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1. Group theory of the unitary group in three variables

1.1. The unitary group.

1.1.1. Linear algebra. Let E=F be a quadratic …eld extension, char:F 6= 2:1
Let z 7! ¹z be the non-trivial automorphism of E:
Let E1 = kerNE=F : E

£ ! F£:

1This assumption is unfortunate. Bilinear forms exhibit pathologies in characteristic 2. How-
ever, even when we consider …elds of characteristic 0, as number …elds or p-adic …elds, integral
structures inevitably lead to the study of the group modulo p; and when p = 2 one needs to
confront issues ignored here.
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Let ¶ 2 E; ¹¶ = ¡¶; Im(z) = (z ¡ ¹z)=2¶; Re(z) = (z + ¹z)=2; so that z = Re(z) +
¶ Im(z):

Let V be a 3-dimensional vector space over E; and

(; ) : V £ V ! E(1.1)

a hermitian non-degenerate bilinear form, conjugate-linear in the …rst variable.
Hypothesis: V has an isotropic vector, i.e. 0 6= v satisfying (v; v) = 0:

Lemma 1.1. After multiplying (; ) by a non-zero scalar from F we can …nd a basis
e1; e2; e3 w.r.t. which the matrix ((ei; ej)) is

S =

0
@

1
1

1

1
A :(1.2)

Proof. Easy exercise.

Note that for the purpose of studying the unitary group of (V; (; )) we may rescale
the hermitian form as in the lemma. We do it, and …x a basis as in the lemma,
identifying V with E3. Then

(u; v) = t¹uSv:(1.3)

1.1.2. The unitary group. We set

U = fg 2 GL(V )j(gu; gv) = (u; v)8u; vg :(1.4)

This is actually an algebraic group over F: We write U for the algebraic group,
so that U = U(F ): This notational convention will apply to any algebraic group
without further ado. In coordinates, g 2 GL3(E) belongs to U if and only if

g¤g = 1(1.5)

where g¤ = S¡1 t¹gS. The group U is called the quasi-split unitary group in three
variables. If V is anisotopic (does not have an isotropic vector), one gets a di¤erent
group. When F = R; for example, the group that we have just de…ned is commonly
denoted U(2; 1); and the symbol U(3) is reserved to the compact unitary group
preserving the standard inner product on C3: On the other hand, when F is a
non-archimedean local …eld, by the [Serre, Ch. IV, Theorem 6] every 3-dimensional
hermitian space has an isotropic vector, so this is the only unitary group in three
variables.

Lemma 1.2. The special unitary group SU = U \ SL(V ) is also the commutator
subgroup of U:

Proof. Let u and su be the Lie algebras of U and SU: Since the commutator
group of U is clearly contained in SU; and SU is connected, it is enough to check
that [u;u] = su, which is easy, to get that SU = U0 as algebraic groups. But
U0(F ) = U 0:

If L is any …eld containing E then L ­F V ' (L ­E V ) © (L ­¿;E V ) where
¿ : E ,! L is the conjugate of the given embedding, so

U(L) ' GL3(L)(1.6)

(under projection to the …rst factor).
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1.1.3. The standard Borel subgroup. The vector e1 is isotropic, he1i? = he1; e2i ; so
the stabilizer P of the line he1i consists of the upper-triangular matrices in U: We
have

P =MN(1.7)

where

M =

8
<
:m(t; s) =

0
@

t
s
¹t¡1

1
A jt 2 E£; s 2 E1

9
=
;(1.8)

and

N =

8
<
:n(b; z) =

0
@
1 b z
1 ¡¹b
1

1
A jz + ¹z = ¡b¹b

9
=
;(1.9)

(check!). As algebraic groups, M is a 3-dimensional torus with split rank 1; and N
is a 3-dimensional unipotent group. The center of U is C = E1 ½ M: The group
N sits in a short exact sequence

0! Z ! N ! E ! 0(1.10)

where Z = fn(0; z)jz 2 ¶Fg ' F is the center of N and the map N ! E is
n(b; z) 7! b: Note that Z = N 0; so N is nilpotent of length 2.

The character group and cocharacter group of M are of rank 1. A generator of
X¤(M) is the mapM! Gm given by m(t; s) 7! t¹t . A generator of X¤(M) is the
map Gm !M; t 7!m(t; 1):

1.1.4. The Bruhat decomposition. Let

w =

0
@

1
¡1

1

1
A :(1.11)

Then w2 = 1: (The sole advantage of w over S is that w 2 SU: Rogawski [Rog]
de…nes U using w instead of S.)

Proposition 1.3. We have

U = P [ PwP(1.12)

and PwP = NwP = PwN: The expression of an element from the “big cell” PwP
as nwp (or pwn) with p 2 P and n 2 N is unique. We have

w¡1m(t; s)w = m(¹t¡1; s):(1.13)

A similar decomposition holds in SU:

We emphasize that the Bruhat decomposition is not a decomposition as algebraic
groups. There are 6 double cosets of the Borel needed to cover GL3(E):

Proof. Suppose g =2 P; i.e. ge1 =2 he1i : If ge1 = ae1 + be2 then 0 = (ge1; ge1) = b¹b;
contradiction. Therefore ge1 must involve e3: There exists then a p 2 P satisfying
p¡1(e3) = ge1 (check!) so that pge1 = e3: We get pge2 2 he3i? = he2; e3i so

pg =

0
@

¤
¤ ¤

¤ ¤ ¤

1
A 2 wP(1.14)

and g 2 PwP: The rest is clear.



4 EHUD DE SHALIT

Corollary 1.4. The group P is, up to conjugation, the only F -rational proper
parabolic subgroup of U:

Proof. Since P is a minimal parabolic subgroup, if Q is any F -rational parabolic
subgroup, after conjugation we may assume P ½ Q: But then the F -rational points
satisfy P = Q and since both are a¢ne geometrically connected F -groups, this is
enough to guarantee that P = Q:

1.1.5. The root system. Let A ½M be the group

A =
©
m(t; 1)jt 2 F£

ª
(1.15)

and A ' Gm the corresponding algebraic group. Then A is a maximal split torus
ofM: We identify X¤(A) with Z; the character

¸ : m(t; 1) 7! t(1.16)

sent to 1 2 Z. Note that X¤(M) ½ X¤(A) is then identi…ed with 2Z:
The Lie algebra u of U is a vector space over F: The root algebras u¸ and u2¸

are non-zero. We have

u¸ =

8
<
:

0
@

b
¡¹b

1
A jb 2 E

9
=
; ; u2¸ =

8
<
:

0
@

z
1
A jz 2 ¶F

9
=
;(1.17)

dimF u¸ = 2; dimF u2¸ = 1 and [u¸;u¸] = u2¸: The root system § = f§¸;§2¸g is
non-reduced. The Cartan subalgebra is

h =

8
<
:

0
@

t
s
¡¹t

1
A js 2 ¶F; t 2 E

9
=
;(1.18)

and u = h ©
L

¹2§ u¹: The splitting of these groups over E, where the group U
becomes GL3; is clear.

1.1.6. The embedding of U(2) in U(3). The group H = U(2) is the stabilizer of e2
(it is the quasi-split unitary group in two variables). In concrete terms

H =

8
<
:

0
@
¤ ¤
1

¤ ¤

1
A 2 U

9
=
; :(1.19)

Its intersection with U0 is H0 = SU(2): It is isomorphic, as an algebraic group over
F; to SL2: Map

µ
a b
c d

¶
2 SL2 7!

µ
a ¶b
¶¡1c d

¶
2 SU(2):(1.20)

This gives the isomorphism. However, U(2)=SU(2) ' E1 while GL2=SL2 ' F£;
so U(2) and GL2 are not isomorphic.

1.2. Now let F be p-adic.
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1.2.1. The unimodular character of P . Let F be a locally compact non-archimedean
…eld of residue characteristic p: Let C be a …xed algebraically closed …eld of charac-
teristic 0. Then there is a C-valued …nitely additive Haar distribution on U; which
is both left and right invariant. Let ¼E and qE be a uniformizer and the residue
…eld cardinality for E. Let

! = !E : E
£ ! C£(1.21)

be the unrami…ed character de…ned by !E(¼E) = q¡1E : If we similarly de…ned !F
then !E = !F ±NE=F : The unimodular character of P is then

±(p) = !2E(t)(1.22)

if p = m(t; s)n(b; z) 2 P: Indeed

m(t1; 1)n(b; z)m(t1; 1)
¡1 = n(t1b; t1¹t1z)(1.23)

so if m = m(t1; s1); U ½ N is open compact and dn is the Haar measure on N;
[mUm¡1 : U ] = !E(t1)!F (t1¹t1) = !E(t1)

2 and
Z

U

d(mnm¡1) =

Z

mUm¡1
dn = !2E(t1)

Z

U

dn:(1.24)

The left invariant Haar measure on P is

dLp = d£td£sdn(1.25)

if p = m(t; s)n: The right invariant measure is

dRp = !2E(t)dLp:(1.26)

1.2.2. Characters of M . A (smooth) character ¾ : M ! C£ is called regular if
¾¤ = w(¾) 6= ¾: Here

¾¤(m) = w(¾)(m) = ¾(w¡1mw) = ¾( ¹m¡1):(1.27)

Clearly ¾ is irregular if and only if ¾(m ¹m) = 1:
An unrami…ed character (a character trivial on E1 £ E1) is completely deter-

mined by ¾(m(¼E ; 1)): It is regular i¤ this is not §1:
The contragredient of ¾ is ~¾ = ¾¡1:
If ¾ is a smooth character of M we let C¾ be the one-dimensional space on which

M acts via ¾:

1.2.3. The Iwasawa decomposition. Let K be the compact subgroup of U stabilizing
the lattice O3E :

Proposition 1.5. We have

U = PK(1.28)

Proof. Given g 2 U we have to show g 2 PK: Write l1 = g¡1e1: Multiplying g on
the left by an element of M we may assume that l1 2 O3E is primitive. Write

l1 = ae1 + be2 + ce3;(1.29)

then

0 = (l1; l1) = a¹c+ b¹b+ c¹a = b¹b+ TrE=F (c¹a):(1.30)
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If both a and c are non-units, b can not be a unit and l1 is not primitive. Replacing
g by gw if necessary, l1 will be replaced by w¡1l1; so we may assume that c = 1,
and

¡b¹b = a+ ¹a:(1.31)

But this means that

n(¡¹b; a)w(e1) = n(¡¹b; a)e3 = l1:(1.32)

Letting g1 = n(¡¹b; a)w 2 K; g1(e1) = l1; so gg1 2 P and g 2 PK as desired.

1.2.4. Iwahori factorization.

Proposition 1.6. Let Kn be the principal congruence group in K modulo ¼nE (n ¸
1). Let Nn = Kn \N; Nw

n = Kn \Nw; Mn = Kn \M: Then (i)

Kn = Nw
n MnNn(1.33)

and the representation of an element of Kn as a product of elements from the three
groups is unique.

(ii) If a = m(t; 1) 2 A and jtj · 1 (we denote this semigroup by A¡) then
aNna

¡1 ½ Nn; and a¡1Nw
n a ½ Nw

n :

Proof. (i) If g 2 Kn and g¡1e3 = l3 then l3 ´ e3mod¼
n
E and there is a p 2 Pn =

MnNn such that p¡1e3 = l3: Then gp¡1 2 Kn but also stabilizes e3; so belongs to
Pw
n = Nw

n Mn and we get g = (gp¡1)p: The rest is clear. (ii) is also clear.

1.2.5. Cartan decomposition. This is the decomposition

U = K ~AK(1.34)

where ~A = fm(t; 1)jt 2 E£g : If E=F is unrami…ed we may take A instead of ~A:
More economically, we have

U =
[

n¸0
K

0
@

¼nE
1
¹¼¡nE

1
AK:(1.35)

2. Smooth representations

In this section we write G for the unitary group U:

2.1. Generalities.

2.1.1. Admissible representations and the contragredient. From now on, let F be a
local nonarchimedean …eld. All representations will be over C: A representation of G
is smooth if the stabilizer of every vector is open. If (½; V ) is a smooth representation
of G, we denote by (~½; ~V ) its contragredient (smooth dual). The space ~V is the
space of smooth vectors (vectors with open stabilizer) in the algebraic dual V 0 of
V .

Recall that a smooth representation is admissible if and only if for every open
subgroup U; dimV U <1: Let U be a compact open subgroup. Then the smooth
G-module V decomposes as

V = V U © V (U)(2.1)
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where V (U) = kerPU ;

PU (v) =
Z

U

½(g)v ¢ dg(2.2)

and the Haar measure is normalized so that
R
U
dg = 1: If we let U vary over the

principal congruence groups Kn we see that

V =
M

¿2 bK

V (¿)(2.3)

decomposes according to K-types ( bK is the smooth dual, which is of course also
the unitary dual since K is compact) and

~V =
M

¿2 bK

V (¿)0(2.4)

where V (¿)0 is the algebraic dual. The following lemma is then obvious.

Lemma 2.1. The following are equivalent: (i) V is admissible (ii) for each ¿ ;
dimV (¿) < 1 (iii) the canonical embedding of ½ in the contragredient of ~½ is an
isomorphism (iv) ~V is admissible.

Corollary 2.2. If ½ is admissible and irreducible, so is ~½:

Smooth irreducible representations are in fact admissible, but this is harder.
XXX

Lemma 2.3. Finitely generated admissible representations are of …nite length [Cass,
6.3.10].

2.1.2. The category of smooth representations. The category of smooth representa-
tions is abelian. The category of admissible representations is a full abelian sub-
category. Schur’s lemma holds: if ½ is an (admissible) irreducible representation,
then EndG(½) = C: The converse is not true.

An admissible representation ½ is unitarizable if it carries an invariant inner prod-
uct. In such a case it is completely decomposable: If W ½ V is a sub-representation,
then V =W ©W?: This is because W = ©¿2 bKW (¿) is an orthogonal direct sum
and each V (¿) =W (¿)©W (¿)? by …nite dimensionality.

2.2. Parabolic induction and supercuspidals.

2.2.1. The Jacquet module. Let V be a smooth N -module. Let V (N) be the sub-
module generated by ½(n)v ¡ v for v 2 V and n 2 N: The Jacquet module is

VN = V=V (N):(2.5)

VN is the largest quotient of V on which N acts trivially:

HomN(V;C) = Hom(VN ;C):(2.6)

Here are three well-known easy properties of the Jacquet module.
1. v 2 V (N) if and only if there exists a compact open N0 ½ N such that

PN0(v) =
Z

N0

½(n)vdn = 0:(2.7)

2. The functor V Ã VN , from the category of smooth N -modules to vector
spaces, is exact. This follows from the …rst property.
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3. If V is a smooth P -module, then VN is a smooth M -module.

Proposition 2.4. If (½; V ) is …nitely generated (resp. admissible) as a G-module,
then VN is …nitely generated (resp. admissible) as an M-module.

Proof. Suppose X is a …nite set generating V over G: Let U be open compact such
that X ½ V U : Let ¡ be a …nite set of G such that G = P¡U: Then ½(¡)X generates
VN as an M -module.

To prove that if V is G-admissible, VN is M -admissible, let n ¸ 1 and let

Kn = NnMnN
w
n(2.8)

be the Iwahori decomposition of level ¼nE : We shall prove a more precise result,
attributed to Borel, that the canonical projection maps V Kn onto V Mn

N : First note
that the image of V Kn in VN is the same as the (a-priori larger) image of V MnN

w
n :

Indeed, if v 2 VMnN
w
n and we average it over Kn; then PKn

(v) is a …nite linear
combination of Nn-translates of v; but as they all have the same image in VN ;
PKn(v) and v have the same image in VN :

Next, let W ½ V Mn

N be a …nite dimensional subspace. Let ¹v 2 W: We may
assume that the vector v representing ¹v comes from V Mn : It is then in VMnN

w
m for

some m (possible very large). But then for some a = m(t; 1) 2M we have

½(a)v 2 VMnN
w
n :(2.9)

All that we have to make sure is that aNw
ma
¡1 ¾ Nw

n : Since W is …nite dimensional,
there is an a such that ½(a)W is …xed by MnN

w
n : By the …rst part of the proof,

the image of ½(a)W in VN is contained in the image of V Kn : Since V is admissible,
the dimension of W is bounded, hence dimVMn

N < 1 and VN is admissible. We
may furthermore take now W = VMn

N and get that W = ½(a)W is contained in the
image of V Kn :

Corollary 2.5. Let (½; V ) be admissible and irreducible. Assume VN 6= 0: Then
there is a character ¾ of M and a non-zero homomorphism VN ! C¾ of M-modules.

Proof. VN is …nitely generated and admissible as an M -module. Zorn’s lemma
implies, since VN is …nitely generated, that it has a maximal proper submodule,
hence an irreducible quotient W . Let v 2 VN map to w 2 W: There exists an
open compact M0 in M so that v 2 V M0

N , and since VN is admissible this is a
…nite dimensional space. Since M is abelian, V M0

N is M -stable. Thus v; and also
w; belong to a …nite dimensional M-module. Since W is irreducible, W is …nite
dimensional, and since M is commutative it must be 1-dimensional.

2.2.2. Parabolic induction. If ¾ is a smooth character of M then IndGP¾ is the
smooth representation of all locally constant functions f : G! C satisfying

f(pg) = ¾(p)f(g)(2.10)

(p 2 P ) with G acting by right translation. Recall that the unimodular character
of P is ±(p) = !(t)2 (if p = m(t; s)n 2MN) and we write ±1=2(p) = !(t): We let

i(¾) = IndGP (±
1=2¾):(2.11)

Here are again some well-known facts.
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1. Let ~¾ = ¾¡1 (the contragredient of ¾) then the contragredient of i(¾) is i(~¾):
This follows from the fact that for f1 2 i(¾); f2 2 i(~¾); the integral

hf1; f2i =
Z

K

f1(g)f2(g)dg(2.12)

is G-invariant. See [Cass, 3.1.3],[Bump, 2.6.1].
2. If ¾ is unitary, ¾¡1 = ¹¾; then i(¾) is unitarizable. Proof: by the …rst fact,

the contragredient of i(¾) is i(¹¾) = i(¾); hence the pairing h; i de…ned above
becomes an invariant inner product on i(¾):

3. (Frobenius reciprocity [Cass, 3.2.4]) For any smooth (½; V )

HomG(V; i(¾)) = HomP (V; ±
1=2¾)(2.13)

= HomM (VN ; ±
1=2¾):

The maps are T $ t where Tv(g) = t(g:v) and t(v) = Tv(1):

2.2.3. Supercuspidals.

De…nition 2.1. An irreducible admissible representation (½; V ) of G is called su-
percuspidal if VN = 0:

Proposition 2.6. An irreducible admissible representation (½; V ) of G is not su-
percuspidal if and only if it embeds in some i(¾):

Proof. If VN is not 0, we have seen that there is a homomorphism VN ! C¾
hence, by Frobenius reciprocity, an embedding V ,! i(±¡1=2¾): Conversely, if
HomG(V; i(¾)) 6= 0 then VN 6= 0 again by Frobenius reciprocity.

