
RIGIDITY OF MULTIPARAMETER ACTIONS

ELON LINDENSTRAUSS

0. Prologue

In this survey I would like to expose recent developments and ap-
plications of the study of the rigidity properties of natural algebraic
actions of multidimensional abelian groups. This study was initiated
by Hillel Furstenberg in his landmark paper [Fur67].

The survey is an outgrowth of notes I gave to a series of lectures in
the II Workshop on Dynamics and Randomness in December 2002; a
related talk was given also in the Conference on Probability in Math-
ematics in honor of Hillel Furstenberg. It is not intended to be an
exhaustive survey, and is skewed towards the problems I have worked
on and which I know best. In particular, I make no mention of Zd

actions on zero dimensional compact groups such as Ledrappier’s ex-
ample of a 2-mixing but not 3-mixing Z2-action [Sch95, Intr.] — a
deficiency that is partially mitigated by the existence of several good
surveys, for example [Sch03].

It has been my good fortune to have been able to learn ergodic the-
ory from Benjamin Weiss, Hillel’s long term collaborator and friend,
and from Hillel himself during my graduate studies in the Hebrew Uni-
versity. To the problems mentioned here I have been introduced by
numerous discussions (as well as collaborations) with David Meiri, Sha-
har Mozes, Yuval Peres and Barak Weiss, all of whom were students of
Hillel, as well as with Hillel himself. It is therefore with great pleasure
that I dedicate this survey to Hillel, on occasion of his retirement. Af-
ter graduating, I met Peter Sarnak and learned from him many things,
including about the quantum unique ergodicity problem, which is fortu-
itously connected to precisely these kind of questions. Without Peter’s
help and encouragement, in times even his insistence, I would not have
been able to discover this connection to quantum unique ergodicity
which motivated much of my work on this subject.

Date: version of January 4, 2005.
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1. Rigidity on the one torus

One of the simplest dynamical systems is the map

×n : x 7→ nx mod 1

on the unit interval, where n is any natural number. In order to make
this map continuous, we think of it as a map on the 1-torus T =
R/Z. This map is essentially the same as the shift on a one-sided
infinite sequence of n symbols: the exact relationship between these
two systems is that there is a continuous surjection from the one-sided
shift on n symbol to T commuting with the respective Z+ actions,
and this continuous surjection is finite-to-1 everywhere (in fact at most
2-to-1) and is 1-to-1 except at countably many points.

There are very many closed invariant sets for the map ×n, and very
many invariant or even ergodic measures. As discovered by Fursten-
berg, the situation changes dramatically if one adds an additional
map into the picture. One may consider the two commuting maps
×n : x 7→ nx mod 1 and ×m : x 7→ mx mod 1; in order to really have
two different maps it is natural to assume that n and m are multi-
plicative independent, i.e. that log n/ log m 6∈ Q.

In this case Furstenberg proved that there are very few closed in-
variant sets [Fur67], and conjectured that a similar statement holds for
invariant measures.

Theorem 1.1 (Furstenberg [Fur67]). Let n, m be two multiplicative
independent positive integers. Assume that X ⊂ T is closed and in-
variant under ×n and ×m (i.e. that ×n(X) ⊂ X and similarly for
×m). Then either X = T or X is finite (and so necessarily X ⊂ Q).

His proof is a true gem, and uses a fundamental idea, which was new
at the time, namely disjointness of dynamical systems: some systems
are so different they cannot be coupled in any nontrivial way. Like most
of what we consider here, this notion applies both in the measurable
category and in the topological category; here is the topological version:

Definition 1.2. Let G be a reasonable semigroup (say locally compact,
second countable). Suppose G acts continuously on two spaces X and
Y . A joining of (X,G) and (Y,G) is a closed subset Z ⊂ X × Y
invariant under the diagonal G action on X × Y whose projection to
the first coordinate is X and to the second coordinate is Y . The two
systems (X,G) and (Y, G) are said to be disjoint if the only joining
between them is the trivial product joining Z = X × Y .
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In Furstenberg’s proof of Theorem 1.1 a key point is that a continu-
ous Zd-action on a compact space with many periodic points is disjoint
from any minimal Zd-action (i.e. one in which every orbit is dense).

We now present Furstenberg’s conjecture about measure rigidity,
which despite substantial progress is still open and considered one of
the most outstanding problems in ergodic theory. We recall that a
measure µ on a measurable space (X,B) on which a semigroup G acts
is said to be invariant if for every g ∈ G and any A ∈ B we have that
µ(g−1A) = µ(A); an invariant measure is said to be ergodic if every set
A ∈ B which is invariant under every g ∈ G satisfies that µ(A) = 0 or
µ(X \ A) = 0.

Conjecture 1 (Furstenberg (1967)). Let n, m be two multiplicative in-
dependent positive integers. Any Borel measure µ on T ergodic under
the action of the semigroup generated by ×n,×m is either Lebesgue mea-
sure or an atomic measure supported on finitely many rational points.

The first substantial partial result in this direction is due to R. Lyons
[Lyo88]. He proved the following:

Theorem 1.3 (Lyons [Lyo88]). Let m, n be two multiplicative indepen-
dent positive integers, and µ a ×n,×m-and ergodic measure on T as in
Furstenberg’s conjecture. Assume further that with respect to the Z+ ac-
tion generated by the ×n map, µ has the K property (i.e. (T,B, µ,×n)
has no zero entropy factors). Then µ is Lebesgue measure.

This theorem has been substantially strengthened by Rudolph, whose
theorem (at least for the case of m, n relatively prime) still presents the
state-of-the-art regarding Furstenberg’s conjecture:

Theorem 1.4 (Rudolph [Rud90]). Let m, n be relatively prime positive
integers, and µ a ×n,×m-ergodic measure on T as before. Assume that
the entropy of the Z+-action generated by one of these maps, say ×n,
has positive entropy. Then µ is Lebesgue measure.

Rudolph’s proof used in an essential way that n and m are relatively
prime. This restriction was lifted by A. Johnson [Joh92] who extended
Theorem 1.4 to n and m multiplicatively independent.

