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These notes contain many more details than I could present at the talk,

and in particular are aimed at listeners with mathematical backgound.

1. Sums of two squares

1.1. Introduction. Pierre de Fermat was a French amateur mathematician, per-
haps the most serious amateur the subject has ever witnessed. From the town of
Toulouse, in the High Court of which he served as a councillor, he corresponded
with other prominent mathematicians of his time. In those days it was not yet
common to publish one’s results in a scholarly paper submitted to a Journal or
The Academy. Rather, if you discovered a good theorem, you reported it to your
rivals and challenged them to …nd the proof themselves, supplying hints but not
much more. Fermat made astounding discoveries in many branches of mathematics,
from number theory to optics. For some of these discoveries, such as his famous
“last theorem”, he surely did not have a proof. A handful of his statements were
wrong. But mostly he was right, and, as historians believe today, had convincing
arguments, if short of full proofs by modern standards.

In a letter to Mersenne from 1640 Fermat made an observation which amounts
to the following theorem.

Theorem 1.1. An odd prime p is of the form x2 + y2 for integers x and y if and
only if p ´ 1mod4:

Remark 1.1. Clearly, 2 = 12 + 12: Since a square leaves residue 0 or 1 modulo
4, a sum of two squares is never 3 modulo 4, so the necessity of the condition
p ´ 1mod4 is obvious. What is not obvious is that every prime of this form is
indeed a sum of two squares.

Fermat gave only a sketch of a proof in his letter. Leonhard Euler, a Swiss-born
mathematician who spent most of his career in St. Petersburg, and is considered
the most proli…c mathematician of all times, learned about Fermat’s discoveries
in number theory from Goldbach in 1729. In 1732, when he was only 25, Euler
published his …rst paper, refuting a conjecture of Fermat that every number of the
form 22

n

+ 1 is prime. Euler simply showed that 641 divided 232 +1: The theorem
on sums of two squares gave him a much greater headache, and he managed to give
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a full proof only in 1749. We shall now describe Euler’s proof in modern language.
It consists of two essentially distinct steps.

1) The descent step (the terminology will become clear later on): If the con-
gruence x2+ y2 ´ 0mod p has a non-trivial solution, then there exists a solution in
integers to x2 + y2 = p:

Non-trivial means that at least one of x or y (hence in fact both) is not divisible
by p.

2) The reciprocity step: If p ´ 1mod4; then the congruence x2+y2 ´ 0mod p
has a non-trivial solution.

1.2. Review of some algebra. All commutative rings are assumed to have 1.
Recall that an ideal in a commutative ring R is a proper subset I of R closed under
addition and subtraction (i.e. it is an additive subgroup) and under multiplication
by every element of R: Ideals show up naturally in algebra because they are the
kernels of homomorphisms between rings. If f : R! S is a homomorphism between
commutative rings, ker(f) is an ideal. Conversely, if I is an ideal, the quotient group
R=I can be given a ring structure ((a+ I)(b + I) = ab + I) so that the canonical
projection R! R=I becomes a ring homomorphism with kernel I . Since 1 =2 I; an
ideal is never a subring.

If a 2 R is a non-invertible element, the set (a) = aR is an ideal. Such ideals are
called principal.

If I and J are ideals, IJ denotes the ideal consisting of all …nite sums of products
of an element from I with an element from J . This de…nes an associative and
commutative multiplication on the set of ideals, and the product I1I2 ¢ ¢ ¢ Ir is
therefore de…ned unambiguously by induction on r. For example, the product of
two principal ideals is again principal (b)(c) = (bc):

A domain is a subring of a …eld. A commutative ring is a domain if and only if
it has no zero divisors: the product of two nonzero elements is nonzero. A principal
ideal domain (PID) is a domain in which every ideal is principal: of the form

I = (a)

for some (non-unique, in general) a, called a generator of I. The rings Z and R[X]
are PID’s. In both of them this follows from the existence of a Euclidean algorithm.
Let us recall how it works in Z; because we shall soon have the occasion to immitate
it in a similar example. Given a 6= 0 and b in Z, the Euclidean algorithm tells us
that there exist q; r such that jrj < jaj and

b = qa+ r:

Note that unless ajb; there are two possible values of r: We can make r unique if we
insist, for example, that ¡a=2 < r · a=2; but this is not necessary for our purposes.
Now given a non-zero ideal I in Z; pick 0 6= a 2 I such that jaj is minimal. It is
an easy exercise to show that I = (a): Although PID’s are nice, you should keep in
mind that they are very special rings. The ring R[X; Y ] is already not a PID. The
ideal consisting of all the polynomials vanishing at the origin (0; 0) is not principal
(prove it!).

A unit in a commutative ring R is an element u for which there exists a mul-
tiplicative inverse: a v 2 R such that uv = 1: Such a v is necessarily unique, so
is denoted u¡1. The units in R are denoted R£ and they form a multiplicative
subgroup. For example, Z£ = f§1g : An element ¼ in a domain R is called irre-
ducible if whenever ¼ = bc; either b or c is a unit. It is called prime if whenever
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¼jbc (i.e. bc = ¼x is solvable in R), ¼jb or ¼jc: Both properties are well-known
characterizations of primes in Z: In general domains they need not be equivalent
properties, but it is an easy fact that in a PID, prime ´ irreducible (prove it!).