Proposition 2.7. An irreducible admissible representation is supercuspidal if and
only if its matrix coe¢cients are compactly supported modulo the center.

Proof. There are several ways to prove the proposition, all relying on the Cartan
decomposition G = KAK: One, explained in [G, 1.7] for GL2(F ); is to use the
Kirillov model. In general, the theorem is due to Harish-Chandra, see [Cass, 5.3.1].
The idea is this. Suppose V = V (N): Let v 2 V and ~v 2 ~V : Since the K-orbits of
v and ~v are …nite, it is enough to show that

h~v; ½(a)vi(2.14)

has a compact support on A: Let N1 ½ N2 ½ N be compact open such that
v 2 V (N2) and ~v 2 ~V N1 : Let A¡ be the semigroup of all a = m(t; 1) 2 A satisfying
jtj · 1: Let A¡(") be the subset where jtj < ": For small enough ", if a 2 A¡(");
then

aN2a
¡1 ½ N1:(2.15)

But now (¤ denoting a constant depending on the Haar measures)

h~v; ½(a)vi = ¤
Z

aN2a¡1

­
~½(n)¡1~v; ½(a)v

®
dn

= ¤
Z

N2

h~v; ½(a)½(n)vi dn

= 0(2.16)

since PN2(v) = 0: Working with the opposite Nw (and using the fact that V =
V (Nw)) we …nd the same for a 2 A+(") for " small enough. Hence the support of
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h~v; ½(a)vi lies in " · jtj · j"j¡1 which is compact. For the converse direction, either
compute directly using the Kirillov model, or look at [Cass, 5.3.1].

Corollary 2.8. (i) An irreducible admissible (½; V ) is supercuspidal if and only if
~½ is supercuspidal (ii) [G, 1.18] A supercuspidal representation is unitarizable if
and only if its central character is unitary.

Proof. Since ½ is equal to its double contragredient, the matrix coe¢cients of ½
and of ~½ are the same. For (ii), if the central character is unitary, take a non-zero
smooth functional ~v and de…ne

(v1; v2) =

Z

CnG
h~v; ½(g)v1i h~v; ½(g)v2idg:(2.17)

Proposition 2.9. Supercuspidal representations are both injective and projective.

Proof. We prove the proposition when G = SU so the center C is trivial, and leave
the easy modi…cation when C 6= 1 to the reader (let ! be the central character of
½; and replace C1c (G) by H!; the Hecke algebra of locally constant functions on G
whose support is compact modulo the center and which transform under C by !):
Let (½; V ) be irreducible admissible and supercuspidal. Since the matrix coe¢cients
are compactly supported, choosing ~v0 2 ~V we can embed ¶ : V ,! C1c (G) (with
the right regular representation) via

¶ : v 7! c~v0;v(g) = h~v0; ½(g)vi :(2.18)

Choose v0 2 V and de…ne a projection ¦V : C1c (G)! V

¦V Á =

Z

G

Á(g)½(g¡1)v0dg:(2.19)

With a suitable choice of v0 and ~v0 we may assume that ¦V ± ¶ is the identity. It
is enough to note that if h~v0; v0i 6= 0; it is not identically 0, since

h~v;¦V ± ¶(v)i =

Z

G

h~v0; ½(g)vi
­
~v; ½(g¡1)v0

®
dg

= d¡1½ h~v0; v0i h~v; vi :(2.20)

where d½ > 0 is the formal degree of the supercuspidal (or more generally, square-
integrable) representation ½: To check that the expression de…ning d½ is not identi-
cally zero, note that we may assume, after a twist by a character, that ½ is unitary,
and then the integrand can be written (with suitable u0 and u in V )

h~v0; ½(g)vi
­
~v; ½(g¡1)v0

®
= (u0; ½(g)v)(u; ½(g

¡1)v0)

= (u0; ½(g)v)(v0; ½(g)u):(2.21)

Now choose u0 = v0 and u = v:
Let now (U;¾) be a smooth representation and T : U ! V a G-homomorphism.

Pick u0 mapping to v0 and de…ne similarly ¦U : C1c (G)! U

¦UÁ =

Z

G

Á(g)¾(g¡1)u0dg:(2.22)

Then T ± ¦U = ¦V so T ± ¦U ± ¶ is the identity and ¦U ± ¶ splits T: This proves
that V is projective in the category of smooth representations.
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To prove injectivity, if V ,! U; then since ~V is also supercuspidal the projec-
tion ~U ! ~V splits, hence dualizing again V is a direct summand of U and V is
injective.

2.3. The structure of i(¾). Let ¾ be a smooth character of M and I = i(¾) =

IndGP (±
1=2¾): Since f 2 I is determined by f jK it is easily seen that I is admissible.

Recall that ¾¤ = w(¾) and ¾ is regular if ¾ 6= ¾¤: Write I¤ = i(¾¤):

Example 2.1. i(±¡1=2) = IndGP 1 = C1(PnG) has an exact sequence

0! C! IndGP 1! St! 0(2.23)

where St is the Steinberg representation. We then have also

0! St! IndGP ±! C! 0:(2.24)

The fact that St is its own contragredient is not hard, but also not obvious. It
will follow from Proposition 2.17.

2.3.1. IN is always two dimensional.

Lemma 2.10. Let I = (¼; i(¾)) as before. Then dim IN · 2:

Proof. Suppose that ¤ : I ! C is a linear functional satisfying ¤(¼(n)f) = ¤(f)
for all n 2 N: Let

P : C1c (G)! I(2.25)

be the integral

PÁ(g) =
Z

P

Á(p¡1g) ¢ ¾±1=2(p) ¢ dp(2.26)

where dp is a left invariant Haar measure on P: Then P is a G-homomorphism (G
acting by the right regular representation on C1c (G)) and is onto: If f 2 I and
Á = f ¢ ÂK then, up to a scalar, PÁ gives us back the function f:

Let ¢ = ¤ ± P , a ditstribution on G (a linear functional on C1c (G)). Denoting
by D(X) the algebraic dual of C1c (X) we have short exact sequences

0! C1c (PwP )! C1c (G)! C1c (P )! 0(2.27)

0!D(P )!D(G)!D(PwP )! 0:(2.28)

We let ¸ and ½ be the left and right regular representations of P on these spaces.
Then

(¸(p1)¢)(Á) = ¢ ± ¸(p¡11 )Á

= ¤

µ
g 7!

Z

P

Á(p1p
¡1g) ¢ ¾±1=2(p) ¢ dp

¶
(2.29)

= ¾±¡1=2(p1)¢(Á):

On the other hand, clearly ½(n1)¢ = ¢ for every n1 2 N; since ¤ is N-invariant.
It follows that

¸(p1)¢ = ¾±¡1=2(p1)¢; ½(n1)¢ = ¢:(2.30)

To prove the proposition it is enough to prove, since P is surjective, that the space
of distributions ¢ satisfying these two conditions is at most 2-dimensional. For
that it is enough to show that the space of ¢’s satisfying these conditions in D(P )
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or in D(PwN) is at most one-dimensional, but this is essentially the uniqueness of
Haar measure.

Lemma 2.11. If n = n(b; z) then

wn =

0
@
¹z¡1 ¡bz¡1 1

¹zz¡1 ¹b
z

1
A
0
@
1
¡¹b¹z¡1 1
z¡1 bz¡1 1

1
A :(2.31)

If vE(z) = ¡2r then vE(b) ¸ ¡r and the right matrix is 1mod¼rE : Fix g: If f 2 I
then for r large enough

f(wng) = ¾(m(¹z¡1; ¹zz¡1))f(g):(2.32)

Corollary 2.12. If f(1) = 0; then f(wn) has a compact support (in n).

Let

I0 = ker(f 7! f(1)):(2.33)

Equivalently, since the support of any f is both open and closed, I0 is the submodule
of functions supported on PwP: We have a short exact sequence

0! I0 ! I ! ¾±1=2 ! 0(2.34)

where the projection to the one-dimensional ¾±1=2 is f 7! f (1) : We may de…ne the
linear functional ¤ : I0 ! ¾¤±1=2

¤f =

Z

N

f(wn)dn:(2.35)

The integrand has compact support by the corollary. Note f(wnp) = f(wpw¡1wp¡1np) =

¾¤±¡1=2(p)f(wp¡1np) so for p 2M indeed

¤¼(p)f =

Z

N

f(wnp)dn

= ¾¤±¡1=2(p)

Z

N

f(wn)d(pnp¡1)

= ¾¤±1=2(p)

Z

N

f(wn)dn:(2.36)

Proposition 2.13. For any ¾; dim IN = 2 and there exists an exact sequence

0! ¾¤±1=2 ! IN ! ¾±1=2 ! 0:(2.37)

Proof. By the exactness of the Jacquet functor there is such a short exact sequence
with I0;N on the left. But 0 6= ¤ 2 Hom(I0;N ; ¾

¤±1=2) and IN is at most 2-
dimensional, so the claim follows.

We remark that under f 7! Áf(n) = f(wn) we obtain

I0 ' c-IndPM¾¤±¡1=2(2.38)

and that in general integration over N yields a functional from c-IndPMÂ to Â±;
identifying Â± as the N -coinvariants of c-IndPMÂ.

Corollary 2.14. HomG(i(¾); i(¿)) 6= 0 if and only if ¿ = ¾ or ¿ = ¾¤:

Proof. We only have to note that if ¾¤ 6= ¾ then IN = ¾¤±1=2 © ¾±1=2 so there is
a non-zero homomorphism from IN to ¾¤±1=2 as well. The corollary follows then
from Frobenius reciprocity.
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2.3.2. I is of always length 1 or 2.

Lemma 2.15. Let V be an irreducible subquotient of I: Then V is not supercusp-
idal.

Proof. Let W ½ I be such that V is a quotient of W: If V is supercuspidal, it is
projective, so it embeds in W; hence in I: But this contradicts the fact that it is
supercuspidal.

Corollary 2.16. If I is reducible, then it is of length 2,

0! V ! I ! V 0 ! 0(2.39)

where V and V 0 are irreducible and VN and V 0N are 1-dimensional.

Proof. The Jacquet functor is exact and by the lemma, every subquotient of I must
have a non-zero Jacquet module. But we have proved that dim IN = 2:

2.3.3. The structure of i(¾) for regular ¾. If ¾ 6= ¾¤ then dimEndGI = 1 since
EndG(I) =HomM (IN ; ¾±

1=2):
If I is irreducible, then I¤ is irreducible too and I ' I¤: Indeed, there is an

intertwining operator T : I ,! I¤ and it must be onto because it induces an injec-
tion, hence by dimension counting an isomorphism, of IN onto I¤N , but if I¤=I were
non-zero, its Jacquet module would be non-zero.

If, on the other hand, I is reducible, then as we have seen it admits a non-split
short exact sequence

0! V ! I ! V 0 ! 0(2.40)

with VN and V 0N 1-dimensional. Recall that IN = ¾±1=2 © ¾¤±1=2 in this case, as
the two exponents are distinct. We must have VN = ¾±1=2 (since HomG(V; I) 6= 0)
so necessarily V 0N = ¾¤±1=2, HomG(V 0; I) = 0 and the short exact sequence is
non-split. (This can also be seen from the fact that EndGI is 1-dimensional.)

In this case HomG(V 0; I¤) 6= 0; so we get 0! V 0 ! I¤ ! V 00 ! 0 and arguing
as above with I¤ instead of I; we get V 00 ' V: Summing up we have proven the
following.

Proposition 2.17. Suppose that ¾ 6= ¾¤: Then either I and I¤ are irreducible,
and they are then isomorphic, or I admits a non-split short exact sequence as above
with V and V 0 irreducible, and then I¤ is expressed in the same way with V and
V 0 interchanged. In this case, I À I¤:

Example 2.2. If ¾ = ±¡1=2; then ¾¤ = ±1=2; V = C and V 0 = St:

2.3.4. The intertwining operator in the regular case. The question remains, how to
decide whether I is reducible. As we have seen, there is a unique P -homomorphism
I ! IN ! ¾¤±1=2 which on I0 is given by ¤ and corresponds, via Frobenius
reciprocity, to an intertwining operator

T : I ! I¤:(2.41)

If f 2 I0 we have

¤f = Tf(1) =

Z

N

f(wn)dn:(2.42)
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Let T ¤ : I¤ ! I be the corresponding intertwining operator for ¾¤: Since EndGI is
1-dimensional, there is a scalar °(¾) such that

T ¤ ± T = °(¾):(2.43)

Proposition 2.18. I is irreducible if and only if °(¾) 6= 0:
Proof. If I is irreducible, then T and T ¤ must be isomorphisms. If I is reducible,
then as we have seen, T must kill V and map V 0 = I=V isomorphically onto the
V 0 ½ I¤ while T ¤ kills V 0; so the composition of the two is 0.

To apply the proposition one needs to be able to compute T (and T ¤) on the
whole of I: Let

Nr =
©
n(b; z)j b 2 ¼rEOE ; z 2 ¼2rE OE ; z + ¹z = ¡b¹b

ª
:(2.44)

Then Nr is a compact open subgroup of N; and if we normalize the Haar mea-
sure of N0 to be 1, then the Haar measure of Nr is !(¼E)

2r = q¡2rE ; because
n(b; z) 7! n(¼rEb; (¼E¹¼E)

rz) maps N0 isomorphically onto Nr: It follows that the
Haar measure of NrnNr+1 is

q¡2rE (1¡ q¡2E ):(2.45)

Moreover if the subset of N0nN1 where vE(z) = 0 has measure a and the subset
where vE(z) = 1 has measure b then similarly the subsets of N¡r¡1nN¡r where
vE(z) = ¡2r ¡ 2 and ¡2r ¡ 1 have measure q

2(r+1)
E a and q

2(r+1)
E b:

Write ¾ = ¾0!
s where ¾0 is unitary and s 2 R: Assume for simplicity that ¾ is

unrami…ed and let ¾0(m(¼E ; 1)) = ¸, j¸j = 1: Then ¾±1=2 = ¾0!
s+1: Consider an

arbitrary f 2 I: Then for n = n(b; z) 2 N¡r¡1nN¡r and r large, vE(z) = ¡2r ¡ 2
or ¡2r ¡ 1 and

f(wng) = (¸¡1qs+1E )vE(z)f(g)(2.46)

so Z

N¡r¡1nN¡r
f(wng)dn(2.47)

= f(g) ¢
n
q
2(r+1)
E a ¢ (¸¡1qs+1E )¡2r¡2 + q

2(r+1)
E b ¢ (¸¡1qs+1E )¡2r¡1

o

= f(g) ¢
©
a¸2q¡2sE + b¸q¡s+1E

ª
(¸2q¡2sE )r:

It follows that if s > 0; the integral de…ning Tf(g)

Tf(g) =

Z

N

f(wng)dn(2.48)

converges for every f: Moreover, it has analytic continuation in s for all (¸; s) 6=
(§1; 0): I.e., except if ¾2 = 1; where there is a pole, the integral makes sense. But
if ¾2 = 1 then ¾ is irregular, so for all regular unrami…ed ¾; the integral for Tf(g)
converges, or is de…ned by analytic continuation, for all f and g:

2.3.5. The structure of i(¾) for irregular ¾. When ¾ = ¾¤ we take advantage of the
fact that ¾; hence i(¾); is unitary, hence completely decomposable.

Lemma 2.19. Assume that ¾ = ¾¤: The following are equivalent:
(a) I is reducible (b) I = V ©V 0 a sum of irreducibles, and V À V 0 (c) the exact

sequence

0! ¾±1=2 ! IN ! ¾±1=2 ! 0(2.49)
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splits (d) dimEndGI = 2:

Proof. Since I is completely decomposable and of length 1 or 2, and since EndGI =
HomG(IN ; ¾±

1=2) is at most 2 dimensional, the equivalence of all four statements
is obvious.

The easiest way to decide whether I is reducible is to compute IN and see if (c)
holds. We remark that in the case of GL2 the irregular principal series are always
irreducible, but for SL2 they can be reducible (see [Cass], Corollary 9.4.6).

2.3.6. Irreducibility of i(¾) for SU(3) and U(3). In [Keys, Section 7], David Keys
determines which of the representations i(¾) are reducible, but he does it for
SU(3) rather than U(3): The torus of SU(3) consists of the matrices m(t) =
diag(t; ¹t=t; ¹t¡1) for t 2 E£: If ¾ is a smooth character of E£ we write ¾(m(t)) =
¾(t): Write

¾ = ¾0!
s
E(2.50)

where j¾0j = 1 (i.e. is unitary) and s 2 Cmod2¼i= log(qE): Note that a change in
Im(s) can be absorbed in ¾0 but Re(s) is uniquely de…ned and we call it Re(¾):
Clearly Re(~¾) = ¡Re(¾) and if Re(¾) = 0 (but not only if), i(¾) is unitary. Let
´E=F be the unique quadratic character of F£ whose kernel is NE=F (E

£): Then
Keys proves that i(¾) is reducible in the following cases.

² If ¾ = !§1E (case of Steinberg representation)
² If ¾ = ´!

§1=2
E and ´jF£ = ´E=F

² If ¾jF£ = 1 but ¾ 6= 1:
The third type is an irregular ¾, the …rst two are regular. In all other cases i(¾)

is irreducible.
Rogawski (p. 173) claims that for U(3); if we write

¾(m(t; s)) = ¾1(t)¾2(t¹t
¡1s)(2.51)

then the same condition for reducibility with ¾1 in place of ¾; holds.

