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Abstract. We classify the measures on SL(k, R)/ SL(k, Z) which are
invariant and ergodic under the action of the group A of positive diagonal
matrices with positive entropy. We apply this to prove that the set of
exceptions to Littlewood’s conjecture has Hausdorff dimension zero.

1. Introduction

1.1. Number theory and dynamics. There is a long and rich tradition
of applying dynamical methods to number theory. In many of these applica-
tions, a key role is played by the space SL(k,R)/SL(k,Z) which can be iden-
tified as the space of unimodular lattices in Rk. Any subgroup H < SL(k,R)
acts on this space in a natural way, and the dynamical properties of such
actions often have deep number theoretical implications.

A significant landmark in this direction is the solution by G.A. Margulis
[23] of the long-standing Oppenheim Conjecture through the study of the
action of a certain subgroup H on the space of unimodular lattices in three
space. This conjecture, posed by A. Oppenheim in 1929, deals with den-
sity properties of the values of indefinite quadratic forms in three or more
variables. So far there is no proof known of this result in its entirety which
avoids the use of dynamics of homogeneous actions.

An important property of the acting group H in the case of the Oppen-
heim Conjecture is that it is generated by unipotents: i.e. by elements of
SL(k,R) all of whose eigenvalues are 1. The dynamical result proved by
Margulis was a special case of a conjecture of M. S. Raghunathan regarding
the actions of general unipotents groups. This conjecture (and related con-
jectures made shortly thereafter) state that for the action of H generated by
unipotents by left translations on the homogeneous space G/Γ of an arbi-
trary connected Lie group G by a lattice Γ the only possible H-orbit closures
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and H-ergodic probability measures are of an algebraic type. Raghunatan’s
conjecture was proved in full generality by M. Ratner in a landmark series of
papers ([38, 39] and others; see also the expository papers [41, 40], and the
forthcoming book [49]) which led to numerous applications; in particular,
we use Ratner’s work heavy in this paper. Ratner’s theorems provide the
model for the global orbit structure for systems with parabolic behavior. See
[9] for a general discussion of principal types of orbit behavior in dynamics.

1.2. Weyl chamber flow and Diophantine approximation. In this
paper we deal with a different homogeneous action, which is not so well un-
derstood, namely the action by left multiplication of the group A of positive
diagonal k× k matrices on SL(k,R)/SL(k,Z); A is a split Cartan subgroup
of SL(k,R) and the action of A is also known as a particular case of a Weyl
chamber flow [15].

For k = 2 the acting group is isomorphic to R and and the Weyl chamber
flow reduces to the geodesic flow on a surface of constant negative curvature,
namely the modular surface. This flow has hyperbolic structure; it is Anosov
if one makes minor allowances for noncompactness and elliptic points. The
orbit structure of such flows is well understood; in particular there is a
great variety of invariant ergodic measures and orbit closures. For k > 2,
the Weyl chamber flow is hyperbolic as an Rk−1-action, i.e. transversally to
the orbits. Such actions are very different from Anosov flows and display
many rigidity properties, see e.g. [15, 17]. One of the manifestations of
rigidity concerns invariant measures. Notice that one–parameter subgroups
of the Weyl chamber flow are partially hyperbolic and each such subgroup
still has many invariant measures. However, it is conjectured that A-ergodic
measures are rare:

Conjecture 1.1 (Margulis). Let µ be an A-invariant and ergodic probability
measure on X = SL(k,R)/SL(k,Z) for k ≥ 3. Then µ is algebraic, i.e. there
is a closed, connected group L > A so that µ is the L-invariant measure on
a single, closed L-orbit.

This conjecture is a special case of much more general conjectures in this
direction by Margulis [25], and by A. Katok and R. Spatzier [16]. This
type of behavior was first observed by Furstenberg [7] for the action of the
multiplicative semigroup Σm,n =

{
mknl

}
k,l≥1

on R/Z, where n,m are two

multiplicatively independent integers (i.e. not powers of the same integer),
and the action is given by k.x = kx mod 1 for any k ∈ Σm,n and x ∈ R/Z.
Under these assumptions Furstenberg proved that the only infinite closed
invariant set under the action of this semigroup is the space R/Z itself. He
also raised the question of extensions, in particular to the measure theoretic
analog as well as to the locally homogeneous context.

There is an intrinsic difference regarding the classification of invariant
measures between Weyl chamber flows (e.g. higher rank Cartan actions)
and unipotent actions. For unipotent actions, every element of the action
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already acts in a rigid manner. For Cartan actions, there is no rigidity
for the action of individual elements, but only for the full action. In stark
contrast to unipotent actions, M. Rees [42][3, Sect. 9] has shown there are
lattices Γ < SL(k,R) for which there are non-algebraic A-invariant and er-
godic probability measures on X = SL(k,R)/Γ (fortunately, this does not
happen for Γ = SL(k,Z), see [21, 25] and more generally [46] for related
results). These non-algebraic measures arise precisely because one para-
meter subactions are not rigid, and come from A invariant homogeneous
subspaces which have algebraic factors on which the action degenerates to
a one parameter action.

While Conjecture 1.1 is a special case of the general question about the
structure of invariant measures for higher rank hyperbolic homogeneous ac-
tions, it is of particular interest in view of number theoretic consequences. In
particular, it implies the following well-known and long-standing conjecture
of Littlewood [24, Sect. 2] :

Conjecture 1.2 (Littlewood (c. 1930)). For every u, v ∈ R,

lim inf
n→∞

n〈nu〉〈nv〉 = 0, (1.1)

where 〈w〉 = minn∈Z |w − n| is the distance of w ∈ R to the nearest integer.

In this paper we prove the following partial result towards Conjecture 1.1
which has implications toward Littlewood’s conjecture:

Theorem 1.3. Let µ be an A-invariant and ergodic measure on X =
SL(k,R)/SL(k,Z) for k ≥ 3. Assume that there is some one parameter
subgroup of A which acts on X with positive entropy. Then µ is algebraic.

In [21] a complete classification of the possible algebraic µ is given. In
particular, we have the following:

Corollary 1.4. Let µ be as in Theorem 1.3. Then µ is not compactly
supported. Furthermore, if k is prime µ is the unique SL(k,R)-invariant
measure on X.

Theorem 1.3 and its corollary have the following implication toward Lit-
tlewood’s conjecture:

Theorem 1.5. Let

Ξ =
{
(u, v) ∈ R2 : lim inf

n→∞
n〈nu〉〈nv〉 > 0

}
.

Then the Hausdorff dimension dimH Ξ = 0. In fact, Ξ is a countable union
of compact sets with box dimension zero.

J. W. S. Cassels and H. P. F. Swinnerton-Dyer [1] showed that (1.1) holds
for any u, v which are from the same cubic number field (i.e. any field K
with degree [K : Q] = 3).

It is easy to see that for a.e. (u, v) equation (1.1) holds — indeed, for
almost every u it is already true that lim infn→∞ n〈nu〉 = 0. However, there
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is a set of u of Hausdorff dimension 1 for which lim infn→∞ n〈nu〉 > 0; such
u are said to be badly approximable. Pollington and Velani [33] showed that
for every u ∈ R, the intersection of the set

{v ∈ R : (u, v) satisfies (1.1)} (1.2)

with the set of badly approximable numbers has Hausdorff dimension one.
Note that this fact is an immediate corollary of our Theorem 1.5 — indeed,
Theorem 1.5 implies in particular that the complement of this set (1.2) has
Hausdorff dimension zero for all u. We remark that the proof of Pollington
and Velani is effective.

Littlewood’s conjecture is a special case of a more general question. More
generally, for any k linear forms mi(x1, x2, . . . , xk) =

∑k
j=1mijxj , one may

consider the product

fm(x1, x2, . . . , xk) =
k∏

i=1

mi(x1, . . . , xk),

where m = (mij) denotes the k × k matrix whose rows are the linear forms
above. Using Theorem 1.3 we prove the following:

Theorem 1.6. There is a set Ξk ⊂ SL(k,R) of Hausdorff dimension k − 1
so that for every m ∈ SL(k,R) \ Ξk

inf
x∈Zk\{0}

|fm(x)| = 0. (1.3)

Indeed, this set Ξk is A-invariant, and has zero Hausdorff dimension transver-
sally to the A-orbits.

For more details, see §10 and §11. Note that (1.3) is automatically satis-
fied if zero is attained by fm evaluated on Zk \ {0}.

We also want to mention another application of our results due to Hee
Oh [30], which is related to the following conjecture of Margulis:

Conjecture 1.7. (Margulis, 1993) Let G be the product of n ≥ 2 copies of

SL(2,R), U1 =
{(

1 ∗
0 1

)
× · · · ×

(
1 ∗
0 1

)}
and U2 =

{(
1 0
∗ 1

)
× · · · ×

(
1 0
∗ 1

)}
.

Let Γ < G be a discrete subgroup so that for both i = 1 and 2, Γ ∩ Ui is
a lattice in Ui and for any proper connected normal subgroup N < G the
intersection Γ ∩N ∩ Ui is trivial. Then Γ is commensurable with a Hilbert
modular lattice1 up to conjunction in GL(2,R)× · · · ×GL(2,R).

Hee Oh [31] has shown that assuming a topological analog to Conjec-
ture 1.1 (which is implied by Conjecture 1.1), Conjecture 1.7 is true for
n ≥ 3. As explained in [30] (and follows directly from [31, Thm. 1.5]),
our result Theorem 1.3 implies the following weaker result (also for n ≥ 3):
consider the set D of possible intersections Γ∩U1 for Γ as in Conjecture 1.7,
which is a subset of the space of lattices in U1. This set D is clearly invariant

1for definition of Hilbert modular lattices, see [31]



INVARIANT MEASURES AND LITTLEWOOD’S CONJECTURE 5

under conjugation by the diagonal group in GL(2,R)×· · ·×GL(2,R); Theo-
rem 1.3 (or more precisely Theorem 10.2 which we prove using Theorem 1.3
in §10) implies that the set D has zero Hausdorff dimension transversally to
the orbit of this n-dimensional group (in particular, this set D has Hausdorff
dimension n; see §7 and §10 for more details regarding Hausdorff dimension
and tranversals, and [31, 30] for more details regarding this application).

1.3. Measure rigidity. The earliest results for measure rigidity for higher
rank hyperbolic actions deal with the Furstenberg problem: [22, 43, 8].
Specifically, Rudolph [43] and Johnson [8] proved that if µ is a probability
measure invariant and ergodic under the action of the semigroup generated
by ×m, ×n (again with m, n not powers of the same integer), and if some
element of this semigroup acts with positive entropy, then µ is Lebesgue.

When Rudolph’s result appeared, the second author suggested another
test model for the measure rigidity: two commuting hyperbolic automor-
phisms of the three–dimensional torus. Since Rudolph’s proof seemed, at
least superficially, too closely related to symbolic dynamics, jointly with
R. Spatzier, a more geometric technique was developed. This allowed a
unified treatment of essentially all the classical examples of higher rank ac-
tions for which rigidity of measures is expected [16, 13], and in retrospect,
Rudolph’s proof can also be interpreted in this framework.

This method (as well as most later work on measure rigidity for these
higher rank abelian actions) is based on the study of conditional measures
induced by a given invariant measure µ on certain invariant foliations. The
foliations considered include stable and unstable foliations of various ele-
ments of the actions, as well as intersections of such foliations, and are
related to the Lyapunov exponents of the action. For Weyl chamber flows
these foliations are given by orbits of unipotent subgroups normalized by
the action.

Unless there is an element of the action which acts with positive entropy
with respect to µ, these conditional measures are well-known to be δ-measure
supported on a single point, and do not reveal any additional meaningful
information about µ. Hence this and later techniques are limited to study
actions where at least one element has positive entropy. Under ideal situ-
ations, such as the original motivating case of two commuting hyperbolic
automorphisms of the three torus, no further assumptions are needed, and
a result entirely analogous to Rudolph’s theorem can be proved using the
method of [16].

However, for Weyl chamber flows, an additional assumption is needed for
the [16] proof to work. This assumption is satisfied, for example, if the
flow along every singular direction in the Weyl chamber is ergodic (though
a weaker hypothesis is sufficient). This additional assumption, which unlike
the entropy assumption is not stable under weak∗ limits, precludes applying
the results from [16] in many cases.
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Recently, two new methods of proofs were developed, which overcome this
difficulty.

The first method was developed by the first and second authors [3],
following an idea mentioned at the end of [16]. This idea uses the non-
commutativity of the above-mentioned foliations (or more precisely, of the
corresponding unipotent groups). This paper deals with general R-split
semisimple Lie groups; in particular it is shown there that if µ is an A-
invariant measure on X = SL(k,R)/Γ, and if the entropies of µ with respect
to all one parameter groups are positive, then µ is the Haar measure. It
should be noted that for this method the properties of the lattice do not
play any role, and indeed this is true not only for Γ = SL(k,Z) but for every
discrete subgroup Γ. An extension to the nonsplit case is forthcoming [4].
Using the methods we present in the second part of the present paper, the
results of [3] can be used to show that the set of exceptions to Littlewood’s
conjecture has Hausdorff dimension at most 1.

A different approach was developed by the third author, and was used to
prove a special case of the quantum unique ergodicity conjecture [20]. In
its basic form, this conjecture is related to the geodesic flow, which is not
rigid, so in order to be able to prove quantum unique ergodicity in certain
situations a more general setup for measure rigidity, following Host [11], was
needed. A special case of the main theorem of [20] is the following: Let A be
an R-split Cartan subgroup of SL(2,R)× SL(2,R). Any A-ergodic measure
on SL(2,R)× SL(2,R)/Γ for which some one parameter subgroup of A acts
with positive entropy is algebraic. Here Γ is e.g. an irreducible lattice in
SL(2,R)× SL(2,R). Since the foliations under consideration in this case do
commute, the methods of [3] are not applicable.

The method of [20] can be adapted to quotients of more general groups,
and in particular to SL(k,R). It is noteworthy (and gratifying) that for the
space of lattices (and more general quotients of SL(k,R)) these two unrelated
methods are completely complementary: measures with “high” entropy (e.g.
measures for which many one parameter subgroup have positive entropy) can
be handled with the methods of [3], and measures with“low” (but positive)
entropy can be handled using the methods of [20]. Together, these methods
give Theorem 1.3 (as well as the more general Theorem 2.1 below for more
general quotients).

The method of proof in [20], an adaptation of which we use here, is based
on studying the behavior of µ along certain unipotent trajectories, using
techniques introduced by Ratner in [37, 36] to study unipotent flows, in
particular the H-property (these techniques are nicely exposed in §1.5 of
the forthcoming book [49]). This is surprising because the techniques are
applied on a measure µ which is a priori not even quasi invariant under these
(or any other) unipotent flows.