An ideal P in a commutative ring R is called a prime ideal if whenever bc 2 P;
b 2 P or c 2 P: Show that this is equivalent to R=P being a domain. The element
¼ is prime if and only if the ideal (¼) is prime. This follows at once from the
dictionary b 2 (¼) , ¼jb: Thus for PID’s there isn’t much new in the de…nition,
because we can always test the primeness of an ideal by checking the primeness of
any generator of it. In rings which are not PID’s however, the notion of a prime
ideal is much more useful than the notion of a prime element. Keep this remark in
mind. It will be crucial later on in the course.

PID’s are unique factorization domains (UFD’s): every a 2 R is a …nite product
of primes (irreducibles), and this product is unique up to a change of order and
the multiplication of the prime factors by units. Stated explicitly, if a = ¼1 : : : ¼r
and a = ¼01 : : : ¼

0
s are two decompositions as products of primes, then r = s; and

after a reordering of the indices ¼0i = ui¼i for ui 2 R£: Note that already here the
language of ideals is better suited: an equivalent formulation is that every ideal I
in R is a …nite product I = P1P2 ¢ ¢ ¢ Pr of primes, and the Pi are unique up to
order. In fact (¼) = (¼0) if and only if ¼0 = u¼ for a unit u. Thus if I = (a); to
the decomposition a = ¼1 : : : ¼r as a product of prime elements, which is unique
up to ordering and the replacement of ¼i by ¼0i = ui¼i (ui 2 R£; and of course
u1 : : : ur = 1), we attach the decomposition I = P1P2 ¢ ¢ ¢ Pr with Pi = (¼i) which
is unique up to ordering only! Once you become accustomed to the formulation of
the UFD property in PID’s in terms of ideals, it will not be surprising that when
we lose the PID property, unique factorization of ideals becomes the right notion
to look at!

1.3. The descent step. We look at the ring Z[i] = fx+ yij x; y 2 Zg called the
ring of Gaussian integers. It has 4 units Z[i]£ = f§1;§ig ; and may be depicted as
the lattice Z2 in the Euclidean plane.

Lemma 1.2. Z[i] is a PID, hence a UFD.

Proof. As for Z; this follows from the existence of a Euclidean algorithm: if a 6=
0; b 2 Z[i] then there are q; r 2 Z with b = qa+ r and jrj < jaj: (Prove this! How
small can we make jrj=jaj?). If I is a non-zero ideal in Z[i] and 0 6= a 2 I is an
element with jaj minimal (why does such an a exist?), show that I = (a):

Lemma 1.3. If q is a rational prime (i.e. a prime in Z) and q = x2 + y2; then
x+ iy is a prime in Z[i]:

Proof. Let · = x+ iy: Assume that · = ¸¹ in Z[i]: Then q = ·¹· = (¸¹̧)(¹¹¹) is a
decomposition in Z, hence either ¸¹̧ = 1 and ¸ is invertible or ¹ is invertible.

Lemma 1.4. If N = a2 + b2; q = x2 + y2 is prime (a; b; x; y 2 Z) and qjN; then
there exist a1; b1 2 Z such that N=q = a21 + b21; and any rational prime p which
divides both a1 and b1; divided already a and b:

Proof. In Z[i];

x+ yij(a+ bi)(a¡ bi):
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Since we have just seen that x+ yi is prime, it must divide one of the factors, let’s
say

a+ bi = (x+ yi)(a1 + b1i):

Multiplying by the conjugates this gives N = q(a21 + b21): If p divides both a1 and
b1 then it clearly divided both a and b:

We can now conclude the descent step. Suppose, by way of contradiction, that
the assertion was wrong, and consider the collection of all pairs (p;N) where p is a
prime which is not a sum of two squares, and N is an integer divisible by p which
may be written as a2+b2; for integers a and b not divisible by p. Since we assumed
that our assertion was wrong, this collection is non-empty. Order the collection
lexicographically: (p;N) < (p0; N 0) if p < p0 or p = p0 and N < N 0: Pick a minimal
(p;N): We shall reach a contradiction.

If jaj > p=2; we may replace it with a1 ´ amod p; ja1j < p=2; let N1 = a21+b
2 and

get a smaller pair (p;N1): Hence jaj < p=2; and similarly jbj < p=2; so N < p2=2:
Clearly, N is not p: If q is any prime factor of N=p; then q < p: Pick such a q: If

q is a sum of two squares, then by the last lemma, we may replace the pair (p;N)
by the pair (p;N=q); which is smaller.

If, on the other hand, q is not a sum of two squares, then either the pair (q;N)
is in our collection and is smaller than (p;N); or both a and b are divisible by q; in
which case we replace (p;N) by (p;N=q2):

In all cases we have managed to descend from a pair (p;N) to a smaller pair.
Since we have assumed our initial pair was minimal (alternatively, since such a
descent can not go on inde…nitely), we reach a contradiction. Hence our collection
of pairs (p;N) must have been empty to begin with.