3. The metaplectic group and the Weil representation

3.1. The Heisenberg group and the Stone-von Neumann theorem.

3.1.1. The Heisenberg group H(W ). Let (W; h; i) be a symplectic space over F
(i.e. h; i is a non-degenerate alternating bilinear form). The Heisenberg group
H = H(W ) is

H = f(t;w)jt 2 F;w 2 Wg(3.1)

with

(t1; w1)(t2; w2) = (t1 + t2 + hw1; w2i =2; w1 +w2):(3.2)

One has then an exact sequence

0! F ! H !W ! 0(3.3)

(t 7! (t; 0); (t; w) 7! w), F is the center of H; and

(t1; w1)(t2; w2)(t1; w1)
¡1(t2; w2)

¡1 = (hw1; w2i ; 0);(3.4)

(t; w)¡1 = (¡t;¡w):
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3.1.2. The isomorphism N ' H(E). View E as a 2-dimensional symplectic space
over F with

hb1; b2i = 2Im(¹b1b2):(3.5)

Lemma 3.1. The map n(b; z) 7! (Im(z); b) 2 H(E) is an isomorphism N 'H(E):

Proof. Easy computation.

3.1.3. The Stone-von Neumann theorem. Let F be a p-adic (local) …eld, char:F 6=
2; and Ã : F ! C£ an additive character. We regard F and W as subsets of H(W );
but note that W (via (0; w)) is not a subgroup. There will be no confusion between
the group operation in H(W ); which is written multiplicatively, and that of W;
written additively. Thus

w1w2 = (0; w1)(0; w2) = (hw1; w2i =2; w1 + w2) = hw1; w2iw2w1:(3.6)

Let HÃ(W ) =HÃ be the extension of W by C£ which is the push-out of H(W )
via Ã:

Recall that W is self-dual as a l.c.a. group, the duality given by the pairing
Ã(hu; vi): For any closed subgroup A we let A? be the annihilator under this pairing.
A maximal isotropic subgroup is an A satisfying A? = A: Typical examples are:

² A maximal isotropic subspace Y (then Y is also its own annihilator under
h; i ; in the sense of linear algebra).

² A self-dual lattice (open compact subgroup). Use a standard symplectic basis
on W to see that self-dual lattices exist.

Theorem 3.2. There exists a unique (up to isomorphism) smooth irreducible rep-
resentation (SÃ; ½Ã) of H(W ) with central character Ã: Moreover, this representa-
tion is admissible.

The representation (SÃ; ½Ã) is called the Heisenberg representation.

3.1.4. Construction. We begin the proof by constructing a model (SA;Ã; ½A;Ã) for
(SÃ; ½Ã): The model, written also (SA; ½A) when the reference to Ã is clear, depends
on the choice of a maximal isotropic subgroup A in W: The choice of a maximal
isotropic subspace leads to the Schroedinger model and the choice of a self-dual
lattice to the lattice model. As a matter of notation, we shall always let SÃ stand
for an arbitrary model (or for the isomorphism class of the representation), and
SA;Ã for the speci…c model constructed below.

Let ~A = F £A ½ H: Note that ~A is a subgroup, its image in HÃ is a maximal
commutative subgroup, and in the Schroedinger model, even ~A itself is such. As
the commutator subgroup [ ~A; ~A] of ~A is equal to hA;Ai ½ kerÃ; the character Ã

extends from F to a unitary character of ~A: Let ~Ã be such an extension. If 2A = A
we can take ~Ã((t; a)) = Ã(t): This will be the case if A is a maximal isotropic
subspace or if A is a maximal isotropic lattice and the residual characteristic is not
2. If A 6= 2A the character ~Ã will have to satisfy

~Ã(a1 + a2) = Ã(ha1; a2i =2)~Ã(a1)~Ã(a2);(3.7)

so can not be trivial on A: De…ne

SA = IndH~A
~Ã:(3.8)
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By Ind we mean smooth induction. This is the space of f : H ! C satisfying
f(~ah) = ~Ã(~a)f(h) for all ~a 2 ~A; and which are smooth under right translation by
H: We de…ne ½A(h) = ½(h) by

(½(h)f)(h0) = f(h0h):(3.9)

Lemma 3.3. Every f 2 SA is compactly supported modulo ~A: In other words,

IndH~A
~Ã = c-IndH~A

~Ã:(3.10)

Proof. Pick an f: Let L ½ W be a lattice such that f(h0h) = f(h0) for all h 2 L

and h0 2 H; and ~Ã(h) = 1 for h 2 A \ L: If h 2 A \ L, t 2 F and w 2W then

f(tw) = f(twh) = f(t hw;hihw) = Ã(hw;hi)f(tw)(3.11)

so if f(tw) 6= 0; w 2 (A\L)? = A? +L? = A+L?: Since L? is also a lattice, the
support of f is contained in ~AL?; so is compact modulo ~A:

Corollary 3.4. The inner product

(f; g) =

Z

~AnH
f(h)g(h)dh(3.12)

is well-de…ned and invariant under ½A: The Heisenberg representation is unitary.

3.1.5. The Schroedinger model. Let W = X
L

Y be a polarization: X and Y are
maximal isotropic subspaces. Then ~X = FX and SX = IndH~X

~Ã is identi…ed with
C1c (Y ) under restriction: f 7! f jY = Á:

Lemma 3.5. The action of H on C1c (Y ) is given by the following rules:
(i) t:Á = Ã(t)Á for t 2 F:
(ii) (y:Á)(y0) = Á(y + y0) for y 2 Y:
(iii) (x:Á)(y0) = Ã(hy0; xi)Á(y0) for x 2 X:

Proof. Exercise.

As a corollary, we have

(x; y):Á(y0) = Ã(¡hy; xi =2)(yx):Á(y0)
= Ã(¡hy; xi =2)x:Á(y + y0)

= Ã(hy0; xi+ hy; xi =2)Á(y + y0):(3.13)

3.1.6. Irreducibility. We show that (SA; ½) is irreducible. If w 2 W and L ½ W is
a small enough lattice in the sense that hw + L;Li ½ kerÃ, we de…ne

fw;L(~awh) = ~Ã(~a) if h 2 L(3.14)

and fw;L(h
0) = 0 for h0 =2 ~AwL: This fw;L is well-de…ned (check!) and belongs to

SA: If for every w 2W we are given a lattice Lw “small enough” in the above sense,
then the functions ffw;Ljw 2W;L ½ Lwg span SA algebraicly over C: This follows
at once from Lemma 3.3, by a compactness argument.

Let 0 6= f 2 SA: We shall show that for every w there is an Lw as above such that
the H-module spanned by f contains every fw;L with L ½ Lw: Pick w: Translating
f we may assume f(w) 6= 0: Let Lw be a lattice such that

f(h0h) = f(h0)(3.15)
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for every h 2 Lw and hw +Lw; Lwi ½ kerÃ: We …x a Haar measure on A, pick
' 2 C1c (A) and consider

(½(')f)(h0) =

Z

A

'(a)f(h0a)da;(3.16)

which is in the H-span of f: Then for w0 2W

(½(')f)(w0) =

Z

A

'(a)f(w0a)da

=

Z

A

Ã(hw0; ai)'(a)f(aw0)da

=

Z

A

Ã(hw0; ai)~Ã'(a)da ¢ f(w0)(3.17)

= c~Ã'(w0modA) ¢ f(w0)

where c~Ã' 2 C1c (W=A) is the Fourier transform of ~Ã': (Note that W=A is the

dual group of A.) Using Fourier inversion we can …nd ' such that c~Ã' is the
characteristic function of w + LmodA for some lattice L ½ Lw: But if l 2 L then
f(w + l) = f(wl) = f(w); so ½(')f is a multiple of fw;L; as both are supported on
~A(w + L) = ~AwL; and are constant on wL:

3.1.7. Admissibility. Let L be a lattice in W: We must show that the f 2 SA which
are invariant under L form a …nite dimensional space. But the proof of Lemma 3.3
shows that such an f is supported on ~AL?; hence is determined by its values on
the …nite set (L+L?)=L:

3.1.8. Uniqueness. Let (S; ¿) be a smooth irreducible representation of H with
central character Ã: Let

A = ff 2 C1(H)j f(th) = Ã(t)f(h) 8t 2 F;(3.18)

f has compact support modulo Fg:

Restriction to W identi…es A with C1c (W ): The group H£H acts on A via ½l£½r
(left and right translation)

((½l £ ½r)(h1; h2)f)(h) = f(h¡11 hh2):(3.19)

Let (S_; ¿_) be the contragredient representation of (S; ¿): If s 2 S and s_ 2 S_
the matrix coe¢cient

fs_;s(h) = s_(hs)(3.20)

lies in A: Everything is clear, except that it has a compact support modulo F . But
if L ½W is a lattice …xing both s and s_ then for l 2 L; h 2W

fs_;s(h) = fs_;s(hl) = s_(hh; li lhs)
= Ã(hh; li)fs_;s(h)(3.21)

so if fs_;s(h) 6= 0; h 2 L?; which is compact.
The map s_­s 7! fs_;s is a homomorphism S_

N
S ! A respecting the H£H

action.
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Let W = X
L

Y be a polarization of W . Then s 2 SX;Ã is identi…ed (via
restriction) with s 2 C1c (Y ) and s0 2 SY;Ã¡1 with s0 2 C1c (X): Moreover, these
two representations are set by duality via

hs0; si =
Z

X

Z

Y

s0(x)s(y)Ã(hy; xi)dxdy:(3.22)

(Check that this is a pairing of H-modules using Lemma 3.5.) The resulting map

C1c (X
M

Y ) = C1c (X)
O

C1c (Y )!A = C1c (W )(3.23)

given by

s0 ­ s 7! fs0;s(3.24)

fs0;s(x1; y1) =

Z

X

Z

Y

s0(x)s(y + y1)Ã(hy; x1i+ hy1; x1i =2 + hy; xi)dxdy

= Ã(¡hy1; x1i =2)
Z

X

Z

Y

s0(x)s(y)Ã(hy; xi)Ã(hx+ y; x1 + y1i)dxdy

is the combination of f(x; y) 7! Ã(hy; xi)f(x; y); the Fourier transform, and the
map f(x1; y1) 7! Ã(¡hy1; x1i =2)f(x1; y1); so is an isomorphism.

It follows that A is irreducible and S_
N
S ' A ' SY;Ã¡1

N
SX;Ã hence S '

SX;Ã :

Exercise 3.1. Let G1 and G2 be two totally disconnected, locally compact, countable-
at-in…nity groups, and let ¼1 and ¼2 be smooth representations of G1 and G2 respec-
tively. Prove that ¼1­¼2 is a smooth representation of G1£G2, that it is irreducible
if both ¼i are, and that it then determines the ¼i uniquely (up to isomorphism).

Exercise 3.2. Give another proof for the irreducibility of A relating H £H to the
Heisenberg group of a double W ©W of W with an appropriate alternating form,
and A to the Schroedinger representation of H(W ©W ):

3.2. The metaplectic group and the Weil representation.

3.2.1. The metaplectic group. Fix a model for (SÃ; ½Ã): Let Sp = Sp(W ) be the
symplectic group of (W; h; i): Every g 2 Sp induces an automorphism of H(W ) via
g(t; w) = (t; gw): The representation

g(½Ã) = ½Ã ± g¡1 : H(W )! GL(SÃ)(3.25)

is another irreducible representation of H(W ); with central character Ã; realized
on the same space SÃ as ½Ã: By the Stone-von Neumann theorem, there exists an
automorphism Tg 2 GL(SÃ) such that

½Ã(g
¡1(h)) = T¡1g ± ½Ã(h) ± Tg:(3.26)

By Schur’s lemma Tg is unique up to a scalar from C£: Since

T¡1g2
T¡1g1

½Ã(h)Tg1Tg2 = T¡1g2
½Ã(g

¡1
1 (h))Tg2

= ½Ã(g
¡1
2 g¡11 (h))

= T¡1g1g2
½Ã(h)Tg1g2(3.27)

we have Tg1g2 ´ Tg1Tg2 modC£:

De…nition 3.1. The metaplectic group fSpÃ is the group consisting of all the pos-
sible Tg; for g 2 Sp(W ): It is automatically equipped with a faithful representation
!Ã on SÃ; called the Weil (or metaplectic or oscillator) representation.
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Every model of SÃ gives a model of the Weil representation. Note that there is
a short exact sequence

0! C£ ! fSpÃ ! Sp! 0:(3.28)

3.2.2. The abstract metaplectic group fSp. Weil proved in his famous 1964 Acta
paper, §43, that fSpÃ is the push-out under f§1g ,! C£ of a non-split extension
cSpÃ of Sp by f§1g : In other words, the 2-cocycle giving the extension (3.28) can
be taken to have values in f§1g : A theorem of Moore (Publ. IHES 35 (1968), 5-70)
says that H2(Sp(W ); f§1g) = Z=2Z; hence up to an isomorphism there exists a
unique non-split central extension cSp of Sp by f§1g. We let fSp = cSp£f§1gC£: It
follows that there is a unique isomorphism fSp ' fSpÃ which is the identity on C£
and projects to the identity on Sp: Thus the metaplectic group does not depend
on Ã: However, the metaplectic representation !Ã depends on Ã; in general (see
below).

3.2.3. The canonical intertwining operators Tg;A and splittings of the metaplectic
group. We have associated (non unique) Tg 2 GL(SÃ) with every g 2 Sp(W ): More
generally, let g 2 GSp(W ) with multiplier ¹(g) 2 F£; i.e. hgw; gw0i = ¹(g) hw;w0i :
Then g(t; w) = (¹(g)t; gw) is an automorphism of H(W ); and g(½Ã) = ½Ã ± g¡1 :
H(W )! GL(SÃ) is an irreducible representation of H(W ); with central character
Ã ± ¹(g)¡1; hence is isomorphic to SÃ±¹(g)¡1 . Thus, having …xed models SÃ and
SÃ±¹(g)¡1 ; there is an intertwining

Tg : SÃ ! SÃ±¹(g)¡1(3.29)

satisfying

½Ã(g
¡1(h)) = T¡1g ± ½Ã±¹(g)¡1(h) ± Tg :(3.30)

If we …x the models SÃ for the various Ã; these Tg are only uniquely determined
up to a scalar. However, if we allow ourselves to change the models, they can
be pinned down. Indeed, …x a maximal isotropic subgroup A ½ W; and let g 2
GSp(W ): Then there is a canonical

Tg;A : SA;Ã ! Sg(A);Ã±¹(g)¡1(3.31)

satisfying the last formula. Note, however, that even if ¹(g) = 1; g(A) may be
di¤erent from A; so this Tg;A can not be considered as an element of fSpÃ; except
for the special case where g(A) = A (see below). The construction of the canonical
Tg;A is simple. For f 2 SA;Ã let

Tg;Af(h) = f(g¡1(h)):(3.32)

Exercise 3.3. Check that (3.30) holds. Show the “cocycle relation”

Tg1;g2(A) ± Tg2;A = Tg1g2;A:(3.33)

Theorem 3.6. Suppose G ½ Sp(W ) is a subgroup stabilizing a maximal isotropic
subgroup A. Then the short exact sequence (3.28) splits canonically over G:

Proof. The splitting is supplied by g 7! Tg;A:

Examples: (i) A is a maximal isotropic subspace. Then G is a parabolic sub-
group of Sp(W ):

(ii) A is a self-dual lattice (p 6= 2) and G = Sp(A) an integral form of Sp; or any
compact subgroup.
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3.2.4. Dependence on Ã. The metaplectic representation !Ã depends on Ã: Never-
theless, the ideas of the last paragraph can be used to prove the following fact.

Proposition 3.7. Let ¹ 2 F£. If ¹ is a square in F; then the representations !Ã
and !Ã±¹ are isomorphic.

Proof. Let A = X be a maximal isotropic subspace and t 2 F£ ½ GSp (a scalar
matrix). Then t(X) = X and ¹(t) = t2: The isomorphism

Tt;X : SX;Ã ! SX;Ã±t¡2(3.34)

intertwines the Weil representation of fSpÃ and that of fSpÃ±t¡1 : Indeed, if Tg 2 fSpÃ
then Tt;X ± Tg ± T¡1t;X 2 fSpÃ±t¡2 and conjugation by Tt;X induces a commutative
diagram

0 ! C£ ! fSpÃ ! Sp ! 0
jj # jj

0 ! C£ ! fSpÃ±t¡2 ! Sp ! 0

:(3.35)

We conclude that there are (at most) [F£ : F£2] possibilities for !Ã; up to
isomorphism, as abstract representations of fSp:

3.2.5. Formulae in the Schroedinger model. Fix a polarization W = X
L

Y and a
symplectic basis e1; : : : ; e2n with respect to which

hw;w0i = tw

µ
0 1
¡1 0

¶
w0:(3.36)

Here X is spanned by the …rst n basis vectors, and Y by the last ones. Then Sp(W )
is generated by matrices of the form

m(g) =

µ
g

tg¡1

¶
(3.37)

for g 2 GLn(F ); matrices of the form

n(b) =

µ
1 b
1

¶
(3.38)

for b = tb; and

J =

µ
0 1
¡1 0

¶
:(3.39)

We identify SX;Ã with C1c (Y ) via restriction. As we have seen in Theorem
3.6, the Weil representation splits over the parabolic subgroup stabilizing X; gen-
erated by the m(g) and n(b): Moreover, the proof of that theorem gave a canonical
splitting, which in our case is given by (Á 2 C1c (Y ))

Tm(g);XÁ(y) = Á( tgy)

Tn(b);XÁ(y) = Ã(
tyby

2
) ¢ Á(y):(3.40)
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It is convenient to twist this splitting over the parabolic subgroup P (X) gener-
ated by the m(g) and n(b) by the character which is 1 on the unipotent radical and
jdet(g)j1=2F on m(g): Here jajF = !F (a) gives j¼F jF = q¡1F : We denote it by

M [m(g)]Á(y) = j det(g)j1=2F Á( tgy)

M [n(b)]Á(y) = Ã(
tyby

2
) ¢ Á(y):(3.41)

The advantage that this normalization has is that it is unitary with respect to the
standrad inner product on C1c (Y )

(Á1; Á2) =

Z

Y

Á1(y)Á2(y)dy:(3.42)

To …x ideas, we normalize the Haar measure dy to give total mass 1 to theOF -lattice
spanned by en+1; : : : ; e2n:

In contrast, TJ;X is an isomorphism of SX;Ã with SY;Ã since J(X) = Y: To …nd
a formula for M [J ] = TJ on SX;Ã we must …nd an isomorphism between SX;Ã
and SY;Ã as representations of H(W ): This is given by the Fourier transform. Fix
Haar measures on X and Y so that they give the lattice spanned by e1; : : : ; en
(resp. en+1; : : : ; e2n) total mass 1, and assume that Ã is normalized so that OF
is self-dual. (These normalizations are not essential here, and are made just to …x
ideas.)

