quantitative equidistribution statement for suc-
cessive convolutions ν∗n ∗ δx for x ∈ Td, which in particular gives quantitative
information on the random walk associated with ν on (Z/NZ)d as N → ∞
irrespective of the prime decomposition of N . This has turned out to be useful
in the recent work of Bourgain and P. Varjú [BV10] that show that the Cayley
graphs of SL(d,Z/NZ) with respect to a finite set S of elements in SL(d,Z)
generating a Zariski dense subgroup of SL(d,R) are a family of expanders as
N → ∞ as long as N is not divisible by some fixed set of prime numbers
depending on S.

(c) In joint work with Margulis we give an effective dynamical proof of the Op-
penheim Conjecture, i.e. one that does give bounds on the minimal size of a
nonzero integral vector v for which |Q(v)| < ε. The bound obtained is of the
form ‖v‖ � exp(ε−C). Nimish Shah has drawn my attention to a paper of
Dani [Dan94] which has a proof of the Oppenheim conjecture that in principle
is quantifiable, i.e. without the use of minimal sets or the axiom of choice,
though it is not immediately apparent what quality of quantification may be
obtained from his method.

(d) In work with Bourgain, Michel and Venkatesh [BLMV09] we have given an
effective version of Furstenberg’s Theorem (cf. §2.8), giving in particular that if
a, b are multiplicatively independent integers, for sufficiently large C depending
on a, b and some θ > 0, for all N ∈ N and m relatively prime to N ,{

anbkm

N
: 0 ≤ n, k ≤ C logN

}
intersects any interval in R/Z of length � log log logNθ. This has been gen-
eralized by Z. Wang [Wan10] in the context of commuting actions of toral
automorphisms.

Clearly, there is ample scope for further research in this direction, particularly
regarding the quality of these quantitative results and their level of generality. In
particular, I think any improvement on the quality of the estimate obtained in (d)
above would be quite interesting.
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Math. Soc., Zürich, 2006, pp. 1731–1759. MR2275667 (2009d:37007)

[EL08] M. Einsiedler and E. Lindenstrauss, On measures invariant under diagonalizable ac-
tions: the rank-one case and the general low-entropy method, J. Mod. Dyn. 2 (2008),
no. 1, 83–128. MR2366231 (2009h:37057)

[EL10] M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces,
Proceedings of the 2007 Clay Summer School on Homogeneous Flows, Moduli Spaces
and Arithmetic, Amer. Math. Soc., Providence, RI, 2010. To appear.

http://www.ams.org/mathscinet-getitem?mr=1953049
http://www.ams.org/mathscinet-getitem?mr=1953049
http://www.ams.org/mathscinet-getitem?mr=1084459
http://www.ams.org/mathscinet-getitem?mr=1084459
http://www.ams.org/mathscinet-getitem?mr=0050632
http://www.ams.org/mathscinet-getitem?mr=0050632
http://www.ams.org/mathscinet-getitem?mr=0070653
http://www.ams.org/mathscinet-getitem?mr=0070653
http://www.ams.org/mathscinet-getitem?mr=629475
http://www.ams.org/mathscinet-getitem?mr=629475
http://www.ams.org/mathscinet-getitem?mr=857195
http://www.ams.org/mathscinet-getitem?mr=857195
http://www.ams.org/mathscinet-getitem?mr=1279060
http://www.ams.org/mathscinet-getitem?mr=1279060
http://www.ams.org/mathscinet-getitem?mr=1071418
http://www.ams.org/mathscinet-getitem?mr=1071418
http://www.ams.org/mathscinet-getitem?mr=1032925
http://www.ams.org/mathscinet-getitem?mr=1032925
http://www.ams.org/mathscinet-getitem?mr=1237827
http://www.ams.org/mathscinet-getitem?mr=1237827
http://www.ams.org/mathscinet-getitem?mr=0020578
http://www.ams.org/mathscinet-getitem?mr=0020578
http://www.ams.org/mathscinet-getitem?mr=931205
http://www.ams.org/mathscinet-getitem?mr=931205
http://www.ams.org/mathscinet-getitem?mr=1989231
http://www.ams.org/mathscinet-getitem?mr=1989231
http://www.ams.org/mathscinet-getitem?mr=2191228
http://www.ams.org/mathscinet-getitem?mr=2191228
http://www.ams.org/mathscinet-getitem?mr=2247967
http://www.ams.org/mathscinet-getitem?mr=2247967
http://www.ams.org/mathscinet-getitem?mr=2275667
http://www.ams.org/mathscinet-getitem?mr=2275667
http://www.ams.org/mathscinet-getitem?mr=2366231
http://www.ams.org/mathscinet-getitem?mr=2366231


Equidistribution in homogeneous spaces 23

[ELMV09] M. Einsiedler, E. Lindenstrauss, P. Michel, and A. Venkatesh, Distribution of peri-
odic torus orbits on homogeneous spaces, Duke Math. J. 148 (2009), no. 1, 119–174.
MR2515103

[ELMV10] M. Einsiedler, E. Lindenstrauss, P. Michel, and A. Venkatesh, Distribution of periodic
torus orbits and Duke’s theorem for cubic fields (2010). to appear, Annals of Math.