In showing that the high entropy and low entropy cases are complemen-
tary we use a variant on the Ledrappier-Young entropy formula [19]. Such
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use is one of the simplifying ideas in G. Tomanov and Margulis’ alternative
proof of Ratner’s theorem [26].
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Part 1. Measure Rigidity

Throughout this paper, let G = SL(k,R) for some k ≥ 3, let Γ be a
discrete subgroup of G, and let X = G/Γ. As in the previous section, we
let A < G denote the group of k × k positive diagonal matrices. We shall
implicitly identify

Σ = {t ∈ Rk : t1 + · · ·+ tk = 0}

and the Lie algebra of A via the map (t1, . . . , tk) 7→ diag(t1, . . . , tk). We
write αt = diag(et1 , . . . , etk) ∈ A and also αt for the left multiplication by
this element on X. This defines an Rk−1 flow α on X.

A subgroup U < G is unipotent if for every g ∈ U , g− Ik is nilpotent, i.e.
for some n, (g − Ik)n = 0. A group H is said to be normalized by g ∈ G if
gHg−1 = H; H is normalized by L < G if it is normalized by every g ∈ L;
and the normalizer N(H) of H is the group of all g ∈ G normalizing it.
Similarly, g centralizes H if gh = hg for every h ∈ H, and we set C(H), the
centralizer of H in G, to be the group of all g ∈ G centralizing H.

If U < G is normalized by A then for every x ∈ X and a ∈ A, a(Ux) =
Uax, so that the foliation of X into U orbits is invariant under the action of
A. We will say that a ∈ A expands U if all eigenvalues of Ad(a) restricted
to the Lie algebra of U are greater than one.

For any locally compact metric space Y let M∞(Y ) denote the space of
Radon measures on Y equipped with the weak∗ topology, i.e. all locally finite
Borel measures on Y with the coarsest topology for which ρ 7→

∫
Y f(y)dρ(y)

is continuous for every compactly supported continuous f . For two Radon
measures ν1 and ν2 on Y we write

ν1 ∝ ν2 if ν1 = Cν2 for some C > 0.

and say that ν1 and ν2 are proportional.
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We let BY
ε (y) (or Bε(y) if Y is understood) denote the ball of radius ε

around y ∈ Y ; if H is a group we set BH
ε = BH

ε (I) where I is identity in H;
and if H acts on X and x ∈ X we let BH

ε (x) = BH
ε · x.

Let d(·, ·) be the geodesic distance induced by a right-invariant Riemann-
ian metric on G. This metric on G induces a right-invariant metric on every
closed subgroup H ⊂ G, and furthermore a metric on X = G/Γ. These
induced metrics we denote by the same letter.

2. Conditional measures on A-invariant foliations, invariant
measures, and shearing

2.1. Conditional measures. A basic construction, which has been intro-
duced in the context of measure rigidity in [16] (and in a sense is already
used implicitly in [43]), is the restriction of probability or even Radon mea-
sures on a foliated space to the leaves of this foliations. A discussion can
be found in [16, Sect. 4], and a fairly general construction is presented in
[20, Sect. 3]. Below we consider special cases of this general construction,
summarizing its main properties.

Let µ be an A-invariant probability measure on X. For any unipotent
subgroup U < G normalized by A, one has a system {µx,U}x∈X of Radon
measures on U and a co-null set X ′ ⊂ X with the following properties2:

(1) the map x 7→ µx,U is measurable.
(2) for every ε > 0 and x ∈ X ′ it holds that µx,U (BU

ε ) > 0.
(3) for every x ∈ X ′ and u ∈ U with ux ∈ X ′, we have that µx,U ∝

(µux,U )u, where (µux,U )u denotes the push forward of the measure
µux,U under the map v 7→ vu.

(4) for every t ∈ Σ, and x, αtx ∈ X ′, µαtx,U ∝ αt(µx,U )α−t.
In general, there is no canonical way to normalize the measures µx,U ; we fix
a specific normalization by requiring that µx,U (BU

1 ) = 1 for every x ∈ X ′.
This implies the next crucial property.

(5) If U ⊂ C(αt) = {g ∈ G : gαt = αtg} commutes with αt, then
µαtx,U = µx,U whenever x, αtx ∈ X ′.

(6) µ is U -invariant if, and only if, µx,U is a Haar measure on U a.e. (see
e.g. [16] or the slightly more general [20, Prop. 4.3]).

The other extreme to U -invariance is when µx,U is atomic. If µ is A-
invariant then outside some set of measure zero if µx,U is atomic then it
is supported on the identity Ik ∈ U , in which case we say that µx,U is
trivial. This follows from Poincaré recurrence for an element a ∈ A that
uniformly expands the U -orbits (i.e. for which the U -orbits are contained
in the unstable manifolds). Since the set of x ∈ X for which µx,U is trivial

2We are following the conventions of [20] in viewing the conditional measures µx,U as
measures on U . An alternative approach, which, for example, is the one taken in [16]
and [13], is to view the conditional measures as a collection of measures on X supported
on single orbits of U ; in this approach, however, the conditional measure is not a Radon
measure on X, only on the single orbit of U in the topology of this submanifold.



INVARIANT MEASURES AND LITTLEWOOD’S CONJECTURE 9

is A-invariant, if µ is A-ergodic then either µx,U are trivial a.s. or µx,U

are nonatomic a.s. Fundamental to us is the following characterization of
positive entropy (see [26, Sect. 9] and [16])

(7) If for every x ∈ X the orbit Ux is the stable manifold through x with
respect to αt, then the measure theoretic entropy hµ(αt) is positive
if and only if the conditional measures µx,U are nonatomic a.e.

So positive entropy implies that the conditional measures are nontrivial
a.e., and the goal is to show that this implies that they are Haar measures.
Quite often one shows first that the conditional measures are translation in-
variant under some element up to proportionality, which makes the following
observation useful.

(8) Possibly after replacing X ′ of (1)-(4) by a conull subset, it holds
that for any x ∈ X ′ and any u ∈ U with µx,U ∝ µx,Uu in fact
µx,U = µx,Uu holds.

This has first been shown in [16]. The proof of this fact only uses Poincaré
recurrence and (4) above, and for completeness we provide a proof below.

Proof of (8). Let t be such that αt uniformly contracts the U -leaves (i.e. for
every x the U -orbit Ux is part of the stable manifold with respect to αt).
Define for M > 0

DM =
{
x ∈ X ′ : µx,U

(
BU

2

)
< M

}
.

We claim that for every x ∈ X ′ ∩
⋃

M lim supn→∞ α−ntDM (i.e. any x ∈ X ′

so that αnt is in DM for some M for infinitely many n) if µx,U = cµx,Uu
then c ≤ 1.

Indeed, suppose x ∈ X ′ ∩ lim supn→∞ α−ntDM and u ∈ U satisfy µx,U =
cµx,Uu. Then for any n, k

µαntx,U = ckµαntx,U (αntukα−nt).

Choose k > 1 arbitrary. Suppose n is such that αntx ∈ DM and suppose
that n is sufficiently large that αntukα−nt ∈ BU

1 , which is possible since αt

uniformly contracts U . Then

M ≥ µαntx,U (BU
2 ) ≥ µαntx,U (BU

1 α
ntukα−nt)

= (µαntx,Uα
ntu−kα−nt)(BU

1 )

= ckµαntx,U (BU
1 ) = ck.

Since k is arbitrary this implies c ≤ 1.
If µx,U = cµx,Uu then µx,U = c−1µx,Uu

−1, so the above argument applied
to u−1 shows that c ≥ 1, hence µx,U = µx,Uu.

Thus we see that if we replace X ′ by X ′ ∩
⋃

M lim supn→∞ α−ntDM — a
conull subset of X ′, then (8) holds for any x ∈ X ′. �



10 MANFRED EINSIEDLER, ANATOLE KATOK, AND ELON LINDENSTRAUSS

Of particular importance to us will be the following one parameter unipo-
tent subgroups of G, which are parameterized by pairs (i,j) of distinct inte-
gers in the range {1, . . . , k}:

uij(s) = exp(sEij) = Ik +sEij , Uij = {uij(s) : s ∈ R},

where Eij denotes the matrix with 1 at the ith row and jth column and zero
everywhere else. It is easy to see these groups are normalized by A; indeed,
for t = (t1, . . . , tk) ∈ Σ

αtuij(s)α−t = uij(eti−tjs).

Since these groups are normalized by A, the orbits of Uij form an A-invariant
foliation of X = SL(k,R)/Γ with one-dimensional leaves. We will use µij

x

as a shorthand for µx,Uij ; any integer i ∈ {1, . . . , k} will be called an index;
and unless otherwise stated, any pair i, j of indices is implicitly assumed to
be distinct.

Note that for the conditional measures µij
x it is easy to find a nonzero

t ∈ Σ such that (5) above holds, for this all we need is ti = tj . Another
helpful feature is the one-dimensionality of Uij which also helps to show that
µij

x are a.e. Haar measures. In particular we have the following:
(9) Suppose there exists a set of positive measure B ⊂ X such that for

any x ∈ B there exists a nonzero u ∈ Uij with µij
x ∝ µij

x u. Then for
a.e. x ∈ B in fact µij

x is a Haar measure of Uij , and if α is ergodic
then µ is invariant under Uij .

Proof of (9). Recall first that by (8) we can assume µij
x = µij

x u for x ∈ B.
Let K ⊂ B be a compact set of measure almost equal to µ(B) such that µij

x

is continuous for x ∈ K. It is possible to find such a K by Luzin’s theorem.
Note however, that here the target space is the space of Radon measures
M∞(Uij) equipped with the weak∗ topology so that a more general ver-
sion [5, p. 69] of Luzin’s theorem is needed. Let t ∈ Σ be such that Uij is
uniformly contracted by αt. Suppose now x ∈ K satisfies Poincaré recur-
rence for every neighborhood of x relative to K. Then there is a sequence
x` = αn`t ∈ K that approaches x with n` → ∞. Invariance of µij

x under u
implies invariance of µx`

under the much smaller element αn`tuα−n`t and
all its powers. However, since µij

x`
converges to µij

x we conclude that µij
x is

a Haar measure of Uij . The final statement follows from (4) which implies
that the set of x where µij

x is a Haar measure is α-invariant. �

Even when µ is not invariant under Uij we still have the following maximal
ergodic theorem [20, Thm. A.1] proved by the last named author in joint
work with D. Rudolph, which is related to a maximal ergodic theorem of
Hurewicz [12].

(10) For any f ∈ L1(X,µ) and α > 0 we have

µ
({
x :

∫
B

Uij
r

f(ux) dµij
x > αµij

x

(
B

Uij
r

)
for some r > 0

})
<
C‖f‖1

α
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for some universal constant C > 0.

2.2. Invariant measures, high and low entropy cases. We are now in
a position to state the general measure rigidity result for quotients of G:

Theorem 2.1. Let X = G/Γ and A as above. Let µ be an A-invariant and
ergodic probability measure on X. For any pair of indices a, b, one of the
following three properties must hold.

(1) The conditional measures µab
x and µba

x are trivial a.e.
(2) The conditional measures µab

x and µba
x are Haar a.e., and µ is in-

variant under left multiplication with elements of Hab = 〈Uab, Uba〉.
(3) Let A′ab = {αs : s ∈ Σ and sa = sb}. Then a.e. ergodic component of

µ with respect to A′ab is supported on a single C(Hab)-orbit, where
C(Hab) = {g ∈ G : gh = hg for all h ∈ Hab} is the centralizer of
Hab.

Remark: If k = 3 then (3) is equivalent to the following:

(3’) There exists a nontrivial s ∈ Σ with sa = sb and a point x0 ∈ X
with αsx0 = x0 such that the measure µ is supported by the orbit
of x0 under C(A′ab). In particular, a.e. point x satisfies αsx = x.

Indeed, in this case C(Hab) contains only diagonal matrices, and Poincaré
recurrence for A′ab together with (3) imply that a.e. point is periodic under
A′ab. However, ergodicity of µ under A implies that the period s must be
the same a.e. Let x0 ∈ X be such that every neighborhood of x0 has
positive measure. Then x close to x0 is fixed under αs only if x ∈ C(A′ab)x0,
and ergodicity shows (3’). The examples of M. Rees [42][3, Sect. 9] of
non-algebraic A-ergodic measures in certain quotients of SL(3,R) (which
certainly can have positive entropy) are precisely of this form, and show
that case (3) and (3’) above are not superfluous.

When Γ = SL(k,Z), however, this phenomenon, which we term excep-
tional returns, does not happen. We will show this in Section 5; similar
observations have been made earlier in [25], [21]. We also refer the reader
to [46] for a treatment of similar questions for inner lattices in SL(k,R) (a
certain class of lattices in SL(k,R)).

The conditional measures µij
x are intimately connected with the entropy.

More precisely, µ has positive entropy with respect to αt if and only if for
some i, j with ti > tj the measures µij

x are not a.s. trivial (see Proposition 3.1
below for more details; this fact was first proved in [16]). Thus (1) in
Theorem 2.1 above holds for all pairs of indices i, j if, and only if, the
entropy of µ with respect to every one parameter subgroup of A is zero.

In order to prove Theorem 2.1, it is enough to show that for every a, b for
which the µab

x is a.s. nontrivial either Theorem 2.1.(2) or Theorem 2.1.(3)
holds. For each pair of indices a, b, our proof is divided into two cases which
we loosely refer to as the high entropy and the low entropy case:
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High entropy case: there is some additional pair of indices i, j distinct
from a, b such that i = a or j = b for which µij

x are nontrivial a.s. In this
case we prove:

Theorem 2.2. If both µab
x and µij

x are nontrivial a.s., for distinct pairs of
indices i, j and a, b with either i = a or j = b, then both µab

x and µba
x are in

fact Haar measures a.s. and µ is invariant under Hab.

The proof in this case, presented in §3 makes use of the non-commutative
structure of certain unipotent subgroups of G, and follows closely [3]. How-
ever, by careful use of an adaptation of a formula of Ledrappier and Young
(Proposition 3.1 below) relating entropy to the conditional measures µab

x we
are able to extract some additional information. It is interesting to note
that Margulis and Tomanov used the Ledrappier-Young theory for a simi-
lar purpose in [26], simplifying some of Ratner’s original arguments in the
classification of measures invariant under the action of unipotent groups.
Low entropy case: for every pair of indices i, j distinct from a, b such
that i = a or j = b, µij

x are trivial a.s. In this case there are two possibilities:

Theorem 2.3. Assume µab
x are a.e. nontrivial, and µij

x are trivial a.e. for
every pair i, j distinct from a, b such that i = a or j = b. Then one of the
following properties holds.