In his proof, Rudolph identified and dealt with a substantial compli-
cation, namely that even though µ is ×n,×m-ergodic it does not need
to be ×n-ergodic. Overcoming this requires a new idea, and if one
makes this ergodicity assumption, Rudolph’s proof can be simplified.
Note that by definition this difficulty does not exist if the action of ×n
on (T,B, µ) is K, hence in particular ergodic, which is a case covered
by Lyons’ theorem.
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J. Feldman has been able to give an alternative proof of Rudolph’s
and Johnson’s theorems using a method similar to that of Lyons [Fel93];
however this proof does not seem very suitable for generalizations. A
third approach to Rudolph’s Theorem by Host [Hos95, Hos00] will play
a key role later on.

An important advance was made by Katok and Spatzier [KS96,
KS98], who discovered that Rudolph’s proof can be extended to give
partial information on invariant measures in much greater generality.
Here overcoming the need for an ergodicity assumption becomes sub-
stantially harder; an extension of Rudolph’s original method of over-
coming this difficulty works only in a rather restricted class of examples
(of course much more general than that considered in Rudolph’s orig-
inal proof) with satisfy a condition Katok and Spatzier called total
non-symplecticity (TNS).

In this survey we emphasize recent progress in the study of measures
invariant under algebraic multiparameter abelian actions, in particular
progress towards the classifying of invariant measures without need for
an ergodicity assumption in a much wider class of actions than the
class of TNS actions for which this was previously known. It turns
out that in applications to number theoretic and other problems this
improvement is crucial. Also, following Host’s approach mentioned
above the scope of these techniques have been extended to deal with
certain “partially isometric” one parameter actions.

As we will explain in §6, this study of invariant measure yields a
proof of arithmetic cases of the quantum unique ergodicity conjecture
[Lin03a]. We also mention that in [EKL04] (which is joint with M. Ein-
siedler and A. Katok) we use a partial classification of invariant mea-
sures to derive a substantial partial result towards the long-standing
Littlewood Conjecture on simultaneous Diophantine approximations
(Theorem 3.1 below). In both cases measure rigidity techniques prove
results which are at present unapproachable by other methods.

2. rigidity for toral automorphism

In this and the next section, we present two classes of actions of
multidimensional abelian groups where similar rigidity phenomena can
be found.

Much of what has been said in the first section regarding the ×m

map is also true for higher dimensional toral automorphisms, or more
generally for automorphisms of connected abelian groups. If α is a sin-
gle toral automorphism, and assuming the automorphism is expansive
(i.e. hyperbolic), one can find a sofic system (i.e. a factor of a shift of
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finite type) which is related to the toral automorphism in a way which
is very similar to how the one-sided shift on n symbols is related to the
×n map, and so the abundance of closed invariant sets and invariant
measures on a sofic system implies that the same holds for a hyperbolic
toral automorphism.

The construction of such sofic models is a fascinating story in its
own right. A geometric construction in the two dimensional case was
discovered by Adler and Weiss [AW67], and this theory, the theory of
Markov partitions, was developed by Sinai, Bowen and others as an
exceedingly powerful tool for the study of general Anosov and axiom A
systems. More recently, Kenyon and Vershik [KV98] (following earlier
work of Vershik) constructed an algebraic coding specifically for hyper-
bolic toral automorphism which better reflects the algebraic structure
of this system; a related but different coding has been developed by K.
Schmidt [Sch00], and more careful analysis of certain special cases was
carried out by Sidorov and Vershik [SV98].

In general, automorphisms of a multidimensional torus fail to com-
mute and so typically a finite set of automorphisms generate a rather
large group. An extreme case is the study of actions of groups of au-
tomorphisms which are commensurable to an arithmetic lattice in a
higher rank Lie group. Certainly in this case one expects very few
closed invariant sets and invariant measures, but much of the rigid-
ity comes from the group itself and not from the particular action at
hand. The study of actions of these “big” groups is a deep and fasci-
nating topic in its own right, but has a completely different flavor and
is beyond the scope of these lectures.

Here we focus on the other extreme, the study of measures and closed
sets in Td invariant under a multidimensional (i.e. not virtually cyclic)
Abelian group of toral automorphisms. Certainly there is nothing rigid
about the way Zn acts per se: virtually anything which is known about
Z actions is also known for Zn actions: indeed for actions of amenable
groups [OW87]. The surprising fact is that many natural Zn or Rn

actions have (at least conjecturally) this unexpected scarcity of closed
invariant sets and invariant measures.

Some care is needed when stating the exact conditions for rigidity.
For example, consider the Z2-action α generated by the two commuting
toral automorphisms on T4 given by the integer matrices:

A =


2 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 , B =


1 0 0 0
0 1 0 0
0 0 2 1
0 0 1 1.

 (2.1)
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This action is a faithful Z2-action (i.e. no n ∈ Z2 acts trivially) but
it is clear no measure or topological rigidity can hold here since the
projection π : T4 → T2 obtained by omitting the two last coordinates
is a factor map that intertwines the Z2-action α on T4 with a Z action
on T2. There is no shortage of closed invariant sets and invariant
measures for any Z action by a hyperbolic toral automorphism on T2,
and any such invariant set or invariant measure can be lifted to an
invariant set or measure respectively on (T4, α). It is a conjecture of
Katok and Spatzier that this type of construction is the only source of
non-algebraic α ergodic measures for a Zd action on a torus with d > 1.

A Zd action α on Tn is said to be irreducible if the only closed,
α-invariant proper subgroups of Tn are finite. Such actions do not
have any lower dimensional factors (since otherwise the kernel of the
factor map will be a closed infinite proper subgroup). It is strongly
irreducible if the same holds for every finite index subgroup of Zd.
For simplicity we assume that α is a faithful, strongly irreducible Zd

action on Tn for some d > 1, and then the above method of creating
strange invariant sets and measures is not applicable, though even if
one understands well the irreducible case, the passage to the general
case involves new issues (see e.g. [KK02, KS96, KS98, Mei98, MP99]).
We also mention that some of the most interesting applications have
involved considering non irreducible actions [KK02, KKS02].

Using the same basic strategy as Furstenberg, D. Berend extended
Furstenberg theorem to the context of semigroups of commuting endo-
morphisms of a torus and more general abelian groups [Ber84a, Ber84b,
Ber83].

As mentioned earlier, Katok and Spatzier generalized Rudolph’s
proof to this context (as well as to the type of examples considered
in the next section). As before, one needs an assumption about posi-
tive entropy of the Z action generated by αn for some n ∈ Zd. But in
most cases, an ergodicity assumption is also needed. We only discuss
the case of irreducible actions, though Katok and Spatzier treat also
the general case.