1.4. The reciprocity step. This step was the more di¢cult one for Euler. In
modern language, however, it is rather simple. Suppose p ¡ 1 = 4k: Consider the
…eld Fp = Z=pZ and the equation

x4k ¡ 1 = (x2k ¡ 1)(x2k + 1) = 0
over it. By Fermat’s little theorem it has 4k distinct solutions in Fp; namely all the
non-zero elements of the …eld. Nevertheless, at most 2k of them annihilate x2k¡ 1;
so there must be a solution of x2k + 1 = 0: If a is any integer representing x then

a2 + 12 ´ 0mod p
which is what we wanted to get, in fact with b = 1:

Modern language allows to give a shorter argument for the whole proof, conceal-
ing the descent argument, as follows. If p ´ 1mod4 then

Z[i]=(p) = Z[X]=(p;X2 + 1)
= Fp[X]=(X2 + 1):

As we have just seen in the reciprocity step, the polynomial X2 +1 splits in Fp[X]
into a product of two relatively prime (linear) factors, so Z[i]=(p) = Fp £ Fp and p
is not prime in Z[i]. If ¼ is a prime of Z[i] dividing p; then ¹¼j¹p = p as well. But ¹¼
and ¼ are distinct primes: they do not di¤er by a unit, or they would be §1 § i;
and p would have to be 2 (check it!). By unique factorization, ¼¹¼ divides p in Z[i]:
Being a rational integer, it must divide p in Z (why?), hence must be equal to it:
p = ¼¹¼: Writing ¼ = x+ yi we get p = x2 + y2: We have chosen to go through the
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more elaborate proof outlined above both for historical reasons, and to emphasize
the principle of descent, which plays a prominent role in many areas in number
theory.

1.5. Where Euler failed. By the same method Euler proved the following two
“theorems” of Fermat.

Theorem 1.5. A prime p = x2 + 2y2 if and only if p = 2 or p ´ 1; 3mod8:

Theorem 1.6. A prime p = x2 + 3y2 if and only if p = 3 or p ´ 1mod3:

For the …rst theorem work in the ring Z[
p
¡2]: For the second, there is a little

twist. The ring Z[
p
¡3] is not a PID. One has to work in the slightly larger ring

Z[¡1+
p
¡3

2
]; and to bother about 2’s in the denominators, but other than that, the

arguments are the same.
We leave the equation p = x2 + 4y2 as an exercise. It follows at once from the

study of p = x2 + y2 (why?).
Fermat also conjectured the following theorem.

Theorem 1.7. A prime p = x2 + 5y2 if and only if p = 5 or p ´ 1; 9mod20:

When Euler tried to follow the same two-step path he rather quickly found that
reciprocity step led to the following.

Theorem 1.8. Non-trivial solutions to x2+5y2 ´ 0mod p exist if and only if p = 5
or p ´ 1; 3; 7; 9mod20:

However, the descent step did not work any more. The ring Z[
p
¡5] turned out

not to be a PID, nor a UFD. Indeed,

6 = 2 ¢ 3 = (1 +
p
¡5)(1¡

p
¡5)

and 2; 3; 1§
p
¡5 are all irreducible elements, so factorization is not unique. Related

problems are that the ideal (2; 1+
p
¡5) is not principal, and that 3 is irreducible but

not prime (because it does not divide 1§
p
¡5 although it divides their product).

And x2 + 5y2 ´ 0mod3 has the solution (1; 1); but the equation x2 + 5y2 = 3 is
clearly insolvable.

Euler could not solve the puzzle, and turned his attention to generalizations of
the reciprocity step that we shall consider in the next lecture. It was Lagrange,
who in his memoire Recherches d’Arithmétique (1773-1775) developed the theory
of quadratic forms to deal with the problem and showed that the quadratic form
x2+5y2 had a companion one, 2x2+2xy+3y2 of the same discriminant D = ¡20
(and up to equivalence of quadratic forms, no other). The right generalization of
the descent step led to the the following theorem.

Theorem 1.9. If the congruence x2 + 5y2 ´ 0mod p has a non-trivial solution
then either p = x2 + 5y2 or p = 2x2 + 2xy + 3y2: The …rst case occurs when
p ´ 1; 9mod20 and the second when p ´ 3; 7mod20:

1.6. Where Lagrange failed. The next surprise came with x2 + 27y2: As far as
the reciprocity step goes, this is no di¤erent than x2 + 3y2: In fact, since ¡27 =
(¡3) ¢ 32; asking whether ¡27 is a square modulo p is the same as asking whether
¡3 is a square, and Euler (perhaps Fermat) already knew that this is the case if an
only if p ´ 1mod3 (assume p 6= 3).
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The descent step led, as before, to a (unique, up to equivalence) companion
quadratic form, and showed that if p ´ 1mod3; either (i) p = x2 + 27y2 or (ii)
p = 4x2 + 2xy + 7y2: Both quadratic forms have D = ¡4 ¢ 27 = ¡108: Examples
of primes satisfying (i) are p = 31; 43; 109: Examples of primes satisfying (ii) are
7; 13; 19; 37; 61; 67; 73; 79; 97; 103: However, it is impossible to distinguish between
the primes satisfying (i) and the primes satisfying (ii) by a congruence on pmod108;
or modulo any other modulus! It took Gauss, the prince of mathematics, to prove
the following conjecture of Euler in 1805.

Theorem 1.10. A prime p = x2+27y2 if and only if p ´ 1mod3 and x3 ´ 2mod p
is solvable. A prime p = 4x2+2xy+7y2 if and only if p ´ 1mod3 and x3 ´ 2mod p
is non-solvable.

Surprisingly, cubic equations over …nite …elds intervene!
The appearance of several non-equivalent quadratic forms of the same discrim-

inant D = ¡20 or D = ¡108 is related to the failure of certain rings to be PID’s.
In both cases we have claimed that the two quadratic forms of discriminant D were
the only ones, up to equivalence. If you look up tables of class numbers (the number
of inequivalent quadratic forms of a given discriminant is called the class number of
the discriminant and denoted h(D)) you …nd indeed h(¡20) = 2; but h(¡108) = 3:
This is because there are two notions: equivalence and proper equivalence, and
the class number usually refers to the stricter notion of proper equivalence. The
two quadratic forms 4x2 § 2xy + 7y2 are equivalent (under the obvious change of
variables (x; y) 7! (¡x; y)) but not properly equivalent.