Lemma 3.8. Identify SX;Ã with C1c (Y ) as in Lemma 3.5, and similarly SY;Ã with
C1c (X) reversing the roles of X and Y . Let

F : C1c (Y )! C1c (X)(3.43)

be the map

FÁ(x) =
Z

Y

Ã(hy0; xi)Á(y0)dy0:(3.44)

Then F is a unitary H-isomorphism.

Proof. Exercise. It is enough to check the claim separately for each of the three
subgroups F;X;Y of H: For F ths claim is trivial. For X and Y , this is the well-
known fact that F intertwines translation with multiplication by an exponential.
One only has to be careful about signs. Finally the fact that F is unitary follows
from the normalizations of Haar measures and of Ã.

Corollary 3.9. We have the formula (up to C£)

M [J ]Á(y) = TJÁ(y) =

Z

Y

Ã(¡ ty0 ¢ y)Á(y0)dy0:(3.45)

Proof. A possible choice for TJ is TJ;Y ± F : Here TJ;Y : C1c (X) = SY;Ã ! SX;Ã =
C1c (Y ) is the map (TJ;Y Á)(h) = Á(J¡1(h)); and restricted to X ½ H; J¡1 : X ! Y
is just the identity (when both spaces are identi…ed with Fn).

3.2.6. Formulae in the lattice model. [To be completed]
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3.2.7. Properties of the Weil representation.

² It is smooth (exercise, use the lattice model).
² The element ¡1 2 Sp is in the center of Sp: Let S§ be the § eigenspaces.

They are irreducible (exercise, use the Schroedinger model).
² Let A be a self-dual lattice in W and KA the stabilizer of A in Sp: Then, as

we have seen, SÃ splits over KA: The subspace SKA of KA-invariants vectors
is 1-dimensional and lies in S+:

² Let W1 and W2 be two symplectic spaces with forms h; i1 and h; i2 : Let W =
W1

L
W2 be their orthogonal direct sum. Let S1 and S2 be models for the

Heisenberg representations of H(W1) and H(W2); and identify H(W ) with
the quotient of H(W1)£H(W2) by the anti-diagonal f(t;¡t)jt 2 Fg : Then the
Heisenberg representation of H(W ) is S = S1

N
S2: One has an embedding

Sp(W1)£ Sp(W2) ,! Sp(W )(3.46)

and a homomorphism

GL(S1)£GL(S2)! GL(S)(3.47)

with kernel
©
(z; z¡1)jz 2 C£

ª
: Combining the two and noting that, by its

very de…nition, fSpÃ is a subgroup of Sp£GL(SÃ); we get a homomorphism

fSpÃ(W1)£fSpÃ(W2)! fSpÃ(W )(3.48)

with kernel
©
(z; z¡1)jz 2 C£

ª
: This homomorphism commutes with the pro-

jection to the symplectic groups. It is then easy to check that the restriction
of the Weil representation !Ã of W to fSpÃ(W1) £ fSpÃ(W2) is nothing but
!Ã;1

N
!Ã;2 .

3.2.8. Combining the Heisenberg and the Weil representations. Consider

G = fSp(W )nH(W )(3.49)

(a semi-direct product) where ghg¡1 = g(h) (g 2 fSp(W ); h 2 H(W )). Then we
can combine ½Ã and !Ã into one representation of G on SÃ

!Ã n ½Ã : gh 7! !Ã(g) ± ½Ã(h):(3.50)

3.3. A “baby example”: representations of R.

3.3.1. The lattice model for H(W ) when W = E is a quadratic extension of F . Let
as before

² Ã : F ! C1 so that Ã(aOF ) = 1 if and only if a 2 OF :
² E = F + F¶; ¹¶ = ¡¶; ¶ a generator of the di¤erent
² º : E£ ! Z normalized valuation
² (u; v) = ¹uv; hu; vi = TrE=F (¶

¡1¹uv) = 2 Im(u; v)

² A = OE = O?E a self-dual lattice in the 2-dimensional symplectic space W =
(E; h:; :i): Then A is a maximal isotropic subgroup w.r.t. Ã(h:; :i) :W £W !
C1:

² H(W ) the Heisenberg group, ¼ : H(W )!W the projection
² ~Ã : ~A! C1 is an extension of Ã to ~A = ¼¡1(A): If p 6= 2 we take ~Ã((t; u)) =
Ã(t): We assume that this is the case and let the reader make the necessary
adjustments when p = 2:
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Let F = SA be the lattice model of the Heisenberg representation ½Ã of H(W ):
Recall

F = fÁ : H(W )! Cj Á smooth; Á((t1; u1)(t; u)) = Ã(t1)Á((t; u)) 8u1 2 OEg :
(3.51)

For (t; u) 2 H(W)

(½Ã(t; u)Á)(t
0; u0) = Á((t0; u0)(t; u)):(3.52)

For ® 2 E let 1®(u) be the characteristic function of ®+OE and

Á®(t; u) = Ã(t+ h®;ui =2) ¢ 1®(u):(3.53)

Then if u1 2 OE
Á®((t1; u1)(t; u)) = Á®(t+ t1 + hu1; ui =2; u1 + u)

= Ã(t+ t1 + hu1; ui =2 + h®; u1 + ui =2) ¢ 1®(u+ u1)

= Ã(t+ t1 + hu1; ®i =2 + h®; u1 + ui =2) ¢ 1®(u)(3.54)

= Ã(t+ t1 + h®; ui =2) ¢ 1®(u)
= Ã(t1)Á®(t; u):

Thus Á® 2 F and if W is a system of representatives for E=OE ; then

F =
M

®2W
CÁ®:(3.55)

A simple computation gives
¡
½Ã(0; v)Á®

¢
(0; u) = Á®((0; u)(0; v))

= Ã(hu; vi =2)Á®(0; u+ v):(3.56)

We sometimes write Á(u) = Á(0; u): Then

½Ã((0; v))Á®(u) = Ã(hu; vi =2)Á®(u+ v):(3.57)

This is a “mixture” of translation and multiplication by an exponential. Note that
if ¯ ´ ®modOE

Á¯(u) = Ã(h¯;®i =2)Á®(u):(3.58)

In particular, if (¯ ¡ ®)® 2 OE then Á® = Á¯:

Let " 2 E1 ½ Sp(W ): Then "A = A so a possible splitting for the metaplectic
representation of fSpÃ(W ) over E1 is given by

(!Ã(")Á) (t; u) = Á(t; "¡1u):(3.59)

It is easy to compute now

!Ã(")Á®(u) = Á®("
¡1u)

= Ã(
­
®; "¡1u

®
=2) ¢ 1®("¡1u)

= Ã(h"®; ui =2) ¢ 1"®(u) = Á"®(u):(3.60)

Thus

!Ã(")Á® = Á"®:(3.61)

We can now decompose

F =
M

¹2cE1
F¹(3.62)
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with respect to the action of !Ã(E1): We shall prove later:

Proposition 3.10. For any ¹; dimF¹ · 1:

Remark 3.1. This proposition is elementary, although it will be derived later from
high-powered techniques. Consider, in C[E]; with basis e®; the subgroup generated
by e¯ ¡ f¯; ®g e® whenever ¯ ´ ®modOE (here we used f¯;®g = Ã(h¯;®i =2)).
Let F be the quotient by this subgroup. Since f"¯; "®g = f¯;®g for " 2 E1 the
action of E1 on C[E] induces a smooth action on F ; and the claim is that every
eigenspace appears with multiplicity at most 1. Try to prove it directly! You may
want to assume …rst that E=F is unrami…ed and p 6= 2:

Remark 3.2. It is not true that any ¹ appears! See [Ge-Ro1], Section 5.2, where
the question which ¹ appear in the decomposition (they call this “baby” Weil rep-
resentation !1Ã) intervene in the question which Weil representations of U(3) are
supercuspidal.

3.3.2. The group R. Recall our unitary group G (denoted by U in the …rst section).
Recall that N ' H(E) under

n(b; z) 7! (Im(z); b):(3.63)

Let R =D nN where

D = fm(1; s)j s 2 E1g:(3.64)

If C = fm(t; t)j t 2 E1g is the center of G then CR is the largest subgroup of G
containing N in which Z is central.

3.3.3. Irreducible representations of R. Suppose (X; ¿) is an irreducible represen-
tation of R; and assume that the center Z of R acts via the character Ã. If Ã is
non-trivial then as a representation of N , ¿ must be isotypical, isomorphic to a
number of copies of the Heisenberg representation ½Ã:

Since m(1; s)n(b; z) = n(s¡1b; z)m(1; s) we may embed D ½ Sp(E); m(1; s)
mapping to b 7! s¡1b: Since D is compact, we may …x a splitting !iÃ = !Ã ± i of

the metaplectic representation of fSpÃ over D (see 3.6), i.e. we can lift

fSpÃ
i

% #
D ½ Sp(E)

:(3.65)

Speci…cally, if we use the lattice model F described above, then we choose i so that
!iÃ(m(1; s)) maps Á® to Ás¡1®: We let

¿Ã(m(1; s)n(b; z)) = !iÃ(m(1; s)) ± ½Ã(n(b; z)):(3.66)

Any other splitting di¤ers by a character Â of D and we let

¿Ã;Â(dn) = Â(d)¿Ã(dn)(3.67)

(d 2 D;n 2 N).

Proposition 3.11. Every irreducible representation ¿ of R in which Z acts via
Ã 6= 1 is a ¿Ã;Â for a unique Â:
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Proof. Let

Y = HomN (¿ jN ; ¿ÃjN ) =HomN(¿ jN ; ½Ã):(3.68)

Since ¿ jN is ½Ã-isotypical, Y is non-zero. The group D acts on Y by !(d)A =

¿Ã(d) ±A ± ¿(d)¡1: Since D is compact, Y breaks up as a sum of D-eigenspaces. If
the Â¡1-eigenspace is non-zero, there exists an A 2 Y with !(d)A = Â¡1(d)A; i.e.

A ± ¿(d) = ¿Ã;Â(d) ±A:(3.69)

This means that A is intertwining between ¿ and ¿Ã;Â as R-representations, and
from the irreducibility of ¿; ¿ ' ¿Ã;Â:

We let bR(Ã) stand for the representations ¿Ã;Â of R in which Z acts via a non-
trivial Ã: If we consider irreducible representations of CR; then one has to specify
also the character of C.

3.4. Weil representations of unitary groups.

3.4.1. Unitary groups inside symplectic groups. Let E=F be a quadratic extension,
assumptions and notation as in Section 1.1.1. Let (V; (; )) be a non-degenerate
hermitian vector space over E and G = U(V ) the associated unitary group (for the
moment we do not assume that V contains an isotropic vector). Let n = dimE V:

Let W be the vector space V; regarded as a 2n dimensional vector space over F;
equipped with the symplectic form

hw1; w2i = 2 Im(w1; w2):(3.70)

Then

G = U(V ) ½ Sp(W ):(3.71)

Let C = E1 be the center of G: The pair (G;C) is a dual reductive pair in
Sp(W ): This means

² Both G and C are reductive groups (obvious),
² Each is the centralizer of the other in Sp(W ):

In fact, if g 2 Sp(W ) commutes with C then it is an E-linear endomorphism, so
preserves also hw1; ¶w2i ; hence g preserves

2(w1; w2) = hw1; ¶w2i+ ¶ hw1; w2i ;

and belongs to G: On the other hand if g 2 Sp(W ) commutes with G then since
C ½ G it is again E-linear, and since V is an irreducible G-module, must be scalar,
hence in C:

3.4.2. Splitting of the metaplectic representation over U(V ).

Theorem 3.12. (Kazhdan) Let F be a p-adic …eld. Then there exists a splitting
i : G! fSpÃ of the metaplectic extension over G:

Remark 3.3. (i) If i0 is another splitting then i0i¡1 is a character of G; so factors
through the determinant, i.e. for some º 2 cE1

i0(g) = º(det g) ¢ i(g)(3.72)

In particular, the splitting is unique over SU(V ):
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(ii) Caution! The cover cSp! Sp splits over SU(V ); but not over U(V ): In fact,
for G = Sp or SU; the map

H2(G; ¹2)! H2(G;C£)(3.73)

is injective, because its kernel is H1(G;C£)=2H1(G;C£) and H1(G;C£) = 0: But
for G = U this group does not vanish.

For a splitting i as in the theorem, write !iÃ = !Ã ± i and call (SÃ; !iÃ) the
metaplectic (or Weil, or oscillator) representation of G associated with i:

We have seen that as representations of fSpÃ(W); !Ã and !Ã±a are equivalent
when a is a square in F: For the restriction to G we can have a better result.

Theorem 3.13. (i) If a 2 NE=F (E
£) then !iÃ and !iÃ±a are equivalent.

(ii) Let C = E1 be the center of G: Let (SÃ(Â); !iÃ(Â)) be the subrepresentation
of (SÃ; !iÃ) on which C acts via Â: Then

SÃ =
M

Â2cE1
SÃ(Â);(3.74)

each !iÃ(Â) is irreducible (as a representation of G), and an irreducible representa-
tion of G occurs at most once among the !iÃ(Â):

(iii) If we replace the splitting i by i0 (3.72) then SÃ(Â) becomes SÃ(Âºn):
Compare with the statement that S§Ã are irreducible as representations of Sp(W ):

The center of Sp(W ) is f§1g ; and the dual reductive pair there is (Sp(W ); f§1g):
One should think of the theorem, or of Howe’s conjecture, of which (ii) is a special
case, in general, as a testimony to the “smallness” of the metaplectic representation.

The smooth irreducible !iÃ(Â) are called the Weil representations of G = U(V ):

Proof. For (iii) note that if v 2 SÃ(Â) and we change i to i0 then for ³ 2 C

!i
0

Ã(³)v = º(³n)i(³)v = ºnÂ(³)v:(3.75)

Point (ii) is a special case of Howe’s conjecture and follows from [MVW]. For (i) …x
a model SA;Ã for !Ã and let !iÃ : G! GL(SA;Ã) be the metaplectic representation
of G; realized in this model. Let ° 2 GSp(W ) have multiplier ¹(°): Then

T°;A ± !Ã(i(g)) ± T¡1°;A 2 GL(S°A;Ã±¹(°)¡1)(3.76)

intertwines ½Ã±¹(°)¡1(h) and ½Ã±¹(°)¡1((°g°
¡1)(h)): If ° centralizes G; this gives

a splitting of the metaplectic representation associated to Ã ± ¹(°)¡1; so may be
called !Ã±¹(°)¡1(i(g)): But then

!Ã±¹(°)¡1(i(g)) = T°;A ± !Ã(i(g)) ± T¡1°;A(3.77)

which means that !iÃ and !iÃ±¹(°)¡1 are equivalent. Now apply this to ° 2 E£;

noting that ° centralizes G and ¹(°) = NE=F (°):

3.4.3. A natural parametrization of the splittings and of the Weil representations.
For later purposes, when we globalize the metaplectic representation, we would like
to know that its local splittings over G = U(V ) at the various places of the number
…eld F can be chosen in such a way, that the resulting splitting over G(A) agrees
on the global points G(F ) with the canonical splitting of the adelic metaplectic
extension over Sp(F ) given by Weil. For that purpose it is important to have a
canonical set parametrizing the splittings, with local-global compatability.
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As we have seen in (3.72), the splittings i : G! fSpÃ of fSpÃ ! Sp form a torsor

under cE1: Consider the short exact sequence

0! F£ ! E£
®! E1 ! 0(3.78)

with ®(x) = x=¹x (which is surjective by Hilbert’s theorem 90). Let ´E=F be the
quadratic character of the extension E=F (i.e. the unique non-trivial character of
F£=NE=F (E

£)). Then the set of characters of E£ whose restriction to F£ is ´E=F
is also a torsor under cE1: One can show that these two torsors are canonically
isomorphic. In other words, one can attach to ° 2dE£; whose restriction to F£ is
´E=F ; a splitting i° in a canonical way which is compatible with twisting by cE1:
See [Ge-Ro, remark on p. 457]. If º 2 cE1 and ºE = º ±® then iºE° = (º ± det) ¢ i° :

We denote the resulting representation of G on SÃ, denoted previously by !
i°
Ã ,

by !(°; Ã); and the (irreducible) component on which the center C acts via Â by
!(°; Ã;Â): For future reference we record the following.

Proposition 3.14. (i) The Weil representations !(°; Ã; Â) are irreducible. Here
° varies over the characters of E£ whose restriction to F£ is ´E=F and Â over cE1:

(ii) Two Weil representations !(°; Ã; Â) and !(°0; Ã0; Â0) are equivalent if and
only if °0 = °;Â0 = Â and Ã0 = Ãa for a 2 NE=F (E

£):

Proof. For (ii) see [Ge-Ro2], Remark on the bottom of p.461 and [Ge-Ro1], Propo-
sition 5.1.1. It follows by showing that Weil representations are exceptional, i.e.
admit a ¿-Heisenberg model for a unique ¿ 2 bR(Ã); for Ã representing only one of
the two classes modulo NE=F (E

£); see below.