Theorem 2.1 (Katok and Spatzier [KS96, KS98]). Suppose α is a
strongly irreducible Zd faithful action on Tn with d > 1. Let µ be
an α-invariant and ergodic measure on Tn, and suppose that for some
n ∈ Zd, the entropy of µ with respect to the Z action generated by αn

is positive. Suppose further that one of the following holds:

(1) the Zd action α on Tn is totally non symplectic (we do not
provide the exact definition here, but for example a faithful Zd

action on Td+1 is always of this kind);
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(2) the action given by α on the measure space (X,B, µ) satisfies
some ergodicity conditions; a natural condition to use is that α
is mixing as a Zd action which in particular implies that for any
n ∈ Zd, we have that µ is ergodic for the Z action generated by
αn.

Then µ is Lebesgue measure.

Jointly with M. Einsiedler, we have been able to eliminate the need
for assuming an ergodicity condition or total non symplecticity.

Theorem 2.2 (Einsiedler and L. [EL03]). Suppose α is a strongly ir-
reducible Zd faithful action on Tn with d > 1. Let µ be an α-invariant
and ergodic measure on Tn, and suppose that for some n ∈ Zd, the
entropy of µ with respect to the Z action generated by αn is positive.
Then µ is Lebesgue measure.

We remark that the techniques of [EL03] apply equally well to the
reducible case, but necessarily the statement in this case is more cum-
bersome. We refer to [EL03] for additional details.

The proof of Theorem 2.2 uses a new observation regarding measures
invariant under a single, possibly hyperbolic, toral automorphism. In
order to present this observation, we first needs to explain how one can
attach for any sub foliation of the unstable foliation its contribution to
the entropy.

Let T : x 7→ Ax mod Zn be such an irreducible toral automorphism,
with A ∈ GL(n, Z), and µ a T -invariant measure. Let Φ+ be the set of
eigenvalues of A with absolute value > 1. To any nonempty S ⊂ Φ+

which is closed under complex conjugation we set WS ⊂ Rn to be the
space spanned by the corresponding eigenvectors, and the orbits x+WS

of this space form a T -invariant expanding foliation of Tn. In this
case one can define an entropy contribution hµ(T,WS) which roughly
corresponds to the part of the total metric (i.e. measure theoretic)
entropy hµ(T ) of T which can be detected using the conditional measure
µ induces on WS-leaves, and these satisfy the following properties:

(1) for any S as above, hµ(T ) ≥ hµ(T,WS), with equality for S =
Φ+.

(2) 0 ≤ hµ(T,WS) ≤
∑

s∈S log |s|; for Lebesgue measure λ, hλ(T,WS) =∑
s∈S log |s|.

As is often the case in ergodic theory, one is also interested in the
corresponding relative quantities: if A is a T -invariant sigma algebra
of Borel subsets of Tn, one can define the conditional entropies hµ(T |A)
and hµ(T, WS|A) which have similar properties. Precise definitions of
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all these quantities and additional references can be found in [EL03,
Sect. 3].

The basic inequality at the heart of the approach of [EL03] is the
following:

Theorem 2.3 ( [EL03, Thm. 4.1]). Let T be an irreducible toral auto-
morphism, and µ a T -invariant measure. Let WS ⊂ Rn be an expanding
T -invariant subspace as above. Then

hµ(T,WS) ≤ hλ(T,WS)

hλ(T )
hµ(T ). (2.2)

More generally, for every T -invariant sigma algebra A it holds that

hµ(T, WS | A) ≤ hλ(T,WS)
hλ(T )

hµ(T | A)

We emphasize that (2.2) is false for reducible T . It is an interesting
question when can equality be attained.

Returning to the case of an irreducible Zd action α for d > 1, in
conjunction with a lemma from [EK03], Theorem 2.3 implies that for
any α-invariant µ and A there is a single constant cµ,A ∈ [0, 1] such
that for any n ∈ Zd

hµ(αn | A) = cµ,Ahλ(αn). (2.3)

This one dimensionality of the entropy function for α-invariant mea-
sures can be expected in the one-dimensional case covered by Rudolph’s
theorem (Theorem 1.4), where entropy is closely related to Hausdorff
dimension of µ, and indeed (2.3) plays a prominent role in Rudolph’s
proof (see [Rud90, Thm. 3.7]). That it holds also in the higher dimen-
sional irreducible case is somewhat surprising, and allows one to prove
Theorem 2.2 along the lines of Rudolph’s original proof.1

Finally, we mention that there has been some work lately on clas-
sifying closed subsets of Tn invariant under an action by more gen-
eral semigroups of automorphisms (or endomorphisms) of the torus
[Muc00, Sta99, Sta00, Muc02]. All of these results assume in particu-
lar that the action is strongly irreducible and the group acting is not
virtually cyclic; under these assumption [Muc02] provides a complete
classification.

1The alert reader may notice that in Theorem 2.2 strong irreducibility is assumed
while in Theorem 2.3 no such assumption is made. The reason is that in Rudolph’s
proof strong irreducibility is implicitly assumed; indeed Theorem 2.2 as stated is
false in the irreducible but not strongly irreducible case.
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3. rigidity on homogeneous spaces

Here we present another class of examples where topological and
measure rigidity of multiparameter actions is expected to hold.

A concrete and very interesting special case is the following: let
X = SL(3, Z)\ SL(3, R). This is simply the space of lattices in R3 of
covolume one. It is not a compact space: if one takes a sequence of lat-
tices Λi in R3 with each Λi containing a vector vi with ‖vi‖ → 0 then no
subsequence of Λi has a limit in X. However, X has a (unique) proba-
bility measure which is invariant under the natural action of SL(3, R)
on X. The diagonal matrices

H =


et 0 0

0 es 0
0 0 e−s−t

 : s, t ∈ R

 ⊂ SL(3, R)

give a very nice R2 action on X by multiplication from the right.
We mention in the passing that for any one parameter subgroup of H

there is a big collections of closed invariant sets and of invariant mea-
sures; but these collections are much less understood than in the case
of (hyperbolic) toral automorphisms. We also mention that there are
known irregular H-invariant closed subsets of X arising, as in the pre-
vious section, from special situations in which the action is essentially
reduced to an action of a one parameter group. For this particular X
this can happen if we are considering the orbit closure of a point Λ ∈ X
under the H-action when there is one one parameter subgroup of H,
say {a(t) : t ∈ R} so that a(t)Λ → ∞ as |t| → ∞. For more general
examples of this kind, such reduction to an action of a one parameter
group can happen even in the compact case. Note that when classifying
invariant probability measures, by Poincare recurrence, the particular
situation described above cannot happen, though in general, the same
kind of difficulties exist when classifying invariant probability measures
(this complication has been pointed out by M. Rees in the unpublished
[Ree82] and independently by Mozes in [Moz95]; a nice account of the
Rees example and some generalizations can be found in [EK03, Section
9]).