For a discussion of the Descent Step for the general quadratic form x2 + ny2;
n > 0; we refer to D.Cox’s beautiful book, Primes of the form x2+ny2: In the next
lecture we turn our attention, as Euler did, to generalizations of the Reciprocity
Step.

2. Quadratic Reciprocity

2.1. Gauss’ law of quadratic reciprocity. Let p be an odd prime. Euler asked
the question when does the congruence

x2 + ny2 ´ 0mod p

have a non-trivial solution. The question makes sense for any n; positive or negative,
and clearly depends only on nmod p: However, Euler …xed n and asked the question
for a variable p: There is no a-priori reason why this should be determined by
congruence relations on p: That this is indeed the case (as we have seen for n = 1)
is a deep and wonderful theorem.

Interpreted as an equation in the …eld Fp; Euler’s question is the same as asking
whether ¡n is a square in Fp:

For (p; n) = 1; Legendre de…ned the symbol
µ
¡n
p

¶

to be 1 if ¡n is a square modulo p and ¡1 if it is not a square modulo p. If pjn the
symbol is de…ned to be 0. Note that in terms of Legendre’s symbol, the number of
solutions in Fp to the equation x2 = ¡n is 1 + (¡n=p):
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Euler’s empirical discovery, based on the study of many numerical examples, was
that for a …xed n; whether or not (¡n=p) = 1 is determined by congruences on p
modulo 4jnj. Here are some entries from his tables, as communicated to Goldbach.
n condition for (¡n=p) = 1
3 p ´ 1; 7mod12 (, p ´ 1mod3)
5 p ´ 1; 3; 7; 9mod20
7 p ´ 1; 9; 11; 15; 23; 25mod28 (, p ´ 1; 2; 4mod7)
¡3 p ´ §1mod12
¡5 p ´ §1;§9mod20 (, p ´ 1; 4mod5)
¡7 p ´ §1;§3;§9mod28

Note that in half the cases the modulus can be taken jnj:
Euler did not specify in his conjecture which congruences modulo 4jnj should

appear. The reason for not being able to predict them was that he was interested
in general n: Gauss’ insight was that for n an odd prime there is a very neat formula.
That this formula su¢ces follows from the following lemma.

Lemma 2.1. (i) The Legendre symbol is multiplicative in the numerator
µ
nm

p

¶
=

µ
n

p

¶µ
m

p

¶
:

(ii) (¡1=p) = (¡1)(p¡1)=2
(iii) (2=p) = (¡1)(p2¡1)=8

Proof. (i) Consider the homomorphism Á : F£p ! F£p ; Á(x) = x2: Its kernel consists
of f§1g so the image H ½ F£p has (p¡ 1)=2 elements, hence is a subgroup of index
2. We therefore have a canonical homomorphism F£p ! f§1g which is 1 on H and
¡1 on its other coset. But H is just the set of square residues modulo p; so this
homomorphism is the Legendre symbol.

(ii) This is a restatement of the reciprocity step in Fermat’s theorem on sums of
two squares.

(iii) This is equivalent to (¡2=p) = 1 if and only if p ´ 1; 3mod8 which was
mentioned above.

Theorem 2.2. (Gauss’ law of quadratic reciprocity). Let p and q be two distinct
odd primes. Then

µ
p

q

¶µ
q

p

¶
= (¡1)

p¡1
2

q¡1
2 :

Using (i) an (ii) of the lemma, this is the same as (q=p) = (p¤=q) where p¤ =
(¡1)(p¡1)=2p:

Here is an example how Gauss’ law leads to a quick computation of the Legendre
symbol:¡

104
163

¢
=
³
23:13
163

´
=
¡
2
163

¢3 ¡ 13
163

¢
= (¡1)3(¡1)

¡
163
13

¢
=
¡
7
13

¢
= ¡

¡
13
7

¢
= ¡

¡¡1
7

¢
=

1:
Gauss gave several proofs of this celebratred theorem (there are many more

known today). We shall give two proofs: one elementary, that sheds little light on
its true meaning and possible generalizations. The second one uses some algebra
and basic number theory, but is more transparent.
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2.2. The elementary proof.

Lemma 2.3. (Gauss) For every integer a denote by fagp (or just fag if p is …xed)
the unique integer congruent to a modulo p satisfying

¡p=2 < fag < p=2:

Let a be relatively prime to p. Let ¹ be the number of elements in

S = ffag ; f2ag ; : : : ; f(p¡ 1)a=2gg

which are negative. Then
µ
a

p

¶
= (¡1)¹:

Proof. In absolute values, S covers 1; 2; : : : ; (p¡ 1)=2: Indeed, it contains (p¡ 1)=2
numbers whose absolute values are all in the range [1; (p ¡ 1)=2]; and no two are
opposite for if ia ´ ¡jamod p (1 · i; j · (p ¡ 1)=2) then p divides (i + j)a; but
i+ j · p¡ 1: It follows that modulo p

(p¡1)=2Y

i=1

i ´ (¡1)¹
Y
(ai)

´ (¡1)¹a(p¡1)=2
Y

i:

Dividing the congruence by
Q

i (legitimate, since it is nonzero modulo p) we get
that (¡1)¹ is congruent modulo p to a(p¡1)=2: Now consider the homomorphism

Ã : F£p ! F£p

given by Ã(a) = a(p¡1)=2: Its kernel contains at most (p ¡ 1)=2 elements, but on
the other hand it contains all the squares (denoted H above) by Fermat’s little
theorem, which are (p¡ 1)=2 in number. It therefore contains half of the elements
of F£p ; hence the image is of order 2, namely f§1g : Moreover, Ã(a) = 1 if and
only if a 2 H; if and only if (a=p) = 1: This shows that (¡1)¹ = 1 if and only if
(a=p) = 1: Since both expressions are §1; they are equal.

