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1. Classifying measures on the one-torus

One of the simplest dynamical systems is the map

×n : x 7→ nx mod 1

on the unit interval, where n is any natural number. In order to make
this map continuous, we think of it as a map on the 1-torus T =
R/Z. This system is very well understood, and it has many closed
invariant sets and many invariant probability measures. Indeed, let
τ : Σ = {0, . . . , n− 1}Z → R/Z be the map τ(a1, a2, . . . ) =

∑∞
i=1 n−iai.

Then any shift invariant probability measure ν on Σ, for example i.i.d.
Bernoulli measure, gives rise to the ×n-invariant measure µ = τ∗ν (and
similarly for sets). Every ×n invariant probability measure on R/Z is
of this form, and moreover for measures µ for which µ({0}) = 0 the
map τ∗ is also one-to-one.

However, R/Z has additional structure: it is an abelian group, and
for a fixed n, the map ×n is just one out of many endomorphisms of
this group. In 1967, Hillel Furstenberg considered the joint action of
two such endomorphisms ×n and ×m for n and m multiplicatively in-
dependent (i.e., not powers of the same integer)1. This Z2

+ action turns
out to be much more subtle. In his landmark paper [8] Furstenberg
introduced the notion of disjointness in dynamical systems and ergodic
theory, a notion which has proven quite central in the modem theory of
these subjects, and also proves as a byproduct that the closed subsets
C ⊂ R/Z satisfying ×n(C) ⊂ C and ×m(C) ⊂ C are either R/Z or
finite sets of rationals.

The analogous question for measures has also been posed by Fursten-
berg (though apparently not in writing) in 1967, namely classifying
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the probability measures on R/Z invariant under ×n and ×m. This
has proven substantially more difficult to resolve than the topological
question. Furstenberg conjectured that any such invariant measure is
a linear combination of Lebesgue measure and atomic measures sup-
ported on finite orbits of the semigroup {×nlmk}.

To date the best result towards Furstenberg’s conjecture is due to
Daniel Rudolph [37] and Aimee Johnson [10] which have shown that any
measure µ which is invariant under ×n and ×m is a linear combination
of Lebesgue measure and measures which have zero entropy with re-
spect to the map ×n; the first substantial result towards Furstenberg’s
conjecture, which is weaker than the Rudolph-Johnson theorem is due
to Russell Lyons [25]. This is completely equivalent to the statement
that the only ×n,×m-ergodic and invariant measure on R/Z with the
entropy hµ(×n) > 0 is Lebesgue measure. For n, m relatively prime,
Bernard Host [9] has given a proof of a sharper version of Rudolph
theorem, which also has advantage that it is more easily quantifiable
(for the extension to more general n, m see [16]; see also [21]).

The ×n,×m action on R/Z is prototypical for a much larger class of
algebraic multiparameter actions, and these actions occur naturally in
many contexts. We limit ourselves in the remainder of this note exclu-
sively to the case of Rk-actions on the locally homogeneous spaces with
k ≥ 2. This does not cover many interesting and important cases, such
as actions on tori, and actions on totally disconnected groups. I also
do not cover my own work on arithmetic quantum unique ergodicity,
which is closely related to the topics I survey here; the interested reader
can consult [17] or the expository papers [20, 19].

2. More general algebraic actions

The algebraic action we will consider here are by affine transforma-
tions on Γ\G/K where G is a locally compact group (usually a linear
group), Γ < G a discrete subgroup, and K < G compact, where by
affine transformation we mean a map of the form

ΓgK 7→ ΓΦ(g)hK

with Φ an endomorphism of G and h ∈ G; to make this well-defined,
we need to assume that Φ(Γ) ⊂ Γ, Φ(K) ⊂ K and h ∈ G commutes
with every k ∈ K i.e. in the centralizer CG(K).

There is little loss of generality in specializing to the special case
where this endomorphism is the identity, i.e. looking at the action
of a closed subgroup H < G by right translations on Γ\G/K where
K ⊂ CG(H) is as before compact. Even Furstenberg’s ×n,×m conjec-
ture can be presented in this way for a suitable G. Also, while there
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certainly are interesting issues arising in the study of more general (even
abelian!) groups G such as those considered in [38], we will consider
only S-algebraic goups G — i.e. groups G which are the product of
finitely many linear algebraic groups over local fields of characteristic
0 (without loss of generality, R or Qp for some prime p).