3.4.4. The mixed model. Assume from now on that n = 3 as in the introduction,
and V = E3; (u; v) = t¹uSv:

We let W be the vector space V = E3 regarded as a vector space over F . Let
V1 = Ee1 etc. and V13 = V1

L
V3: Note that V13 is a hermitian hyperbolic plane

over E; while V2 is anisotropic. For the symplectic structure, W13 = W1
L

W3 is
a complete polarization, while W2 can not be polarized by E-subspaces, only by
F -subspaces (obviously, since it is 1-dimensional over E:::):

Let (F ; ½2Ã) be any model for the Heisenberg representation of H(W2) = H(E)

(with 2 Im(¹z1z2) as the symplectic form). Let SW3;Ã = S(W1) (we use S for C1c )
be the Schroedinger model of the Heisenberg representation ½13Ã of H(W13): Then
H(W13) £H(W2) maps surjectively onto H(W ) with f(z;¡z)g as kernel, and we
may take

½Ã = ½13Ã
O

½2Ã(3.79)

as a model of the Heisenberg representation of H(W ): The underlying space is
S(W1;F), the space of locally constant functions of compact support on W1 with
values in the model F of ½2Ã: We call such a model mixed.

The Weil representation !Ã(g) (g 2 fSpÃ) is an isomorphism between (½Ã;S(W1;F))
and (½Ã ± g;S(W1;F)): The following diagram commutes

S
½Ã(h)! S

# !Ã(g) # !Ã(g)
S

½Ã(g(h))! S
:(3.80)
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Proposition 3.15. We have the following formulae in the mixed model [to be com-
pleted].

4. Whittaker and Heisenberg (generalized Whittaker) models

4.1. Whittaker models for GL(2).

4.1.1. Whittaker models and Whittaker functionals. Let G = GL2(F ) and let (V; ¼)
be a smooth irreducible representation of G: Let N be the upper unipotent rad-
ical, M the torus and P = MN the Borel subgroup. Recall that a Ã-Whittaker
functional is a linear functional (not necessarily smooth!)

¸ : V ! C(4.1)

such that

¸(¼(n)v) = Ã(n)¸(v)(4.2)

for all n 2 N: Thus

¸ 2 HomN (¼jN ; Ã) ' HomG(¼; Ind
G
NÃ)(4.3)

(Frobenius reciprocity). The spaceW = IndGNÃ of functions W : G! C which are
right invariant under some open subgroup U and satisfy W (ng) = Ã(n)W (g) for n 2
N is called the space of Whittaker functions. It is a (huge) smooth representation of
G under right translation, and ¸ can be seen as an embedding of the irreducible ¼ in
W: Speci…cally, the relation between the Whittaker functional ¸ and the Whittaker
model v 7!Wv is given by

Wv(g) = ¸(¼(g)v):(4.4)

4.1.2. Uniqueness. The following theorem is well-known, and is the basis for the
construction of L functions for GL2 (see the book by Jacquet and Langlands).

Theorem 4.1. Either ¼ is a character or it is in…nite dimensional. In the latter
case the space of Whittaker functionals is one-dimensional. Equivalently, the ¼-
isotypical subspace W(¼) in W is irreducible.

4.2. Whittaker models for U(3).

4.2.1. The irreducible representations of N. Let now G = U(V ) as before. As we
have seen, N 'H(E) and sits in an exact sequence

0! Z ! N ! E ! 0(4.5)

with Z = ¶F . The irreducible smooth representations ¾ of N are therefore of two
types

(i) ¾ is 1-dimensional: there is then a character Â of E such that ¾(n(b; z)) =
Â(b): We denote this ¾ by ÂN :

(ii) ¾ is in…nite dimensional. It must have a non-trivial central character Ã on
Z ' F; and then by Stone-von-Neumann

¾ = ½Ã = IndNN 0ÃN0(4.6)

where

N 0 =

8
<
:

0
@
1 b z
1 ¡b
1

1
A jb 2 F; z + ¹z = ¡b2

9
=
;(4.7)
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is the pre-image in N of a maximal isotropic subgroup of E: Here

ÃN 0(n(b; z)) = Ã(z + b2=2)(4.8)

is the extension of Ã to a character ofN 0 which is trivial on the subgroup fn(b;¡b2=2)g:
Note that z+ b2=2 2 ¶F: This ½Ã is the Schroedinger model for H(E): We can also
look at the lattice model (see below).

4.2.2. Ordinary Whittaker models. Call the irreducible representation (V; ¼) of G
non-degenerate if for some non-trivial character Â of E; it has a ÂN -Whittaker
functional, i.e. a

¸ 2 HomN(¼jN ; ÂN) = HomG(¼; Ind
G
NÂN):(4.9)

As before, it admits then a Whittaker model v 7!Wv(g) = ¸(¼(g)v):

Lemma 4.2. If ¼ has a ÂN -Whittaker functional for one Â; then it has a ÂN -
Whittaker functional for every non-trivial Â:

Proof. The torus M normalizes N; and m(t; 1)n(b; z)m(t; 1)¡1 = n(tb; t¹tz); so if
¸ 2 HomN(¼jN ; ÂN ); ¸t = ¸ ±m(t; 1) is a (Â ± t)N -Whittaker functional. But as t
runs over E£ we get in this way all the non-trivial characters of E:

Theorem 4.3. (Kazhdan) If ¼ is non-degenerate, then its Whittaker model is
unique, i.e. the space of ÂN -Whittaker functionals, for a given ÂN ; is 1-dimensional.

4.2.3. Generalized Whittaker models (Heisenberg models). Degenerate representa-
tions exist, so we look for di¤erent models. Recalling the isomorphism N 'H(E);
the group D = E1 may be identi…ed with U(E) ½ Sp(E) ' SL2(F ) and R with
the semi-direct product

R = U(E)nH(E) ½ Sp(E)nH(E):(4.10)

Since we have identi…ed N with H(E); and E with W2 = Ee2 (the hermitian
form being induced from the original one on V = E3), we denote the Heisenberg
representation of H(E) by (F ; ½2Ã): Kazhdan’s theorem 3.12 (or the compactness of

D) guarantees that there is a splitting i : D = U(E)! fSpÃ(E); hence, as we have
seen, the representations

¿Ã;Â = Â!iÃ n ½2Ã(4.11)

of R on the space F of ½2Ã: We denote these representations by bR(Ã).
The main theorem is the following.

Theorem 4.4. (Piatetski-Shapiro). 1) Let (¼; V ) be an irreducible smooth in…nite
dimensional representation of G: Then for some irreducible representation (¾;X)
of R such that ¾jZ is a non-trivial character Ã, there exists a non-trivial linear map

¸¾ 2 HomR(¼jR; ¾):(4.12)

2) The linear map ¸¾ is unique up to a scalar.

The map ¸¾ is called a generalized Whittaker functional. By Frobenius reci-
procity ¸¾ corresponds to an embedding

¼ ,! IndGR¾:(4.13)

This embedding sends v 7! Wv where Wv(g) = ¸¾(¼(g)v) is a function G !
X smooth for right translation, and satisfying Wv(rg) = ¾(r)Wv(g): We denote
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the totality of these functions by W(¼; ¾) and call it the Heisenberg model (or
generalized Whittaker model) of the representation ¼:

Remark 4.1. (i) Existence and uniqueness of generalized Whittaker models holds
for any in…nite dimensional ¼; whether it has an ordinary Whittaker model (i.e. is
non-degenerate) or not.

(ii) The space X is the space F of the Heisenberg representation of N = H(E);
and the generalized Whittaker functions are elements of

IndGN½
2
Ã = IndGNInd

N
N0ÃN 0 ' IndGN 0ÃN0 :(4.14)

However, we also have to tell how d 2 D acts. If ¾ = ¿Ã;Â then d acts via Â(d)!iÃ(d):
We can make this explicit working with the lattice model for F :

(iii) The set of ¾ for which ¼ embeds in IndGR¾ (or the set of Â if we …x the
splitting i) is interesting. It depends of course on the choice of Ã: We will discuss
it later.

4.3. The existence theorem for Whittaker and generalized Whittaker
models.

4.3.1. Construction of lÃ. Let G = GL(2) or U(3) and Z = N or Z respectively.
Let Ã be a non-trivial character of F . In both cases, we regard Ã as a representation
of Z. Let (¼;V ) be an irreducible admissible in…nite dimensional representation of
G:

We …rst show that there exists a non-zero functional

lÃ : V ! C(4.15)

satisfying

lÃ(¼(z)v) = Ã(z)lÃ(v)(4.16)

(v 2 V; z 2 Z). In the GL(2) case this is already a Whittaker functional. Let
V (Z; Ã) be the subspace of V spanned by the vectors

¼(z)v ¡ Ã(z)v(4.17)

for z 2 Z; v 2 V and

VZ;Ã = V=V (Z; Ã):(4.18)

The existence of lÃ is equivalent to VZ;Ã 6= 0:

Lemma 4.5. A vector v 2 V (Z;Ã) if and only if for some (equiv. every su¢ciently
large) open compact U ½ Z

Z

U

Ã¡1(z)¼(z)vdz = 0:(4.19)

Proof. Clear.

Lemma 4.6. We have
\

Ã 6=1
V (Z; Ã) = V Z :(4.20)
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Proof. If v 2 V Z then by the previous lemma it is in every V (Z;Ã): Conversely,
suppose v is in the LHS. Let L : V ! C be an arbitrary functional and consider
f(z) = L(¼(z)v); a smooth function. Let Z =

S
Zn where Zn = ¼¡nF OF : If f is

not constant, then by Fourier theory, for some n0; for each n ¸ n0 there exists a
character Ãn 6= 1 such that

Z

Zn

Ã¡1n (z)f(z)dz 6= 0:(4.21)

We may furthermore take the Ãn so that Ãn+1jZn = Ãn: Then Ã = limÃn satis…es

L(

Z

Zn

Ã¡1(z)¼(z)vdz) 6= 0(4.22)

for all su¢ciently large n; contradicting the previous lemma, unless f is constant.
But if f is constant for all L; v 2 V Z:

Lemma 4.7. Let (¼;V ) be an irreducible admissible in…nite dimensional represen-
tation. Then V Z = 0:

Proof. We leave the GL(2) case as an exercise. The key point is that SL2(F )
is generated by Z and any open subgroup. In the U(3) case, take v 2 V Z . By
the GL(2) case, v is …xed by the SL2(F ) embedded in the four corners of G. In
particular, by all m(t; 1) for t 2 F£: The stabilizer of v in N is then an open
subgroup …xed by conjugation by m(t; 1) for all t; hence must be all of N . Let G0
be the closed subgroup of G generated by N and wNw¡1 (where w is the Weyl
element). Then G0 …xes v; but since G = P [NwP (Bruhat decomposition) G0
is normal in G; hence must equal G0 = SU(3): This means that V G0 6= 0; but
then this is a submodule on which G acts via its quotient G=G0 ' F£; and from
irreducibility V = V G0 is one-dimensional.

Corollary 4.8. There exists a Ã 6= 1 for which there is an lÃ 6= 0:

4.3.2. Dependence on Ã. Next we consider the dependence on Ã: In the GL(2) case,
given one Ã; any other is Ãa for a 2 F£; so de…ning

l0(v) = l(¼

µ
a
1

¶
v)(4.23)

we see that if l(¼(z)v) = Ã(z)v then l0(¼(z)v) = Ãa(z)v:
In the U(3) case the same idea, using m(t; 1) for t 2 E£; shows that if we have

an l for Ã; we have one for Ãt¹t: Since [F£ : NE=F (E
£)] = 2; there are two classes

of Ã’s modulo the torus action.

4.3.3. The existence theorem. In the GL(2) case, we already have the existence of
a Whittaker model. In the U(3) case, we start with an

lÃ 2 HomZ(¼;Ã):(4.24)

We may replace it with

lUÃ (v) =

Z

U

lÃ(¼(u)v)du(4.25)

over a small open U ½ R such that U \ Z ½ ker Ã: If we de…ne ÃUZ(uz) = Ã(z);
this is then well-de…ned. Furthermore:

1. If U is small enough so that it …xes v0 for which lÃ(v0) 6= 0; also lUÃ (v0) 6= 0:
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2. The functional lUÃ is …xed by U : lUÃ ± ¼(u) = lUÃ for all u 2 U:

3. Since Z and U commute, lUÃ (¼(z)v) = Ã(z)lUÃ (v):

Thus without loss of generality, lÃ itself is already …xed by U . In other words,

lÃ 2 HomUZ(¼; ÃUZ) =HomR(¼; Ind
R
UZÃUZ):(4.26)

However, just as in the case of the ordinary Heisenberg representation, one proves
that IndRUZÃUZ = c-IndRUZÃUZ (the problem is only in inducing to N; since D
is compact anyhow) and as a result, IndRUZÃUZ is unitarizable, hence completely
reducible. This means that for some irreducible (¾;X) 2 bR(Ã) there exists a non-
zero

LÃ 2 HomR(¼; ¾) = HomG(¼; Ind
G
R¾):(4.27)

This gives the ¾-Whittaker model.

4.4. Uniqueness of the generalized Whittaker model (the Gelfand-Kazhdan
method).

4.4.1. The spaces Hom1(V;X). Quite generally let G and H be groups, (X; ¿) a
smooth representation of H and (V; ¼) a smooth representation of G: Then H £G
acts on Hom(V;X) via

(h; g) : A 7! ¿(h) ±A ± ¼(g¡1):(4.28)

We write Hom1(V;X) for the subspace of A ’s on which this action is smooth. Note
that if A is any homomorphism, Á1 2 S(H) and Á2 2 S(G) then ¿(Á1) ±A ± ¼(Á2)
is in Hom1(V;X):

In particular we have End1(X) and ¿(Á) belongs to it for every Á 2 S(H): The
following lemma is clear.

Lemma 4.9. If A 2 End1(X) and tA is the transpose of A; then tA preserves ~X
(the smooth dual) and de…nes ~A 2 End1( ~X):

4.4.2. Contragredients of representations of G. Let G be the unitary group, and
consider the automorphism g® = ¹g and the anti-automorphism gµ = ¹g¡1: Note
that they preserve the subgroup R. If ¼ is a smooth representation of G we let
¼®(g) = ¼(g®):

Lemma 4.10 (MVW, p.91). Let (¼; V ) be an irreducible admissible representation
of G: We have (¼®; V ) ' (~¼; ~V ):

Proof. Let Á 2 S(G): We let Á®(g) = Á(g®);
¢
Á(g) = Á(g¡1) and Áµ(g) = Á(gµ):

The operator ¼(Á) is of …nite rank (by the admissibility of ¼) and we let Tr¼(Á) =
Tr ¼(Á): This is a distribution on G (i.e. a linear functional on S(G)). Moreover,
it is invariant under conjugation, i.e. if ° 2 G and C°(Á)(g) = Á(°¡1g°) then
Tr¼ ±C° = Tr¼ : In addition, it satis…es Tr¼(Á1 ¤ Á2) = Tr¼(Á2 ¤ Á1):

It is well-known that to prove that ¼® and ~¼ are isomorphic, it is enough to
prove that Tr¼® = Tr~¼ (see [Bump], Theorem 4.2.1). Now

Tr~¼(Á) = Tr¼(
¢
Á)(4.29)

and Tr¼®(Á) = Tr¼(Á
®): Thus we are reduced to showing that Tr¼(Á

µ) = Tr¼(Á):
Now gµ is conjugate in G to g. This is non-trivial, see [MVW, Prop. I.2 p.79] and
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the remark below. The claim follows now from [K-G, Theorem 1a on p.101], where
it is shown that if T is a distribution which is invariant under conjugation, then
T (Áµ) = T (Á):

Remark 4.2. It is a rewarding exercise to check that gµ and g are conjugate. For
example, for

g = m(t; s)n(b; z) =

0
@

t tb tz
0 s ¡s¹b

¹t¡1

1
A(4.30)

(z + ¹z = ¡b¹b; s¹s = 1), we have

gµ =

0
@
¹t¡1 ¡s¹b tz
0 s tb

t

1
A :(4.31)

One has to distinguish two cases: if t¹t = 1 conjugation by m(r; 1) for an appropriate
r 2 E1 does the job. Otherwise, …nd the eigenvector of g with eigenvalue ¹t¡1 and
check that it is isotropic. Then everything follows (why?).

4.4.3. Gelfand datum. We assume that the group G is unimodular. A pre-Gelfand
datum (G;H; (X; ¿);µ ;t ) is given by:
² H ½ G a closed subgroup
² (X; ¿) a countable-dimensional irreducible admissible representation of H
² g 7! gµ is an involution of G; preserving H and the (left) Haar measures on
G and on H: For Á 2 S(G) let Áµ(g) = Á(gµ):

² A 7! tA is an involution of End1(X), satisfying

¿(Áµ) = t¿(Á)(4.32)

for Á 2 S(H):

Example 4.1. (i) (R;D; ¹; µ(g) = ¹g¡1; ta = a)
(ii) (GL2(F ); Z;Ã; µ(g) = w(tg)w¡1; ta = a) where w = (0; 1; 1; 0)
(iii) (G = U(3);R; (X; ¿); µ(g) = ¹g¡1; see below for t)

Let S(G) = C1c (G); with

Á1 ¤ Á2(g) =
Z

G

Á1(gh
¡1)Á2(h)dh(4.33)

as product. De…ne, for h1; h2 2 H

Sh1;h2Á(g) = Á(h¡11 gh¡12 ):(4.34)

An End1(X)-valued distribution on G is a linear map T from S(G) to End1(X):
It is called quasi-invariant if

T (Sh1;h2Á) = ¿(h1) ± T (Á) ± ¿(h2)(4.35)

for all h1; h2 2 H; Á 2 S(G): The convolution T1 ¤ T2 is de…ned as follows. Let

Á(g1g2) =
X

Á1;i(g1)Á2;i(g2):(4.36)

Then

T1 ¤ T2(Á) =
X

T1(Á1;i) ± T2(Á2;i):(4.37)

If both Ti are quasi-invariant, so is T1 ¤ T2:
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De…ne

T µ(Á) = tT (Áµ):(4.38)

Then (check!)

(Á1 ¤ Á2)µ = Áµ2 ¤ Áµ1; (T1 ¤ T2)µ = T µ
2 ¤ T µ

1 :(4.39)

Lemma 4.11. If T is quasi-invariant, so is T µ:

Proof. One checks easily that (Sh1;h2Á)
µ = Shµ2;hµ1Á

µ: Then

T µ(Sh1;h2Á) = t[T (Shµ2;hµ1Á
µ)]

= t[¿(hµ2) ± T (Áµ) ± ¿(hµ1)](4.40)

= ¿(h1) ± T µ(Á) ± ¿(h2):

A pre-Gelfand datum is called a Gelfand datum if any End1(X)-valued quasi-
invariant distribution is µ-invariant.