We now conclude the proof. Let ¹ be the number of negative elements among
fqgp ; : : : ; f(p¡ 1)q=2gp and likewise º the number of negative elements among
fpgq ; : : : ; f(q ¡ 1)p=2gq : We must show that

¹+ º ´ p¡ 1
2

q ¡ 1
2
mod2:

Let

A =

½
(i; j)j1 · i · p¡ 1

2
; 1 · j · q ¡ 1

2

¾
:

Decompose it into 4 parts (it is useful to draw them in the (i; j)-plane):

A1 = f(i; j) 2 Aj pj ¡ qi < ¡q=2g
A2 = f(i; j) 2 Aj ¡ q=2 < pj ¡ qi < 0g
A3 = f(i; j) 2 Aj 0 < pj ¡ qi < p=2g
A4 = f(i; j) 2 Aj p=2 < pj ¡ qig :
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Mapping (i; j) to (i0; j0) = (p+12 ¡ i; q+12 ¡ j) is a premutation of A that maps A1
bijectively onto A4: Thus

p¡ 1
2

q ¡ 1
2
= jAj ´ jA2j+ jA3jmod2:

We claim that jA2j = º and jA3j = ¹: Let us check the assertion for A2; the other
one being symmetrical. For a given j 2 [1; (q ¡ 1)=2]; there is a unique i 2 Z
such that ¡q=2 < pj ¡ qi < q=2; and then pj ¡ qi = fpjgq : If (i; j) 2 A2; we
conclude that fpjgq is negative. If, on the other hand, fpjgq is negative, then from
¡q=2 < pj ¡ qi < 0 we get that i 2 [1; (p ¡ 1)=2] and so (i; j) 2 A2:

2.3. More background in algebra, and a second proof. We shall assume
knowledge of Galois theory. Let ³ = e2¼i=p and F = Q(³): The …eld F is a splitting
…eld of the polynomial

f(X) = (Xp ¡ 1)=(X ¡ 1) = Xp¡1 + ¢ ¢ ¢+X + 1

since all the roots of f; which are the ³k for k = 1; : : : ; p ¡ 1; are in F . We claim
that f is irreducible. The proof, due to Eisenstein, uses the change of variables

g(Y ) = f(Y + 1) = [(Y + 1)p ¡ 1]=Y:

The coe¢cients of g are the binomial coe¢cients
¡
p
n

¢
and except for the leading

coe¢cient, are all divisible by p (since p divides the numerator of
¡
p
n

¢
but not the

denominator, when 0 < n < p). Moreover, the last coe¢cient of g is just p: Now
suppose we had a decomposition g = g1g2 where g1 and g2 are in Q[X]; of positive
degree, and monic. Since g is primitive, Gauss’ lemma on polynomials implies that
gi 2 Z[X]: Reading the equation modulo p gives Y p¡1 = ¹g1¹g2 in Fp[X]; which
implies that all the non-leading coe¢cients of gi are also divisible by p: But then
the free term of g would be divisible by p2; contradiction. This shows that g is
irreducible, hence f (why?).

Now F is obtained from Q by adjoining a single root of f(X); so is of degree
p¡ 1; and as we have seen, is Galois over Q:

Let G = Gal(F=Q): By Galois theory, its order is jGj = [F : Q] = p ¡ 1: We
are going to …nd its structure. There is a homomorphism (the cyclotomic character
modulo p)

Â : G! (Z=pZ)£

de…ned by assigning to ¾ 2 G the unique integer modulo p such that

¾(³) = ³Â(¾):

Check that this is well de…ned, that Â(¾¿) = Â(¾)Â(¿) and that Â is injective. Since
both domain and range have the same cardinality p¡ 1; it is an isomorphism. If a
is an integer prime to p we let ¾a be the unique ¾ for which Â(¾) = amod p: If q is
prime, ¾q is called the Frobenius substitution attached to q.

A number …eld is a sub…eld of C which is …nite dimensional over Q: We have al-
ready seen that number theoretic questions phrased entirely in Q are better studied
in number …elds such as Q(i): Moreover, the subring Z[i] played a special role in the
question of representing primes as sums of two squares. The subring Z[i] is a lattice
in Q(i) - it is the Z-span of a basis of Q(i) as a vector space over Q: A lattice in a
number …eld which is also a subring (contains 1 and is closed under multiplication)
is called an order. It turns out that any number …eld F has a unique maximal order
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that contains any other order. It is called the ring of algebraic integers in F and
denoted OF :

The ring of algebraic integers in Q is just Z (prove it!). If F = Q(³) as above,
OF = Z[³]; and 1; ³; : : : ; ³p¡2 is a basis for it over Z: If F = Q(

p
d) where d 2 Z

is square-free (positive or negative) then OF = Z[
p
d] if d ´ 2; 3mod4 but OF =

Z[ 1+
p
d

2 ] if d ´ 1mod4:
The ring OF is of key importance. It is in general not a PID, nor a UFD (recall

the example of Z[
p
¡5]). However, every ideal of OF has a unique (up to ordering)

decomposition into a product of prime ideals.
Going back to F = Q(³); whose Galois group G was identi…ed with (Z=pZ)£ ;

we recall that the group H of squares in (Z=pZ)£ is of index 2: We let K be
the quadratic extension of Q which is …xed by H; K = FH : We then have, for
a 2 (Z=pZ)£