To avoid this complication of possible bad behavior of certain di-
verging orbits, we can consider the following partial classification of H
orbits on X = SL(3, Z)\ SL(3, R). We note that even for this specific
X, this is only a special case of a more general conjecture regarding
closed H-orbits.

Conjecture 2 (G. Margulis [Mar97]). Any compact H-invariant subset
of SL(3, Z)\ SL(3, R) is a union of compact H-orbits.
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It turns out that even this very special case of topological rigidity
for homogeneous spaces implies the following long-standing conjecture
of Littlewood:

Conjecture 3 (Littlewood (c. 1930)). Let ‖x‖ denote the distance
from x ∈ R to the closest integer. Then

lim
n→∞

n ‖nα‖ ‖nβ‖ = 0 (3.1)

for any real numbers α and β.

This implication has been discovered in a different terminology long
before Furstenberg’s pioneering work regarding the rigidity of multipa-
rameter actions by Cassels and Swinnerton-Dyer [CSD55]; however, it
was Margulis who first recast this in dynamical terms [Mar97]. We note
that the current state-of-the-art regarding Conjecture 2, Theorem 3.4
below, while not sufficient to imply Littlewood’s conjecture, does imply
the following nontrivial estimate towards this conjecture:

Theorem 3.1 ( Einsiedler, Katok and L. [EKL04] ). The set of (α, β) ∈
R2 for which (3.1) is not satisfied has Hausdorff dimension zero.

A weaker result, namely that this Hausdorff dimension is at most
one, can be derived from Theorem 3.2.

The most explicit form of a general rigidity conjecture for Rd and
more general actions on homogeneous spaces has been given by Mar-
gulis [Mar00]. A less explicit conjecture in the same spirit has been
given by Katok and Spatzier in [KS96].

We take G to be a connected Lie group, Γ a lattice in G, i.e. discrete
subgroup of G of finite covolume, and H < G a connected subgroup.
One of the highlights of the theory of flows on homogeneous spaces
is the classification of closed invariant sets and invariant measures on
Γ\G when H is generated by unipotent one parameter subgroups by
M. Ratner [R91a, R91b]; some years earlier an important special case
allowed Margulis to resolve the long-standing Oppenheim conjecture
([Mar89]; see [DM90] for an elementary treatment as well as the sur-
vey [Mar97] for more details); we also mention that this measure and
topological rigidity of unipotent flows was conjectured by Dani and
Raghunathan respectively. A valuable recent addition to the literature
on this deep and interesting subject is [Mor03].2

2The simplest case is the horocycle flow on compact surfaces of constant negative
curvature, for which minimality (i.e. nonexistentance of closed invariant subsets)
is classical and due to Hedlund [Hed39]; unique ergodicity of this flow, which was
the first result regarding measure rigidity of unipotent flows, has been proved by
Furstenberg in [Fur73].
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Taking H to be as in Conjecture 2 is perhaps a prototypical example
of the kind of groups not covered by Ratner’s theorem. In his conjec-
ture, Margulis only assumes that H is generated by elements h ∈ H
so that all eigenvalues of AdG(h) are real. Margulis gives a conjecture
both in the topological category and in the measure theoretic category:

Conjecture 4 (Margulis [Mar00]). Let G, Γ and H be as above. For
any x ∈ Γ\G one of the following holds:

(1) Hx is homogeneous, i.e. is a closed orbit of a closed connected
subgroup L < G

(2) there exists a closed connected subgroup F < G and a continu-
ous epimorphism φ of F onto a Lie group L such that H < F ,
Fx is closed in Γ\G, φ(Fx) is closed in L where Fx denote the
stabilizer {g ∈ F : gx = x}, and φ(H) is a one parameter sub-
group of L containing no nontrivial AdL-unipotent elements.

Conjecture 5 (Margulis [Mar00]). Let G, Γ and H be as above. Let µ
be an H-invariant H-ergodic measure on Γ\G. Suppose that for every
x ∈ supp µ the statement (2) in the formulation of Conjecture 4 does
not hold. Then µ is algebraic (i.e. the invariant measure on the closed
orbit of some subgroup L < G containing H).

It seems to me that the second conjecture is overly restrictive. For
the record, we state the following modification of Conjecture 5:

Conjecture 6. Let G, Γ and H be as above. Let µ be an H-invariant
H-ergodic measure on Γ\G. Suppose that for µ-almost every x the
statement (2) in the formulation of Conjecture 4 does not hold. Then
µ is algebraic.

Note that these conjectures give no information for H a one-parameter
diagonalizable group; and despite the fact that they treat non-commutative
H the most interesting case seems to be H commutative (see discussion
and remarks following Conjecture 2 in [Mar00] as well as [KSS02, Sec.
4b]). From now on we will only consider actions of commutative H.

Unlike the case for the original ×n,×m-problem and its extensions
discussed in the previous section, the study of invariant measures seems
to have fared better than that of the topological questions. Regard-
ing the topological question, S. Mozes [Moz94] has proved the follow-
ing: let G = PGL(2, Qp) × PGL(2, Qq), H < G the product of the
groups of diagonal matrices in the two factors of G, and Γ an irre-
ducible lattice. Then if Hx contains a compact H orbit, then Hx is
homogeneous. This result has a nice interpretation in terms of cer-
tain two-dimensional tilings. Jointly with Barak Weiss [LW01] we have
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proved a similar result for H the full diagonal group in G = SL(n, R)
and Γ e.g. SL(n, Z); a substantial complication is the existence of in-
termediate groups H < L < G with closed orbits for n composite.
Generalization to general G seems to require additional ideas. We also
mention a recent paper by G. Tomanov and Barak Weiss [TW02] clas-
sifying closed H-orbits in Γ\G for algebraic groups and H a maximal
R-split torus (e.g. for G = SL(n, R), H is the group of positive diagonal
matrices). Their treatment generalizes an unpublished result of Mar-
gulis (see the appendix to [TW02]). Finally, we remark that the latest
results towards the measure theoretic conjecture have implications re-
garding orbit closures, for example regarding their possible Hausdorff
dimensions (see [EKL04, Part 2] for more details).