4.4.4. Two lemmas on duals. Let (¼; V ) be an admissible (not necessarily irre-
ducible, in this subsection) representation of a group G: Recall that (~¼; ~V ) denotes

the smooth dual, and that (thanks to the admissibility of ¼), eeV = V (i.e. the
canonical embedding of V in ~V 0 = Hom( ~V ;C) identi…es V with the smooth vectors
in ~V 0). Recall that for Á 2 C1c (G)

¼(Á)(v) =

Z

G

Á(g)¼(g)vdg:(4.41)

We clearly have, for ~v 2 ~V

h¼(Á)v; ~vi =
Z

G

Á(g)
­
v; ~¼(g¡1)~v

®
dg

=

¿
v;

Z

G

¢
Á(g)~¼(g)~vdg

À
=

¿
v; ~¼(

¢
Á)~v

À
(4.42)

where
¢
Á(g) = Á(g¡1) (the last step used the unimodularity of G).

Lemma 4.12. Let » 2 ~V 0: The de…nition

h¼(Á)»; ~vi =
¿
»; ~¼(

¢
Á)~v

À
(4.43)

de…nes a map ¼(Á) : ~V 0 ! V:

Proof. This map de…nes ¼(Á)» as an element of ~V 0: It remains to show that it is

smooth, i.e. ¼(Á)» 2 eeV = V: Let U be an open subgroup such that Á(hg) = Á(g)
for h 2 H: Then

h¼(Á)»; ~¼(h)~vi =

¿
v;

Z

G

¢
Á(g)~¼(gh)~vdg

À

= h¼(Á)»; ~vi :(4.44)
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Next, consider quasi-invariant V -valued distributions on G; i.e.

T 2 HomS(G)(S(G); V );(4.45)

or T : S(G) ! V satisfying T (Á1 ¤ Á) = ¼(Á1)T (Á): Since S(G) is not a ring with
1; this turns out to be larger than V:

Lemma 4.13. We have

HomS(G)(S(G); V ) = ~V 0:(4.46)

Proof. De…ne i : HomS(G)(S(G); V ) ! ~V 0 by i(T )(~v) = hT (Á); ~vi ; for any Á such

that ~¼(
¢
Á)~v = ~v (for example we may take Á =

¢
Á the characteristic function of

a compact open subgroup U stabilizing ~v; divided by its Haar measure). In the

opposite direction de…ne j : ~V 0 ! HomS(G)(S(G); V ) by j(»)(Á) = ¼(Á)(») 2 eeV =
V: It is easy to check that these two maps are inverse to each other.

4.4.5. The main theorem.

Theorem 4.14. Assume that we are given a Gelfand datum (G;H; (X; ¿);µ ;t ):
(i) For any countable dimensional irreducible admissible representation (¼; V ) of

G we have

dimHomH(¼jH ; ¿) ¢ dimHomH(~¼jH ; ~¿) · 1:(4.47)

(ii) If both dimensions are non-zero (hence 1), (~¼; ~V ) ' (¼®; V ) where ¼®(g) =
¼((gµ)¡1):

Remark. In the application to U(3) we shall have ¼®(g) = ¼(¹g) where ¹g is
complex conjugation applied to a matrix g: In the application to GL(2) we shall
have ¼®(g) = ¼(w(tg)¡1w¡1) » ¼( tg¡1):

Given ¸ 2 HomH(¼jH ; ¿) we de…ne a homomorphism

S(G)! Hom1(V;X); Á 7! ¸Á = ¸ ± ¼(Á)(4.48)

where, as usual, ¼(Á)v =
R
G
Á(g)¼(g)v dg: Note that Á 7! ¸Á intertwines the G£H

action on both sides, i.e. if g1 2 G and h1 2 H then

[(g1; h1)Á](g) = Á(h¡11 gg1); (g1; h1)A = ¿(h1) ±A ± ¼(g1)¡1(4.49)

and then ¸(g1;h1)Á = (g1; h1)¸Á:

Lemma 4.15. The kernel

J(¸) = fÁ 2 S(G)j¸Á = 0g(4.50)

determines ¸ up to a scalar.

Proof. The module Hom1(V;X) is an irreducible admissible G £H-module (see
[B-Z]). Hence Á 7! ¸Á is surjective. Assume J(¸) = J(¸0): Consider the diagram

0 ! J(¸) ! S(G) ¸! Hom1(V;X) ! 0
jj jj # u

0 ! J(¸0) ! S(G) ¸0! Hom1(V;X) ! 0

:(4.51)

Then u is an isomorphism, but by Schur’s lemma it must be a scalar c: It follows
that (¸0 ¡ c¸)Á = 0 for every Á; hence ¸0 = c¸:
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Let Á 2 S(G): Given ¸ 2 HomH(¼jH ; ¿) and ¹ 2 HomH(~¼jH ; ~¿) we consider
the generalized Bessel distribution

T (Á) = ¸ ± ¼(Á) ± ¹_ 2 End1(X):(4.52)

Here, if ~V is the space of ~¼ (the smooth G-dual of ¼), ¹_ : X ! ~X 0 ! ~V 0 is the
algebraic dual of ¹ (restricted to X). Note that even if we use the admissibility
of ¿ to identify X with the smooth H-dual of ~X; ¼jH is not admissible and the
smooth H-dual of ( ~V ; ~¼) may be larger than V: However, ¼(Á) smoothens ~V 0 and
maps it back to V: Thus T (Á) maps X to X: It is a smooth endomorphism because
if Á is bi-invariant under translation by an open U ½ H then both ¹_ and ¸ being
H-homomorphisms, T (Á) is also bi-invariant under U .

Lemma 4.16. The distribution T is quasi-invariant (for H and ¿).

Proof. Clear.

Consider the bilinear form

B : S(G)£ S(G)! End1(X)(4.53)

de…ned by

B(Á1; Á2) = T (Á1 ¤
¢
Á2):(4.54)

By the assumptions of the theorem, since T is quasi-invariant, T = T µ: Hence

B(Á1; Á2) = T µ(Á1 ¤
¢
Á2) =

tT ((Á1 ¤
¢
Á2)

µ)

= tT (
¢
Á
µ

2 ¤ Áµ1) = tT (Á®2 ¤
¢
Á
®

1 )(4.55)

= tB(Á®2 ; Á
®
1 ):

Note that B(Á1; Á2) = ¸ ± ¼(Á1) ± ¼(
¢
Á2) ± ¹_ and the image of ¼(

¢
Á2) ± ¹_; as Á2

runs over S(G); spans V: Thus J(¸) is the left kernel of B: Similarly, ¹ ± ~¼(Á2) = 0
if and only if ¼(

¢
Á2) ± ¹_ = 0; so the right kernel of B is J(¹): But the formula

B(Á1; Á2) =
tB(Á®2 ; Á

®
1 ) implies that

J(¸) = J(¹)®:(4.56)

For another ¸0 we have J(¸0) = J(¹)® = J(¸) hence ¸ and ¸0 are proportional. Note
that for the proof to work we need to have a non-zero ¹: Thus dimHomH(¼jH ; ¿) =
1: Similarly dim(~¼jH ; ~¿) = 1: Finally, to get (ii) of the main theorem, the identity
J(¹) = J(¸)® yields a commutative diagram

0 ! J(¸) ! S(G) ¸! Hom1(V;X) ! 0
# # ® # ®

0 ! J(¹) ! S(G) ¹! Hom1( ~V ; ~X) ! 0

(4.57)

where the vertical arrows are isomorphisms induced by ®: For any representation
W of G or G £ H let W® be the representation obtained by …rst applying the
automorphism ® to the group, following it by the action on W (“twisting” the
representation by ®). Then the meaning of the diagram is that as G£H modules

Hom1(V ®; X®) ' Hom1( ~V ; ~X):(4.58)

But this implies, that as G-modules, V ® ' ~V :
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4.4.6. Application to representations of R. We apply the main theorem to the pre-
Gelfand datum (R;D; ¹; µ(g) = ¹g¡1; ta = a):

Lemma 4.17. This is a Gelfand datum, i.e. any quasi-invariant ditribution T is
µ-invariant.

Proof. In this case X = C so a quasi-invariant distribution is a linear functional
T : S(R)! C satisfying

T (Sd1;d2Á) = ¹(d1d2)T (Á):(4.59)

Now D £D (D = E1) is a compact group, so S(R) decomposes as a direct sum
with respect to the characters of D £ D (acting via left and right translations).
A quasi-invariant distribution is nothing else but a linear functional on the Hecke
algebra

H(R; ¹) =
©
Á 2 S(R)jÁ(d1gd2) = ¹¡1(d1d2)Á(g)

ª
:(4.60)

As T µ(Á) = T (Áµ); all that we have to show is that Á 2 H(R; ¹) is µ-invariant,
where Áµ(g) = Á(¹g¡1): But

m(1; s)n(b; z)m(1; s)¡1 = n(s¡1b; z)(4.61)

so if Á 2 H(R;¹); Á(n(a; z)) = Á(n(b; z)) whenever NE=F (a) = NE=F (b): Now

n(a; z)µ = n(¡¹a; z); m(1; t)µ =m(1; t):(4.62)

It follows that Á(gµ) = Á(g) for g = n(a; z) or g =m(1; t) hence for every g 2 R:

Corollary 4.18. (see 3.10) In the decomposition of an irreducible representation
(X; ¿) of R under D

X =
M

¹2 bD

X¹(4.63)

every X¹ is at most one-dimensional. As a result, X is D-admissible.

Proof. Note that if HomD(¿; ¹) 6= 0 then also HomD(~¿ ; ~¹) 6= 0: But the main
theorem now gives that both dimensions are 1.

Corollary 4.19. If g® = ¹g (= (gµ)¡1) then ( ~X; ~¿) is isomorphic to (X; ¿®):

Proof. This follows from the main theorem. It also follows from the existence of
an invariant inner product on (X; ¿); together with the fact that Á 7! Á(¹g) is a
conjugate-linear automorphism of X: In other words, if Á 2 X; recall that Á is a
certain function on N; with N acting by right translation and D via !iÃ: Then

Á¤(g) = Á(¹g) also lies in X: The existence of an inner product implies that ~¿
is conjugate-isomorphic to ¿ ; and the map Á 7! Á¤ is a conjugate-isomorphism
between ¿ and ¿®; thus ~¿ ' ¿®:

Corollary 4.20. There exists a well-de…ned involution t on End1(X) such that

t¿(Á) = ¿(Áµ)(4.64)

for Á 2 S(R):
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Proof. Fix an isomorphism i : X ! ~X such that ~¿(g) ± i = i ± ¿(¹g) and de…ne
tA = i¡1 ± ~A ± i(4.65)

where ~A is the dual of A on ~X: Then
t¿(Á) = i¡1 ± g¿(Á) ± i

= i¡1 ± ~¿(
¢
Á) ± i(4.66)

= ¿(Áµ)

since Áµ(g) = Á(¹g¡1) =
¢
Á(¹g):

4.4.7. Conclusion of the proof of uniqueness. To prove the uniqueness of a general-
ized Whittaker model for U(3) we apply the main theorem to the pre-Gelfand datum
(G = U(3);R; (X; ¿); µ(g) = ¹g¡1; t): The following lemma is the Key Lemma.

Lemma 4.21. This is a Gelfand datum.

Proof. We must show that if T (Sh1;h2Á) = ¿(h1) ± T (Á) ± ¿(h2) for all h1; h2 2 R

then T µ = T; i.e. tT (Áµ) = T (Á) for every Á 2 S(G): Equivalently, we have to show
that if

T (Á1 ¤ Á ¤ Á2) = ¿(Á1) ± T (Á) ± ¿(Á2)(4.67)

for all Á 2 S(G) and Ái 2 S(R); then tT (Á) = T (Áµ): Note that ¿ satis…es this
relation (when Á 2 S(R)), so the essence of the lemma is that the quasi-invariance
forces this relation to hold on the larger Hecke algebra S(G):

Consider the Bruhat decomposition G = P [ PwN: Then the double cosets
NnG=N are represented by the matrices m(t; s) and m0(t; s) = m(t; s)w. Call these
representatives (when t runs over E£ and s over E1) ¢ and ¢0: We have an exact
sequence

0! S(PwN)! S(G)! S(P )! 0(4.68)

and a dual exact sequence for distributions. If T is quasi-invariant so is T µ: Con-
sidering T ¡ T µ instead of T it is enough to show that if T is quasi-invariant and
T µ = ¡T; then T = 0: By the just-mentioned exact sequence, it is enough to do
it separately for distributions on P and distributions supported on the big Bruhat
cell. We do it …rst for the latter.

Since S(PwN) = S(N)­S(¢0)­ S(N) we may …x Á 2 S(¢0) and consider

TÁ : S(N)£S(N)! End1(X)(4.69)

given by TÁ(Á1; Á2) = T (Á1 ­ Á­
¢
Á2) where (n1; n2 2 N)

Á1 ­ Á­
¢
Á2(n1m

0(t; s)n2) = Á1(n1)Á(m
0(t; s))Á2(n2):(4.70)

This becomes then a quasi-invariant End1(X)-valued distribution on N£N; where
we consider End1(X) as an admissible N £N -module via left and right ¿ -action.

As we have seen, there exists an ®(Á) 2 ^End1(X)
0

such that

T (Á1 ­ Á­ Á2) = ¿(Á1) ± ®(Á) ± ¿(Á2):(4.71)

Now (Á1 ­ Á­ Á2)
µ = Áµ2 ­ Áµ ­ Áµ1, so from the known properties of ¿
tT ((Á1 ­ Á­ Á2)

µ) = ¿(Á1) ± t®(Áµ) ± ¿(Á2)(4.72)
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and (the key point!) for Á 2 S(¢0), Áµ = Á since µ is the identity on ¢0. We must
show then that t®(Á) = ®(Á):

Recall that X =
L

¹2 bDX¹ with each dimX¹ · 1; and the transpose on
End1(X) was obtained from the identi…cation of the dual of X¹ with X®

¹ : Thus
tA = A for A 2 End1(X) (or in its double-dual) whenever A commutes with ¿(d)
for d 2 D: It is now an easy consequence of the fact that ¢0 commute with D; that
®(Á) commutes with ¿(d); hence t®(Á) = ®(Á): Note that here we use the fact that
T is also D-quasi-invariant. Previously we only used quasi-invariance with respect
to N; and R =DN:

Finally, we consider distributions supported on P: The same analysis shows that
we may look at Á1 ­ Á with Á1 2 S(N) and Á 2 S(¢); and that

T (Á1 ­ Á) = ¿(Á1) ± ®(Á)(4.73)

for some ®(Á) 2 ^End1(X)
0
, that we now have to show satis…es t®(Áµ) = ®(Á): We

may assume that Á is the characteristic function of an open compact subset of ¢:
However, m(t; s) 2 ¢ are not anymore invariant under µ; unless t¹t = 1; so we can
not say that Áµ = Á: Luckily, the relation

m(t; s)n(0; z) = n(0; t¹tz)m(t; s)(4.74)

together with the equivariance (on both sides!) of T imply that if Á is supported
on m(t; s) with t¹t 6= 1 we must have ®(Á) = 0:

Lemma 4.22. We have

HomR(¼jR; ¿) 6= 0 , HomR(~¼jR; ~¿) 6= 0:(4.75)

Proof. We have already noticed that ~¼ ' ¼® and that ~¿ ' ¿®: But clearly, any
R-homomorphism between ¼ and ¿ is also an R-homomorphism between ¼® and
¿®:

Given the two lemmas, the uniqueness of the generalized Whittaker model follows
immediately from the main theorem.

4.5. Kirillov models and exceptional representations.

4.5.1. Exceptional representations. Let (¼;V ) be an irreducible in…nite-dimensional
admissible representation of G = U(3): Let ¤(¼; Ã) be the set of (¿;X) 2 bR(Ã) for
which there exists a ¿ -Heisenberg functional

¸¿ : ¼jR ! ¿(4.76)

(hence a ¿ -Heisenberg model). Let ¤(¼) =
S
Ã 6=1 ¤(¼; Ã):

The torus T = fm(t; 1)j t 2 E£g acts on bR; the element m(t; 1) sending (¿ ;X)
to (¿ t; X) where

¿ t(r) = ¿(m(t; 1)rm(t; 1)¡1):(4.77)

Note that E1 acts trivially, and in general m(t; 1) maps bR(Ã) to bR(Ãt¹t): This action
preserves ¤(¼); because if ¸¿ is a ¿ -Heisenberg functional then

¸¿t(v) = ¸¿(¼(m(t; 1))v)(4.78)

is a ¿ t-Heisenberg functional. Let ­(¼) be a set of representatives for the quotient
of ¤(¼) by this action. If Ã1 and Ã2 are representatives of the Ã0s modulo the
action of NE=F (E

£) then ­(¼) is represented by ¤(¼;Ã1) [¤(¼;Ã2):
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De…nition 4.1. We call ¼ exceptional if j­(¼)j = 1: As we shall see below, the
Weil representations !(°; Ã; Â) are exceptional.

In general, ­(¼) may be …nite or in…nite. The following facts are proved in
Piatetski-Shapiro’s Yale lectures:
² If ­(¼) is …nite, then ¼ does not have an (ordinary) Whittaker model, i.e. it

is degenerate.
² If ¼ is supercuspidal, this condition is also necessary, i.e. ¼ is non-degenerate

if and only if ­(¼) is in…nite.
Thus Weil representations are “the most degenerate” representations. Note that

Weil representations may be supercuspidal or (constituents of) principal series alike.