¾ajK = 1, a 2 H , (a=p) = 1:

Lemma 2.4. K = Q(
p
p¤) where p¤ = (¡1)(p¡1)=2p:

Proof. Consider Gauss’ sum

g =

p¡1X

a=1

µ
a

p

¶
³a:

Clearly, g 2 F: We now compute its square.

g2 =
X

a

µ
a

p

¶
³a
X

b

µ
ab

p

¶
³ab

=
X

b

µ
b

p

¶X

a

³a(1+b):

We seperate the term with b = ¡1; which is equal (p ¡ 1) (¡1=p) : For any other
b the inner sum equals ¡1 (for if we added the term with a = 0 we would get 0).
However, there are as many quadratic residues as there are non-residues, so

X

b 6=¡1

µ
b

p

¶
(¡1) =

µ
¡1
p

¶
:

Altogether, g2 = (¡1=p)p = p¤ so Q(
p
p¤) is indeed a sub…eld of F: Moreover,

¾b(g) =

p¡1X

a=1

µ
a

p

¶
³ab

=

µ
b

p

¶ p¡1X

a=1

µ
ab

p

¶
³ab

=

µ
b

p

¶
g;

showing that ¾b(g) = g if and only if b 2 H: This proves the lemma.

Consider the prime q; which was assumed to be distinct from p and odd too. We
know that ¾q jK = 1 if and only if (q=p) = 1:

Recall that in any commutative ring R, (x + y)q ´ xq + yqmod qR because all
the binomial coe¢cients

¡
q
n

¢
are divisible by q if 0 < n < q: From the fact that
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¾q(³) = ³q and nq ´ nmod q for every rational integer n (Fermat’s little theorem)
we deduce that

Ã
p¡2X

k=1

nk³
k

!q

´
p¡2X

k=1

nqk³
qkmod q

´
p¡2X

k=1

nk³
qk = ¾q(

p¡2X

k=1

nk³
k):

Thus, for ® 2 OF ;

¾q(®) ´ ®q mod qOF :

The same therefore holds in OK modulo qOK (this follows at once from OK =
OF \K). But from the explicit description of OK given above (and the fact that
q is odd) one sees that

OK=qOK = Z[ 1 +
p
p¤

2
]=(q)

= Z[
p
p¤]=(q)

= Z[X]=(X2 ¡ p¤; q)

= Fq[X]=(X2 ¡ p¤):

If (p¤=q) = ¡1; the polynomial X2¡p¤ is irreducible over Fq; so OK=qOK = Fq2
is a …eld, and qOK = Q remains prime: In this case raising to power q, hence ¾q ;
is a non-trivial automorphism of OK=qOK ; so a-fortiori ¾q jK is non-trivial, and
(q=p) = ¡1:

If on the other hand (p¤=q) = 1; the polynomial X2 ¡ p¤ is reducible, equal to
(X¡®)(X+®) for some ® 2 Fq. This easily implies that there is a ring isomorphism

OK=qOK ' Fq £ Fq

and that qOK = Q1Q2 is a product of two prime ideals in OK : (Let Qi be the
inverse images of (X § ®)mod(X2 ¡ p¤) under the homomorphism

OK !OK=qOK = Fq [X]=(X2 ¡ p¤)):

Raising to power q is then the trivial automorphism of OK=qOK : It follows that
¾q induces the trivial automorphism on OK=qOK :

We contend that the non-trivial automorphism of K must exchange the two
prime ideals Qi which apear in the decomposition of qOK : In fact, the Qi are
maximal: Q1 + Q2 = OK (prove it!) so there exists an element x 2 Q1 which is
congruent to 1 modulo Q2: If x0 denotes the Galois conjugate of x; then xx0 is in
Q1 \ Z = qZ; so it lies in Q2 as well. Since x =2 Q2; we must have x0 2 Q2; or
x 2 Q02; which implies that Q02 6= Q2; so we must have Q02 = Q1:

Modulo q, the non-trivial automorphism of K must therefore exchange the two
copies of Fq ; and can not act trivially. Since we have seen that ¾qjK acts trivially
on OK modulo q; we must have ¾qjK = 1; or, equivalently, (q=p) = 1. The proof of
the reciprocity law is complete.

The fact that the way q decomposes in K as a product of prime ideal is de-
termined by a congruence on qmod p is another way to formulate of the law of
quadratic reciprocity.
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3. Generalizations

3.1. Class Field Theory over Q and the reciprocity law. By the end of the
19th century the algebraic theory of number …elds and their rings of integers was
well developed, thanks to work of Kummer, Dedekind, Kronecker, Weber and many
others. It became clear that what mattered in the above discussion was not so much
that we were dealing with quadratic extensions, but that K was an abelian extension
of Q:

If K is any …nite Galois extension of Q; there is a …nite set S of “bad” (technically
speaking, rami…ed) primes such that any rational prime q =2 S decomposes in OK
into a product of g distinct prime ideals

qOK = Q1 : : :Qg

and the Galois group G = Gal(K=Q) permutes the Q0is transitively. If furthermore
K is an abelian extension of Q (i.e. G is abelian) there is a unique element ¾q 2 G
which stabilizes all the Qi and induces x 7! xq on any OK=Qi (a …nite …eld con-
taining Fq). This ¾q is called the Frobenius substitution (automorphism) attached
to q. If G is not abelian, the automorphism ¾ may depend on Qi; a choice of a
di¤erent Qi above the same q leading to a conjugate of ¾, so we can still talk of a
well-de…ned Frobenius conjugacy class attached to q. Although this is important
and useful, for our present discussion we must limit G to be abelian.