[EMV09] M. Einsiedler, G. A. Margulis, and A. Venkatesh, Effective equidistribution for closed
orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009), no. 1,
137–212. MR2507639

[EM04] N. D. Elkies and C. T. McMullen, Gaps in
√
n mod 1 and ergodic theory, Duke Math.

J. 123 (2004), no. 1, 95–139. MR2060024 (2005f:11143)

[EV08] J. S. Ellenberg and A. Venkatesh, Local-global principles for representations
of quadratic forms, Invent. Math. 171 (2008), no. 2, 257–279. MR2367020
(2008m:11081)

[EM04] A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume
homogeneous manifolds, Random walks and geometry, Walter de Gruyter GmbH &
Co. KG, Berlin, 2004, pp. 431–444. MR2087794 (2005m:22025)

[Fur67] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Dio-
phantine approximation, Math. Systems Theory 1 (1967), 1–49. MR0213508 (35
#4369)

[EMS96] A. Eskin, S. Mozes, and N. Shah, Unipotent flows and counting lattice points
on homogeneous varieties, Ann. of Math. (2) 143 (1996), no. 2, 253–299, DOI
10.2307/2118644. MR1381987 (97d:22012)

[Fur98] H. Furstenberg, Stiffness of group actions, Lie groups and ergodic theory (Mumbai,
1996), Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay,
1998, pp. 105–117. MR1699360 (2000f:22008)

[GM10] F. Götze and G. Margulis, Distribution of Values of Quadratic Forms at Integral
Points (Apr. 2010), available at arXiv:1004.5123.

[GT07] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,
Annals of Math. (2007), available at arxiv:0709.3562. To appear.

[GS04] Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walks on
homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems 24
(2004), no. 3, 767–802. MR2060998 (2005f:37058)

[HS09] R. Holowinsky and K. Soundararajan, Mass equidistribution of Hecke eigenforms
(2009), available at arxiv:0809.1636.

[KS96] A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian
actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR1406432
(97d:58116)

[Lin01] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001),
no. 2, 259–295. MR1865397 (2002h:37005)

[Lin06] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann.
of Math. (2) 163 (2006), no. 1, 165–219. MR2195133 (2007b:11072)

[LS10] E. Lindenstrauss and U. Shapira, Homogeneous orbit closures and applications
(2010). Preprint.

[LW01] E. Lindenstrauss and Barak Weiss, On sets invariant under the action of the diagonal
group, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1481–1500. MR1855843
(2002j:22009)

[Li68] Yu. V. Linnik, Ergodic properties of algebraic fields, Translated from the Russian by
M. S. Keane. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 45, Springer-
Verlag New York Inc., New York, 1968. MR0238801 (39 #165)

http://www.ams.org/mathscinet-getitem?mr=2515103
http://www.ams.org/mathscinet-getitem?mr=2507639
http://www.ams.org/mathscinet-getitem?mr=2060024
http://www.ams.org/mathscinet-getitem?mr=2060024
http://www.ams.org/mathscinet-getitem?mr=2367020
http://www.ams.org/mathscinet-getitem?mr=2367020
http://www.ams.org/mathscinet-getitem?mr=2087794
http://www.ams.org/mathscinet-getitem?mr=2087794
http://www.ams.org/mathscinet-getitem?mr=0213508
http://www.ams.org/mathscinet-getitem?mr=0213508
http://www.ams.org/mathscinet-getitem?mr=0213508
http://www.ams.org/mathscinet-getitem?mr=1381987
http://www.ams.org/mathscinet-getitem?mr=1381987
http://www.ams.org/mathscinet-getitem?mr=1699360
http://www.ams.org/mathscinet-getitem?mr=1699360
arXiv:1004.5123
arxiv:0709.3562
http://www.ams.org/mathscinet-getitem?mr=2060998
http://www.ams.org/mathscinet-getitem?mr=2060998
arxiv:0809.1636
http://www.ams.org/mathscinet-getitem?mr=1406432
http://www.ams.org/mathscinet-getitem?mr=1406432
http://www.ams.org/mathscinet-getitem?mr=1865397
http://www.ams.org/mathscinet-getitem?mr=1865397
http://www.ams.org/mathscinet-getitem?mr=2195133
http://www.ams.org/mathscinet-getitem?mr=2195133
http://www.ams.org/mathscinet-getitem?mr=1855843
http://www.ams.org/mathscinet-getitem?mr=1855843
http://www.ams.org/mathscinet-getitem?mr=0238801
http://www.ams.org/mathscinet-getitem?mr=0238801


24 Elon Lindenstrauss

[Lyo88] R. Lyons, On measures simultaneously 2- and 3-invariant, Israel J. Math. 61 (1988),
no. 2, 219–224. MR941238 (89e:28031)

[Mar71] G. A. Margulis, The action of unipotent groups in a lattice space, Mat. Sb. (N.S.)
86(128) (1971), 552–556 (Russian). MR0291352 (45 #445)

[Mar87] G. A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les espaces
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