Now if H is generated by unipotent one parameter elements (or even
just by unipotents) many of the dynamical properties of this action are
well understood. In the late 1980’s, Gregory Margulis solved the long-
standing Oppenheim conjecture about nonrational indefinite quadratic
forms in three or more variables by classifying the closed H = SO(2, 1)
invariant subsets in SL(3, Z)\ SL(3, R) (see [2] for a very accessible
treatment). Marina Ratner completely classified the H invariant mea-
sures for any subgroup generated by unipotent one parameter elements
(this has been proved in a series of paper culminating in [33]), and used
this to classify orbit closures of such H, indeed even the behavior of
single orbits [34]. Ratner’s theorem, which has been extended to the
S-arithmetic context (there are two treatments: one by Ratner [35] and
one by Margulis and George Tomanov [27]), has found many diverse
applications.

This, however, does not cover e.g. the case of H a commutative di-
agonalizable group. Indeed, it seems that in view of Ratner’s theorem,
understanding the action of commutative groups (e.g. their invariant
measures) is probably the main missing step in understanding actions
of general closed, connected H (see [15, Sec. 4b]).

Following is a prominent example: for n ≥ 2, let Xn be the space
SL(n, Z)\ SL(n, R). We can identify Xn with the space of lattices in Rn

of covolume one by assigning to every SL(n, Z)g the lattice Zng < Rn.
The space Xn is not compact: a sequence of lattices xi is bounded in
Xn if and only if there is some δ > 0 so that every vector vi in the
lattice xi has size ≥ δ. Now take H to be the group of diagonal n× n
matrices of determinant 1.

There is a sharp dichotomy between n = 2 and n ≥ 3. If n = 2 then
X2 is isomorphic to a double cover of the unit cotangent bundle of the
finite volume surface SL(2, Z)\H. Under this isomorphism, the action
of H becomes the geodesic flow on SL(2, Z)\H. As is well-known this
flow is a prototypical hyperbolic flow, and has good symbolic codings
which were already pioneered by Koebe, Morse and Hedlund in the
beginning of the 20th-century. This is closely analogous to the situation
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with the ×3 map acting on R/Z which has good symbolic codings2.
And using these symbolic codings, one can construct lots of invariant
measures and lots of invariant sets with various properties, for example
H-closed invariant sets which contains no periodic points and have
positive fractional Hausdorff dimension.

For n ≥ 3 the situation is drastically different. There, the dynamics
of the diagonal group H is much more rigid. For example, in [28]
Margulis made the following conjectures regarding this action:

Conjecture 1 (Margulis). Let Xn = SL(n, Z)\ SL(n, R) and H <
SL(n, R) as above, with n ≥ 3

(1) any bounded H orbit is in fact a compact orbit.
(2) any H-invariant probability measure µ on Xn is a linear combi-

nation of algebraic measures (i.e. L-invariant probability mea-
sures on closed orbit of a closed subgroup L < SL(n, R) con-
taining H)3.

Similar conjectures have also been made by Furstenberg (which prompted
work of Shahar Mozes towards the topological question [29, 30]) as
well as Anatole Katok and Ralf Spatzier [13] (who also made the first
substantial progress towards classifying such invariant measures in the
context of homogeneous spaces).

Note that there is a subtlety here which was not present in the cases
covered by Ratner’s theorem. There is no one parameter subgroup
of H whose action is in any way rigid: only the action of the full
group H (or at least a two-dimensional subgroup of this group) is rigid.
This can be used to construct non-algebraic orbit closures or invariant
probability measures, even for H the group of n× n diagonal matrices
and G = SL(n, R) on quotients Γ\G for certain lattices Γ < G, where
one can create situations where the action essentially degenerates to the
action of a one parameter subgroup. Because of certain coincidences,
this does not happen on Xn = SL(n, Z)\ SL(n, R), but even in Xn

one can easily construct non-algebraic H-invariant and ergodic Radon
measures using the same idea. This complication has been pointed out
by M. Rees In the unpublished [36] and independently by Mozes in
[30]; a nice account of the Rees example and some generalizations can
be found in [4, Section 9].

2Though there is one important difference: for SL(2, Z)\SL(2, R) we are con-
sidering symbolic codings for a flow and not for a single transformation which is
somewhat more complicated.

3this part of the conjecture is not stated explicitly there, but follows from [28,
Conjecture 2].
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As mentioned before, Margulis proved the long-standing Oppenheim
conjecture by classifying orbit closures of the group SO(2, 1) in X3.
Similarly, even the simplest(?) n = 3 case of either (1) or (2) in Con-
jecture 1 will give a proof of the following conjecture of Littlewood
posed roughly at the same time as Oppenheim’s conjecture (and much
more):

Conjecture 2 (Littlewood (c. 1930)). Let ‖x‖ denote the distance
from x ∈ R to the closest integer. Then

lim
n→∞

n ‖nα‖ ‖nβ‖ = 0 (2.1)

for any real numbers α and β.