A celebrated theorem of Kronecker and Weber, a far-reaching generalization of
the reciprocity law, says that when K=Q is abelian, there exists a positive integer
m (called the conductor of K), divisible only by the primes in S, such that ¾q
depends only on the residue of q modulo m: In fact, there is a surjective homomor-
phism (the Artin reciprocity map)

(Z=mZ)£ ! G

mapping qmodm to ¾q : This is achieved by showing that K can be embedded in
Q(e2¼i=m); as we explicitly did for K = Q(

p
p¤) using a Gauss sum.

In the early 20th century Hilbert, Artin, Hasse, Furtwangler, Takagi and oth-
ers generalized these statements to base …elds other than Q: Class Field Theory
attempts to classify all abelian Galois extensions K=E of a …xed number …eld E;
and their Galois groups, in terms of data encoded in E alone. One major di¢culty
encountered by the people who worked on the foundations of CFT was that except
for E = Q or E a quadratic imaginary extension of Q; one did not have an explicit
description of special …elds like F = Q(e2¼i=m); into which every abelian extension
of E could be embedded. There is a general existence theorem for such “ray class
…elds”, and many of their properties are known, but one does not have - in general
- a way of writing them down.

3.2. Non-abelian class …eld theory. For a long time Class Field Theory, the
ultimate generalization of Gauss’ reciprocity law, was thought to be a theory of
abelian extensions. Relations between CFT and certain complex analytic functions
L(s); called L-series (which are beyond the scope of this introduction), lead Artin
in the 1930’s to make a conjecture about the analytic continuation of L(s) that
made sense for any Galois extension K=Q (or K=E), not necessarily abelian, and
that followed from CFT in the abelian case.

From another perspective, class …eld theory, as well as Artin’s conjectures in the
non-abelian case, concerned the variation of the number of solutions of f(X) ´
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0mod p with p; when f was a …xed monic polynomial in Z[X]: What happens if
we go up in the dimension and consider a polynomial equation f(X; Y ) = 0 in
two variables (which describes an algebraic curve)? One can still look at the same
equation modulo p and count solutions (x; y) 2 F2p: The variation of the number
of solutions with p is a fascinating subject, that was taken up by Artin, Hasse and
Weil in the …rst half of the 20th century.

Loosely speaking, it is nowadays believed that to any collection of m polynomial
equations in n unknowns with coe¢cients from Z (technically, to any motive), there
corresponds an “automorphic” object, belonging to another world, which tells us
everything that we want to know about solutions of this system of equations modulo
p; as p varies.

In the simple-minded example where f = X2 ¡ q¤; q a prime di¤erent from p,
the automorphic object is the Legendre symbol (¢=q) and the fact that the number
of solutions to f ´ 0mod p is 1 + (p=q) is the quadratic reciprocity law.

It requires a great deal of machinery even just to de…ne the terms motivic or
automorphic, let alone to describe the conjectured correspondence, which usually
goes under the name of Langlands. Instead, we shall give two examples.

3.3. A 0-dimensional non-abelian example. We follow an example of van der
Blij from 1952. Consider the equation

h(X) = X3 ¡X ¡ 1;
a cubic polynomial of discriminant D = ¡23. (The discriminant of a cubic polyno-
mial with roots ®1; ®2 and ®3 is the expression

D = (®1 ¡ ®2)
2(®1 ¡ ®3)

2(®2 ¡ ®3)
2

which can be also expressed as a certain polynomial in the coe¢cients of the poly-
nomial. Note that

p
D belongs to the splitting …eld of the polynomial.) Let K

be the splitting …eld of h: Since h has a unique real root ®; K is an S3-extension
of Q and K = Q(®;¯) where ¯ =

p
¡23: Let F = Q(®) and E = Q(¯): Then

[E : Q] = 2; [F : Q] = 3 and G = h¾; ¿i where ¾ is a generator of Gal(K=E), while
¿ is complex conjugation, the non-trivial automorphism of K=F: We have ¿2 = 1;
¾3 = 1 and ¿¾¿¡1 = ¾2:

Consider the homomorphism (representation)

½ : G! GL2(C)
given explicitly by

½(¿) =

µ
1 0
0 ¡1

¶
; ½(¾) =

Ã
¡12

p
3
2

¡
p
3
2 ¡12

!

(check that such a representation exists). Let Â½ = Tr½ be the character of ½: There
are three conjugacy classes in G; represented by 1; ¾ and ¿ ; and we immediately
…nd out that Â½(1) = 2; Â½(¾) = ¡1 and Â½(¿) = 0:

The only bad (rami…ed) prime for K=Q is 23. It is easy to show that for p 6= 23;
Np; the number of solutions to X3 ¡X ¡ 1 ´ 0mod p; is given by

Np = 1 + Â½(¾p)

where ¾p is any element in the Frobenius conjugacy class of p (a conjugacy class
in G). Indeed, Np = 3 if p splits completely in K; Np = 1 if p splits into a product
of 3 primes in K, each of relative degree 2 (hence into a product of two primes, of
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relative degrees 1 and 2, in F ), and Np = 0 if p splits into a product of 2 primes in
K; each of relative degree 3 (hence remains inert in F ).