4.5.2. Kirillov models. Let (¿ ;X) 2 ¤(¼;Ã): Let ¸¿ 2 HomR(¼jR; ¿) be a Heisen-
berg functional. Then

W ¿
v (g) = ¸¿(¼(g)v)(4.79)

is a function from G to X; which transforms like ¿ under left translation by R: It
is uniquely determined by ¿ ; up to a scalar. De…ne a function E£ ! X

'¿v(t) =W ¿
v (m(t; 1)):(4.80)

Lemma 4.23. Let ­(¼) be a set of representatives as above for the action of T on
¤(¼): If '¿v = 0 identically for each ¿ 2 ­(¼) then v = 0:

Proof. If this is the case, then '¿v vanishes for every ¿ 2 ¤(¼); because conjugating
¿ by m(t1; 1) has the e¤ect of translating the function '¿v by t1: But the proof of
the existence of Heisenberg models showed that for every v 6= 0 there exists a Ã
such that v =2 V (Z; Ã): Under this condition we have constructed a functional ¸¿
for some ¿ 2 ¤(¼;Ã); not vanishing on v; and proved that it is unique up to a
scalar. Hence '¿v 6= 0:

The linear map assigning the collection of functions f'¿v j ¿ 2 ­(¼)g to v is
therefore injective. It is called the Kirillov model of ¼: If ¼ is exceptional, it consists
of a single function. The nature of these functions is captured by the following
proposition.

Proposition 4.24. (i) For every v there exists a c(v) > 0 such that '¿v(t) = 0 if
jtj > c(v); for every ¿ 2 ­(¼):

(ii) For every v and (¿ ;X) 2 ­(¼) the space of X spanned by '¿v(t) (for all
t 2 T ) is …nite dimensional.

(iii) Assume T0 ½ T is compact. Then for every v; the set of ¿ 2 ­(¼) where
'¿v jT0 6= 0; is …nite.

(iv) Let (¿ ;X) 2 ­(¼): Then for every ' 2 C1c (E
£;X) there exists a v 2 V

such that '¿v = ' and '¿
0

v = 0 for every ¿ 6= ¿ 0 2 ­(¼):

Proof. (i) The proof is based on the identity

m(t; 1)n(0; z) = n(0; t¹tz)m(t; 1):(4.81)

Let U ½ F be small enough open compact so that ¼(n(0; z))v = v for z 2 U: Then

'¿v(t) = W ¿
v (m(t; 1)n(0; z))

= W ¿
v (n(0; t¹tz)m(t; 1))

= Ã(t¹tz)'¿v(t):(4.82)
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For t large Ã(t¹tz) 6= 1 for some z 2 U; proving '¿v(t) = 0:
(ii) Fix v and ¿ : If U ½ D is open compact such that ¼(U) …xes v; then for

u 2 U; t 2 T

¿(u)'¿v(t) = ¸¿ (¼(ut)v)

= ¸¿ (¼(tu)v)

= ¸¿ (¼(t)v) = '¿v(t):(4.83)

Thus '¿v(t) is …xed by U; and part (ii) follows from the fact that X is D-admissible.
(iii) See P.-S. lectures, p. 32.
(iv) See P.-S. lectures, p. 33.

4.5.3. The modules V (N) and V (Z). Let (¼;V ) be admissible irreducible represen-
tation of G. Recall the de…nition

V (N) = Span f¼(n)v ¡ vj v 2 V; n 2 Ng(4.84)

V (Z) = Spanf¼(z)v¡ vj v 2 V; z 2 Zg:

Clearly V (Z) ½ V (N) ½ V: Recall that VN = V=V (N) is the Jacquet module, and
that it is at most 2 dimensional, and vanishes if and only if ¼ is supercuspidal.

Lemma 4.25. (i) If v 2 V (N) then every '¿v (¿ 2 ­(¼)) has a compact support.
(ii) A vector v 2 V (Z) if and only if every '¿v (¿ 2 ­(¼)) has compact support,

and only …nitely many '¿v do not vanish.

Proof. (i) Let v1 = ¼(n)v ¡ v: Then

'¿v1(t) = ¸¿ (¼(tnt
¡1)¼(t)v)¡ ¸¿ (¼(t)v)

= (¿(tnt¡1)¡ 1)'¿v(t):(4.85)

But when ¿ and v are …xed, '¿v(t) belong to a …nite dimensional subspace of X; so
if jtj is small, tnt¡1 is close to 1 in N and …xes it, hence '¿v1(t) = 0: On the other
hand we have seen that when jtj is large, '¿v(t) = 0 too.

(ii) Let v1 = ¼(z)v ¡ v: Fix Ã and let ¿ 2 ¤(¼; Ã): Then

'¿v1(t) = (Ã(t
¹tz)¡ 1)'¿v(t):(4.86)

When jtj is small this is 0 independently of ¿ : Thus there exists a compact T0 where
all the '¿v1 are supported. By the previous proposition, part (iii) only …nitely many
of them do not vanish. Conversely, suppose the conclusion of (ii) holds. To show
that v 2 V (Z) we must show that

Z

U

¼(z)vdz = 0(4.87)

for some (large enough) open compact U: Let fÃ1; Ã2g be representatives for the
Ã’s. If the integral is not 0, then there exists a j 2 f1; 2g, a ¿ 2 ¤(¼; Ãj) and a
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t 2 T such that

0 6= ¸¿t(

Z

U

¼(z)vdz)

=

Z

U

W ¿
v (m(t; 1)n(0; z))dz(4.88)

=

Z

U

W ¿
v (n(0; t¹tz)m(t; 1))dz

=

Z

U

Ã(t¹tz)dz ¢ '¿v(t):

Since there are only …nitely many ¿ to consider, and for each ¿ the support of '¿v(t)
is compact, there is a compact set T0 ½ T to consider altogether. But then we can
…nd a large enough U so that Ã(t¹tz) is a non-trivial character on U for all t 2 T0;
hence the integral vanishes for all choices of ¿ and t:

Corollary 4.26. If ­(¼) is …nite, then V (Z) = V (N):

Proof. Clear.

Corollary 4.27. For any (¼;V ) the map ' 7! ('¿v)¿2­(¼) de…nes an isomorphism
of B-modules (where B = TR)

V (Z) '
M

¿2­(¼)

c-IndTRR ¿ :(4.89)

Proof. The map is well de…ned by part (ii) of the lemma, and respects the TR-
action (note that T acts on the right also on ¿ ; i.e. we have to identify c-IndTRR ¿
with c-IndTRR ¿ t). The injectivity follows from the fact that if all '¿v (¿ 2 ­(¼))
vanish, v = 0 (the Kirillov model). The surjectivity follows from part (iv) of the
proposition.

Theorem 4.28. (i) The representation ¼ does not have an ordinary Whittaker
model if and only if V (Z) = V (N) (e.g. if ­(¼) is …nite, and in particular if ¼ is
exceptional).

(ii) If ¼ is supercuspidal (V (N) = V ) then this happens if and only if ­(¼) is
…nite.

4.5.4. Weil representations are exceptional. We prove together the following two
theorems.

Theorem 4.29. The Weil representation ¼ = !(°; Ã; Â) is exceptional. Moreover,
let ¿ 0 = Â ­ ¿(°;Ã) be the representation of R0 = CR where we have labelled
the representations in bR(Ã) by ° (the parameter used in labelling splitting of the
metaplectic group extension over unitary groups). Then ­(¼) = f¿ 0g:

Theorem 4.30. There is a bijection !(°;Ã; Â)$ ¿(°; Ã; Â) = Â­ ¿(°;Ã) between
Weil representations and T -orbits in cR0 (recall C ' E1 is the center).
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5. Global theta functions on the unitary group (survey)

5.1. The global metaplectic group.

5.1.1. Notation. F a number …eld, A the adeles of F; Fv the completion, Ov the
ring of integers (v - 1), Ã =

Q
v Ãv a non trivial character of FnA: Let (W; h; i)

be a symplectic space of dimension 2n over F; and for each v …x a model (Sv; ½v)
of the Heisenberg representation of H(W;Fv) associated to Ãv: At vj1 this is a
Hilbert space and we let S1v be the space of smooth Schwartz (rapidly decaying)
functions in the Schroedinger model.

Let L be a lattice in W (F ): We say that v is unrami…ed if

² v - 21
² Ãv is unrami…ed (of conductor 1)
² Lv is self dual.

These conditions hold for all but …nitely many v: If they hold, H(W;Ov); an
extension of Lv by Ov, is an integral structure in H(W;Fv); and the subspace of
vectors …xed by it in Sv is one-dimensional. Fix a generator s0v for the H(W;Ov)-
invariants. Let

S1 =
O

vj1

S1v ­
0O

v-1

Sv(5.1)

where the restricted tensor product is taken with respect to the s0v: This is the space
of Schwartz-Bruhat functions. Then the group

H(W;A) =
0Y

v

H(W;Fv)(5.2)

acts on S1 via ½Ã =
N0

½v:

For v unrami…ed, the stabilizer Kv of s0v in cSp(W;Fv) is a compact open subgroup
lifting Sp(W;Ov): Let N be the kernel of the product map

Q0
v f§1g ! f§1g and

de…ne

cSp(W;A) =
0Y

v

cSp(W;Fv)=N:(5.3)

The tensor product representation

!Ã =
0O

v

!v(5.4)

(on the space S1), where !v is the metaplectic representation of cSp(W;Fv) asso-
ciated with Ãv; factors through cSp(W;A): We call it the global metaplectic repre-
sentation associated with Ã: We let fSp(W;A) = C££f§1gcSp(W;A) and extend !Ã
naturally to it.

5.1.2. The theta functional. The following theorem is the corner-stone of the mod-
ern theory of theta functions. It is implicit in Weil’s Acta paper, but appears for
the …rst time in Howe’s Corvalis lecture, where he does not give a proof, but calls
it a “strong form of the Poisson summation formula”.
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Theorem 5.1. There exists a unique-up-to-scalar distribution

£ : S1 ! C(5.5)

which is invariant under the action of H(W;F ) ½H(W;A):

Proof. Fix a complete polarization W = X© Y of W w.r.t. h; i : Choose the model
SYv = S(Xv) for Sv: Then S1 is identi…ed with the space S(XA) of Schwarz-Bruhat
functions on XA: In terms of this model we can de…ne

£(Á) =
X

x2XF

Á(x):(5.6)

The sum converges absolutely and is clearly invariant under H(W;F ):
To prove uniqueness we eventually have to prove (a generalization of) the fol-

lowing lemma.

Lemma 5.2. Let £ : S(R) ! C be a tempered distribution which is invariant
under translation by 1 and also under multiplication by e(x) = exp(2¼ix): Then,
up to a scalar

£(Á) =
X

n2Z
Á(n):(5.7)

Equivalently, both £ and £ ± F where F is the Fourier transform, are invariant
under translation by Z: This lemma is standard Fourier analysis, the only subtle
point being the topological issues hidden in the de…nition of tempered distributions.
The lemma implies the Poisson summation formula (since if £ satis…es it, so does
£±F) hence is often considered as a “strong version of Poisson summation formula”.

5.1.3. Splitting over rational points. As a corollary of the uniqueness of the theta
functional, Weil proved the following.

Theorem 5.3. The covering fSp(W;A)! Sp(W;A) splits uniquely over Sp(W;F ):

Proof. Uniqueness follows from the fact that Sp(W;F )0 = f1g: To prove that the
covering splits, note that since fSp(W;F ) normalizes H(W;F ); for any g 2 fSp(W;F );
the distribution

Á 7! £(gÁ)(5.8)

(Á 2 S1) is also H(W;F )-invariant, hence is equal to ¸(g) ¢£; and ¸ is a character
splitting the exact sequence

0! C£ ! fSp(W;F )! Sp(W;F )! 0:(5.9)

Note that the proof also shows that for every g 2 Sp(W;F ); £(gÁ) = £(Á):
Indeed, the splitting is de…ned by letting ¸(g) = 1 for g 2 Sp(W;F ):

5.1.4. The global Weil representation as an automorphic representation of fSp(W;A).
From a di¤erent perspective, the theta distribution embeds (S1; !Ã) uniquely in
A(Sp(W;F )nfSp(W;A)): Just as we did for Whittaker models locally, when we in-
terpreted a Whittaker functional as giving rise to a Whittaker model (Frobenius
duality), we can de…ne for Á 2 S1 and g 2 fSp(W;A)

µÁ(g) = £(!Ã(g)Á):(5.10)
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The function µÁ is left invariant under Sp(W;F ) and can be proved to be auto-
morphic: slowly increasing, K-…nite, Z-…nite, where Z is the center of the universal
enveloping algebra of fSp(W;F1):). It is also a genuine function on fSp(W;A); mean-
ing that C£ acts on it (via right translation) as scalars, so in particular it does not
descend to Sp(W;A):

Clearly, Á 7! µÁ intertwines the action of fSp(W;A) (via !Ã) on Á with right trans-
lation. Thus the existence of £ means that !Ã is automorphic and the uniqueness
is a multiplicity 1 result.

Note that for di¤erent Ã; the resulting subspaces of A(Sp(W;F )nfSp(W;A)) are
disjoint.

The functions µÁ are called theta functions. In the case of SL2 = Sp2 one can
get in this way the classical Jacobi theta function as an automorphic form.

The key point to remember is that !Ã is a very special, in fact very “small”
automorphic representation. In a certain precise sense (??) it is the smallest auto-
morphic representation after the one-dimensional ones. However, when we restrict
it to the preimage ~G1£ ~G2 in fSp(W;A) of a dual reductive pair G1£G2 in Sp(W;A)
(Note: the ~Gi will still commute), and in particular if the metaplectic group splits
over G1 £ G2; as is often the case, we get very interesting representations of the
smaller groups Gi and a correspondence between such representations.

5.2. Splitting over GA.

5.2.1. Compatible adelic splitting. Let E=F be a quadratic extension of number
…elds, z 7! ¹z denoting the non-trivial element in Gal(E=F ): We borrow the notation
from the beginning of the notes and let G = U(V; (; )) where V = E3 etc. It is an
algebraic group over F . We let W be the restriction of scalars of V (from E to F )
and h; i = Im(; ) the symplectic form on W: ThenG ½ Sp(W ): Fix Ã as before. Let
C be the center of G (isomorphic to E1 = ker(E£ ! F£) as an algebraic group).

Since every Gv =G(Fv) lifts to fSp(Wv); and for almost all v we can choose the
embedding to respect the compact subgroups G(Ov) and Sp(W (Ov)), it is possible
to lift GA to fSp(WA): However, the global rational points GF sit inside Sp(WF );

which already lifts uniquely, by Weil, to fSp(WA); and we would like to know that
these liftings are compatible.

Recall that the liftings s(°v) : Gv ! fSp(Wv) are classi…ed by characters °v :
E£v ! C£ whose restriction to F£v is ´Ev=Fv : If v is inert or rami…ed in E this was
mentioned before. If v is split, then Ev = Fv £ Fv; Gv = GL3(Fv) and the same
holds true, if we interprete the groups correctly. This is valid also for vj1:

Proposition 5.4 (Ge-Ro2). Suppose that the °v are the local components of an
idele class character

° : E£nE£A ! C£(5.11)

whose restriction to F£nF£A is ´E=F : Then the resulting embedding s(°) of GA in
fSp(WA) is compatible over GF with the (unique) splitting of the metaplectic group
over Sp(WF ):

If °¤ is another such idele class character, then °¤(z) = °(z)º(z=¹z) where º is a
character of E1nE1A and

s(°¤)(g) = s(°)(g) ¢ º(det g):(5.12)
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5.2.2. Global Weil representations and theta functions on the unitary group. Given
an idele class character ° and an additive character Ã on FnFA as before, we get
the representation !Ã;° of GA by

!Ã;°(g) = !Ã(s(°)(g))(5.13)

on the space S1 of Schwartz-Bruhat functions ©. As an explicit model for S1
it is convenient to take, in the case of U(3); the mixed model described above.
At any given v we take Sv = S(Ev;Fv), Schwartz functions on Ev with values in
Fv; the lattice model for the Heisenberg representation of H(Ev); with the “small”
metaplectic representation !1Ã of fSp(Ev) acting on Fv: We have worked it out for
…nite non-split v: One can do it also for vj1 or …nite split v; where the group Gv

becomes GL3(Fv):
In any case, given a Schwartz-Bruhat function

© 2
0O

v

S(Ev;Fv)(5.14)

we can associate to it a theta function on g 2 GA

µ©(g) = £(!Ã(s(°)(g))©):(5.15)

The fact that s(°) maps GF to Sp(WF ) and that g 7! £(gÁ) is left invariant
under Sp(WF ) implies that µ© is a well-de…ned automorphic form on GFnGA:
Clearly, the map © 7! µ© intertwines the representation !Ã;° with the right regular
representation of GA on A(GFnGA):

Caution. The space of theta functions that we have produced depends both on
Ã and on °: It will be denoted

£(Ã; °) ½ A(GF nGA):(5.16)

5.2.3. Explicit formulas for !Ã;°. Working in the mixed model, Gelbart and Ro-
gawski gave the following explicit formulas. Recall that © is a Schwartz-Bruhat
function on EA with values in FA = ­

0

vFv; and for Fv we can take the lattice
model: nice functions on Ev satisfying Á(a+ x) = Ãv(¡ha; xiv =2)Á(x) for a 2 Ov:
We assume that ° is unitary.
² For s 2 E1A

!Ã;°(m(1; s))©(w) = !1Ã;°(s)(©(w)):(5.17)

Here !1Ã;° is the “small” metaplectic representation of E1A on FA: The splitting
s(°); when restricted to matrices of the form m(1; s); provides a lifting of
U(E) = E1 to fSp(E) ½ fSp(W): (Note that the preimage of Sp(E) ½ Sp(W );

E = Ee2 ½W; in fSp(W ); can be canonically identi…ed with fSp(E).) Thus °
gives also !1Ã;° = !1Ã ± s(°)jE1 :

² For t 2 E£A

!Ã;°(m(t; 1))©(w) = °(t)jtj1=2©(¹tw):(5.18)

² For n(b; z) 2 NA

!Ã;°(n(b; z))©(w) = Ã(zw ¹w)½1Ã(n(bw; 0))©(w):(5.19)

6. Fourier analysis on GA (survey)

6.1. Fourier expansion along Z.
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6.1.1. Fourier-Jacobi coe¢cients along Z. Let ' 2 A(GF nGA): Since ZF nZA is
compact we may de…ne, for any additive character Ã of FnFA; the Ã-th Fourier(-
Jacobi) coe¢cient along Z to be

'Ã(g) =

Z

ZFnZA
'(zg)Ã(z)dz:(6.1)

Then 'Ã(zg) = Ã(z)'Ã(g) for z 2 ZA: When Ã = 1 we denote this integral by

'Z(g) =

Z

ZFnZA
'(zg)dz::

We say that ' is hypercuspidal if 'Z ´ 0 and cuspidal if 'N ´ 0; where

'N (g) =

Z

NF nNA

'(ng)dn:(6.2)

We have

'(g) = 'Z(g) +
X

Ã 6=1
'Ã(g):(6.3)

Since the matrices m(t; 1) of the torus TF (i.e. t 2 E£) normalize ZF nZA it is
easy to verify that

'Ãt¹t(g) = 'Ã(m(t; 1)g):(6.4)

Lemma 6.1. Assume that 'Ã = 0 for every Ã 6= 1: Then ' factors through the
map

det : GF nGA ! E£nE£A :(6.5)

In particular, if ' belongs to an in…nite dimensional discrete automorphic unitary
representation (see below) then some 'Ã 6= 0:

6.1.2. Fourier expansion of 'Z along N. Since 'Z is left-invariant under NFZA;
and NFZAnNA ' EnEA we may de…ne, for any character » of EnEA

W »
'(g) =

Z

NFZAnNA

'Z(ng)»(n)dn:(6.6)

This is just an (ordinary) Whittaker »-function on GA:

W »
'(ng) = »(n)W »

'(g):(6.7)

Note that if » is non-trivial, all the others are »a (a 2 E£). We have

'Z(g) = 'N(g) +
X

» 6=1
W »

'(g):(6.8)

Thus ' is hypercuspidal if and only if it is cuspidal, and all its ordinary Whittaker
functions (Fourier coe¢cients along N) W »

' = 0:
Since the torus TF normalizes NFZAnNA it is easy to check that

W »
'(m(t; 1)g) =W »t

' (g):(6.9)

Thus one Whittaker function of ' vanishes if and only if they all vanish.
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6.1.3. Classi…cation of unitary automorphic representation on G. A unitary rep-
resentation ¼ of GA is called a discrete representation if it can be realized on a
closed subspace V¼ of L2(GFnGA) (GA acting by right translation). The automor-
phic forms in ¼ (i.e. functions which are smooth, of moderate growth, K-…nite
and Z-…nite where Z is the center of the enveloping algebra of G1) form a dense
subspace V 0¼ . When we write integrals involving functions from V¼ we often assume
implicitly that they belong to V 0¼ : The integrals, often over a set of measure zero
in GA; do not make sense for L2 functions.

Let ¼ be a discrete representation. We say that ¼ is cuspidal if 'N = 0 for all
' 2 V 0¼ :

We say that ¼ is hypercuspidal if 'Z = 0 for all ' 2 V 0¼ : We thus have (denoting
hypercuspidal spectrum by 00)

L2(GF nGA)00 ½ L2(GFnGA)0 ½ L2(GF nGA)d:(6.10)

6.1.4. Representations of R. In applying Fourier analysis to the study of cuspidal
representations it is not enough to do harmonic analysis on N; because for hyper-
cuspidal functions, all W»

' vanish.
Let R be the centralizer of Z in G: It is larger than the group DN which was

called R in the local sections, but not much:

R = C£DnN(6.11)

and both C and D are isomorphic to E1: Its center is C£Z:
The importance of the groupR lies in the fact that because it commutes with Z;

left integration against Ã(z) over ZF nZA does not destroy automorphy with respect
to RF ; i.e. the functions (here ' 2 A(GFnGA) is a …xed automorphic function)

r 7! 'Ã(rg)(6.12)

are functions on RF nRA: Now this space is compact, so we have a discrete decom-
position

L2(RF nRA) =
M

¿2 bR

L2(RF nRA)¿(6.13)

where bR is (by de…nition) the automorphic spectrum of R (which is, by comactness,
all discrete). Gelbart and Rogawski [Ge-Ro2, Theorem 2.2.1] proved:

Theorem 6.2. Every ¿ 2 bR appears with multiplicity one, i.e. L2(RF nRA)¿ is
irreducible.

The central character of ¿ is given by

(Â; Ã)(6.14)

where Â and Ã are automorphic characters of C and Z; i.e. characters of CF nCA =
E1F nE1 and ZF nZA as usual. Gelbart and Rogawski gloss over Ã = 1 saying that ¿
is one-dimensional then. I do not understand it, as the group R=Z is not abelian,
essentially “dihedral”. Is it possible that all its automorphic representations are
1-dimensional?

In any case, we are interested in the ¿ whose restriction to ZA is Ã: As EF

is a maximal isotropic subgroup of EA; these can be realized on the space of L2

functions on NFnNA which transform under ZF nZA via Ã; and NA acts via the
adelic Heisenberg representation ½Ã (right translation). After we have decomposed
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w.r.t. the characters Â of CFnCA; multiplicity one now is the global analogue of
the multiplicity one result that we had for the local R:

The space parametrizing the ¿ is the same as the space parametrizing the Weil
representations - triples (°; Ã; Â) where ° is an idele class character of E£nE£A
whose restriction to F£nF£A is the quadratic Hecke character ´E=F ; Ã and Â as
before.

6.1.5. Primitive Fourier coe¢cients. Let Ã 6= 1 as before, …x g 2 GA and decom-
pose the function of r

'Ã(rg) =
X

¿2 bR(Ã)

'¿ (r; g)(6.15)

according to the spectral decomposition of L2(RF nRA): Then for a …xed r1 2 RA

'¿ (rr1; g) 2 L2(RF nRA)¿(6.16)

hence '¿ (rr1; g) = '¿ (r; r1g) and we may write unambiguously '¿ (r; g) = '¿ (rg):
We then substitute r = 1 and get the decomposition

'Ã(g) =
X

¿2 bR(Ã)

'¿ (g):(6.17)

Of course, we may further decompose with respect to the automorphic characters
Â of C: The '¿ are called the primitive Fourier-Jacobi coe¢cients. Rogawski and
Glauberman (J. Crelle XXX) worked them out in the classical language of FJ
expansions and proved multiplicity one there, although it is not clear to me in
what sense this is di¤erent from the representation theoretic multiplicity one result
(except for the language). As usual, there are issues of level appearing in the
classical language (related essentially the conductor of °) and “new versus old”
questions.

Once again, the torus TF normalizes RF and we have

'¿ t(g) = '¿ (m(t; 1)g):(6.18)

Thus if the primitive FJ coe¢cient corresponding to ¿ = ¿(°; Ã; Â) is non-zero, so
is the one corresponding to ¿t. Note that the parameters of ¿ t are (°; Ãt¹t; Â):

6.1.6. Exceptional automorphic representations. As in the local case, we denote by
¤(¼) the set of ¿ 2 bR for which some '¿ 6= 0; for ' 2 V¼: Once again, this collection
is a union of orbits of TF and we call ¼ exceptional if

² ¤(¼) consists of a single orbit under TF
² For every ' 2 V¼; 'N = 'Z :

Thus a cuspidal ¼ is exceptional if it is hypercuspidal and ¤(¼) consists of one
orbit only. But non-cuspidal exceptional representations exist (see below).

Proposition 6.3. If ¼ is globally exceptional, all its local components are excep-
tional.

For this one would have to discuss Heisenberg models for local GL3 at the split
primes, and the archimedean places, which we have not had time to cover.

6.2. Irreducible Weil representations.
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6.2.1. The !(Ã; °;Â) and global theta lifting. Recall the space£(Ã; °) ½ A(GF nGA)
of the functions

µ©(g) = £(!Ã;°(g)©)(6.19)

where © runs over the Schwartz-Bruhat functions in the metaplectic representation
of fSp(WA): We write

£(Ã; °; Â)(6.20)

for the subspace on which CF nCA acts via Â: Note that as CA = E1A is compact,
the Â are unitary.

Theorem 6.4. (i) The space £(Ã; °) is contained in L2(GFnGA)d (but not neces-
sarily in the cuspidal part).

(ii) The closure of £(Ã; °; Â) in L2 is an irreducible unitary representation de-
noted by !(Ã; °; Â) (these are the global Weil representations).

(iii) The representation !(Ã; °;Â) is exceptional. the unique TF -orbit in ¤(¼)
is the one containing ¿(Ã; °; Â):

Since CFnCA is compact the projection onto the Â-component is given by

µ© 7!
Z

CF nCA
µ©(ug)Â(u)du

=

Z

CF nCA
£©(!Ã;°(ug))Â(u)du(6.21)

where£© is the theta function associated to © on fSp(WA): This is an instance of the
global theta correspondence on the dual reductive pair (C;G) (theta series lifting
from U(1) to U(3)). For any automorphic character Â of C = E1; the corresponding
space £(Ã; °;Â) (which of course depends on ° and Ã) is non-zero. However, it is
not always cuspidal.

Remark 6.1. (i) The question whether !(Ã; °; Â) is cuspidal (hence, being excep-
tional, also hypercuspidal) is equivalent to the vanishing of a theta series lifting from
U(1) to U(1): In turn, the existence of a Ã 6= 1 for which such a theta series lifting
does not vanish is equivalent to L(1

2
; °¡1Â¡1E ) 6= 0 (here ÂE(z) = Â(z=¹z)). I may

be mistaken about the precise Hecke character of E …guring out in the L-value...
(ii) The theta liftings, where non-zero, are compatible with the local theta liftings

(local Howe conjecture is known here).

7. The Shimura integral and L(¼; s) (survey)

8. Appendices

8.1. The Leray invariant.

8.1.1. Leray invariants of mutually transversal maximal isotropic subspaces. Let
(W; h; i) be a symplectic space over a …eld F; char:F 6= 2: Let ­3(W ) be the set of
ordered triples (X;Y; Z) of maximal isotropic subspaces, and ­3(W )0 the triples
which are mutually transversal. Let G = Sp(W ): While G acts transitively on
­2(W )0; it does not act transitively on ­3(W )0; and the Leray invariant L(X; Y; Z)
is an invariant which completely classi…es the G-orbits on ­3(W )0:
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Let (X; Y; Z) 2 ­3(W )0: Let u : W = X
L

Y ! X be the projection along Y
and q(z1; z2) the bilinear form on Z

q(z1; z2) = hz1; u(z2)i :(8.1)

Then q is symmetric and non-degenerate. In fact, if zi = xi + yi then

q(z1; z2) = hy1; x2i = ¡hx1; y2i = hy2; x1i = q(z2; z1):(8.2)

The Leray invariant L(X; Y; Z) is the isomorphism type of the quadratic space
(Z; q):

Lemma 8.1. The Leray invariant classi…es G-orbits on ­3(W )0:

Proof. If g 2 G then clearly L(X; Y;Z) = L(gX; gY; gZ) by transport of structure.
Conversely, suppose (X; Y; Z) and (X 0; Y 0; Z0) are in ­3(W )0 and have the same
Leray invariant. Since G acts transitively on ­2(W )0 we may assume X = X0 and
Y = Y 0: Fixing a symplectic basis subordinate to W = X

L
Y we have

n =

µ
1 b
1

¶
2 Sp2n(F )(8.3)

(b = tb) which is the identity on X; mapping Y to Z; and similarly n0 mapping Y
to Z 0: Note that b and b0 are non-singular, by tranversality. By assumption (q ' q0)
there is an h 2 GLn(F ) with b0 = thbh: But then

µ
th

h¡1

¶µ
1 b
1

¶µ
th

h¡1

¶¡1
=

µ
1 b0

1

¶
(8.4)

so g =

µ
th

h¡1

¶
maps (X;Y;Z) to (X 0; Y 0; Z 0):

8.1.2. Leray invariants in general. We now attach an invariant to any triple (X;Y;Z) 2
­3(W ): Let

R = X \ Y +X \ Z + Y \ Z:(8.5)

Then R is an isotropic subspace,

R? = (X + Y ) \ (X +Z) \ (Y +Z)(8.6)

and R?=R is a symplectic space with the induced alternating form. If w 2 R? and
we write w = x+ y (x 2 X and y 2 Y ), then both x and y belong to R?: It follows
that R? = (R?\X)+(R?\Y ) and modulo R we get maximal isotropic subspaces

XR = (R
? \X +R)=R(8.7)

and similarly YR and ZR which are mutually transversal. We de…ne L(X; Y;Z) as
L(XR; YR; ZR):

8.2. Weil index.
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8.2.1. A new class of functions. Let F be a locally compact non-archimedean …eld
and Ã : F ! C1 a non trivial additive character. Let X be a …nite dimensional
vector space over F and X¤ = Hom(X;F ) its dual. We write x¤x for the pairing
of x 2 X and x¤ 2 X¤ and

hx¤; xi = Ã(x¤x):(8.8)

A lattice in X is an open compact OF -submodule.
Let S(X) and S(X¤) be the spaces of Schwartz functions on X and X¤ respec-

tively, i.e. locally constant complex-valued functions of compact support.
Let dx and dx¤ be dual Haar measures. By this we mean that if f 2 S(X) and

g(x¤) = Ff(x¤) =
Z

X

hx¤; xi f(x)dx(8.9)

then Fourier inversion holds:

f(¡x) = Fg(x) =
Z

X¤
hx¤; xi g(x¤)dx¤:(8.10)

For example, if Ã is normalized so that OF is its own dual, and X0 and X¤0 are
dual lattices in X and X¤ then we may normalize dx and dx¤ by agreeing that X0
and X¤0 have measure 1.

It is then well known that F is a unitary isomorphism of S(X) with S(X¤), so
extends to an isomorphism of L2(X;dx) with L2(X¤; dx¤):

We want to introduce another class of functions2 W(X) containing S(X) which
is of interest, and to which F extends naturally. The advantage of this class is
that it makes no use of the topology of C: In fact, we may continue to assume (as
we could clearly do up till now) that C is an arbitrary algebraicly closed …eld of
characteristic 0. Another advantage of this class is that if Q is a quadratic form on
X then ÁQ(x) = Ã(Q(x)) belongs to W(X):

De…nition 8.1. A function f : X ! C belongs to W(X) if it is locally constant,
and there exists a lattice Lf ½ W with the property that for every lattice L ½ Lf

there exists a compact set K ½X such that for every x =2 KZ

L

f(x+ u)du = 0:(8.11)

De…nition 8.2. A pair of lattices L ½ K is called good for f if for every x =2 K
(8.11) holds.

If (L;K) is good for f; so is (L;K0) for every K ½ K0. Every function in W(X)
has good pairs of lattices with arbitrarily small L: As a last piece of terminology, call
a function h : X ! C uniformly locally constant if it is invariant under translation
by some lattice.

Proposition 8.2. (i) S(X) ½ W(X):
(ii) If Q is a quadratic form on X then ÁQ(x) = Ã(Q(x)) 2 W(X):
(iii) If f 2 W(X) and h is uniformly locally constant, then hf 2 W(X):

Proof. Points (i) and (iii) are clear. Point (ii) follows from the fact that if (u; v) =
Q(u+ v)¡Q(u)¡Q(v)

ÁQ(x+ u) = ÁQ(x)Ã((x; u))ÁQ(u):(8.12)

2W for Weil
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Let L be small enough so that ÁQ(u) ´ 1 for u 2 L: Then for x =2 L?;
R
L Ã((x; u))du =

0:

De…nition 8.3. If f 2 W(X) then Z

X

f(x)dx(8.13)

is de…ned by …xing a good pair of lattices L ½ K and letting the integral equalR
K
f(x)dx:

This integral is well-de…ned. First note that replacing K by a larger lattice K 0

does not change the integral because K 0 ¡ K is a …nite disjoint union of cosets
of L: Next, if L0 ½ K 0 is another good pair of lattices, then by the …rst remarkR
K =

R
K+K0 =

R
K0 :

8.2.2. The Fourier transform. Let f 2 W(X) and x¤ 2 X¤: Since hx¤; xi is a
uniformly locally constant function of x; the integral

Ff(x¤) =
Z

X

hx¤; xi f(x)dx(8.14)

is de…ned. If f 2 S(X) it agrees with the Fourier transform of f; so belongs to
S(X¤):
Lemma 8.3. The function Ff(x¤) is locally constant.

Proof. Let K¤ be a lattice in X¤ containing x¤ and let L ½ K be a good pair of
lattices for f with hK¤; Li = 1: Let L¤ ½ K¤ be a lattice satisfying hL¤; Ki = 1:
Let u¤ 2 L¤: Then, as a function of x; hx¤ + u¤; xi is invariant under L; so L ½ K
is good for the function hx¤ + u¤; xi f(x) and

Ff(x¤ + u¤) =

Z

K

hx¤ + u¤; xi f(x) =
Z

K

hx¤; xi f(x) = Ff(x¤)(8.15)

since hu¤; xi = 1 for u¤ 2 L¤ and x 2 K:

Lemma 8.4. The function Ff 2 W(X¤):
Proof. Let L¤ be a lattice in X¤: Let (L¤)? be the dual lattice in X and L ½ (L¤)? a
lattice such that fj(L¤)? is invariant under translation by u 2 L: Let L¤ ½ K¤ = L?:
We claim that if x¤ =2 K¤ thenZ

L¤
Ff(x¤ + u¤)du¤ = 0:(8.16)

Let x¤ =2 K¤: As Ff is locally constant and L¤ is compact, there is a large
enough lattice K in X such that

Ff(x¤ + u¤) =

Z

K

hx¤ + u¤; xi f(x)dx(8.17)

for all u¤ 2 L¤: Without loss of generality, (L¤)? ½ K: Now
Z

L¤
Ff(x¤ + u¤)du¤ =

Z

L¤

µZ

K

hx¤ + u¤; xi f(x)dx
¶
du¤

=

Z

K

hx¤; xi f(x)
µZ

L¤
hu¤; xi du¤

¶
dx

= c

Z

(L¤)?
hx¤; xi f(x)dx(8.18)
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with c equal to the measure of L¤: But over (L¤)? the function f(x) is invariant
under L; while hx¤; xi is not L-invariant, since x¤ =2 K¤ = L?; so the integral
vanishes.

Theorem 8.5. The Fourier transform is an isomorphism of W(X) with W(X¤)
and satis…es FFf(x) = f(¡x):