We now turn to the measure theoretic conjecture. In their papers,
Katok and Spatzier treat simultaneously the homogeneous case and
the case of multidimensional action of toral automorphisms. However
(at least when G is semi simple and H is a multidimensional subgroup
of the Cartan group of G) this action never satisfies their total non
symplecticity assumption. Because of this, in order to deduce that an
H invariant measure is homogeneous both an ergodicity assumption
and an assumption regarding entropy is needed.

The entropy assumption is a major disadvantage. While the Katok-
Spatzier method and its extensions has been used very effectively to
prove isomorphism rigidity in many cases (i.e. that any measurable
isomorphism between two multiparameter actions is algebraic; for a
study of isomorphism rigidity in the locally homogeneous context we
refer the reader to the recent [KS] by B. Kalinin and Spatzier), its
applicability to number theoretic questions is extremely limited. The
reason for this is that typically, when applying measure rigidity to
prove e.g. equidistribution, one considers the weak∗ limit of a sequence
of measures µi. While entropy is usually well behaved under weak∗

limits, mixing properties such as ergodicity are not. This principle is
well illustrated in e.g. the proof of Theorem 3.1 in [EKL04, Part 2] (see
also [JR95] for a related discussion) and is implicit in [BL03, Lin03a].

Recently, two rather different and complimentary methods to over-
come the need for an ergodicity assumption for the local homogeneous
context have been discovered (yet another idea, which to date has not
been used in this context but is very useful for e.g. commuting au-
tomorphisms of tori has been briefly exposed in the previous section).
Chronologically the first of these has been by Einsiedler and Katok
[EK03]; another completely different approach was found shortly there-
after by the author [Lin03a]. This latter approach uses some of ideas
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and techniques introduced by Ratner in her work on the rigidity of
unipotent flows.

In their paper, Einsiedler and Katok deal with general R-split groups
G with rank > 1; for simplicity (and also because the result is strongest
in this case) we specialize to the case of G = SL(n, R). In this case
Einsiedler and Katok prove the following:

Theorem 3.2 (Einsiedler and Katok [EK03]). Let G = SL(n, R) and
let Γ < G be discrete. Let H < G be the subgroup of positive diagonal
matrices. Let µ be a H-invariant and ergodic measure on Γ\G. Assume
that the entropy of µ with respect to all one parameter subgroups of H
is positive. Then µ is the G invariant measure on Γ\G.

The proof of this result uses heavily the non commutativity of the
one parameter unipotent subgroups of G normalized by H; such use
is already hinted at in [KS96]. But it also employs a new observation
regarding how a measure invariant under a multiparameter action de-
composes when restricted to subfoliations of the stable foliation. This
ingredient has already found several additional applications, including
in [EL03].

Using the above mentioned additional method, the following (and
more general statements) can be proved (see the discussion following
the closely related Theorem 5.1). We note that the Einsiedler-Katok
method gives very little in this case, and that the entropy assumption
is weaker than that of Theorem 3.2.

Theorem 3.3 (L. [Lin03a]). Let G1 = G2 = SL(2, R), G = G1 × G2,
and Γ an irreducible lattice in G (i.e. a lattice in G whose projections
to G1 and G2 are dense). Let H be the product of the group of positive
diagonal matrices in G1 with the group of positive diagonal matrices
in G2. Suppose µ is H invariant and ergodic, and suppose that the
entropy of µ with respect to the action of the one parameter group of
positive diagonal matrices in G1 is positive. Then µ is the G invariant
measure on Γ\G.

It turns out that the argument of [Lin03a] is applicable for Γ\ SL(n, R)
precisely for positive entropy measures for which the argument of [EK03]
does not apply(!); combining these arguments one proves the following
strengthening3 of Theorem 3.2:

3the restriction to SL(n, Z) is not a technicality: there are lattices, even cocom-
pact latices, which have non algebraic H invariant measures with positive entropy
with respect to a one parameter subgroup of H (indeed, the Rees examples alluded
to earlier can have positive entropy). Note also that even for SL(n, Z), under the
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Theorem 3.4 ( Einsiedler, Katok and L. [EKL04]). Let G = SL(n, R)
and H < G be the subgroup of positive diagonal matrices. Let µ be a
H-invariant and ergodic measure on SL(n, Z)\G. Assume that there is
some one parameter subgroup of H with respect to which µ has positive
measure. Then µ is algebraic, and is not compactly supported. If n is
prime then µ is the G invariant measure on SL(n, Z)\G.

4. Recurrent measures

Consider an action of a locally compact group M on a complete
separable metric space X. We say that the measure µ on X is M -
recurrent if for every subset B ⊂ X with µ(B) > 0 we have that for
almost every x ∈ B, for every compact K ⊂ M , there is a g ∈ M \K
so that gx ∈ B, in other words, if Poincare recurrence holds for this
action. This certainly seems the very least one needs to assume about
a measurable action to get nontrivial dynamics.

In the very special case of Z or R actions and µ quasi-invariant (i.e.
while µ may not be conserved by the action, the measure class is), what
we call recurrence is known as conservativity and plays an important
role; for example, see [Aar97, Sect. 1.1].

We now return for a moment to T. B. Host gave a proof of Rudolph’s
theorem regarding invariant measures on T along the following lines:
first he showed that every ×n invariant measure µ all of whose ×n-
ergodic components have positive entropy are in an appropriate sense
(which will be defined momentarily) recurrent under the action of the
additive group

Nn =
{ q

nk
: kN, q ∈ Z/(nk)Z

}
.

Host then shows that while there is an abundance of measures on T in-
variant under ×m, if m and n are relatively prime the only ×m invariant
measure which is Nn-recurrent is Lebesgue measure.