Compare with the number of solutions of X2 + 23 ´ 0mod p; which is given
by 1 + (¡23=p) : Quadratic reciprocity taught us that the “automorphic” object
attached to this (abelian 0-dimensional) “motive” is the Legendre symbol (p=23):
What is the “automorphic” object attached to the representation ½ (i.e. to the
0-dimensional, non-abelian motive given by X3 ¡X ¡ 1)?

Let " : (Z=23Z)£ ! f§1g be the Legendre symbol (¢=23) : Observe that det ½(¾p) =
"(p); since det ½ is equal to the quadratic character of E. Consider the power series

´(z) = q1=24
1Y

n=1

(1¡ qn)

where q = e2¼iz; which represents a holomorphic function in the upper half plane
Im(z) > 0: Let

f(z) = ´(z)´(23z) = q
1Y

n=1

(1¡ qn)(1¡ q23n)

=
1X

n=1

anq
n (a1 = 1).

Then f 2 S1(¡0(23); ") is a weight-one cuspidal modular form of level 23 and
nebentypus " (in fact, it is the only such cusp-form). This means (i) that for any
matrix µ

a b
c d

¶
2 SL2(Z)

with c ´ 0mod23;

f(
az + b

cz + d
) = "(d)(cz + d)f(z)

and (ii) that for every
µ

a b
c d

¶
2 SL2(Z); (cz+d)¡1f(az+bcz+d ) tends to 0 as z = iy

and y !1: The modular form f is the automorphic object attached to ½; as the
following theorem shows.

Theorem 3.1. For every p 6= 23; we have Â½(¾p) = ap:

In what sense are the Legendre symbol and the cusp-form f similar “automor-
phic” objects? To understand it, one has to study automorphic representations
(whatever that means). Both the Legendre symbol and the cusp-form f give rise to
automorphic representations, the …rst to a representation of the group GL1 (over
Q) and the second to a representation of the group GL2:

On the other hand, the variation of the number of solutions of h(X) ´ 0mod p;
where h is a polynomial in one variable over Z; is governed, as we have seen in
the two examples, by a Galois representation. In our …rst example this Galois
representation sent ¾ 2 Gal(K=Q) to §1; depending on whether ¾ was trivial
or not. In our second example the representation was the one we denoted by ½:
The Langlands Correspondence is a largely conjectural correspondence between
certain n-dimensional Galois representations on one side, and certain automorphic
representations of the group GLn on the other side.
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We have gone a long way from the original Reciprocity Law of Gauss, through
Class Field Theory, to the non-abelian generalizations embodied in the Langlands
Correspondence. It is sometimes hard to see the original theorems as special cases of
these far-reaching generalizations. We shall end this brief introduction by exhibiting
yet another example, this time in dimension 1.

3.4. A 1-dimensional non-abelian example. Consider the equation

Y 2 + Y ´ X3 ¡X2 ¡ 10X ¡ 20mod p

and let Np be the number of solutions in F2p: Heuristic arguments make one believe
that this time Np should not remain bounded, but rather be of the order of mag-
nitude p; so it makes sense to study the deviation p¡Np: Here is some numerical
data, that you can check for yourself

p = 2 3 5 7 11 13 17 19
p ¡Np = ¡2 ¡1 1 ¡2 1 4 ¡2 0

It is not an accident that p¡Np is relatively small. Already in the 1920’s Artin
conjectured, and later Hasse proved, the estimate

jp¡Npj · 2
p
p:

The equation we have written down is an equation of an elliptic curve. Its complex
points (the set of points in C2 satisfying the equation, compacti…ed by adding one
point “at in…nity”) looks like a torus (C modulo a lattice) and has an abelian group
structure (the point at in…nity serving as the neutral element). In fact the set of
solutions in Fp inherits a similar group structure, as long as p 6= 11: What we are
counting is the number of points on this elliptic curve over Fp; as p varies.

The Shimura-Taniyama conjecture (proved by Taylor and Wiles) suggests the
following. Look at (q = e2¼iz)

f = ´(z)2´(11z)2

= q
1Y

n=1

(1¡ qn)2(1¡ q11n)2

= q ¡ 2q2 ¡ q3 + 2q4 + q5 + 2q6 ¡ 2q7 ¡ 2q9 + ¢ ¢ ¢

=
1X

n=1

anq
n:

Theorem 3.2. For every p 6= 11 we have p¡Np = ap:

Once again, f 2 S2(¡0(11)) is a weight-two cuspidal modular form of level 11
and trivial nebentypus, i.e. f satis…es (i)

f(
az + b

cz + d
) = (cz + d)2f(z)

whenever
µ

a b
c d

¶
2 SL2(Z) and c ´ 0mod11; and (ii) for every

µ
a b
c d

¶
2

SL2(Z); (cz + d)¡2f(az+b
cz+d

) tends to 0 as z = iy and y !1:

The relation between the elliptic curveE : Y 2+Y = X3¡X2¡10X¡20 and the
cusp-form f is a very deep one. In one direction, it tells us that the L-series LE(s)
has analytic continuation to the whole complex plane, something that is impossible
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to prove by any other method. In the other direction it allows us to use Hasse’s
estimate on p¡Np to prove Ramanujan’s conjecture that an = o(n1=2+") for every
" > 0:


