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The p-adic theory of modular curves and modular forms, as developed in the early
70’s by Serre, Katz, Mazur, Manin and many others, inspired over the last thirty
years an extensive study of higher dimensional Shimura varieties, with spectacular
applications to almost every area in number theory and representation theory.
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In the course of these vast generalizations, some of the more special phenomena
pertaining to modular curves did not …nd appropriate analogues, and are only
beginning to get addressed in recent years. In this work we study what we believe
to be the simplest Shimura varieties beyond modular curves (and Shimura curves),
namely Picard modular surfaces. For arithmetic questions over quadratic imaginary
…elds they play a role similar to the role played by modular curves over Q: Our
goal is to explore the arithmetic and geometry of these surfaces, and of modular
forms over them, concentrating on aspects that have been only recently discovered,
or appear to be new. Our hope is that staying within the bounds of U(2; 1) will
keep the notation simple, and our tool-box relatively light, yet at the same time
will allow for the exposition of new principles.

Our work relies on important work of Larsen, Bellaiche, Vollaard, Bültel, and
Wedhorn. The modulo-p geometry of Picard modular surfaces, and, more gener-
ally, Shimura varieties asscoiated to unitary groups, has seen important contribu-
tions recently also by Goldring and Nicole, Koskivirta, Kudla, Rapoport, Terstiege,
Howard and Pappas, and maybe others of which we are anaware. For completeness,
we have included more than usual background material. We hope that we have not
neglected to give appropriate credit when citing others’ results.

We have chosen to work with a prime p which is inert in the underlying quadratic
imaginary …eld, as this is the more interesting case, both from the algebro-geometric
point of view, where the geometry modulo p is more challenging, and from the
representation theoretic point of view, where the unitary group is non-split. We
do not touch upon questions of automorphic L-functions or representation theory.
For these see the comprehensive volume [L-R] and the references therein. We do
not touch upon Galois representations either, although eventually we hope that our
results will be relevant to both these areas.

This paper concerns the algebraic geometry of Picard modular schemes and
modular forms modulo p: In a subsequent work we hope to treat p-adic modular
forms in the style of Serre and Katz, the canonical subgroup, overconvergence, and
further topics. We shall now explain the main results and the structure of the
paper.

Chapters 1-2 summarize known results, and serve as a systematic introduction
on which chapters 3-4 and future work will be based. In particular, sections 1.4 and
2.4 rely on the theses of Larsen [La1] and Bellaiche [Bel]. We recommend the latter
for its very readable exposition. Sections 1.2.4, 1.6, 2.1, 2.5 and 2.6 contain results
or computations for which we did not …nd adequate references in the literature.
Chapter 2 introduces the two basic automorphic vector bundles P (a plane bundle)
and L (a line bundle). Modular forms are sections of vector bundles from the
tensor algebra generated by these two, but we contend ourselves with scalar valued
modular forms, which are sections of Lk (k being the weight).

Chapter 3 contains new results. There are three strata to the Picard surface
S modulo p: the ¹-ordinary (open and dense) locus S¹; the general supersingular
(one dimensional) locus Sgss, and the superspecial points Sssp (see [Bu-We],[V]).
After recalling this, we …nd various relations between P and L that are peculiar
to characteristic p: We study the Verschiebung homomorphism VL from L to P(p)
and VP from P to L(p): We …nd that outside the superspecial points, both maps
have rank one, but that Im(VL) = ker(V

(p)
P ) is the de…ning equation of the general

supersingular stratum Sgss: We prove that the line bundle P0 = ker(VP), de…ned
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over S¹[Sgss; does not extend across the superspecial points. Using these relations
we de…ne a Hasse invariant h¹§; a section of Lp2¡1; whose zero divisor is precisely
the supersingular locus Sss = Sgss [ Sssp: Although the same de…nition has been
already given by Goldring and Nicole in [Go-Ni] for all unitary Shimura varieties,
and recently generailzed to all Shimura varieties of Hodge type by Koskivirta and
Wedhorn [Ko-We], in the special case of Picard surfaces our analysis goes deeper.

Following the de…nition of h¹§ we de…ne on Sss a secondary Hasse invariant
hssp, a section of Lp3+1jSss ; whose zeroes are the superspecial points Sssp (albeit
with high multiplicity). This secondary Hasse invariant is closely related to recent
work of Boxer [Bo], and points at a general phenomenon that deserves further
exploration. It seems reasonable that Boxer’s method will generalize to Shimura
varieties of PEL type and will produce invariants which agree with the partial Hasse
invariants appearing in [Gor]. As an application of our analysis of the secondary
Hasse invariant we derive a striking formula, expressing the number of irreducible
components of the supersingular stratum in terms of the Euler number of ¹SC: By
well-known results, due in this case to Holzapfel, this number is given essentially
by an L-value.