(1) µ is Uab invariant.
(2) Almost every A′ab-ergodic component of µ is supported on a single

C(Hab) orbit.

We will see in Corollary 3.4 that in the low entropy case µba
x is also

nontrivial, so applying Theorem 2.3 for Uba instead of Uab one sees that
either µ is Hab-invariant or almost every A′ab-ergodic component of µ is
supported on a single C(Hab) = C(Hba) orbit.

In this case we employ the techniques developed by the third named au-
thor in [20]. There, one considers invariant measures on irreducible quotients
of products of the type SL(2,R)×L for some algebraic group L. Essentially,
one tries to prove a Ratner type result (using methods quite similar to Rat-
ner’s [36, 37]) for the Uab flow even though µ is not assumed to be invariant
or even quasi invariant under Uab. Implicitly in the proof we use a variant
of Ratner’s H-property (related, but distinct from the one used by Witte in
[48, Sect. 6]) together with the maximal ergodic theorem for Uab as in (9)
in Section 2.1.

3. More about entropy and the high entropy case

A well-known theorem by Ledrappier and Young [19] relates the entropy,
the dimension of conditional measures along invariant foliations, and Lya-
punov exponents, for a general C2 map on a compact manifold, and in [26,
Sect. 9] an adaptation of the general results to flows on locally homogeneous
spaces is provided. In the general context, the formula giving the entropy
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in terms of the dimensions of conditional measures along invariant foliations
requires consideration of a sequence of subfoliations, starting from the foli-
ation of the manifold into stable leaves. However, because the measure µ
is invariant under the full A-action one can relate the entropy to the con-
ditional measures on the one-dimensional foliations into orbits of Uij for all
pairs of indices i, j.

We quote the following from [3]; in that paper, this proposition is deduced
from the fine structure of the conditional measures on full stable leaves for
A-invariant measure; however, it can also be deduced from a more general
result of Hu regarding properties of commuting diffeomorphisms [10]. It
should be noted that the constants sij(µ) that appear below have explicit
interpretation in terms of the pointwise dimension of µij

x [19].

Proposition 3.1 ([3, Lemma 6.2]). Let µ be an A-invariant and ergodic
probability measure on X = G/Γ with G = SL(k,R) and Γ < G discrete.
Then for any pair of indices i, j there are constants sij(µ) ∈ [0, 1] so that:

(1) sij(µ) = 0 if and only if for a.e. x, µij
x are atomic and supported on

a single point.
(2) if a.s. µij

x are Haar (i.e. µ is Uij invariant), then sij(µ) = 1
(3) for any t ∈ Σ

hµ(αt) =
∑
i,j

sij(µ)(ti − tj)+. (3.1)

Here (r)+ = max(0, r) denotes the positive part of r ∈ R.
We note that the converse to (2) is also true. A similar proposition holds

for more general semisimple groups G. In particular we get the following
(which is also proved in a somewhat different way in [16]):

Corollary 3.2. For any t ∈ Σ, the entropy hµ(αt) is positive if and only if
there is a pair of indices i, j with ti− tj > 0 for which µij

x are nontrivial a.s.

A basic property of the entropy is that for any t ∈ Σ,

hµ(αt) = hµ(α−t). (3.2)

As we will see this gives nontrivial identities between the sij(µ).
The following is a key lemma from [3], see Figure 1.

Lemma 3.3 ([3, Lemma 6.1]). Suppose µ is an A-invariant and ergodic
probability measure, i, j, k distinct indices such that both µij

x and µjk
x are

nonatomic a.e. Then µ is Uik-invariant.

Proof of Theorem 2.2. For ` = a, b we define the sets

C` ={i ∈ {1, . . . , k} \ {a, b} : si`(µ) > 0},
R` ={j ∈ {1, . . . , k} \ {a, b} : s`j(µ) > 0},
CL

` ={i ∈ {1, . . . , k} \ {a, b} : µ is Ui`-invariant}
RL

` ={j ∈ {1, . . . , k} \ {a, b} : µ is U`j-invariant}.
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x

uik(rs)x
uij(r)

ujk(s)

Figure 1. One key ingredient of the proof of Lemma 3.3
in [3] is the translation produced along Uik when going along
Uij and Ujk and returning to the same leaf Uikx.

Suppose i ∈ Ca, then the conditional measures µia
x are nontrivial a.e. by

Proposition 3.1. Since by assumption µab
x are nontrivial a.e., Lemma 3.3

shows that µib
x are Lebesgue a.e. This shows that Ca ⊂ CL

b , and Rb ⊂ RL
a

follows similarly.
Let t = (t1, . . . , tk) with ti = −1/k for i 6= a and ta = 1 − 1/k. For

the following expression set saa = 0. By Proposition 3.1 the entropy of αt

equals

hµ(αt) = sa1(µ) + · · ·+ sak(µ) =

sab(µ) + |RL
a |+

∑
j∈Ra\RL

a

saj(µ) > |RL
a |, (3.3)

where we used our assumption that sab(µ) > 0. Applying Proposition 3.1
for α−t we see similarly that

hµ(α−t) = s1a(µ) + · · ·+ ska(µ) = sba(µ) +
∑
i∈Ca

sia(µ) ≤ (1 + |Ca|), (3.4)

where we used that sia(µ) ∈ [0, 1] for a = 2, . . . , k. However, since the
entropies of αt and of α−t are equal, we get |RL

a | ≤ |Ca|.
Using t′ = (t′1, . . . , t

′
k) with t′i = −1/k for i 6= b and t′b = 1−1/k instead of

t in the above paragraph shows similarly |CL
b | ≤ |Rb|. Recall that Ca ⊂ CL

b

and Rb ⊂ RL
a . Combining these inequalities we conclude that

|RL
a | ≤ |Ca| ≤ |CL

b | ≤ |Rb| ≤ |RL
a |,

and so all of these sets have the same cardinality. However, from (3.3)–(3.4)
we see that sab(µ) + |RL

a | ≤ hµ(αt) ≤ sba(µ) + |Ca|. Together we see that

sba(µ) ≥ sab(µ) > 0. (3.5)

From this we conclude as before that Ca ⊂ CL
b ⊂ CL

a , and so Ca = CL
a .

Similarly, one sees Rb = RL
b .
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This shows that if sab(µ) > 0 and sij(µ) > 0 for some other pair i, j with
either i = a or j = b, then in fact µ is Uij-invariant. If there was at least one
such pair of indices i, j we could apply the previous argument to i, j instead
of a, b and get that µ is Uab-invariant. �

In particular, we have seen in the proof of Theorem 2.2 that sab > 0
implies (3.5). We conclude the following symmetry.

Corollary 3.4. We have sab = sba for any pair of indices (a, b). In partic-
ular, µab

x are nontrivial a.s., if and only if, µba
x are nontrivial a.s.

4. The low entropy case

We let A′ab = {αs ∈ A : sa = sb}, and let αs ∈ A′ab. Then αs commutes
with Uab, which implies that µab

x = µab
αsx a.e.

For a given pair of indices a, b, we define the following subgroups of G:

L(ab) =C(Uab)

U(ab) =〈Uij : i = a or j = b〉
C(ab) =C(Hab) = C(Uab) ∩ C(Uba).

Recall that the metric on X is induced by a right-invariant metric on
G. So for every two x, y ∈ X there exists a g ∈ G with y = gx and
d(x, y) = d(Ik, g).

4.1. Exceptional returns.

Definition 4.1. We say for K ⊂ X that the A′ab-returns to K are excep-
tional (strong exceptional) if there exists a δ > 0 so that for all x, x′ ∈ K,
and αs ∈ A′ab with x′ = αsx ∈ Bδ(x) ∩K we have that every g ∈ BG

δ with
x′ = gx satisfies g ∈ L(ab) (g ∈ C(ab) respectively).

Lemma 4.2. There exists a null set N ⊂ X such that for any compact
K ⊂ X \N with exceptional A′ab-returns to K the A′ab-returns to K are in
fact strong exceptional.

Proof. To simplify notations, assume without loss of generality that a =
1, b = 2, and write A′, U , L, C for A′12, U(12), L(12), C(12) respectively. We
write, for a given matrix g ∈ G,

g =

 a1 g12 g1∗
g21 a2 g2∗
g∗1 g∗2 a∗

 , (4.1)

with the understanding that a1, a2, g12, g21 ∈ R, g1∗, g2∗ (resp. g∗1, g∗2) are
row (resp. column) vectors with k− 2 components, and a∗ ∈ Mat(k− 2,R).
(For k = 3 of course all of the above are real numbers, and we can write 3
instead of the symbol ∗.) Then g ∈ L if and only if a1 = a2 and g21, g∗1, g2∗
are all zero. g ∈ C if in addition g12, g1∗, g∗2 are zero.
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For ` ≥ 1 let D` be the set of x ∈ X with the property that for all z ∈
B1/`(x) there exists a unique g ∈ BG

1/` with z = gx. Note that
⋃∞

`=1D` = X,
and that for every compact set K ⊂ D` for some ` > 0.

Let first αs ∈ A′ be a fixed element, and let E`,s ⊂ D` be the set of points
x for which x′ = αsx ∈ B1/`(x) and x′ = gx with g ∈ BG

1/`∩L = BL
1/`. Since

g ∈ BG
1/` is uniquely determined by x (for a fixed s), we can define (in the

notation of (4.1)) the measurable function

f(x) = max
(
|g12|, ‖g1∗‖, ‖g∗2‖

)
for x ∈ E`,s.

Let t = (−1, 1, 0, . . . , 0) ∈ Σ. Then conjugation with αt contracts U . In
fact for g as in (4.1) the entries of αtgα−t corresponding to g12, g1∗ and g2∗
are e−2g12, e

−1g1∗ and e−1g2∗, and those corresponding to g21, g∗1 and g∗2
are e2g21, eg∗1 and eg∗2. Notice that the latter are assumed to be zero. This
shows that for x ∈ E`,s and α−ntx ∈ D`, in fact α−ntx ∈ E`,s. Furthermore
f(α−ntx) ≤ e−nf(x). Poincaré recurrence shows that f(x) = 0 for a.e.
x ∈ E`,s – or equivalently αsx ∈ BC

1/`(x) for a.e. x ∈ D` with αsx ∈ BL
1/`(x).

Varying s over all elements of Σ with rational coordinates and αs ∈ A′,
we arrive at a nullset N` ⊂ D` so that αsx ∈ BL

1/`(x) implies αsx ∈ BC
1/`(x)

for all such rational s. Let N be the union of N` for ` = 1, 2, . . .. We claim
that N satisfies the lemma.

So suppose K ⊂ X \N has A′-exceptional returns. Choose ` ≥ 1 so that
K ⊂ D`, and furthermore so that δ = 1/` can be used in the definition
of A′-exceptional returns to K. Let x ∈ K, x′ = αsx ∈ B1/`(x) for some
s ∈ Σ with αs ∈ A′, and g ∈ BG

1/` with x′ = gx. By assumption on K, we
have that g ∈ L. Choose a rational s̃ ∈ Σ close to s with αs̃ ∈ A′ so that
αs̃x ∈ B1/`(x). Clearly g̃ = αs̃−sg satisfies αs̃x = g̃x and so g̃ ∈ BL

1/`. Since
x ∈ K ⊂ D1/` \N1/`, it follows that g̃ ∈ C. Going back to x′ = αsx and g
it follows that g ∈ C. �

Our interest in exceptional returns is explained by the following proposi-
tion. Note that condition (1) below is exactly Theorem 2.3(2).

Proposition 4.3. For any pair of indices a, b the following two conditions
are equivalent.

(1) A.e. ergodic component of µ with respect to A′ab is supported on a
single C(ab)-orbit.

(2) For every ε > 0 there exists a compact set K with measure µ(K) >
1− ε so that the A′ab-returns to K are strong exceptional.

The ergodic decomposition of µ with respect to A′ab can be constructed
in the following manner; Let E ′ denote the σ-algebra of Borel sets which are
A′ab invariant. For technical purposes, we use the fact that (X,BX , µ) is a
Lebesgue space to replace E ′ by an equivalent countably generated sub-sigma
algebra E . Let µEx be the family of conditional measures of µ with respect
to the σ-algebra E . Since E is countably generated the atom [x]E is well
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defined for all x, and it can be arranged that for all x and y with y ∈ [x]E
the conditional measures µEx = µEy , and that for all x, µEx is a probability
measure.

Since E consists of A′ab-invariant sets, a.e. conditional measure is A′ab-
invariant, and can be shown to be ergodic. So the decomposition of µ into
conditionals

µ =
∫

X
µEx dµ (4.2)

gives the ergodic decomposition of µ with respect to A′ab.

Proof. For simplicity, we write A′ = A′ab and C = C(ab).
(1) =⇒ (2):

Suppose a.e. A′ ergodic component is supported on a single C-orbit. Let
ε > 0. For any fixed r > 0 we define

fr(x) = µEx(BC
r (x)).

By the assumption fr(x) ↗ 1 for r →∞ and a.e. x. Therefore, there exists
a fixed r > 0 with µ(Cr) > 1− ε, where Cr = {x : fr(x) > 1/2}.

Fix some x ∈ X. We claim that for every small enough δ > 0

BC
2r(x) ∩Bδ(x) = BC

δ (x). (4.3)

Indeed, by the choice of the metric on X there exists δ′ > 0 so that the map
g 7→ gx from BG

3δ′ to X is an isometry. Every g ∈ BC
2r satisfies that either

d(BC
δ′ (x), B

C
δ′ (gx)) > 0, or that there exists h ∈ BC

δ′ with hx ∈ BC
δ′ (gx). In

the latter case BC
δ′ (gx) ⊂ BC

3δ′(x). The sets BC
δ′ (g) for g ∈ BC

2r cover the
compact set BC

2r. Taking a finite subcover, we find some η > 0 so that
d(gx, x) > η or gx ∈ BC

3δ′(x) for every g ∈ BC
2r. It follows that (4.3) holds

with δ = min(η, δ′). In other words, Cr =
⋃

δ>0Dδ, where

Dδ =
{
x ∈ Cr : BC

2r(x) ∩Bδ(x) ⊂ BC
δ (x)

}
,

and there exists δ > 0 with µ(Dδ) > 1− ε.
Let K ⊂ Dδ be compact. We claim that the A′-returns to K are strongly

exceptional. So suppose x ∈ K and x′ = αsx ∈ K for some αs ∈ A′. Then
since x and x′ are in the same atom of E , the conditional measures satisfy
µEx = µEx′ . By definition of Cr we have µEx(BC

r (x)) > 1/2 and the same for x′.
Therefore BC

r (x) and BC
r (x′) cannot be disjoint, and x′ ∈ BC

2r(x) follows.
By definition of Dδ it follows that x′ ∈ BC

δ (x). Thus the A′-returns to K
are indeed strongly exceptional.
(2) =⇒ (1):

Suppose that for every ` ≥ 1 there exists a compact set K` with µ(K`) >
1 − 1/` so that the A′-returns to K are strong exceptional. Then N =
X \

⋃
`K` is a nullset. It suffices to show that (1) holds for every A′ ergodic

µEx which satisfies µEx(N) = 0.
For any such x there exists ` > 0 with µEx(K`) > 0. Choose some z ∈ K`

with µEx(B1/m(z)∩K`) > 0 for all m ≥ 1. We claim that µEx is supported on
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Cz, i.e. that µEx(Cz) = 1. Let δ be as in the definition of strong exceptional
returns. By ergodicity there exists for µEx-a.e. y0 ∈ X some αs ∈ A′ with
y1 = αsy0 ∈ Bδ(z) ∩K`. Moreover, there exists a sequence yn ∈ A′y0 ∩K`

with yn → z. Since yn ∈ Bδ(y1) for large enough n and since the A′-returns
to K` are strong exceptional, we conclude that yn ∈ BC

δ (y1). Since yn

approaches z and d(z, y1) < δ, we have furthermore z ∈ BC
δ (y1). Therefore

y1 ∈ Cz, y0 = α−sy1 ∈ Cz, and the claim follows. �

Lemma 4.4. (1) Under the assumptions of the low entropy case (i.e.
sab(µ) > 0 but sij(µ) = 0 for all i, j with either i = a or j = b),
there exists a µ-nullset N ⊂ X such that for x ∈ X \N it holds that

U(ab)x ∩X \N ⊂ Uabx.

(2) Furthermore, unless µ is Uab-invariant, one can also arrange that

µab
x 6= µab

y

for any x ∈ X \N and any y ∈ U(ab)x \N which is different from x.

Proof. Set U = U(ab) and let µx,U be the conditional measures for the foli-
ation into U -orbits. By [3, Prop. 8.3] the conditional measure µx,U is a.e.
– say for x /∈ N – a product measure of the conditional measures µij

x over
all i, j for which Uij ⊂ U . Clearly, by the assumptions of the low entropy
case, µab

x is the only one of these which is nontrivial. Therefore, µx,U – as a
measure on U – is supported on the one dimensional group Uab.

By (3) in §2.1 the conditional measures satisfy furthermore that there is
a null set – enlarge N accordingly – such that for x, y /∈ N and y = ux ∈ Ux
the conditionals µx,U and µy,U satisfy that µx,U ∝ µy,Uu. However, since
µx,U and µy,U are both supported by Uab, it follows that u ∈ Uab. This
shows Lemma 4.4.(1).

In order to show Lemma 4.4.(2), we note that we already know that
y ∈ Uabx. So if µab

x = µab
y , then µab

x is again by (3) in §2.1 invariant (up
to proportionality) under multiplication by some nontrivial u ∈ Uab. If this
were to happen on a set of positive measure, then by (9) in §2.1 µab

x are in
fact Haar a.e. – a contradiction to our assumption. �

4.2. Sketch of proof of Theorem 2.3. We assume that the two equivalent
conditions in Proposition 4.3 fail (the first of which is precisely the condition
of Theorem 2.3 (2)). From this we will deduce that µ is Uab-invariant which
is precisely the statement in Theorem 2.3 (1).

For the following we assume without loss of generality that a = 1 and
b = 2. Write A′ and u(r) = Ik +rE12 ∈ U12 for r ∈ R instead of A′12 and
u12(r). Also, we shall at times implicitly identify µ12

x (which is a measure
on U12) with its push forward under the map u(r) 7→ r, e.g. write µ12

x ([a, b])
instead of µ12

x (u([a, b])).
By Poincaré recurrence we have for a.e. x ∈ X and every δ > 0 that

d(αsx, x) < δ for some large αs ∈ A′.
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For a small enough δ there exists a unique g ∈ BG
δ such that x′ = αs = gx.

Since αs preserves the measure and since A′ ⊂ L12 = C(U12) the condi-
tional measures satisfy

µ12
x = µ12

x′ . (4.4)
by (5) in §2.1. Since µ12

x is nontrivial, we can find many r ∈ R so that
x(r) = u(r)x and x′(r) = u(r)x′ are again typical. By (3) in §2.1 the
conditionals satisfy

µ12
x(r)u(r) ∝ µ12

x (4.5)

and similar for x′(r) and x′. Together with (4.4) and the way we have
normalized the conditional measures this implies that

µ12
x(r) = µ12

x′(r).

x

x′

x(r)

x′(r)

Figure 2. Ratner’s H-property: When moving along the
unipotent u(r), the points x(r) and x′(r) noticably differ first
only along U(12).

The key to the low entropy argument, and this is also the key to Ratner’s
seminal work on rigidity of unipotent flows, is how the unipotent orbits x(r)
and x′(r) diverge for r large (see Figure 2). Ratner’s H-property (which
was introduced and used in her earlier works on rigidity of unipotent flows
[36, 37] and was generalized by D. Morris-Witte in [48]) says that this diver-
gence occurs only gradually and in prescribed directions. We remark that in
addition to our use of the H-property, the general outline of our argument
for the low entropy case is also quite similar to [36, 37].

We shall use a variant of this H-property in our paper, which at its heart
is the following simple matrix calculation (cf. [36, Lemm. 2.1] and [37, Def.
1]). Let the entries of g ∈ BG

δ be labelled as in (4.1). A simple calculation
shows that x′(r) = g(r)x(r) for

g(r) = u(r)gu(−r) = a1 + g21r g12 + (a2 − a1)r − g21r
2 g1∗ + g2∗r

g21 a2 − g21r g2∗
g∗1 g∗2 − g∗1r a∗

 . (4.6)

Since the return is not exceptional, g /∈ L12 = C(U12) and one of the follow-
ing holds; a2−a1 6= 0, g21 6= 0, g∗1 6= 0, or g2∗ 6= 0. From this it is immediate
that there exists some r so that g(r) is close to Ik in all entries except at
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least one entry corresponding to the subgroup U(12). More precisely, there
is an absolute constant C so that there exists r with

C−1 ≤ max(|(a2 − a1)r − g21r
2|, ‖g2∗r‖, ‖g∗1r‖) ≤ C, (4.7)

|g21r| ≤ Cδ3/8. (4.8)

With some care we will arrange it so that x(r), x′(r) belong to a fixed com-
pact set X1 ⊂ X \N . Here N is as in Lemma 4.4 and X1 satisfies that µ12

z

depends continuously on z ∈ X1, which is possible by Luzin’s theorem.
If we can indeed find for every δ > 0 two such points x(r), x′(r) with

(4.7)–(4.8), we let δ go to zero and conclude from compactness that there
are two different points y, y′ ∈ X1 with y′ ∈ U(12)y which are limits of a
sequence of points x(r), x′(r) ∈ X1. By continuity of µ12

z on X1 we get that
µ12

y = µ12
y′ . However, this contradicts Lemma 4.4 unless µ is invariant under

U12.
The main difficulty consists in ensuring that x(r), x′(r) belong to the

compact set X1 and satisfy (4.7)-(4.8). For this we will need several other
compact sets with large measure and various properties.

Our proof follows closely the methods of [20, Sect. 8]. The arguments
can be simplified if one assumes additional regularity for the conditional
measures µ12

z — see [20, Sect. 8.1] for more details.

4.3. The construction of a nullset and three compact sets. As men-
tioned before we will work with two main assumptions: that µ satisfies the
assumptions of the low entropy case and that the equivalent conditions in
Proposition 4.3 fail. By the former there exists a nullset N so that all state-
ments of Lemma 4.4 are satisfied for x ∈ X \ N . By the latter we can
assume that for small enough ε and for any compact set with µ(K) > 1− ε
the A′-returns to K are not strong exceptional.

We enlarge N so that X \N ⊂ X ′ where X ′ is as in §2.1. Furthermore,
we can assume that N also satisfies Lemma 4.2. This shows that for every
compact set K ⊂ X \N with µ(K) > 1− ε the A′-returns (which exist due
to Poincaré recurrence) are not exceptional, i.e. for every δ > 0 there exists
z ∈ K and s ∈ A′ with z′ = αsz ∈ Bδ(z) \BL

δ (z).
Construction of X1: The map x 7→ µ12

x is a measurable map from X to a
separable metric space. By Luzin’s theorem [5, p. 76] there exists a compact
X1 ⊂ X\N with measure µ(X1) > 1−ε4, and the property that µ12

x depends
continuously on x ∈ X1.

Construction of X2: To construct this set, we use the maximal inequality
(10) in §2.1 from [20, Appendix A]. Therefore, there exists a set X2 ⊂ X \N
of measure µ(X2) > 1− C1ε

2 (with C1 some absolute constant) so that for
any R > 0 and x ∈ X2∫

[−R,R]
1X1(u(r)x) dµ12

x (r) ≥ (1− ε2)µ12
x ([−R,R]). (4.9)
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Construction of K = X3: Since µ12
x is assumed to be nontrivial a.e., we

have µ12
x ({0}) = 0 and µ12

x ([−1, 1]) = 1. Therefore, we can find ρ ∈ (0, 1/2)
so that

X (ρ) =
{
x ∈ X \N : µ12

x ([−ρ, ρ]) < 1/2
}

(4.10)

has measure µ(X (ρ)) > 1− ε2. Let t = (1,−1, 0, . . . , 0) ∈ Σ be fixed for the
following. By the (standard) maximal inequality we have that there exists
a compact set X3 ⊂ X \ N of measure µ(X3) > 1 − C2ε so that for every
x ∈ X3 and T > 0 we have

1
T

∫ T

0
1X2(α

−τtx) dτ ≥ (1− ε),

1
T

∫ T

0
1X (ρ)(α

−τtx) dτ ≥ (1− ε).
(4.11)

4.4. The construction of z, z′ ∈ X3, x, x′ ∈ X2. Let δ > 0 be very
small (later δ will approach zero). In particular, the matrix g ∈ BG

δ (with
entries as in (4.1)) is uniquely defined by z′ = gz whenever z, z′ ∈ X3 and
d(z, z′) < δ. Since the A′-returns to X3 are not exceptional, we can find
z ∈ X3 and αs ∈ A′ with z′ = αsz ∈ Bδ(z) ∩X3 so that

κ(z, z′) = max
(
|a2 − a1|, |g21|1/2, ‖g∗1‖, ‖g2∗‖

)
∈ (0, cδ1/2), (4.12)

where c is an absolute constant allowing us to change from the metric d(·, ·)
to the norms we used above.

For the moment let x = z, x′ = z′, and r = κ(z, z′)−1. Obviously
max

(
|(a2 − a1)r|, |g21|1/2r, ‖g2∗r‖, ‖g∗1r‖

)
= 1. If the maximum is achieved

in one of the last two expressions, then (4.7)-(4.8) is immediate with C = 1.
However, if the maximum is achieved in either of the first two expressions,
it is possible that (a2 − a1)r − g21r

2 is very small. In this case we could
set r = 2κ−1(z, z′), then (a2 − a1)r is about 2 and g21r

2 is about 4. Now
(4.7)-(4.8) hold with C = 10. The problem with this naive approach is that
we do not have any control on the position of x(r), x′(r). For all we know
these points could belong to the null set N constructed in the last section.

To overcome this problem we want to use the conditional measure µ12
x

to find a working choice of r in a some interval I containing κ(z, z′)−1.
Again, this is not immediately possible since a priori this interval could
have very small µ12

x -measure, or even be a nullset. To fix this, we use t =
(1,−1, 0, . . . , 0) and the flow along the αt-direction in Lemma 4.6. However,
note that x = α−τtz and x′ = α−τtz′ differ by α−τtgατt. This results
possibly in a difference of κ(x, x′) and κ(z, z′) as in Figure 3, and so we
might have to adjust our interval along the way. The way κ(x, x′) changes
for various values of τ depends on which terms give the maximum.

Lemma 4.5. For z, z′ ∈ X3 as above let T = 1
4 | lnκ(z, z

′)|, η ∈ {0, 1}, and
θ ∈ [4T, 6T ]. There exists subsets P, P ′ ⊂ [0, T ] of density at least 1 − 9ε
such that for any τ ∈ P (τ ∈ P ′) we have

(1) x = α−τtz ∈ X2 (x′ = α−τtz′ ∈ X2) and
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z

z′

x

x′

Figure 3. The distance function κ(x, x′) might be constant
for small τ and increase exponentially later.

(2) the conditional measure µ12
x satisfies the estimate

µ12
x

(
[−ρS, ρS]

)
<

1
2
µ12

x

(
[−S, S]

)
(4.13)

where S = S(τ) = eθ−ητ (and similarly for µ12
x′ ).

Proof. By the first line in (4.11) there exists a set Q1 ⊂ [0, T ] of density
at least 1 − ε (with respect to the Lebesgue measure) such that x = α−τtz
belongs to X2 for every τ ∈ Q1.

By the second line in (4.11) there exists a set Q2 ⊂ [0, 4T ] of density at
least 1− ε such that α−vtz ∈ X (ρ) for v ∈ Q2. Let

Q3 =
{
τ ∈ [0, T ] :

1
2
(θ + (2− η)τ) ∈ Q2

}
.

A direct calculations shows that Q3 has density at least 1− 8ε in [0, T ], and
for τ ∈ Q3 and v = 1

2(θ + (2− η)τ) we have y = α−vtz ∈ Xρ.

x
z

y

u(S)x

u(ρS)x

u(1)y

Figure 4. From the way the leaf U12x is contracted along
α−t we can ensure (4.13) if y = α−wtx ∈ Xρ

We claim the set P = Q1∩Q3 ⊂ [0, T ] satisfies all assertions of the lemma,
see Figure 4. First P has at least density 1− 9ε. Now suppose τ ∈ P , then
x = α−τtz ∈ X2 by definition of Q1. Let w = 1

2(θ − ητ), then

y = α−wtx = α−vtz ∈ Xρ

by the last paragraph. By (4.10)

µ12
y ([−ρ, ρ]) < 1

2
µ12

y ([−1, 1]) =
1
2
.
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By property (4) in §2 of the conditional measures we get that

µ12
y ([−ρ, ρ])
µ12

y ([−1, 1])
=

(α−wtµ12
x α

wt)([−ρ, ρ])
(α−wtµ12

x α
wt)([−1, 1])

=
µ12

x ([−ρe2w, ρe2w])
µ12

x ([−e2w, e2w])

This implies (4.13) for S = e2w = eθ−ητ . The construction of P ′ for z′ is
similar. �

The next lemma uses Lemma 4.5 to construct x and x′ with the property
that certain intervals containing κ(x, x′)−1 have µ12

x -measure which is not
too small. This will allow us in §4.5 to find r so that both x(r) and x′(r)
have all the desired properties.

Lemma 4.6. Let z, z′ ∈ X3 and T = 1
4 |lnκ(z, z

′)| be as above. If ε < 1
100 ,

then there exists τ ∈ [0, T ] such that
(1) both x = α−τtz and x′ = α−τtz′ are in X2,
(2) κ(x, x′) < cδ3/8, and
(3) for R = κ(x, x′)−1 (as well as R′ = ρ−5R)

µ12
x

(
[−ρR, ρR]

)
<

1
2
µ12

x

(
[−R,R]

)
and

µ12
x′

(
[−ρR, ρR]

)
<

1
2
µ12

x′
(
[−R,R]

)
.

(4.14)

Proof. Let

κa(z, z′) = |a2 − a1|,
κu(z, z′) = max

(
|g21|1/2, ‖g∗1‖, ‖g2∗‖

)
∈ (0, cδ1/2).

The corresponding quantities for x, x′ are defined similarly. The number T
is chosen so that the two points x = α−τtz and x′ = α−τtz′ are still close
together for τ ∈ [0, T ]. In fact,

g̃ = α−τt

 a1 g12 g1∗
g21 a2 g2∗
g∗1 g∗2 a∗

ατt =

 a1 e−2τg12 e−τg1∗
e2τg21 a2 eτg2∗
eτg∗1 e−τg∗2 a∗

 (4.15)

satisfies x′ = g̃x, and so

κa(x, x′) = κa(z, z′), κu(x, x′) = eτκu(z, z′) ≤ κ(z, z′)
3
4 < cδ

3
8

and κ(x, x′) = max(κa(x, x′), κu(x, x′)) < cδ
3
8 , (4.16)

see also Figure 3. Hence the second statement of the lemma holds.
For the other two statements of the lemma we will use Lemma 4.5 to

define four subsets Pa, Pu, P
′
a, P

′
u ⊂ [0, T ], each of density at least 1− 9ε, so

that for every τ in the intersection of these four sets both (1) and (3) hold.
Definition of Pa: if κ(x, x′) > κa(x, x′) for all τ ∈ [0, T ] (recall that x, x′

depend implicitly on τ) we set Pa = [0, T ].
Otherwise, it follows from (4.16) that κ(z, z′) = κa(z, z′). We apply

Lemma 4.5 for η = 0 and θ = − log κa(z, z′) = 4T , and see that (4.13)
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holds for τ ∈ Pa, where Pa ⊂ [0, T ] has density at least 1 − 9ε, and
Sa = κa(z, z′)−1 = κa(x, x′)−1.

Definition of Pu: if κ(x, x′) > κu(x, x′) for all τ ∈ [0, T ] we set Pu = [0, T ].
Otherwise, it follows from (4.16) that κ(x, x′) = eτκu(z, z′) ≥ κ(z, z′) for

some τ ∈ [0, T ], hence κu(z, z′) ∈ [κ(z, z′)5/4, κ(z, z′)]. This time, we apply
Lemma 4.5 with η = 1 and θ = − log κu(z, z′) ∈ [4T, 5T ]. We conclude that
in this case (4.13) holds for τ ∈ Pu, where Pu ⊂ [0, T ] is a set of density
1− 9ε, and Su = κu(x, x′)−1 = eθ−τ .

Clearly, since κ(x, x′) is either κu(x, x′) or κa(x, x′) at least one of the
sets Pa or Pu is constructed using Lemma 4.5, so in particular if τ ∈ Pa∩Pu

then x ∈ X2. Furthermore, if τ ∈ Pa ∩ Pu we have that (4.13) holds for
S = R = κ(x, x′)−1 = min(κa(x, x′), κu(x, x′)).

The sets P ′
a and P ′

u are defined similarly using z′.
The set Pa ∩ P ′

a ∩ Pu ∩ P ′
u ⊂ [0, T ] has density at least (1 − 36ε), so

in particular if ε is small it is nonempty. For any τ in this intersection,
x, x′ ∈ X2 and (4.14) holds for R = κ(x, x′)−1.

The additional statement in the parenthesis follows similarly, the only
difference being the use of a slightly different value for θ in both cases, and
then taking the intersection of Pa ∩ P ′

a ∩ Pu ∩ P ′
u with four more subsets of

[0, T ] with similar estimates on their densities. �

4.5. Construction of x(r), x′(r) and the conclusion of the proof. Re-
call that we found z, z′ ∈ X3 using Poincaré recurrence and the assumption
that the A′-returns to X3 are not exceptional. In the last section we con-
structed x = α−τtz, x′ = α−τtz′ = αs ∈ X2 using the properties of X3 to
ensure (4.14). Since αs acts isometrically on the U12-leaves, it follows from
property (4) of the conditional measures in §2 that µ12

z = µ12
z′ and µ12

x = µ12
x′ .

Let

P = {r ∈ [−R,R] : u(r)x ∈ X1} and

P ′ = {r ∈ [−R,R] : u(r)x′ ∈ X1}.

By (4.9) we know that P and P ′ both have density at least (1 − ε2) with
respect to the measure µ12

x = µ12
x′ . By (4.14) we know that [−ρR, ρR] con-

tains less than one half of the µ12
x -mass of [−R,R]. Therefore, if ε is small

enough there exists r ∈ P ∩ P ′ \ [−ρR, ρR]. We define x(r) = u(r)x and
x′(r) = u(r)x′, and conclude that x(r), x′(r) ∈ X1 satisfy µ12

x(r) = µ12
x′(r) by

property (3) in §2.
Let g̃ be defined as in (4.15) and write g̃12, . . . for the matrix entries. With

g̃(r) = u(r)g̃u(−r) we have x′(r) = g̃(r)x(r) and

g̃(r) =

 a1 + g̃21r g̃12 + (a2 − a1)r − g̃21r
2 g̃1∗ + g̃2∗r

g̃21 a2 − g̃21r g̃2∗
g̃∗1 g̃∗2 − g̃∗1r a∗

 .
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We claim it is possible to achieve

C−1 ≤ max(|(a2 − a1)r − g̃21r
2|, ‖g̃2∗r‖, ‖g̃∗1r‖) ≤ C, (4.17)

|g̃21r| ≤ Cδ3/8. (4.18)

for some constant C, see Figure 2.
We proceed to the proof of (4.17)–(4.18). For (4.18) we first recall that

|g̃21| ≤ κ(x, x′)2, and then use (4.12) and (4.16) to get

|g̃21r| ≤ κ(x, x′)2R = κ(x, x′) ≤ κ(z, z′)3/4 ≤ (cδ1/2)3/4 ≤ c3/4δ3/8.

We now turn to prove (4.17). It is immediate from the definition of R
that

ρ ≤ max
(
|(a2 − a1)r|, |g̃21|1/2|r|, ‖g̃2∗r‖, ‖g̃∗1r‖

)
≤ 1. (4.19)

There are two differences of this estimate to the one in (4.17); first we need
to take the square of the second term – this replaces the lower bound ρ by
its square, secondly we looked above at (a2 − a1)r and g̃21r

2 separately –
taking the difference as in (4.7) might produce a too small a number (almost
cancellation). So (4.17) follows with C = ρ−2, unless

max
(
|(a2 − a1)r|, |g̃21|1/2|r|

)
≥ ρ (4.20)

|(a2 − a1)r − g̃21r
2| < ρ2 <

ρ

2
. (4.21)

This is a minor problem, and we can overcome it using the last statement
in Lemma 4.6. Assume that for some r ∈ [−R,R] \ [−ρR, ρR] this problem
occurs. We deduce a lower estimate on |g̃21|. If the maximum in (4.20) is
achieved at |g̃21|1/2|r| ≥ ρ, then |g̃21| ≥ ρ2R−2. If the maximum is achieved
at |(a2−a1)r| ≥ ρ, (4.21) shows that |g̃21r2| ≥ ρ/2 ≥ ρ2 (since ρ < 1/2) and
so in both cases

|g̃21| ≥ ρ2R−2. (4.22)
Now we go through the construction of r again, only this time using the last
statement in Lemma 4.6, and find r ∈ [ρ−5R, ρ−5R] \ [ρ−4R, ρ−4R]. The
equivalent to (4.19) is now the estimate

ρ−4 ≤ max
(
|(a2 − a1)r|, |g̃21|1/2|r|, ‖g̃2∗r‖, ‖g̃∗1r‖

)
≤ ρ−5.

This shows that |(a2 − a1)r| ≤ ρ−5, and (4.22) shows that

|g̃21r
2| ≥ ρ2R−2(ρ−4R)2 = ρ−6.

Together, we find a lower bound for

|(a2 − a1)r − g̃21r
2| ≥ ρ−6 − ρ−5 > 0,

i.e. the problem of almost cancellation cannot happen again.
Starting with the non-exceptional return z′ ∈ X3 of z ∈ X3 we have found

two points xr, x
′
r ∈ X1 which satisfy (4.17)-(4.18). Since we assume to have

non-exceptional returns to X3 for every δ = 1
n > 0, we get two sequences yn

and y′n of points in X1 with the same conditional measures

µ12
yn

= µ12
y′n
.
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Compactness shows that we can find convergent subsequences with limits
y, y′ ∈ X1. It follows from (4.17)-(4.18) that y′ ∈ Uy, and from (4.17) that
y′ 6= y. By continuity of µ12

x for x ∈ X1 the conditional measures µ12
y = µ12

y′

agree. However, this contradicts Lemma 4.4, unless µ is invariant under U12.

5. Proof that exceptional returns are not possible for
Γ = SL(k,Z)

If case (3) in Theorem 2.1 holds, then this gives some restriction on Γ. In
other words, for some lattices in SL(k,R), exceptional returns cannot occur.
As will be shown below, such is the case for Γ = SL(k,Z).

We recall that Hab ⊂ SL(k,R) is an A-normalized subgroup isomorphic to
SL(2,R), and A′ = A∩C(Hab). If case (3) of Theorem 2.1 holds then any A′-
ergodic component of µ is supported on a single C(Hab)-orbit. In particular,
we have an abundance of A′-invariant probability measures supported on
single C(Hab) orbits. Merely the existence of such measures is a restriction
on Γ.

Theorem 5.1. Suppose that ν is an A′ invariant probability measure on
X = SL(k,R)/Γ, and that supp ν ⊂ C(Hab)x for some x ∈ X. Then there
is a γ ∈ Γ which is

(1) diagonalizable over R
(2) ±1 is not an eigenvalue of γ
(3) all eigenvalues of γ are simple except precisely one which has multi-

plicity two.

Before we prove this theorem, we note the following:

Proposition 5.2. There is no γ ∈ SL(k,Z) satisfying the three conditions
of Theorem 5.1.

In particular, case (3) of Theorem 2.1 cannot occur for SL(k,R)/SL(k,Z).

Proof of Proposition 5.2. Suppose γ ∈ SL(k,Z) is diagonalizable over R.
Then its eigenvalues (with the correct multiplicities) are roots of the char-
acteristic polynomial of γ, a polynomial with integer coefficients and both
leading term and constant term equal to one. If there is some eigenvalue
which is not equal to ±1 and which occurs with multiplicity greater than
one then necessarily this eigenvalue is not rational, and its Galois conjugates
would also have multiplicity greater than one, contradicting (3). �

To prove Theorem 5.1, we need the following standard estimate:

Lemma 5.3. There is a neighborhood U0 of the identity in SL(m,R) so
that for any λ1, λ2, . . . , λm with |λi − λj | > 1 and h ∈ U0 one has that
h diag(eλ1 , eλ2 , . . . , eλm) is diagonalizable over R with positive eigenvalues
and the eigenvalues eλ

′
1 , eλ

′
2 , . . . , eλ

′
m satisfy |λ′i − λi| < 1

2 .
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Proof. Without loss of generality, suppose λ1 > λ2 > · · · > λm. Let f =
diag(eλ1 , e

λ
2 , . . . , e

λ
m) and η1, η2, . . . be the eigenvalues of f ′ = hf ordered

according to descending absolute value. Set for 1 ≤ i ≤ m, λ′i = log |ηi|.
Clearly, λ′1 = limn→∞

log‖f ′n‖
n . Since f is self adjoint, ‖f‖ = eλ1 so

λ′1 ≤ log ‖h‖+ λ1.

Let δ > 0 be small (it will be chosen later and will be independent of f).
Consider the cones

K = {(x1, . . . , xm) : |xl| ≤ δ |x1| for every l 6= 1}

K ′ =
{
(x1, . . . , xm) : |xl| ≤ δe−1 |x1| for every l 6= 1

}
.

Then fK ⊂ K ′, and for every x ∈ K

‖fx‖ ≥ (1− cδ)eλ1 ‖x‖ ,

for some c depending only on m. Suppose now that h is close enough to
the identity so that hK ′ ⊂ K. Then f ′K = hfK ⊂ hK ′ ⊂ K, and again
assuming that h is in some fixed neighborhood of the identity, for any x ∈ K,∥∥f ′x∥∥ ≥ (1− 2cδ)eλ1 ‖x‖

so ∥∥f ′n∥∥ ≥ ∥∥f ′ne1∥∥ ≥ (
(1− 2cδ)eλ1)

)n
.

In other words, if h is in some fixed neighborhood of the identity (indepen-
dently of f) then ∣∣λ′1 − λ1

∣∣ < C1δ.

Similarly, eλ1+λ2 is the dominating eigenvalue of f ∧ f , i.e. the natural
action of f on the space Rn∧Rn. Applying the same logic as before, λ′1+λ

′
2 =

limn→∞
log‖(f ′∧f ′)n‖

n , and as long as h is in some fixed neighborhood of the
identity, independently of f∣∣λ′1 + λ′2 − λ1 − λ2

∣∣ < C2δ

and more generally ∣∣∣∣∣
k∑

i=1

(λ′i − λi)

∣∣∣∣∣ < Ciδ. (5.1)

Clearly, (5.1) implies that there is some C depending only on m, and a
neighborhood of the identity in SL(m,R) depending only on δ so that if h
is in that neighborhood∣∣λ′i − λi

∣∣ < Cδ for all 1 ≤ i ≤ m.

In particular, if λi > λi−1 + 1 for every i then if Cδ < 1
2 all λ′i are distinct.

Since this holds for all h in a connected neighborhood of the identity, all the
eigenvalues of f ′ are real and also positive, so ηi = eλ

′
i . �
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Proof of Theorem 5.1. Without loss of generality, take a = 1, b = 2. Let
a(t) = diag(eλ1t, . . . , eλkt) ∈ A′ with λ1 = λ2 and for every other pair i, j we
have λi 6= λj .

Take U0 to be a symmetric neighborhood of the identity in SL(k − 2,R)
as in Lemma 5.3, and

U1 =


e

r 0 0
0 er 0
0 0 e−

2r
k−2h

 : r ∈ (−1/8, 1/8) and h ∈ U0

 ,

and let t0 = 2 maxλi 6=λj
|λi − λj |−1. Note that U1 is also symmetric, i.e.

U−1
1 = U1.
By Poincaré recurrence, for ν-almost every x = gΓ ∈ SL(k,R)/Γ there is

a t > t0 so that a(t)x ∈ U1x, so in particular U1a(t) ∩ gΓg−1 6= ∅. Let

γ̃ =

es 0 0
0 es 0
0 0 f ′

 ∈ U1a(t) ∩ gΓg−1

be any element from this intersection. By assumption, for every pair i, j
except 1, 2 we have

|λi − λj | t > 2, (5.2)
and we can apply Lemma 5.3 to deduce that the eigenvalues of

f ′ = he−
2s

k−2 diag(eλ3t, eλ4t, . . . , eλkt)

for some h ∈ U0 are of the form eλ
′
3 , . . . , eλ

′
k with |λ′i − λit| < 3/4 for i =

3, . . . , k. Finally |s− λ1t| = |s− λ2t| ≤ 1/8.
In view of (5.2) it is clear that γ̃ and hence g−1γ̃g ∈ Γ satisfy all the

conditions of Theorem 5.1. �

6. Conclusion of the proof of Theorem 1.3

In this section, we conclude the derivation of Theorem 1.3, and its corol-
lary, Corollary 1.4, from Theorem 2.1. Throughout this section, X will
denote the quotient space SL(k,R)/SL(k,Z), and µ be a A-ergodic and in-
variant probability measure on X. For every pair a, b of distinct indices in
{1, . . . , k}, one of the three possibilities of Theorem 2.1 holds. However, in
view of the results of the previous section, in particular Theorem 5.1 and
Proposition 5.2, Theorem 2.1.(3), i.e. the case of exceptional returns, can-
not occur for the lattice SL(k,Z). Therefore, for every pair a, b of distinct
indices one of the following two mutually exclusive posibilities hold:

(1) The conditional measures µab
x and µba

x are trivial a.e.
(2) The conditional measures µab

x and µba
x are Haar and µ is invariant

under left multiplication with elements of Hab = 〈Uab, Uba〉.
Define a relation a ∼ b if µ is Uab-invariant. By (2) above it follows that

a ∼ b if and only if b ∼ a. Furthermore, since the group generated by Uab

and Ubc contains Uac, it is clear that ∼ is in fact an equivalence relation



INVARIANT MEASURES AND LITTLEWOOD’S CONJECTURE 29

on {1, . . . , k}. Let H be the group generated by all Uab with a ∼ b. Let r
denotes the number of equivalence classes for ∼ which contain more than one
element, and k1, k2, . . . , kr be their sizes, so in particular

∑r
i=1 ki ≤ k. By

permuting the indices if necessary we can assume these equivalence classes
are consecutive indices and H =

∏r
i=1 SL(ki,R). By definition, H leaves

the measure µ invariant, is normalized by A, and is generated by unipotent
one parameter subgroups of SL(n,R) — indeed, H is precisely the maximal
subgroup of SL(n,R) satisfying these three conditions.

Measures invariant under groups generated by unipotent one parameter
groups are well understood. In particular, in a seminal series of papers
culminating in [38], M. Ratner showed that if H is such a group the only
H-ergodic and invariant probability measures are the algebraic measures:
L-invariant measures supported on a closed L-orbit for some L > H (here
and throughout, we use the notation L > H to denote that H is a subgroup
and L ⊃ H; specifically H may be equal to L) . For the A-invariant measure
µ and H as above we only know that µ is A-ergodic and H-invariant, but not
necessarily H-ergodic; we shall use the following version of these measure
rigidity results by Margulis and Tomanov [27]3 (similar techniques were used
also in [28, proof of Thm. 1]; see also [18, Sect. 4.4] and [44]). For any
connected real Lie group G, we shall say that g ∈ G is in element of class A if
Ad g is semi simple, with all eigenvalues integer powers of some λ ∈ R\{±1},
and g is contained in a maximal reductive subgroup of G.

Theorem 6.1 ([27, Theorems (a) and (b)]). Let G be a connected real Lie
group, Γ < G a discrete subgroup, and H̃ generated by unipotent one para-
meter groups and elements of class A, with H < H̃ the subgroup generated
by unipotent one parameter groups. Let µ be an H̃-invariant and ergodic
probability measure on G/Γ. Then there is an L ≥ H so that almost every
H-ergodic component of µ is the L-invariant probability measure on a closed
L-orbit. Furthermore, if

SNG(L) = {g ∈ NG(L) : conjunction by g preserves Haar measure on L}

then H̃ < SNG(L) and µ is supported on a single SNG(L)-orbit. In partic-
ular, L is normalized by H̃.

Lemma 6.2. Let H =
∏r

i=1 SL(ki,R) with
∑r

i=1 ki < k. Let

XH = {x ∈ X : Hx is closed and of finite volume} .
Then there is a one parameter subgroup a(t) of A so that for every x ∈ XH

its trajectory a(t)x→∞ as t→∞.

Proof. Suppose Hx is closed and of finite volume, with x = g SL(k,Z) and
g = (gij). Let k′ =

∑
i ki < k. Let Λ = g−1Hg ∩ Γ. Since Λ is Zariski dense

3The main theorem of [27] was substantially more general than what we quote here.
In particular, in their theorem Γ can be any closed subgroup of G, and the group G can
be a product of real and p-adic Lie groups (satisfying some mild additional conditions).
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in g−1Hg there is a γ = g−1h0g ∈ Λ with h0 =
(
h′0 0
0 Ik−k′

)
so that

Vg :=
{
y ∈ Rk : yT g−1hg = yT for all h ∈ H

}
=

{
y ∈ Rk : yTγ = yT

}
.

(6.1)
Notice that since g(g−1h0g) = h0g (the transpose of) the last k− k′ rows of
g are in Vg.

Clearly dimVg = k − k′, and using the right hand side of (6.1) it is clear
that Vg is a rational subspace of Rn (i.e. has a basis consisting of rational
vectors). Since Vg is rational, there is an integer vector m ∈ Zn ∩ (Vg)⊥.
In particular, the last k − k′ entries in the vector gm (which is a vector in
the lattice in Rk corresponding to g SL(k,Z)) are zero. For any t ∈ R set
t = (t1, . . . , tk) with t1 = · · · = tk′ = k′t and tk′+1 = · · · = tk = (k′−k)t and
a(t) = αt. Then since the last k − k′ entries in the vector gm are zero

a(t)(gm) → 0 as t→∞

so by Mahler’s criterion a(t)x = a(t)g SL(k,Z) →∞. �

We are finally in a position to finish the proof of Theorem 1.3:

Proof of Theorem 1.3. Let H =
∏r

i=1 SL(ki,R) be the maximal group fixing
µ, generated by unipotent one parameter subgroups, and normalized by A
as above. By Theorem 6.1, applied to µ with H̃ = AH, we know that there
is some L > H which is normalized by A so that almost every H-ergodic
component of µ is the L-invariant measure on a closed L orbit. In particular
µ is L-invariant, which unless L < AH contradicts the definition of H as
the maximal group with the above properties. Let now x = g SL(k,Z) have
a closed L-orbit Lx of finitely volume. Then ΛL = g−1Lg ∩ SL(k,Z) is a
lattice in g−1Lg, and so the latter is defined over Q. Therefore, the same is
true for the semi-simple g−1Hg = [g−1Lg, g−1Lg], ΛH = g−1Hg ∩ SL(k,Z)
is a lattice in g−1Hg, and Hx is closed with finite volume. However, this
implies H = L.

Thus we conclude that almost every H-ergodic component of µ is sup-
ported on a single H-orbit; in other words, in the notations of Lemma 6.2,
the support of µ is contained in XH .

By Lemma 6.2, this implies that the sum
∑

i ki = k since otherwise there
is a one parameter subgroup a(t) of A so that for every x ∈ XH its trajectory
a(t)x→∞ as t→∞, in contradiction to Poincaré recurrence.

But if
∑

i ki = k, the set SNG(H) of Theorem 6.1 satisfies

SNG(H) = NG(H) = AH

so by this theorem µ is supported on a single AH-orbit. But µ is also
AH-invariant. This show that µ is algebraic: an AH-invariant probability
measure on a single AH-orbit. Note that this AH-orbit has finite volume,
hence is closed in X. �
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Proof of Corollary 1.4. Let µ be an A-ergodic probability measure on X
with positive entropy. By Theorem 1.3, µ is algebraic, i.e. there is a subgroup
A < L < G and a point x = g SL(k,Z) ∈ X so that Lx is closed and µ is
the L-invariant measure on Lx.

Since µ is a probability measure, this implies that g−1Lg ∩ SL(k,Z) is
a lattice in g−1Lg, which, in turn, implies that g−1Lg is defined over Q.
Moreover, the fact that L has any lattice implies it is unimodular, which in
view of A < L < G (and since A is the maximal torus in G) implies L is
reductive (this can also be seen directly from the proof of Theorem 1.3).

We conclude that g−1Lg is a reductive group defined over Q, and g−1Ag
is a maximal torus in this group. By [34, Thm. 2.13], there is a h ∈ L so
that g−1h−1Ahg is defined over Q and is

Q-anisotropic. This implies that Ahx is closed and of finite volume (i.e.,
since A ∼= Rk−1, compact), so that Lx contains a compact A orbit.

By [21, Thm. 1.3], it follows that (possibly after conjugating by a per-
mutation matrix) L is the subgroup of g = (gij) ∈ SL(k,R) with gij = 0
unless i is congruent to j mod m for some 1 6= m|k (by the Moore ergodicity
theorem it is clear that A acts ergodicaly on Lx, hence the condition in that
theorem that Lx contains a relatively dense A orbit is satisfied), and that Lx
is not compact. Note that if k is prime this implies that L = SL(k,R). �

Part 2. Positive entropy and the set of exceptions to Littlewood’s
Conjecture

7. Definitions

We recall the definition of Hausdorff dimension, box dimension, topologi-
cal and metric entropy. In the following let Y be a metric space with metric
dY (·, ·).

7.1. Notions of dimension. ForD ≥ 0 theD-dimensional Hausdorff mea-
sure of a set B ⊂ Y is defined by

HD(B) = lim
ε→0

inf
Cε

∑
i

(diamCi)D,

where Cε = {C1, C2, . . .} is any countable cover of B with sets Ci of diameter
diam(Ci) less than ε. Clearly, for D > m any set in the Euclidean space Rm

has Hausdorff measure zero. The Hausdorff dimension dimH(B) is defined
by

dimH(B) = inf{D : HD(B) = 0} = sup{D : HD(B) = ∞}. (7.1)

For every ε > 0 a set F ⊂ B is ε-separated if dY (x, y) ≥ ε for every two
different x, y ∈ F . Let bε(B) be the cardinality of the biggest ε-separated
subset of B, then the (upper) box dimension (upper Minkowski dimension)
is defined by

dimbox(B) = lim sup
ε→0

log bε(B)
| log ε|

. (7.2)
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Note that bε2(B) ≥ bε1(B) if ε2 < ε1. Therefore, it is sufficient to consider a
sequence εn in (7.2) if log εn+1/ log εn → 1 for n→∞.

We recall some elementary properties. First Hausdorff dimension and
box dimension do not change when we use instead of the metric dY (·, ·) a
different but Lipschitz equivalent metric d′Y (·, ·). The Hausdorff dimension
of a countable union is given by

dimH

( ∞⋃
i=1

Bi

)
= sup

i
dimH(Bi). (7.3)

(This follows easily from the fact that the measure HD is subadditive.) For
any B we have

dimH(B) ≤ dimbox(B). (7.4)
If Y = Y1 × Y2 is nonempty and

dY ((x1, x2), (y1, y2)) = max(dY1(x1, x2), dY2(y1, y2)),

then dimbox Y ≤ dimbox Y1 + dimbox Y2.

7.2. Entropy and the variational principle. Let T be an endomorphism
of a compact metric space Y . For ε > 0 and a positive integer N we say
that a set E ⊂ Y is (N, ε)-separated (with respect to T ) if for any two
different x, y ∈ E there exists an integer 0 ≤ n < N with d(Tnx, Tny) ≥ ε.
Let sN,ε(T ) be the cardinality of the biggest (N, ε)-separated set, then the
topological entropy of T is defined by

htop(T ) = lim
ε→0

lim sup
N→∞

1
N

log sN,ε(T ) = sup
ε>0

lim sup
N→∞

1
N

log sN,ε(T ). (7.5)

Let µ be a T -invariant measure on Y , and let P be a finite partition of Y
into measurable sets. Then

Hµ(P) = −
∑
P∈P

µ(P ) logµ(P )

is the entropy of the finite partition P. (Here 0 log 0 = 0.) For two such
partitions P and Q let P ∨ Q = {P ∩ Q : P ∈ P, Q ∈ Q} be the common
refinement. The metric entropy of T with respect to µ and P is defined by

hµ(T,P) = lim
N→∞

1
N

Hµ

(N−1∨
i=0

T−iP
)

and the metric entropy of T with respect to µ is

hµ(T ) = sup
P

hµ(T,P), (7.6)

where the supremum is taken over all finite partitions P of Y into measurable
sets.

Topological and metric entropy are linked: For a compact metric space
Y , a continuous map T : Y → Y , and a T -invariant measure µ on Y the
entropies satisfy

hµ(T ) ≤ htop(T ).
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Furthermore, the variational principle [47, Thm. 8.6] states that

htop(T ) = sup
µ

hµ(T ), (7.7)

where the supremum is taken over all T -invariant measures µ on Y .

8. Box dimension and topological entropy

We return the study of the left action of the positive diagonal subgroup
A on X = SL(n,R)/SL(n,Z). We fix an element a ∈ A and study the
multiplication from the left by a on X, in particular we are interested in the
dynamical properties of the restriction a|K of this map to a compact subset
K ⊂ X. This will lead to a close connection between topological entropy
and box dimension in an unstable manifold.

The following easy lemma shows that the dimensions can be defined using
the right invariant metric or a norm on Mat(k,R).

Lemma 8.1. For every r > 0 there exists a constant c0 ≥ 1 such that

c−1
0 ‖g − h‖ ≤ d(g, h) ≤ c0‖g − h‖ for all g, h ∈ BG

r ,

where ‖A‖ = maxi,j |aij | for A = (aij) ∈ Mat(k,R).

X is locally isomorphic to SL(k,R); more specifically, for every x ∈ X
there exists some r = r(x) > 0 such that BG

r and Br(x) are isomorphic by
sending g to gx. For small enough r this is an isometry. For a compact set
K ⊂ X we can choose r = r(K) > 0 uniformly with this property for all
x ∈ K.

Let x ∈ X, g ∈ BG
r , y = gx, t ∈ Σ, and a = αt. Then ay = (aga−1)ax.

In other words, when we use the local description of X as above at x and
ax, left multiplication by a acts in this local picture like conjugation by a
on BG

r . For this reason we define the subgroups

U = {g ∈ SL(k,R) : anga−n → 0 for n→ −∞},
V = {g ∈ SL(k,R) : anga−n → 0 for n→∞}, and
C = {g ∈ SL(k,R) : aga−1 = g},

which are the unstable, stable, and central subgroup (for conjugation with
a). Let δij = 0 for i 6= j and δii = 1, so that Ik = (δij). It is easy to check
that g ∈ C if gij = 0 for all i, j with aii 6= ajj , g ∈ U if gij = δij for all i, j
with aii ≥ ajj , and similarly g ∈ V if gij = δij for all i, j with aii ≤ ajj .
Furthermore, there exists a neighborhood U0 ⊂ SL(k,R) of the identity so
that every g ∈ U0 can be written uniquely as g = gCgUgV for some small
gC ∈ C, gU ∈ U , and gV ∈ V . If similarly h = hChUhV , then

c−1
1 d(g, h) ≤ max

(
d(gC , hC), d(gU , hU ), d(gV , hV )

)
≤ c1d(g, h) (8.1)

for some constant c1 ≥ 1.
Since A is commutative, we have A ⊂ C. The map T (x) = ax on X is

partially hyperbolic: T is not hyperbolic (since the identity is not an isolated
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point of C), but part of the local description has hyperbolic structure as
follows.

Lemma 8.2. Let K ⊂ X be compact with aK ⊂ K and let r = r(K) be as
above. There exists λ > 1 and c2 > 0 so that for any small enough ε > 0,
any z ∈ K and f ∈ BU

r , and any integer N ≥ 1 with d(fz, z) ≥ λ−N ε, there
exists a non-negative integer n < N with d(anfz, anz) ≥ c2ε.

Proof. By continuity there exists ε ∈ (0, r) such that d(afa−1, Ik) < r
whenever d(f, Ik) < ε. This will be the only requirement on ε. On the
other hand, since U is expanded by conjugation with a, there exists some
λ > 1 so that ‖afa−1 − Ik ‖ ≥ λ‖f − Ik ‖ for all f ∈ BU

r . By Lemma 8.1
d(anfa−n, Ik) ≥ c−2

0 λnd(f, Ik) for all f ∈ BU
r and all n for which

max(d(f, Ik), . . . , d(anfa−n, Ik)) < r.

By assumption λ−N ε ≤ d(fz, z) = d(f, Id) < r. It follows that there
exists n < N with c−2

0 λ−1ε < d(anfa−n, Ik) < r. Since anz ∈ K we get

d(anfz, anz) = d((anfa−n)anz, anz) = d(anfa−n, Ik) > c−2
0 λ−1ε. �

We are ready to give a close connection between box dimension and en-
tropy.

Proposition 8.3. Let a ∈ A and K ⊂ X be compact with aK ⊂ K. Then
one of the following properties holds.

(1) The intersection Ux ∩ K of the unstable manifold Ux with K is
a countable union of compact sets of box dimension zero for every
x ∈ X.

(2) The restriction a|K of the multiplication operator a to K has positive
topological entropy.

Proof. Note, that the first possibility follows if there exists some ε > 0 such
that

Py = K ∩
(
BU

ε y
)

has box dimension zero for every y ∈ K. (8.2)

To see this suppose K ∩ Ux for x ∈ X is non-empty, and cover K ∩ Ux by
countably many sets Py as in (8.2). Taking the union for every such x shows
the first statement of the proposition.

So it suffices to show that if (8.2) fails for ε as in Lemma 8.2, then the
topological entropy htop(a|K) > 0 is positive. Assume 2ε ≤ r and that (8.2)
fails for y ∈ K. We use this to construct a sequence of (N, ε)-separated
sets FN ⊂ K. Let b ∈ (0,dimbox(Py)). For every N > 0 let FN ⊂ Py be a
maximal (finite) ελ−N -separated set. By choice of b and the definition of box
dimension in (7.2) there are infinitely many integers N with |FN | ≥ λbN ε−b.

We claim that FN is an (N, c2ε)-separated set for a restricted to K. Let
gx, hx ∈ FN be two different points with g, h ∈ BU

ε . By construction ελ−N ≤
d(gx, hx) < 2ε ≤ r. By Lemma 8.2 applied to z = hx and f = gh−1

there exists a non-negative n < N with d(angx, anhx) ≥ c2ε. Therefore
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FN is (N, c2ε)-separated as claimed, and for infinitely many N we have
sN (a) ≥ |FN | > λbN . Finally, the definition of topological entropy in (7.5)
implies that htop(αt) ≥ b log λ > 0. �

The remainder of this section is only needed for Theorem 1.6 and The-
orem 10.2. For a compact set which is invariant in both directions we can
also look at the stable and unstable subgroup simultaneously. Note however,
that the set UV is not a subgroup of SL(k,R).

Lemma 8.4. Let K ⊂ X be compact with aK = K. Then BU
r B

V
r ⊂ BG

2r

and there exists λ > 1 and c3 ≥ 1 so that for any small enough ε > 0,
any x ∈ X and g, h ∈ BU

r B
V
r with hx ∈ K, and any integer N ≥ 1 with

d(gx, hx) ≥ λ−N ε, there exists an integer n with d(angx, anhx) ≥ c3ε and
|n| < N .

Proof. Recall that we use the right invariant metric d to define the balls BU
r ,

BV
r , and BG

2r. Therefore, if gU ∈ BU
r and gV ∈ BV

r , then

d(gUgV , Ik) ≤ d(gUgV , gV ) + d(gV , Ik) = d(gU , Ik) + d(gV , Ik) < 2r

and so BU
r B

V
r ⊂ BG

2r.
If necessary we reduce the size of r such that (8.1) holds for every g, h ∈

BG
3r. Assume ε is small enough so that aBG

ε a
−1 ⊂ BG

c−1
1 r

. Let λ > 1 be such

that ‖afa−1 − Ik ‖ ≥ λ‖f − Ik ‖ for f ∈ U and ‖a−1fa − Ik ‖ ≥ λ‖f − Ik ‖
for f ∈ V .

Let g, h ∈ BU
r B

V
r and x ∈ X be as in the lemma. Define f = gh−1, so that

d(f, Ik) = d(g, h) ≥ λ−N ε. Write f = fCfUfV and w = max
(
d(fU , Ik), d(fV , Ik)

)
.

By (8.1)
max

(
d(fC , Ik), w

)
≥ c−1

1 d(f, Ik) ≥ c−1
1 λ−N ε. (8.3)

We need to rule out the case that d(fC , Ik) is the only big term in this
maximum. Clearly fCh = fChUhV and g = gUgV are the correct decom-
positions in the sense of (8.1), and so d(fC , Ik) ≤ c1d(fCh, g). By right
invariance of the metric d we get d(fCh, g) = d(fC , f) and again by (8.1) we
get that d(fC , f) ≤ c1w. We conclude that d(fC , Ik) ≤ c21w, which allows us
to improve (8.3) to w ≥ c−3

1 λ−N ε.
Depending on which term in w = max

(
d(fU , Ik), d(fV , Ik)

)
achieves the

maximum, we find either a positive or a negative n with |n| < N so that
f̃ = anfa−n = fC f̃U f̃V satisfies d(f̃ , Ik) ∈ (c3ε, r) for some absolute constant
c3. Since hx, anhx ∈ K, it follows that

d(angx, anhx) = d(f̃anhx, anhx) = d(f̃ , Ik) ≥ c3ε. �

Lemma 8.5. Let a ∈ A and K ⊂ X be compact with aK = K. Then one
of the following properties holds.

(1) The intersection BU
r B

V
r x ∩K has box dimension zero for every x ∈

X.
(2) The restriction a|K of the multiplication operator a to K has positive

topological entropy.
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Proof. Suppose that dimbox(BU
r B

V
r x ∩ K) > b > 0 for some x ∈ X. By

(7.2) there exists a λ−N ε-separated set FN for N ≥ 1, which satisfies |FN | ≥
λbN ε−b for infinitely many N .

Let gx, hx ∈ FN with g, h ∈ H and g 6= h. By Lemma 8.4 there exists
an integer n with |n| < N such that d(angx, anhx) ≥ c2ε. This shows
that a−N+1FN ⊂ K is (2N − 1, c2ε)-separated with respect to a. It follows
that s2N−1(a) ≥ |FN | ≥ λbN ε−b for infinitely many N , and so htop(a|K) ≥
1
2d log λ > 0. �

9. Upper semi-continuity of the metric entropy

For the construction of an A-ergodic measure µ as in Theorem 1.3 we
need one more property of the metric entropy namely upper semi-continuity
with respect to the measure. More specifically we consider the metric en-
tropy hµ(a) as a function of the a-invariant measure µ, where we use the
weak∗ topology on the space of probability measures supported on a fixed
compact a-invariant set K. We will show that lim sup`→∞ hµ`

(a) ≤ hµ(a)
whenever µ` is a sequence of a-invariant measures satisfying lim`→∞ µ` = µ.
This is well known to hold for expansive maps [47, Thm. 8.2] and also for
C∞ automorphisms of compact manifolds [29, Thm. 4.1]. Strictly speaking
neither of the two results applies to our case, the left multiplication by a is
not expansive, X = SL(k,R)/SL(k,Z) is a noncompact manifold, and there
is no reason why the compact subsets K ⊂ X we study should be manifolds
at all. However, the proof for the expansive case in [47, Sect. 8.1] can be
adapted to our purposes – which we will do here for the sake of complete-
ness. We will need a few more facts about entropy and conditional entropy,
see [47, Ch. 4] and [32, Ch. 2 and 4].

Let µ be a probability measure on a compact metric space Y . Let A ⊂ BY

be a σ-algebra, which is countably generated by A1, . . . , Ai, . . .. Then the
atom of x is defined by

[x]A =
⋂

i:x∈Ai

Ai ∩
⋂

i:x/∈Ai

X \Ai,

and the conditional measure µAx is a probability measure supported on [x]A
a.s. Let P be a finite partition. We will need the notion of conditional
entropy

Hµ(P|A) =
∫

HµAx
(P) dµ

and the following basic properties.
For the trivial σ-algebra N = {∅, Y } the conditional entropy equals the

entropy Hµ(P|N ) = Hµ(P). For two partitions P and Q we have the addi-
tion formula

Hµ(P ∨Q|A) = Hµ(P|A) + Hµ(Q|P ∨ A).
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If P is finer than Q and C ⊆ A is another countably generated σ-algebra,
then

Hµ(Q|A) ≤ Hµ(P|C).
Finally, the conditional entropy Hµ(P|A) vanishes if and only if there exists
a nullset N such that [x]A \N is contained in one of the elements of P for
every x ∈ Y \N .

Suppose T : Y → Y is measure preserving and invertible. Then the metric
entropy (7.6) of T with respect to a finite partition Q can also be written as

hµ(T,Q) = Hµ

(
Q

∣∣ ∞∨
n=1

T−nQ
)
,

see [47, Thm. 4.14].
We will also need the dynamical version of relative entropy. Suppose A

is a countably generated σ-algebra that satisfies TA = A. We define

hµ(T,Q|A) = Hµ

(
Q

∣∣ ∞∨
n=1

T−nQ∨A
)
, (9.1)

then

hµ(T,P ∨Q) = hµ(T,P) + hµ

(
T,Q

∣∣ ∞∨
i=−∞

T iP
)
. (9.2)

The entropy with respect to an invariant measure is defined as a supre-
mum over all finite partitions, see (7.6). For this reason the following general
principle will be helpful.

Lemma 9.1. Let a ∈ A and K ⊂ X be compact with aK ⊂ K. Let
µ be an a-invariant measure supported on K. There exists a sequence of
finite partitions Qm of K which satisfies for all m that Qm+1 is finer than
Qm. The boundaries of the elements of Qm are µ-null sets, and the σ-
algebra

∨∞
m=1Qm equals the Borel σ-algebra BK of K. Furthermore, hµ(a) =

limm→∞ hµ(a,Qm).

Proof. Let x ∈ X and define f(y) = d(x, y). Then the measure f∗µ is a
probability measure on R+, there exist arbitrarily small ε > 0 such that
f∗µ({ε}) = 0, and so µ(∂Bε(x)) = 0.

For m > 0 we can cover K with finitely many ε-balls with ε < 1/m whose
boundaries are null sets. Let Pm be the partition generated by these balls.
For P ∈ Pm the boundary ∂P is contained in the union of the boundaries
of the balls, thus it is a null set. To ensure that the sequence of partitions
is getting finer we define Qm =

∨m
i=1 Pm. It follows that every Q ∈ Qm has

a null set as boundary, and that Qm ↗ BK for m→∞.
The last statement follows from [32, Sect. 4, Thm. 3]. �

Proposition 9.2. Let a ∈ A, and K ⊂ X be compact with aK ⊂ K. For
every finite partition P of K into measurable sets with small enough diam-
eters and for any a-invariant measure µ supported on K we have hµ(a) =
hµ(a,P).
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Proof. Every T -invariant measure µ which is supported by K is in fact
supported on the set K ′ =

⋂
n≥0 a

nK. Clearly, K ′ is compact and satisfies
aK ′ = K ′. Since a partition of K into small sets induces a partition of K ′

into small sets, we can assume without loss of generality that K satisfies
aK = K.

Recall that there exists r = r(K) > 0 with d(x, gx) = d(Ik, g) whenever
d(Ik, g) < r and x ∈ K. Let ε < r be as in Lemma 8.4, let P be a finite
partition into measurable sets with diameter less than δ (to be specified
later), and define the σ-algebra A =

∨∞
i=−∞ a−iP generated by the orbit of

P.
Let x, y ∈ K belong to the same atom of A, in other words suppose that

for all i ∈ Z the images aix, aiy ∈ Pi belong to the same partition element of
P. We claim that (for small enough δ) this implies x = fCy for some small
fC ∈ C.

Let x = fy with f ∈ BG
δ and suppose f /∈ C. Let f = fCfUfV with fC ∈

C, fU ∈ U , and fV ∈ V . For small enough δ > 0 we have d(fC , Ik) < c3ε/2,
d(fU , Ik) < r and d(fV , Ik) < r. Let z = fUfV y = f−1

C x, then z ∈ BU
r B

V
r y.

Since afC = fCa we have d(anx, anz) = d(fC , Ik) < c3ε/2 for all n. By
Lemma 8.4 there exists some integer n with d(anz, any) ≥ c3ε. We assume
δ < c3ε/2, then

d(anx, any) ≥ d(anz, any)− d(anx, anz) > c3ε/2

shows that anx and any cannot belong to the same partition element of P.
This contradiction shows the claim.

Suppose Q = {Q1, . . . , Qm} is one of the partitions of Lemma 9.1. We
remove all the boundaries of the elements of the partition and obtain a
partition modulo µ into open sets of small diameter.

By (9.2) we have

hµ(T,Q) ≤ hµ(T,P ∨Q) = hµ(T,P) + hµ(T,Q|A),

where hµ(T,Q|A) is the relative entropy as in (9.1). We will show that this
last term vanishes, which together with Lemma 9.1 will conclude the proof
of the proposition.

Let B ⊂ X be measurable. By Poincaré recurrence, there exists a null set
N such that every x /∈ N and x ∈ B there exists some n ≥ 1 with anx ∈ B.
We apply this simultaneously to the countable family of sets

Bi,j,gC ,` = {x : B1/`(x) ⊂ Qi ∩ g−1
C Qj}

for gC ∈ C ∩ SL(k,Q), Qi, Qj ∈ Q and ` ≥ 1. To show that the relative
entropy

hµ(T,Q|A) = Hµ(Q|Ã) with Ã =
∞∨

n=1

T−nQ∨A(modµ)

vanishes, we have to show that for x, y /∈ N which are in the same atom
with respect to Ã and satisfy x ∈ Qi ∈ Q and y ∈ Qj ∈ Q in fact i = j
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holds. Since x and y belong to the same atom with respect to A, we know
from the above claim that y = fCx for some small fC ∈ C. Therefore, x ∈
Qi∩f−1

C Qj and there exists some rational gC close to fC with x ∈ Qi∩g−1
C Qj .

Furthermore, we can ensure that B1/`(x) ⊂ Qi ∩ g−1
C Qj , d(gC , fC) < 1/`,

and 1/` < r. It follows that x ∈ Bi,j,gC ,`. By construction of N there exists
n > 0 with anx ∈ Bi,j,gC ,`. Therefore anx ∈ Qi and B1/`(anx) ⊂ g−1

C Qj .
From

d(g−1
C fCa

nx, anx) = d(g−1
C fC , Ik) < 1/` < r

we see that g−1
C fCa

nx ∈ g−1
C Qj . Since a commutes with fC , fCa

nx = any ∈
Qj . We have shown that x ∈ a−nQi and y ∈ a−nQj . Since a−nQi, a

−nQj

belong to Ã and x, y are assumed to belong to the same atom with respect
to Ã, it follows that i = j as claimed. �

The above proposition has the following important consequence.

Corollary 9.3. Let a ∈ A and K ⊂ X be compact with aK ⊂ K. Then the
metric entropy hµ(a|K) is upper semi-continuous with respect to the measure
µ, i.e. for every a-invariant µ and every ε > 0 there is a neighborhood U
of µ in the weak∗ topology of probability measures on K such that hν(a) ≤
hµ(a) + ε for every a-invariant ν ∈ U .

Proof. As in the proof of Lemma 9.1 we can find a partition P of K whose
elements have small enough diameter to satisfy Proposition 9.2 and whose
boundaries are null sets with respect to µ. Therefore hν(a) = hν(a,P) for
every a-invariant measure ν supported on K. Let ε > 0. By the definition
of entropy there exists N ≥ 1 with

1
N

Hµ

(N−1∨
n=0

a−nP
)
< hµ(a,P) + ε/2.

Since the sets in the partition Q =
∨N−1

n=0 a
−nP all have boundaries which

are null sets with respect to µ, there exists a weak∗ neighborhood U of µ
such that ν(Q) is very close to µ(Q) for every Q ∈ Q. The entropy of the
partition Q depends only on the measures of the elements of Q, therefore
we can make sure that

1
N

∣∣Hν(Q)− Hµ(Q)
∣∣ < ε/2.

For any a-invariant ν ∈ U it follows that

hν(a) = hν(a,P) ≤ 1
N

Hν(Q) ≤ 1
N

Hµ(Q) + ε/2 < hµ(a,P) + ε,

where we used Proposition 9.2 for ν and µ, and furthermore that hν(a,P)
is the infimum over 1

M Hν(
∨M−1

n=0 anP) by subadditivity [47, Thm. 4.10]. �
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10. Transversal Hausdorff dimension for the set of points
with bounded orbits

In this section we apply Theorem 1.3 to prove two theorems about sets
with bounded orbits.

For a unimodular lattice Λ ⊂ Rk we define

δRk(Λ) = min
y∈Λ\{0}

‖y‖.

Clearly, every point x = mSL(k,Z) withm ∈ SL(k,R) can be identified with
the unimodular lattice generated by the columns of m. By this identification
δRk becomes a positive continuous function on X with the property that the
preimages Kρ = δ−1

Rk [ρ,∞) are compact sets for every ρ > 0 by Mahler’s
criterion. In other words B ⊂ X is bounded if and only if infx∈B δRk(x) > 0.

A nonempty subset Σ′ ⊂ Σ is a cone if Σ′ is convex and satisfies rt ∈ Σ′

whenever r > 0 and t ∈ Σ′.

Theorem 10.1. Let X = SL(k,R)/SL(k,Z) with k ≥ 3, and let Σ′ be an
open cone in Σ. Define

D =
{
x ∈ X : inf

t∈Σ′
δRk(αtx) > 0

}
to be the set of points with bounded Σ′-orbits. Then for every t ∈ Σ′ and
x ∈ X the αt-unstable manifold Ux through x intersects D in a set D ∩Ux
of Hausdorff dimension zero. In fact, D ∩ Ux is a countable union of sets
with upper box dimension zero.

Proof. For ρ > 0 we define the compact set

Dρ =
{
x ∈ X : inf

t∈Σ′
δRk(αtx) ≥ ρ

}
. (10.1)

Clearly D =
⋃∞

n=1D1/n. Let t ∈ Σ′, a = αt, and x ∈ X. Then aDρ ⊂ Dρ.
By Proposition 8.3 there are two possibilities; Dρ∩Ux is a countable union of
compact sets of box dimension zero, or a|Dρ has positive topological entropy.
If the first possibility takes place for all ρ > 0, the theorem follows from (7.3)
and (7.4).

We will show that the second possibility cannot happen ever. Suppose
a|Dρ has positive topological entropy. By the variational principle (Section
7.2 and [47, Thm. 8.6]) there exists an a-invariant measure ν supported
on Dρ with positive metric entropy hν(a) > 0. However, we need to find
an A-ergodic measure with this property in order to get a contradiction to
Theorem 1.3.

Since Σ′ ⊆ Σ is open we can find a basis t1, . . . , tk−1 ∈ Σ′ of Σ. By
construction K = Dρ is compact and satisfies αsK ⊂ K for all s ∈ R+t1 +
· · ·+ R+tk−1. For N > 0 the measure

νN =
1

Nk−1

∫ N

0
· · ·

∫ N

0
(αs1t1+···sk−1tk−1)∗ν ds1 · · ·dsk−1
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is supported on K and a-invariant. Since entropy is affine [47, Thm. 8.1]
and upper semi-continuous by Corollary 9.3 with respect to the measure,
entropy with respect to a generalized convex combination of measures is the
integral of the entropies. In particular hνN (T ) = hν(T ).

Let µ be a weak∗ limit of a subsequence of νN . From the definition of
νN it follows that µ is A-invariant. It is also clear that µ is supported
on K. From upper semi-continuity it follows that the entropy hµ(a) ≥
hν(a) > 0 is positive. The ergodic decomposition (4.2) of µ writes µ as
a generalized convex combination of A-ergodic measures µτ , which have
almost surely support contained in K. Since hµ(T ) > 0, there exists some
A-ergodic measure µτ with hµτ (T ) > 0 and support in K. This contradicts
Theorem 1.3 and concludes the proof of Theorem 10.1. �

Let D ⊆ X be A-invariant. We say D has transversal box dimension zero
if {g ∈ BG

r : gx ∈ D} and gii = 1 for i = 1, . . . , k has box dimension zero
for all x ∈ D. (Note that the particular shape of the set used here does not
matter as long as this set is still transversal to the subgroup A.) It is easy
to check, that an A-invariant set D with transversal box dimension zero has
box dimension k − 1 (unless D is empty).

Theorem 10.2. Let X = SL(k,R)/SL(k,Z) with k ≥ 3, let A ⊂ SL(k,R)
be the subgroup of positive diagonal matrices. Define

D =
{
x ∈ X : inf

a∈A
δRk(ax) > 0

}
to be the set of points with bounded A-orbits. Then D is a countable union
of sets with transversal box dimension zero and has Hausdorff dimension
k − 1.

Clearly D is A-invariant, and non-empty since it contains every periodic
A-orbit.

Proof. As before we define the A-invariant compact sets Dρ as in (10.1) with
Σ′ = Σ. Pick an element a = αt ∈ A with t ∈ Σ, ti 6= tj for i 6= j. Then the
corresponding central subgroup equals C = A and BU

r B
V
r is transversal to

A. Let x ∈ X and ρ > 0.
We give some conditions on r > 0. Our first restriction is that B3r(x)

and BG
3r should be isometric. Let O = BA

r ×BU
r ×BV

r and use the metric

dO

(
(fC , fU , fV ), (gC , gU , gV )

)
= max

(
d(fC , gC), d(fU , gU ), d(fV , gV )

)
.

Furthermore, define ψ : O → SL(k,R) by ψ(fC , fU , fV ) = fCfUfV and
assume ψ is invertible and Lipschitz in both directions (as in (8.1)).

Let P = {(fC , fU , fV ) ∈ O : ψ(fC , fU , fV )x ∈ Dρ}. Since Dρ is A-
invariant, the set P ′ = P ∩({Ik}×BU

r ×BV
r ) determines P = {(fC , fU , fV ) ∈

O : (Ik, fU , fV ) ∈ P ′}. Clearly ψ(P ′)x = (BU
r B

V
r x) ∩ Dρ. By Lemma 8.5

there are two possibilities; P ′ has box dimension zero or a has positive
topological entropy when restricted to Dρ. As in the proof of Theorem
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10.1 the latter contradicts Theorem 1.3. Therefore Dρ has transversal box
dimension zero. �

11. The set of exceptions to Littlewood’s Conjecture

For any u, v ∈ R, define τu,v to be the point

τu,v =

1 0 0
u 1 0
v 0 1

 SL(3,Z);

in other words, τu,v is the point in X corresponding to the lattice in R3 gen-
erated by (1, u, v), (0, 1, 0), and (0, 0, 1). The following well-known proposi-
tion gives the reduction of Littlewood’s conjecture to the dynamical question
which we studied in Section 10, see also [24, Sect. 2] and [45, Sect. 30.3].
We include the proof for completeness.

Proposition 11.1. The tuple (u, v) satisfy

lim inf
n→∞

n〈nu〉〈nv〉 = 0, (11.1)

if and only if the orbit A+τu,v is unbounded where A+ is the semigroup

A+ =


e−r−s

er

es

 : for r, s ∈ R+

 .

Proof. By the the properties of δRk we have to show for (u, v) ∈ R2 that
(11.1) holds if and only if infa∈A+ δRk(aτu,v) = 0.

Suppose ε > 0 and there exists a ∈ A+ with δRk(aτu,v) < ε. Then

aτu,v =

e−r−s 0 0
eru er 0
esv 0 es

 SL(3,Z)

and by definition of δRk there exists nonzero (n,m1,m2) ∈ Z3 with

∥∥∥
 ne−r−s

neru+m1e
r

nesv +m2e
s

∥∥∥ < ε.

Taking the product of all three entries of this vector we find that

|ne−r−s(neru+m1e
r)(nesv +m2e

s)| = |n(nu+m1)(nv +m2)| < cε3

is small (c depends only on the norm used in R3), and so (11.1) follows.
Note that n 6= 0 since otherwise the lower two entries in the vector cannot
be small.

Suppose now (11.1) holds for (u, v). Let ε > 0 and find n > 0 and
(m1,m2) ∈ Z2 with |n(nu + m1)(nv + m2)| < ε5. We would like to have
additionally that

max(|nu+m1|, |nv +m2|) < ε. (11.2)
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Suppose this is not true, and assume without loss of generality that |nv +
m2| ≥ ε and |n(nu + m1)| < ε4. Then by Dirichlet’s theorem there exists
an integer q < 1/ε so that 〈qnv〉 < ε. It follows that |qn(qnu+ qm1)| < ε2,
and |qnv + m′

2| < ε for some m′
2 ∈ Z. In other words when we replace

n by nq and m1,m2 by qm1 and m′
2 respectively, we see that (11.2) and

|n(nu + m1)(nv + m2)| < ε3 hold simultaneously. Therefore we can find
r > 0 and s > 0 with er|nu +m1| = ε and es|nv +m2| = ε. (If one of the
expressions vanishes, we use some large r resp. s instead.) Then e−r−sn < ε
and δRk(aτu,v) < cε follows. �

Proof of Theorem 1.5. By Proposition 11.1 the set Ξ is embedded by the
map (u, v) 7→ τu,v to the set D with A+-bounded orbits. We apply The-
orem 10.1 with Σ′ = {(−r − s, r, s) : r, s > 0}. Therefore D intersects
every unstable manifold of αt in a set of Hausdorff dimension zero where
t = (−2, 1, 1). Note that the unstable manifold of αt through Ik SL(3,Z) is
the image of τ . It follows that Ξ has Hausdorff dimension zero, and similarly
that Ξ is a countable union of sets with box dimension zero. �

Proof of Theorem 1.6. We apply Theorem 10.2 and set Ξk = D. Suppose
m /∈ Ξk, then δRk(am) < ε for some a ∈ A. By definition of δRk there exists

some n ∈ Zk such that
∥∥∥
 a11m1(n)

...
akkmk(n)

∥∥∥ < ε and (1.3) follows. �
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