In fact, Host proved more: if one assumes that µ is ×n-invariant,
and the entropy of the ×n-ergodic components of µ are bounded from
below by some positive number then µ satisfies a stronger quantitative
condition that implies Nn-recurrence, and that for any measure µ which
satisfies this condition, the orbit of µ-almost every x under successive
iterates of ×m is uniformly distributed with respect to the Lebesgue
measure on T (which by the pointwise ergodic theorem clearly implies
that if µ is also ×m invariant then µ is Lebesgue measure). Extensions
of Host’s result to the multidimensional case can be found in [Hos00,

weaker assumptions of Theorem 3.4, µ need not be the G invariant measure on
Γ\G, but can be an algebraic measure on a proper subspace.
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Mei98]; other related papers that in particular treat the case of m, n
which are not relatively prime can be found in [LMP99, Lin01b].

It is customary in the literature to refer to a space X on which a
group G acts as a G-space (to avoid pathologies, it is helpful to assume
e.g. that G acts freely on a dense subset of X). A generalization
of this is the notion of a (G, T )-space, for a nice4 group G, and T a
homogeneous space for G (i.e. a locally compact metric space T on
which G acts transitively) with a distinguished point e ∈ T .

Definition 4.1. A locally compact metric space X is said to be a
(G, T )-space if there is some open cover T of X by relatively compact
sets, and for every U ∈ T and x ∈ U a map tU,x : T → X with the
following properties:

(A-1) For every x ∈ U ∈ T, we have that tU,x(e) = x.
(A-2) The map (x, t) 7→ tU,x(t) is a continuous map U × T → X.
(A-3) For any x ∈ U ∈ T, for any y in the image Image tU,x of tU,x

and V ∈ T containing y, there is a θ ∈ G so that

tV,y ◦ θ = tU,x. (4.1)

In particular, for any x, y, U, V as above Image tU,x = Image tV,y

and tU,x is injective if and only if tV,x is.
(A-4) for any U ∈ T there is some open neighborhood BU of the

distinguished point e ∈ T so that tU,x is injective on BU for all
x ∈ U .

(A-5) For a dense set of x ∈ X, for some (equivalently for every)
U ∈ T containing X the map tU,x is injective.

We will be only interested in the case where G acts by isometries, in
other words when G is a subgroup of the group Isom(T ) of isometries of
T . For simplicity, we shall call a (Isom(T ), T )-space simply a T -space.

In less technical terms, a T -space is a space which is foliated in
a continuous way by leaves, such that on every leaf there is a well
defined metric, and every leaf is locally isometric to T with respect to
this metric. Furthermore, for most leaves this is actually an isometry
between the leaf and T . A (G, T )-space for G a proper subgroup of
Isom(T ) is a special kind of T -space with some additional structure.

Definition 4.2. A measure µ on any T -space X is said to be T -
recurrent if for every B ⊂ X with µ(B) > 0, for µ-almost every
x ∈ B (and some U ∈ T containing x) for every compact K ⊂ T ,

tU,x(T \K) ∩B 6= ∅.

4locally compact separable and metrizable
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If µ is a Radon5 measure on a (G, T )-space, it induces on every T -leaf
a σ-finite measure which is well defined up to a multiplicative scalar.
We can either think of these measures as σ-finite but no longer Radon
measures on X, or use the isomorphism between typical T -leaves and T
and consider these measures as nice Radon measures on T . We adopt
here the latter point of view, and so formally these conditional measures
are a system

{
µU

T,x

}
U∈T,x∈U

of Radon measures on T so that for every

U , the map x 7→ µU
T,x is Borel measurable6 and so that there is a set of

full measure X ′ ⊂ X so that for every x, y ∈ X ′ and U, V ∈ T, g ∈ G
such that tU,x ◦ g = tV,y then

µU
T,x = g∗µ

V
T,y

i.e. so that formally (tU,x)∗µ
U
T,x is equal to (tV,y)∗µ

V
T,y. Defining these

measures carefully is slightly tricky (see [Lin03a, Sect. 3]; [KK01,
Lin03b] may also be useful).

These conditional measures reflect the dynamics of µ with respect to
the foliation: for example, if T is a group and the T -structure comes
from some action of T , then µ is T -invariant if and only if µT,x is Haar
measure for almost every x (the dependence on the set U in the atlas
T is trivial and therefore omitted in this case). Furthermore, and this
is an important fact, if µ is a probability measure on a (G, T )-space
then µ is T -recurrent if and only if µU

T,x is an infinite measure a.s.7

Jointly with Klaus Schmidt, and using a method reminiscent (but
distinct) of that of Host, we have proved

Theorem 4.3 (Schmidt and L. [LS03]). Let α be a nonexpansive,
ergodic and totally irreducible automorphism of a compact connected
abelian group X (for example, let α be a nonhyperbolic toral automor-
phism). And let µ be an α-invariant probability measure on X. Then
µ is recurrent with respect to the central foliation of X if and only if it
is Lebesgue measure on X.

This theorem also implies that if, for example, µ is weakly mixing
for α then there is a Borel subset of X, which intersects every central
leaf in at most one point, and which has full µ-measure. A similar, but
slightly weaker statement holds for a general invariant measure which
is singular with respect to Lebesgue measure. Thus, in some sense the

5i.e. a regular Borel measure which is finite on compact sets
6with respect to the weak∗ topology on the space of Radon measures on T as

the dual to the space of compactly supported continuous functions
7for Z-action which preserve the measure class of µ, this result is known as the

Halmos Recurrence Theorem (see [Aar97, Sect. 1.1])
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only invariant measure on X which is truly nonhyperbolic is Lebesgue
measure.

We contrast this with the situation of another partially hyperbolic
dynamical system: the time one map g1 on a negatively curved compact
manifold, where all g1-invariant measures are recurrent with respect to
the central foliation, which in this case is simply the foliation of the
unit tangent bundle of the manifold into orbits of the geodesic flow.

5. Rigidity of Hecke recurrent measures on arithmetic
surfaces

A similar theorem can be proved in the context of homogeneous
spaces, and can be used to settle an important special case of a con-
jecture of Rudnick and Sarnak [RS94] regarding the behavior of eigen-
functions of the Laplacian on negatively curved manifolds.

Take X = Γ\PGL(2, R), where Γ is either a congruence subgroup
of PGL(2, Z) or of certain lattices that arise from quaternionic division
algebras over Q that are unramified over R. The latter lattices are
slightly harder to define but have the advantage that X is compact.

In both cases, for all but finitely many prime p, there is a map Tp from
X to (p+1)-tuples of points of X called the Hecke correspondence.
For example, if Γ = SL(2, Z), one can define Tp of a point x ∈ X as
follows: choose some g ∈ SL(2, R) so that x = Γg. Then

Tp(x) =

{
Γ

(
p 0
0 1

)
g, Γ

(
p 0
1 1

)
g, . . . , Γ

(
p 0

p− 1 1

)
g, Γ

(
1 0
0 p

)
g

}
.

Notice that while each individual element of the right hand side depend
on the choice of g, the set of p+1 points depends only on x. The above
formula also shows that for any x ∈ X, g ∈ PGL(2, R)

Tp(xg) = Tp(x)g.

Using the Hecke correspondence we can define operators called the
Hecke operators on L2(X) by

Tp(f)[x] =
∑

y∈Tp(x)

f(y) (5.1)

which play a very important role in the spectral theory of X. The
Hecke correspondences have some additional nice properties, which are
not entirely obvious from the way we defined them here. For example,
if y ∈ Tp(x) then x ∈ Tp(y), which means that the Hecke operators are
self adjoint. Furthermore, for any p and q, the operators Tp and Tq

commute.
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Fix a prime p. We define the following equivalence relation on X:
x ∼ y if there is a chain of points xi with x0 = x, xn = y and xi+1 ∈
Tp(xi). We can give each equivalence class a structure of a p+1-regular
graph if we connect every x with every point in Tp(x), and this graph
turns out to be a p + 1-regular tree for all x. By (5.1) this equivalence
relation, and indeed even the structure of every equivalence class as
a p + 1-regular tree, is invariant under left translation by elements of
PGL(2, R). It is not hard to see that if T is a p + 1-regular tree, this
partition of X into p + 1-regular tree is a T -space.

Consider now the action of the one parameter group A =

{
a(t) =

(
et 0
0 e−t

)}
on X. This action is equivalent to the geodesic flow on the hyperbolic
manifold Γ\H with H the hyperbolic plane, which is a prototypical ex-
ample where measure rigidity does not hold. However, it seems plausi-
ble that there will not be many measures µ which are invariant under
A and are T -recurrent. At the current state of our knowledge, this
still seems unapproachable. But if one assumes in addition an entropy
condition one can obtain the following:

Theorem 5.1 (L. [Lin03a]). Suppose µ is a A invariant and T -recurrent
measure on X, where T is a p + 1-regular tree as above. Suppose that
µ-almost every A ergodic component of µ has positive entropy. Then µ
is Lebesgue measure on X.

We remark that as in Rudolph’s theorem, a substantial source of
difficulty is that µ need not be ergodic under A.

Somewhat surprisingly, the main actor in the proof of Theorem 5.1
is not the action of the flow A which preserves the measure, but rather
a different flow: the horocycle flow given by the (right) action of the
group

U+ = {u(s) : s ∈ R} u(s) =

(
1 s
0 1

)
on X (which a priori need not preserve neither µ nor even the measure
class of µ). Note that since A normalizes the group U+, the orbits of
the group U+ are preserved under a(t) and are uniformly contracted
by this flow, a relation which links these two actions in many subtle
ways.

Indeed, the proof of Theorem 5.1 has many similarities to Ratner’s
earlier work on rigidity of unipotent flows [R82b, R82a, R83], and in
particular uses Ratner’s H-property of horocycle flows (a related, but
distinct property, the R-property, lies at the heart of Ratner’s subse-
quent proof of the Raghunathan Conjecture; see [R92] for more de-
tails). This property is a quantitative form of the following qualitative
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x

x'

xu(s)

x'u(s+s')
x'u(s)

Figure 1. Ratner’s H-property

phenomenon: consider the trajectories under U+ of two nearby points
x, x′ ∈ X. Then there are two possibilities8:

(H-1) xu(s), x′u(s) remain close for all s, which can occur only if x′ =
xu(η) for some small η ∈ R.

(H-2) otherwise, there will be some smallest s > 0 where xu(s), x′u(s)
differ by a noticeable amount (say are of distance δ from each
other, for some fixed but small δ). Then most of the distance
between xu(s) and x′u(s) is along the direction of the U+ flow,
i.e. there is some s′ (roughly of order δ) so that xu(s) is close
to x′u(s + s′) (see Figure 1).

The proof of the H-property is not difficult: it is merely an exercise in
multiplying 2× 2 matrices, but it has many far-reaching implications.

We now give a rough sketch of the proof of Theorem 5.1, explaining
how the H-property of the horocycle flow U+ can be used to study
measures invariant under the A-flow.

It follows from a slight generalization of a lemma of Einsiedler and
Katok and a Fubini argument that if µ is a(t)-invariant, there is some
set of full measure X ′ ⊂ X so that for every x, y ∈ X ′ which are in the
same Hecke tree (i.e. x ∼ y) satisfy that µx,U+ = µy,U+ . Using Hecke
recurrence starting from almost any x ∈ X ′ we can find a y ∼ x in X ′

which is arbitrarily close to x.

8for simplicity we assume X compact; minor modifications are needed for the
nonuniform case
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By Luzin’s theorem the map z 7→ µz,U+ is continuous in the weak∗

topology on a set of large measure, so since y is nearby x we can
expect that µx,U+ is fairly similar to µy,U+ . Of course this is no big
surprise, and there is no contradiction so far since we know that in fact
µx,U+ is actually equal to µy,U+ . But now consider yu(s) and xu(s)
which are still Hecke equivalent, for some s large enough so that (H-2)
above holds. Then by the properties of conditional measures typically
µxu(s),U+ = µyu(s),U+ . But now xu(s) and yu(s) are no longer close:
indeed, xu(s) is much closer to yu(s + s′) for some macroscopic s′.
Thus we would expect µxu(s),U+ to be fairly similar to µyu(s+s′),U+ =
µxu(s+s′),U+ . This hints we may be able to show that µ is U+-invariant.

Similarly one shows that µ is invariant under U− =

{(
1 0
s 1

)}
, so µ

is Haar measure.
There are many tricky issues in making this crude idea work. One

ingredient is a maximal inequality (sometimes known as a maximal
ergodic theorem) which appears in [Lin03a, Appendix] and is joint with
D. Rudolph. This ergodic theorem generalizes a maximal inequality of
Hurewitc [Hur44]. A similar idea has been used in Rudolph’s proof of
Bernoullicity of the Patterson-Sullivan measure [Rud82].

6. An application to quantum unique ergodicity

In this section we finally describe the quantum unique ergodicity
conjecture of Rudnick and Sarnak, and explain how it is related to
Theorem 5.1.

Conjecture 7 (Rudnick and Sarnak [RS94]). Let M be a compact
hyperbolic surface, and let φi a sequence of linearly independent eigen-
functions of the Laplacian ∆ on M , normalized to have L2-norm one.
Then the probability measures µ̃i defined by µ̃i(A) =

∫
A
|φi(x)|2 dHM(x)

tend in the weak∗ topology to the uniform measure HM .

A. I. Šnirel′man, Y. Colin de Verdière and S. Zelditch have shown in
great generality (specifically, for any manifold on which the geodesic
flow is ergodic) that if one omits a subsequence of density 0 the remain-
ing µ̃i do indeed converge to HM [Šni74, CdV85, Zel87]. An important
component of their proof is the microlocal lift of any weak∗ limit
µ̃ of a subsequence of the µ̃i. The microlocal lift of µ̃ is a measure
µ on the unit tangent bundle SM of M whose projection to M is µ̃,
and most importantly it is always invariant under the geodesic flow on
SM . We shall call any measure µ on SM arising as a microlocal lift of
a weak∗ limit of µ̃i a quantum limit. Thus a slightly stronger form
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of Conjecture 7 is the following conjecture, also due to Rudnick and
Sarnak:

Conjecture 8 (Quantum Unique Ergodicity Conjecture). For any
compact hyperbolic surface M the only quantum limit is the uniform
measure HSM on SM .

Consider now M = Γ\H, for Γ one of the arithmetic lattices consid-
ered above. If Γ is a lattice arising from a quaternionic division algebra
over Q, then M is a compact hyperbolic surface, precisely the kind of
surface considered in Conjectures 7 and 8.

If Γ is a congruence sublattice of PGL(2, Z) then M has finite volume,
but is not compact. It is not hard to modify conjectures 7 and 8
so that they cover also this case. A special property of these very
special surfaces of finite volume is their spectral theory is not too far
from that of compact surfaces of the same area: there is continuous
spectrum (which of course does not exist for compact surfaces), but it
is very well understood, and as shown by Selberg [Sel56] the discrete
spectrum of the Laplacian on these noncompact surfaces obeys Weyl’s
law for compact surfaces of the same area. Since Luo, Sarnak and
Jakobson proved equidistribution for the continuous spectrum [LS95,
Jak97], even for these noncompact surfaces one only needs to study the
weak∗ limits of measures which arise from L2-normalized eigenfunctions
of the Laplacian.

When looking at eigenfunctions of the Laplacian on the arithmetic
surfaces, it is natural to consider joint eigenfunctions of both the Lapla-
cian and of all Hecke operators. Since the Hecke operators are self
adjoint operators that commute with each other and with the Lapla-
cian one can always find an orthonormal basis of the subspace of L2(M)
which corresponds to the discrete part of the spectrum of the Laplacian
consisting of such joint eigenfunctions. Furthermore, if the spectrum
is simple, eigenfunctions of the Laplacian are automatically eigenfunc-
tions of all Hecke operators.

These joint eigenfunctions of the Laplacian and all Hecke operators,
usually referred to as Hecke-Maass cusp forms, are of great interest
in number theory. Much more is known about them than about arbi-
trary eigenfunctions of the Laplacian on a hyperbolic surface, and so
considerable interest has been centered on the following special case of
Rudnick and Sarnak’s quantum unique ergodicity conjecture:

Question 6.1 (Arithmetic Quantum Unique Ergodicity). Let M be
Γ\H for Γ a congruence that this as above, and let φi a sequence of
linearly independent joint eigenfunctions of the Laplacian ∆ and all
Hecke operators on M , normalized to have L2-norm one. What are the
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possible microlocal lifts of weak∗ limits of the probability measures µ̃i

defined as above by µ̃i(A) =
∫

A
|φi(x)| dHM(x) (we shall refer to these

lifts as arithmetic quantum limits)?

We review what was known previously regarding this question. T.
Watson [Wat01] has shown that assuming GRH, the only possible arith-
metic quantum limit is the uniform measure on Γ\PGL(2, R). In fact,
GRH gives an optimal rate of convergence.

Unconditionally, Sarnak has been able to show that a certain subse-
quence of the Hecke Maass forms, the CM-forms, satisfies this conjec-
ture [Sar01].

Also unconditionally, Rudnick and Sarnak [RS94] showed that arith-
metic quantum limits cannot be supported on finitely many closed
geodesics; similar ideas were used by the author and Wolpert [Lin01a,
Wol01]. A small variation of [Lin01a] gives that any arithmetic quan-
tum limit is Hecke recurrent for every prime p. Refining these methods,
jointly with J. Bourgain, we have been able to prove the following:

Theorem 6.2 (Bourgain and L. [BL03]). Every ergodic component of
an arithmetic quantum limit has entropy > 2

9
(in this normalization,

the entropy of the uniform Lebesgue measure is 2).

Using Theorem 6.2 together with the Hecke recurrence we can now
deduce from Theorem 5.1 the following theorem regarding arithmetic
quantum unique ergodicity

Theorem 6.3 (Arithmetic Quantum Unique Ergodicity). Let M be
Γ\H for Γ a congruence lattice as above. Then any arithmetic quantum
limit for M is cHM for some c ∈ [0, 1]; in the compact case, c = 1.

This (almost) proves the arithmetic case of the quantum unique er-
godicity conjecture of Rudnick and Sarnak (the only missing piece is
showing c = 1 also in the non compact case).

Using the same general strategy, L. Silberman and A. Venkatesh
have been able to prove arithmetic quantum unique ergodicity for other
Γ\G/K, specifically for locally symmetric spaces arising from division
algebras of prime degree. While the strategy remains the same, several
new ideas are needed for this extension, in particular a new micro-local
lift for higher rank groups [SV04].
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