This implication has been discovered in a different terminology long
before Furstenberg’s pioneering work regarding the rigidity of multi-
parameter actions (and long before Margulis’ proof of the Oppenheim
conjecture using dynamical techniques) by J. W. S. Cassels and H. P.
F. Swinnerton-Dyer [1]; however, it was Margulis who first recast this
in dynamical terms [26].

Unlike the case of the one torus, there is no reason to believe that in
the context of actions on locally homogeneous spaces the topological
question, e.g. (1) of Conjecture 1, is substantially easier then the mea-
sure theoretic question (e.g. (2) of the same question). It is, however,
true that using [1] or [24] one can deduce (1) of Conjecture 1 from (2).

3. Partial results towards classifying invariant measures
in the locally homogeneous case

In [13, 14], Katok and Spatzier made the first steps towards classi-
fying invariant measures in the locally homogeneous case, in particular
covering the case of the diagonal group (which will denote as before
by H) acting on Xn. Their work contains some elements which are
geometric analogous to the techniques used by Rudolph for the one-
dimensional torus in [37], as well as some additional new ingredients,
particularly in handling actions of abelian groups with nontrivial Jor-
dan form. A good exposition of their method (though without mention
of the locally homogeneous case), clarifying some aspects of the original
work, can be found in [11]. Later, Boris Kalinin and Spatzier further
developed this method [12], with nice ergodic theoretic applications we
will discuss in the next section.

For classifying measures, not all elements of H are created equal. The
most important one parameter subgroups are those nontrivial elements
diag(h1, h2, . . . , hn) ∈ H which have at least two entries which are
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equal, say hi = hj. Such elements act isometrically, indeed only by
translations, on the leaves of the H-invariant foliation of Xn into orbits
of the unipotent group

Uij = {(ukl)kl : ukk = 1 for all k, ukl = 0 for all k 6= l except (k, l) = (i, j)} ,

and there is a substantial amount of information which can be learned
about the measure µ merely because it is invariant under even a single
element with this partial isometric property. Implicitly, this partial
isometric feature of the action of some elements of the acting group is
used already in [37].

For Xn the techniques of Katok and Spatzier (as well as the later
work of Kalinin and Spatzier) give that if the subgroups

H ij = {diag(h1, h2, . . . , hn) : hi = hj}
act ergodically4 with respect to µ, and if there is any one parameter
subgroup of H which acts with positive entropy then µ needs to be
algebraic.

Of these two assumptions, the assumption regarding ergodicity of
the groups H ij (which did not appear in Rudolph’s theorem) is the
more restrictive one. The reason for this is that in a typical applica-
tion of measure classification results such as Ratner’s theorems or the
conjectured measure classification for the diagonal flow in Conjecture 1
the measure one analyzes is obtained as a weak∗ limit of measures on
which we have some control (for example, empirical measure on or-
bit segments). Ergodicity properties are not stable under weak∗ limits.
Entropy, on the other hand, is well behaved under weak∗ limits: though
this is not true in the greatest generality, in the type of systems we con-
sider entropy is an upper semicontinuous function of the measure with
respect to the weak∗ topology.

In the last couple of years, and there has been substantial progress
towards eliminating the need for an ergodicity assumption in the lo-
cally homogeneous context, and research in this direction is still in
progress. There are two complementary ways of proving such results:
one of them developed by Manfred Einsiedler and Katok in [4] uses
non-commutativity of invariant contracting foliations, such as the foli-
ation by orbits of Uij and Ujk for Xn togather with a simple but very
useful lemma regarding a product structue of some conditional mea-
sures under the multiparameter diagonalizable flows discussed here.

4The assumptions that Hij act ergodically can be weakened somewhat, and the
analogous weaker statment is very important in some special cases, such as for the
×n,×m-action on R/Z or for Zk−1 actions on k-dimensional tori, but it does not
seem to be very useful in the locally homogeneous context.
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In particular, Einsiedler and Katok have proved that any H invariant
measure in Xn which has positive entropy under all elements of the di-
agonal group is algebraic— in fact, under this assumption the measure
needs to be Haar measure on Xn. Einsiedler and Katok have general-
ized their results to a very general class of groups (the original paper
covered only R-split groups) in [5].

This approach cannot be used for every G. For example, for the
action of the two-dimensional diagonal group on Γ\ SL(2, R)×SL(2, R)
there are no non-commuting invariant contracting foliations. There a
completely different method needs to be used: one that uses some of
the ideas and techniques in Ratner’s work on the rigidity of unipotent
flows, particularly from her earlier works [31, 32]. In [17], we show
that a measure on Γ\ SL(2, R)× SL(2, R) invariant and ergodic under
the action of the two-dimensional diagonal group (in fact it is enough
that it be invariant under the action of the diagonal group in one
SL(2, R) factor, and recurrent under the action of the other SL(2, R)
factor, which is a substantially weaker assumption — see [17] for exact
statement) and which has positive entropy with respect to some one
parameter diagonal subgroup, is algebraic (again, in this case, Haar
measure on the quotient).

Combining these two techniques, one has the following results for
Xn:

Theorem 3.1 ( Einsiedler, Katok and L. [6]). Let µ be a H-invariant
and ergodic measure on Xn. Assume that there is some one parameter
subgroup of H with respect to which µ has positive measure. Then µ is
algebraic, and is not compactly supported. If n is prime then µ is the
Haar measure on Xn.

This theorem, precisely because of the good behavior of entropy with
respect to weak∗ limits, implies the following partial result towards
Littlewood Conjecture:

Theorem 3.2 ( Einsiedler, Katok and L. [6]). The set of (α, β) ∈ R2

for which limn→∞ n ‖nα‖ ‖nβ‖ > 0 has Hausdorff dimension zero.

As mentioned above, a key role in the proof of these measure classifi-
cation results play the singular direction in which the action is partially
isometric. Understanding such actions for their own sake seems to be
a fruitful direction of research; see [22, 23, 18] for more details; the
results of [17] are also best seen in this light.
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4. joining and isomorphism rigidity of diagonalizable
actions on locally homogeneous spaces5

Earlier we have mentioned the dichotomy between the action of the
diagonal group on X2 and the action of the corresponding group in Xn

for n ≥ 3. In this section, we give another facet of this dichotomy.
We start with generalities: let H be some group, and suppose this

group H acts on the two spaces X and X ′. Let m, m′ be H invari-
ant measures on X and X ′ respectively. A joining of (X, H,m) and
(X ′, H,m′) is a measure on X and X ′ invariant under the diagonal
action of H on X ×X ′ whose push forward under the projection to X
(X ′) is m (m′ respectively). Any measurable isomorphism φ between
(X,m) and (X ′, m′) commuting with the H action gives rise to a join-
ing between (X, H,m) and (X ′, H,m′) supported on the graph of this
isomorphism.

For n = 2 it is possible to construct non-algebraic joinings of (X2, H,m)
with itself or other one parameter flows, and a similar statement should
be true for isomorphisms. This is in stark contrast with what happens
for n ≥ 3. Kalinin and Spatzier [12] proved a general isomorphism
rigidity theorem for such multidimensional actions; in particular they
proved:

Theorem 4.1 (Kalinin and Spatzier [12]). Let G1, G2 be connected
semisimple Lie groups without compact factors. For i = 1, 2, let Γi <
Gi be a uniform lattice, mi Haar measure on Γi\Gi and let ρi be an
embedding of Rk (k ≥ 2) to the Cartan subgroup of Gi. Then any
measurable isomorphism between the Rk actions corresponding to ρi on
(Γi\Gi, mi) is algebraic.

The assumption that the lattices Γi are uniform does not seem to be
essential for the proof.

More generally, one can consider joinings of such actions. Because
isomorphisms gives rise to particular kind of joinings, this is a more gen-
eral question, and as we shall see below it has applications to equidis-
tribution. Kalinin and Spatzier give some results toward classifying
joinings, but because they rely on the technology of [13] they need to
assume ergodicity of the joining with respect to one parameter sub-
groups. Using the results of Einsiedler and Katok in [5], and some
ideas of Einsiedler and Tom Ward from [3] jointly with Einsiedler we
have the following:

5Again we limit ourselves to flows on locally homogeneous spaces; a lot of inter-
esting work has been done in other contexts by Einsiedler, Katok, Kalinin, Schmidt,
Thouvenot, Ward and many others.
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Theorem 4.2 (Einsiedler-L. [7]). Let G1, G2 be connected semisimple
Lie groups, Γi < Gi a lattice, mi Haar measure on Γi\Gi, and ρi

be an embedding of Rk (k ≥ 2) to the Cartan subgroup of Gi such
that the image of ρi(Rk) on every factor of Gi has dimension ≥ 2.
Then any ergodic joining between the Rk actions corresponding to ρi

on (Γi\Gi, mi) is algebraic.

In particular, any self joining of Xn with itself for n ≥ 3 is algebraic.
Theorem 4.2 can be used for example to show the following:

Theorem 4.3 (Einsiedler-L. [7]). Let G be a connected simple Lie
group, of R rank ≥ 2. Let Γ1, Γ2 be two lattices which cannot be conju-
gated so as to be commensurable. Suppose x1 ∈ Γ1\G and x2 ∈ Γ2\G
have the property that their orbit under the R-Cartan subgroup H < G
is equidistributed6. Then the same holds for the orbit of (x1, x2) in
Γ1\G× Γ2\G under the diagonal embedding of H.
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