As for modular curves, one can introduce an Igusa scheme Ig(pn) of any level
pn: We focus on Ig = Ig(p); but note in passing that the higher Ig(pn) will become
intsrumental in the theory of p-adic modular forms, deferred to future work. Al-
though initially de…ned only over the ¹-ordinary stratum, Ig can be compacti…ed
over the whole of S (and over the cuspidal divisors in ¹S as well) by “extracting
a p2 ¡ 1 root of h¹§”. The line bundle L is trivialized over the ¹-ordinary locus
Ig¹, and this allows us to regard modular forms as functions on Ig; with prescribed
poles along Igss; the supersingular locus. This is the geometric basis for develop-
ing an analogue of Serre’s theory of “modular forms modulo p” in our context. In
particular, we study their Fourier-Jacobi expansions (complex FJ expansions are
q-expansions with theta functions as coe¢cients, but here we employ the arith-
metic analysis of Bellaiche, explained in Section 2.4). This leads to the notion of a
“…ltration” of a modular form mod p; as in the case of elliptic modular forms.

Chapter 4 seems to be entirely new. The theory becomes richer once we bring in
the Gauss-Manin connection and the Kodaira-Spencer isomorphism. We de…ne a
theta operator on modular forms mod p (in weight k) as follows. We …rst divide our
modular form f by the k-th power of the canonical section a(1) of L on Ig; to get a
function g = r(f) on Ig; with a pole of order k along Igss:We apply the (inverse of
the) Kodaira-Spencer isomorphism to dg to get a section of P  L; which we map
via VP  1 to get a meromorphic section of Lp+1: Multiplying by a(1)k allows us
to descend back to S; so we obtain a meromorphic modular form £(f) of weight
k + p + 1: This construction is motivated by [An-Go], although substantial new
phenomena appear in the present case. We study this operator. On the one hand,
near the cusps we relate the retraction of a formal neighborhood of the cuspidal
divisor, which was introduced by Bellaiche in [Bel], to the complex computations of
section 1.6 and 2.6. This allows us to show that the e¤ect of £ on FJ expansions, is,
as in the classical case, a “Tate twist”. On the other hand, we study £(f) along the
supersingular locus, and show that, thanks to the fact that we have divided out by
P0 = kerVP ; £(f) is in fact everywhere holomorphic! We derive some interesting
consequences for “theta cycles”, where there are similarities, but also surprising
deviations from the classical theory. We end the paper with a comparison of our
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theta operator with the Serre-Katz theta operator on modular curves, embedded in
¹S: Theta operators on classical modular forms have been instrumental in studying
congruences between them, with applications to Galois representations. We expect
the same to be true for Picard modular forms.

1. Background

1.1. The unitary group and its symmetric space.

1.1.1. Notation. Let K be an imaginary quadratic …eld, contained in C: We denote
by § : K ,! C the inclusion and by ¹§ : K ,! C its complex conjugate. We use the
following notation:

² dK - the square free integer such that K = Q(
p
dK):

² DK - the discriminant of K, equal to dK if dK ´ 1mod4 and 4dK if dK ´
2; 3mod4:

² ±K =
p
DK - the square root with positive imaginary part, a generator of the

di¤erent of K; sometimes simply denoted ±:
² !K = (1 +

p
dK)=2 if dK ´ 1mod4; otherwise !K =

p
dK; so that OK =

Z+Z!K:
² ¹a - the complex conjugate of a 2 K:
² Im±(a) = (a¡ ¹a)=±, for a 2 K:
We …x an integer N ¸ 3 (the “tame level”) and let R0 = OK[1=2dKN]: This is

our base ring. If R is any R0-algebra and M is any R-module with OK-action, then
M becomes an OK R-module and we have a canonical type decomposition

M =M(§)©M(¹§)(1.1)

where M(§) = e§M and M(¹§) = e¹§M; and where the idempotents e§ and e¹§ are
de…ned by

e§ =
1 1
2
+

±  ±¡1

2
; e¹§ =

1 1
2
¡ ±  ±¡1

2
:(1.2)

Then M(§) (resp. M(¹§)) is the part of M on which OK acts via § (resp. ¹§). The
same notation will be used for sheaves of modules on R-schemes, endowed with an
OK action. If M is locally free, we say that it has type (p; q) if M(§) is of rank p
and M(¹§) is of rank q:

We denote by

T = resKQGm(1.3)

the non-split torus whose Q-points are K£; and by ½ the non-trivial automorphism
of T, which on Q-points induces ½(a) = ¹a: The group Gm embeds in T and the
homomorphism a 7! a ¢ ½(a) from T to itself factors through a homomorphism

N : T! Gm;(1.4)

the norm homomorphism. Its kernel ker(N) is denoted T1:

1.1.2. The unitary group. Let V = K3 and endow it with the hermitian pairing

(u; v) = t¹u

0
@

±¡1

1
¡±¡1

1
A v:(1.5)
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We identify VR with C3 (K acting via the natural inclusion §). It then becomes a
hermitian space of signature (2; 1): Conversely, any 3-dimensional hermitian space
overK whose signature at the in…nite place is (2; 1) is isomorphic to V after rescaling
the hermitian form by a positive rational number.

Let

G =GU(V; (; ))(1.6)

be the general unitary group of V; regarded as an algebraic group over Q: For any
Q-algebra A we have

G(A) =
©
(g; ¹) 2 GL3(AK)A£j (gu; gv) = ¹ ¢ (u; v) 8u; v 2 VA

ª
:(1.7)

We write G = G(Q); G1 = G(R) and Gp = G(Qp): A similar notational
convention will apply to any algebraic group over Q without further ado. If p splits
in K, QpK ' Q2p andGp becomes isomorphic to GL3(Qp)£Q£p : The isomorphism
depends on the embedding of K in Qp; i.e. on the choice of a prime above p in K:
For a non-split prime p the group Gp; like G1; is of (semisimple) rank 1.

As ¹ is determined by g we often abuse notation and write g for the pair (g; ¹) and
¹(g) for the multiplier ¹: It is a character of algebraic groups over Q; ¹ :G!Gm:
Another character is det :G! T; de…ned by det(g; ¹) = det(g): If we let

º = ¹¡1 det :G! T(1.8)

then both ¹ and det are expressible in terms of º; namely ¹ = º ¢ (½ ± º) and
det = º2 ¢(½±º): The …rst relation is a consequence of the relation det ¢(½±det) = ¹3;
and the second is a consequence of the …rst and the de…nition of º:

The groups

U = ker¹; SU = ker º = ker¹ \ ker(det)(1.9)

are the unitary and the special unitary group, respectively.
We also introduce an alternating Q-linear pairing h; i : V £ V ! Q de…ned by

hu; vi = Im±(u; v): We then have the formulae

hau; vi = hu; ¹avi ; 2(u; v) = hu; ±vi+ ± hu; vi :(1.10)

We call h; i the polarization form, for a reason that will become clear soon.

1.1.3. The hermitian symmetric domain. The group G1 = G(R) acts on P2C =
P(VR) by projective linear transformations and preserves the open subdomain X of
negative de…nite lines (in the metric (; )). If we switch to coordinates in which the
hermitian quadratic form (u; u) assumes the standard shape x¹x+y¹y¡z¹z; it becomes
evident that X is biholomorphic to the open unit ball in C2; hence is connected, and
G1 acts on it transitively. We shall nevertheless stick to the coordinates introduced
above. Every negative de…nite line is represented by a unique vector t(z; u; 1) and
such a vector represents a negative de…nite line if and only if

¸(z; u)
def
= Im ±(z)¡ u¹u > 0:(1.11)

One refers to the realization of X as the set of points (z; u) 2 C2 satisfying this
inequality as a Siegel domain of the second kind. It is convenient to think of the
point x0 = (±=2; 0) as the “center” of X:

If we let K1 be the stabilizer of x0 in G1, then K1 is compact modulo center
(K1\U(R) is compact and isomorphic to U(2)£U(1)). Since G1 acts transitively
on X; we may identify X with G1=K1:
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The space X carries a Riemannian metric which is invariant under the action
of G1; the Bergmann metric. It may be described as follows. Switching once
again to coordinates on C3 in which the hermitian quadratic form (u; u) becomes
x¹x+y¹y¡z¹z; the real symmetric bilinear form Re(u; v) has signature (4; 2); and the
manifold given by the equationx¹x+ y¹y¡ z¹z = ¡1 becomes a circle bundle over X:
The restriction ofRe(u; v) to the tangent bundle of this manifold has signature (4; 1)
and when we take the quotient by the circle action we get an invariant Riemannian
metric on X:

The usual upper half plane embeds in X (holomorphically and isometrically) as
the set of points where u = 0:

1.1.4. The cusps of X. The boundary @X of X is the set of points (z; u) where
Im±(z) = u¹u; together with a unique point “at in…nity” c1 represented by the line
t(1 : 0 : 0): The lines represented by @X are the isotropic lines in VR: The set of
cusps CX is the set of K-rational isotropic lines, or, equivalently, the set of points
on @X with coordinates in K: If s 2 K and r 2 Q we write

crs = (r + ±s¹s=2; s):(1.12)

Then CX = fcrsjr 2 Q; s 2 Kg [ fc1g: The group G = G(Q) acts transitively on
the cusps.

The stabilizer of a cusp is a Borel subgroup1 in G1: Since G acts transitively
on the cusps, we may assume that our cusp is c1: It is then easy to check that its
stabilizer P1 has the form P1 =M1N1; where

M1 =

8
<
:tm(®;¯) = t

0
@

®
¯
¹®¡1

1
A j t 2 R£+; ® 2 C£; ¯ 2 C1

9
=
; ;(1.13)

N1 =

8
<
:n(u; r) =

0
@
1 ±¹u r + ±u¹u=2
1 u

1

1
A j u 2 C; r 2 R

9
=
; :(1.14)

The matrix tm(®;¯) belongs to U1 if and only if t = 1; and to SU1 if furthermore
¯ = ¹®=®: The group N1 is contained in SU1: The group P = P1 \G consists of
the same matrices with K-rational entries. Since N = N1\G still acts transitively
on the set of …nite cusps crs, we conclude that G acts doubly transitively on CX:

Of particular interest to us will be the geodesics connecting an interior point
(z; u) to a cusp c 2 CX: If (z; u) = n(u; r)m(d; 1)x0 (recall x0 = t(±=2 : 0 : 1))
where d is real and positive (i.e. r = Re z and d =

p
¸(z; u)) then the geodesic

connecting (z; u) to c1 can be described by the formula

°ru(t) = n(u; r)m(t; 1)x0(1.15)

= (r + ±(u¹u+ t2)=2; u) (d · t <1).

The same geodesic extends in the opposite direction for 0 < t · d; and if u and r lie
in K; it ends there in the cusp cru:We shall call °ru(t) the geodesic retraction of X to
the cusp c1: As 0 < t <1 these parallel geodesics exhaust X; they converge to c1
as t!1; and they pass through (z; u) precisely when r = Re z and t =

p
¸(z; u):

The points (z; u) and (z0; u0) lie on the same geodesic if and only if u = u0 and
Re(z) = Re(z0):

1Note that any proper R-parabolic subgroup of G1 is conjugate to P1; as SU (2; 1) has R-rank
1.
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1.2. Picard modular surfaces over C.

1.2.1. Lattices and their arithmetic groups. Fix an OK-invariant lattice L ½ V
which is self-dual in the sense that

L = fu 2 V j hu; vi 2 Z 8v 2 Lg :(1.16)

Equivalently, L is its own OK-dual with respect to the hermitian pairing (; ): We
assume also that the Steinitz class2 of L as an OK-module is [OK]; or, what amounts
to the same, that L is a free OK-module. When we introduce the Shimura vari-
ety later on, we shall relax this last assumption, but the resulting scheme will be
disconnected (over C).

Fix an integer N ¸ 1 and let

¡ = fg 2 Gj gL = L and g(u) ´ umodNL 8u 2 Lg :(1.17)

This ¡ is a discrete subgroup of G1; contained in U1: It is easy to see that if
N ¸ 3 then ¡ is torsion free, acts freely and faithfully on X; and is contained in
SU1: From now on we assume that this is the case.

If g 2 G and ¹(g) = 1 (i.e. g 2 U) the lattice gL is another lattice of the same
sort and the discrete group corresponding to it is g¡g¡1: Since U acts transitively on
the cusps, this reduces the study of ¡nX near a cusp to the study of a neighborhood
of the standard cusp c1 (at the price of changing L and ¡).

It is important to know the classi…cation of lattices L as above (self-dual and
OK-free). Let e1; e2; e3 be the standard basis of K3: Let

L0 = SpanOKf±e1; e2; e3g(1.18)

and

L1 = SpanOKf
±

2
e1 + e3; e2;

±

2
e1 ¡ e3g:(1.19)

These two lattices are self-dual and of course, OK-free. The following theorem is
based on the local-global principle and a classi…cation of lattices overQp by Shimura
[Sh1].

Lemma 1.1. ([La1], p.25). For any lattice L as above there exists a g 2 U such
that gL = L0 or gL = L1: If DK is odd, L0 and L1 are equivalent. If DK is even,
they are inequivalent.

Indeed, if DK is even, L0 Qp and L1 Qp are Up-equivalent for every p 6= 2,
but not for p = 2:

1.2.2. Picard modular surfaces and the Baily-Borel compacti…cation. We denote by
X¡ the complex surface ¡nX: Since the action of ¡ is free, X¡ is smooth. We
describe a topological compacti…cation of X¡: A standard neighborhood of the cusp
c1 is an open set of the form

R = f(z; u)j¸(z; u) > Rg :(1.20)

The set C¡ = ¡nCX is …nite, and we write c¡ = ¡c:We letX¤¡ be the disjoint union of
X¡ and C¡: We topologize it by taking ¡nR [ fc1;¡g as a basis of neighborhoods
at c1;¡: If c = g(c1) where g 2 U; we take g(g¡1¡gnR) [ fc¡g instead. The
following theorem is well-known.

2The Steinitz class of a …nite projective OK-module is the class of its top exterior power as an
invertible module.
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Theorem 1.2. (Satake, Baily-Borel) X¤¡ is projective and the singularities at the
cusps are normal. In other words, there exists a normal complex projective surface
S¤¡ and a homeomorphism ¶ : S¤¡(C) ' X¤¡; which on S¡(C) = ¶¡1(X¡) is an
isomorphism of complex manifolds. S¤¡ is uniquely determined up to isomorphism.

1.2.3. The universal abelian variety over X¡. With x 2 X and with our choice of
L we shall now associate a PEL-structure Ax = (Ax; ¸x; ¶x; ®x) where

1. Ax is a 3-dimensional complex abelian variety,
2. ¸x is a principal polarization on Ax (i.e. an isomorphism Ax ' At

x with its
dual abelian variety induced by an ample line bundle),

3. ¶x : OK ,! End(Ax) is an embedding of CM type (2; 1) (i.e. the action of ¶(a)
on the tangent space of Ax at the origin induces the representation 2§ + ¹§)
such that the Rosati involution induced by ¸x preserves ¶(OK) and is given
by ¶(a) 7! ¶(¹a);

4. ®x : N¡1L=L ' Ax[N ] is a full level N structure, compatible with the OK-
action and the polarization. The latter condition means that if we denote by
h; i¸ the Weil “eN -pairing” on Ax[N ] induced by ¸x; then for l; l0 2 N¡1L

h®x(l); ®x(l0)i¸ = e2¼iNhl;l
0i:(1.21)

LetWx be the negative de…nite complex line in VR = C3 de…ned by x; andW?x its
orthogonal complement, a positive de…nite plane. Let Jx be the complex structure
which is multiplication by i on W?x and by ¡i on Wx: Let Ax = (VR; Jx)=L: Then
the polarization form h; i is a Riemann form on L: One only has to verify that
hu; Jxvi+ i hu; vi is a positive de…nite hermitian form. But up to the factor j±j=2
this is the same as (u; v) on W?x and ¡(u; v) onWx: The Riemann form determines
a principal polarization on Ax as usual. The action of OK is derived from the
underlying K structure of V: As we have changed the complex structure on Wx; the
CM type is now (2,1). Finally the level N structure ®x is the identity map.

If ° 2 ¡ then ° induces an isomorphism between Ax and A°(x): Conversely, if Ax

and Ax0 are isomorphic structures, it is easy to see that x
0 and x must belong to the

same ¡-orbit. It follows that points of X¡ are in a bijection with PEL structures
of the above type for which the triple

(H1(Ax;Z); ¶x; h; i¸x)(1.22)

is isomorphic to (L; ¶; h; i) (here ¶ refers to the OK action on L), with the further
condition that ®x is compatible with the isomorphism between L and H1(Ax;Z) in
the sense that we have a commutative diagram

0 ! L ! N¡1L ! N¡1L=L ! 0
# # # ®x

0 ! H1(Ax;Z) ! N¡1H1(Ax;Z) ! Ax[N ] ! 0
:(1.23)

1.2.4. A “moving lattice” model for the universal abelian variety. We want to as-
semble the individual Ax into an abelian variety A over X. In other words, we want
to construct a 5-dimensional complex manifold A; together with a holomorphic map
A! X whose …ber over x is identi…ed with Ax: For that, as well as for the compu-
tation of the Gauss-Manin connection below, it is convenient to introduce another
model, in which the complex structure on C3 is …xed, but the lattice varies.

For simplicity we assume from now on that L = L0 is spanned over OK by ±e1; e2
and e3: The case of L1 can be handled similarly.
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Let C3 be given the usual complex structure, and let a 2 OK act on it via the
matrix

¶0(a) =

0
@

a
a
¹a

1
A :(1.24)

Given x = (z; u) 2 X consider the lattice

L0x = Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
¡1
0
¡u

1
A ;

0
@

u
¡z=±
z=±

1
A
9
=
; ½ C

3:(1.25)

The map Tx : C3 ! C3 which sends ³ = t(³1; ³2; ³3) to

T (³) = ¸(z; u)¡1

8
<
:¡³1

0
@
¹uz
(z ¡ ¹z)=±
¹u

1
A¡ ³2

0
@
¹z + ±u¹u
u
1

1
A+ ¹³3

0
@

z
u
1

1
A
9
=
;(1.26)

is a complex linear isomorphism between C3 and (VR; Jx): In fact, it sends Ce1+Ce2
linearly toW?x and Ce3 conjugate-linearly to Wx: It intertwines the ¶0 action of OK
on C3 with its ¶-action on (VR; Jx): It furthermore sends L0x to L: In fact, an easy
computation shows that it sends the three generating vectors of L0x to ±e1; e2 and
e3; respectively. We conclude that Tx induces an isomorphism

Tx : A
0
x = C3=L0x ' Ax:(1.27)

Consider the di¤erential forms d³1; d³2 and d³3: As their periods along any
l 2 L0x vary holomorphically in z and u, the …ve coordinates ³1; ³2; ³3; z; u form
a local system of coordinates on the family A0 ! X: Identifying A0 with A allows
us to put the desired complex structure on the family A: Alternatively, we may
de…ne A0 as the quotient of C3 £X by ³ 7! ³ + l(z; u) where l(z; u) varies over the
holomorphic lattice-sections.

The model A0 has another advantage, that will become clear when we examine
the degeneration of the universal abelian variety at the cusp c1: It su¢ces to note
at this point that the …rst two of the three generating vectors of L0x depend only
on u:

1.3. The Picard moduli scheme.

1.3.1. The moduli problem. Fix N ¸ 3 as before. Fix the lattice L = L0 ½ V = K3:
Let R be an R0-algebra (recall R0 = OK[1=2dKN]). LetM(R) be the collection of
(isomorphism classes of) PEL structures (A; ¸; ¶; ®) where

1. A=R is an abelian scheme of relative dimension 3
2. ¸ : A ' At is a principal polarization
3. ¶ : OK ! End(A=R) is a homomorphism such that (1) ¶ makes Lie(A=R)

a locally free R-module of type (2; 1); (2) the Rosati involution induced on
¶(OK) by ¸ is ¶(a) 7! ¶(¹a):

4. ® : N¡1L=L ' A[N ] is an isomorphism of OK-group schemes over R which is
compatible with the polarization in the sense that there exists an isomorphism
ºN : Z=NZ ' ¹N of group schemes over R such that

¿
®(

l

N
); ®(

l0

N
)

À

¸

= ºN(hl; l0imodN):(1.28)
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In addition we require that for every multiple N 0 of N; locally étale over
Spec(R); there exists a similar level N 0-structure ®0; restricting to ® on
N¡1L=L: One says that ® is locally étale symplectic liftable ([Lan], 1.3.6.2).

In view of Lemma 1.1, the last condition of symplectic liftability is void if DK is
odd, while if DK is even it is equivalent to the following condition ([Bel], I.3.1):

² For any geometric point ´ : R! k (k algebraically closed …eld, necessarily of
characteristic di¤erent from 2), the OK  Z2 polarized module (T2A´; h; i¸)
is isomorphic to (L  Z2; h; i) under a suitable identi…cation of limÃ ¹2n(k)
with Z2:

The choice of L0 was arbitrary. If we took L1 as our basic lattice we would get
a similar moduli problem.

A level N structure ® can exist only if the group schemes Z=NZ and ¹N become
isomorphic over R; but the isomorphism ºN is then determined by ®:
M becomes a functor on the category of R0-algebras (and more generally, on

the category of R0-schemes) in the obvious way. The following theorem is of fun-
damental importance ([Lan], I.4.1.11).

Theorem 1.3. The functor R 7! M(R) is represented by a smooth quasi-projective
scheme S over Spec(R0); of relative dimension 2.

We call S the (open) Picard modular surface of level N: It comes equipped with
a universal structure (A; ¸; ¶; ®) of the above type over S: We call A the universal
abelian scheme over S. For every R0-algebra R and PEL structure inM(R); there
exists a unique R-point of S such that the given PEL structure is obtained from
the universal one by base-change.

1.3.2. The Shimura variety ShK . We brie‡y recall the interpretation of the Picard
modular surface as a canonical model of a Shimura variety. The symmetric domain
X can be interpreted as a G1-conjugacy class of homomorphisms

h : S = resCRGm !G(1.29)

turning (G;X) into a Shimura datum in the sense of Deligne [De]. The re‡ex …eld
associated to this datum turns out to be K: Let K1 be the stabilizer of x0 in G1
andK0f ½G(Af ) the subgroup stabilizing bL = LbZ. LetKf be the subgroup ofK0f
inducing the identity on L=NL: LetK = K1Kf ½G(A): Then the Shimura variety
ShK is a complex quasi-projective variety whose complex points are isomorphic, as
a complex manifold, to the double coset space

ShK(C) ' G(Q)nG(A)=K(1.30)

= G(Q)n(X£G(Af)=Kf):

The theory of Shimura varieties provides a canonical model for ShK over K: The
following important theorem complements the one on the representability of the
functorM:

Theorem 1.4. The canonical model of ShK is the generic …ber SK of S:

Let us explain only how to associate to a point of ShK(C) a point in S(C):
For that we have to associate an element of M(C) to g 2 G(A); and show that
the structures associated to g and to °gk (° 2 G;k 2 K) are isomorphic. Let
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x = xg = g1(x0) 2 X: Let Lg = gf(bL) \ V (the intersection taking place in
VA = bLQ) and

Ag = (VR; Jx)=Lg:(1.31)

Note that Jx depends only on g1K1 and Lg only on gfK
0
f ; so Ag depends only

on gK0:
Let ~¹(g) be the unique positive rational number such that for every prime p;

ordp~¹(g) = ordp¹(gp):(1.32)

Such a rational number exists since ¹(gp) is a p-adic unit for almost all p and Q
has class number 1. We claim that

h; ig = ~¹(g)¡1 h; i : Lg £Lg ! Q

induces a principal polarization ¸g on Ag: That this is a (rational) Riemann form
follows from the fact that (u; v)Jx = hu; Jxvi+ i hu; vi is hermitian positive de…nite.
That h; ig is indeed Z-valued and Lg is self-dual follows from the choice of ~¹(g)
since locally at p the dual of gpLp under h; i : Vp £ Vp ! Qp is ¹(gp)¡1gpLp: We
conclude that there exists a unique polarization ¸g : Ag ! At

g such that

hu; vi¸g = exp(2¼il hu; vig)(1.33)

for every u; v 2 Ag[l] = l¡1Lg=Lg and every l ¸ 1: This polarization is principal.
Since gf commutes with the K-structure on VA; Lg is still an OK-lattice, hence

¶g is de…ned.
Finally ®g is derived from

N¡1L=L = N¡1bL=bL gf! N¡1bLg=bLg = N¡1Lg=Lg = Ag[N ]:(1.34)

We note that ®g depends only on gK because Kf ½ K0f is the principal level-N
subgroup, and that it lifts to level N 0 structure for any multiple N 0 of N; by the
same formula. The isomorphism ºN;g between Z=NZ and ¹N(C) that makes (1.28)
work is self-evident (see (1.49)). Let Ag 2M(C) be the structure just constructed.

Let now ° 2G(Q): Then the action of ° on V induces an isomorphism between
the tuples Ag and A°g: Indeed, ° : VR ! VR intertwines the complex structures xg
and x°g; and carries Lg to L°g; so induces an isomorphism of the abelian varieties,
which clearly commutes with the PEL structures.

This shows that Ag depends solely on the double coset of g in G(Q)nG(A)=K:
One is left now with two tasks which we do not do in this survey: (i) Proving that if
Ag ' Ag0 then g and g0 belong to the same double coset, and that every A 2M(C)
is obtained in this way, (ii) Identifying the canonical model of ShK over K with
SK:

1.3.3. The connected components of ShK . Recall thatG0 = SU = ker(º :G! T):
Since G0 is simple and simply connected, strong approximation holds and

G0(A) =G0(Q)G01K0f :(1.35)

HereK0 = K\G0(A), K0f = K\G0(Af ): From the connectedness of G01 we deduce
that

G0(Q)nG0(A)=K 0(1.36)

is connected.
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As N ¸ 3; º(K) \K£ = f1g: Here K£ = º(G(Q)); and it follows that

G0(Q)nG0(A)=K0 ,!G(Q)nG(A)=K(1.37)

is injective. We now claim (see also Theorem 2.4 and 2.5 of [De]) that

º : ¼0(G(Q)nG(A)=K) ' ¼0(T(Q)nT(A)=º(K))(1.38)

is a bijection. For º is surjective ([De] (0.2)) and continuous (on double coset spaces)
so clearly induces a surjective map between the sets of connected components. On
the other hand if [g1] and [g2] (double cosets of gi 2G(A)) are mapped by º to the
same connected component in T(Q)nT(A)=º(K); then since G1 is mapped onto
the connected component of the identity in T(Q)nT(A)=º(K); modifying g1 by an
element of G1 we may assume that

º([g1]) = º([g2]) 2 T(Q)nT(A)=º(K);(1.39)

without changing the connected component in which [g1] lies. Once this has been
established, for appropriate representatives gi of the double cosets, g¡11 g2 2G0(A);
so by the connectedness ofG0(Q)nG0(A)=K0, [g1] and [g2] lie in the same connected
component of G(Q)nG(A)=K:

The group ¼0(T(Q)nT(A)=º(K)) is the group
K£nK£A =C

£º(Kf) = K£nK£f =º(Kf ):(1.40)

It sits in a short exact sequence

0! ¹KnUK=º(Kf )!K£nK£f =º(Kf)
cl! ClK ! 0;(1.41)

where UK is the product of local units at all the …nite primes and ClK is the class
group.

1.3.4. The cl and ºN invariants of a connected component. The norm N : K£ !
Q£ satis…es N ± º = ºº½ = ¹; hence induces a map

K£nK£f =º(Kf )! Q£+nQ£f =¹(Kf ):(1.42)

Using the lattice L as an integral structure in V; we see that G comes from a
group scheme GZ over Z; whose points in any ring A are

GZ(A) =
©
(g; ¹) 2 GLOKA(LA)£A£j hgu; gvi = ¹ hu; vi

ª
:(1.43)

We likewise get that ¹ is a homomorphism from GZ to Gm: The diagram

GZ(Zp)
¹! Z£p

# #
GZ(Zp=NZp)

¹! (Zp=NZp)£
(1.44)

commutes, GZ(Zp) = K0p and the kernel of GZ(Zp) ! GZ(Zp=NZp) is Kp: This
shows that ¹(Kf ) ½ Ẑ£(N); the product of local units congruent to 1modN: But

Q£+nQ£f =Ẑ£(N) = (Z=NZ)£:(1.45)

To conclude, we have shown the existence of two maps from the set of connected
components:

cl : ¼0(G(Q)nG(A)=K)! ClK(1.46)

ºN : ¼0(G(Q)nG(A)=K)! (Z=NZ)£:(1.47)
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These two maps are independent: together they map ¼0(G(Q)nG(A)=K) onto
ClK£ (Z=NZ)£: On the other hand, they have a non-trivial common kernel, which
grows with N; as is evident from the interpretation of K£nK£f =º(Kf) as the Galois
group of a certain class …eld extension of K: The map cl gives the restriction to
the Hilbert class …eld, while the map ºN gives the restriction to the cyclotomic
…eld Q(¹N ): We have singled out cl and ºN , because when N ¸ 3; they have an
interpretation in terms of the complex points of ShK :

Proposition 1.5. Let [g] 2 G(Q)nG(A)=K = ShK(C): Then
(i) cl([g]) is the Steinitz class of the lattice Lg = gf (L̂) \ V in ClK.
(ii) ºN([g]) is (essentially) the ºN;g that appears in the de…nition of ®g (see

1.3.1).

Proof. (i) cl([g]) is the class of the ideal (º(gf )) associated to the idele º(gf ) 2 K£f .
This ideal is in the same class as (det(gf)); because ¹(gf) 2 Q£f , so (¹(gf)) is
principal. But the class of (det(gf)) is the Steinitz class of Lg ; since the Steinitz
class of L is trivial.

(ii) To …nd ºN ([g]) we …rst project the idele ¹(gf) to Ẑ£ using Q£f = Q
£
+Ẑ£:

But this is just ~¹(gf)¡1¹(gf ): We then take the result modulo N; so

ºN([g]) = ~¹(gf )
¡1¹(gf )modN:(1.48)

Now the de…nition of the tuple (Ag ; ¸g ; ¶g; ®g) is such that if u; v 2 N¡1L=L then

h®g(u); ®g(v)i¸g = exp
³
2¼iN hgfu; gfvig

´

= exp
¡
2¼i~¹(gf )

¡1N hgfu; gfvi
¢

= exp
¡
2¼i~¹(gf )

¡1¹(gf )N hu; vi
¢

= exp (2¼iºN ([g])N hu; vi)(1.49)

Part (ii) follows if we identify ºN;g 2 IsomC(N¡1Z=Z; ¹N) with ºN ([g]) 2 (Z=NZ)£
using exp(2¼i(¢)):

1.3.5. The complex uniformization. Recall that X = G1=K1 and that it was
equipped with a base point x0 (coresponding to (z; u) = (±K=2; 0) in the Siegel
domain of the second kind). Let 1 = g1; : : : ; gm 2G(Af) (m = #(K£nK£f =º(Kf )))

be representatives of the connected components of G(Q)nG(A)=K; and de…ne con-
gruence groups

¡j =G(Q) \ gjKfg
¡1
j :(1.50)

We write [x; gj] for G(Q)(x; gjKf) 2 G(Q)n(X £G(Af )=Kf) = G(Q)nG(A)=K:
Then [x0; gj ] = [x; gj ] if and only if x0 = °x for ° 2 ¡j: The map

ma

j=1

X¡j =
ma

j=1

¡jnX ' ShK(C)(1.51)

sending ¡jx to [x; gj ] is an isomorphism.
Note that ¡1 = ¡ is the principal level-N congruence subgroup in GZ(Z); the

stabilizer of L. Similarly, ¡j is the principal level-N congruence subgroup in the
stabilizer of Lgj ; and is thus a group of the type considered in 1.2.1, except that
we have dropped the assumption on the Steinitz class of Lgj : As N ¸ 3; det(°) = 1
and ¹(°) = 1 for all ° 2 ¡j ; for every j. Indeed, on the one hand these are in K£
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and Q£+ respectively. On the other hand, they are local units which are congruent
to 1modN everywhere. It follows that ¡j are subgroups of G0(Q) = SU(Q):

We get a similar decomposition to connected components (as an algebraic sur-
face)

SC =
ma

j=1

S¡j(1.52)

and we write S¤C =
`m

j=1 S
¤
¡j

for the Baily-Borel compacti…cation.

1.4. Smooth compacti…cations.

1.4.1. The smooth compacti…cation of X¡. We begin by working in the complex
analytic category and follow the exposition of [Cog]. The Baily-Borel compacti…ca-
tion X¤¡ is singular at the cusps, and does not admit a modular interpretation. For
general unitary Shimura varieties, the theory of toroidal compacti…cations provides
smooth compacti…cations that depend, in general, on extra data. It is a unique
feature of Picard modular surfaces, stemming from the …niteness of O£K , that this
smooth compacti…cation is canonical. As all cusps are equivalent (if we vary the
lattice L or ¡), it is enough, as usual, to study the smooth compacti…cation at c1:
In [Cog] this is described for an arbitrary L (not even OK-free), but for simplicity
we write it down only for L = L0:

As N ¸ 3; elements of ¡ stabilizing c1 lie in N1:
3 The computations, which we

omit, are somewhat simpler if N is even, an assumption made for the rest of this
section. Let

¡cusp = ¡ \N1:(1.53)

Lemma 1.6. Let N ¸ 3 be even. The matrix n(s; r) 2 ¡cusp if and only if: (i)
(dK ´ 1mod4) s 2 NOK; r 2 NDKZ, (ii) (dK ´ 2; 3mod4) s 2 NOK and
r 2 2¡1NDKZ .

Let M = N jDKj in case (i) and M = 2¡1NjDKj in case (ii). This is the width
of the cusp c1: Let

q = q(z) = e2¼iz=M :(1.54)

For R > 0; the domain R = f(z; u) 2 Xj¸(z; u) > Rg is invariant under ¡cusp and
if R is large enough, two points of it are ¡-equivalent if and only if they are ¡cusp-
equivalent. A su¢ciently small punctured neighborhood of c1 in X¤¡ therefore
looks like ¡cuspnR: As

n(s; r)(z; u) = (z + ±¹s(u+ s=2) + r; u+ s)(1.55)

we obtain the following description of ¡cuspnR: Let ¤ = NOK and E = C=¤; an
elliptic curve with complex multiplication by OK: Let T be the quotient

T = (C£ C)=¤(1.56)

where the action of s 2 ¤ is via

[s] : (t; u) 7! (e2¼i±¹s(u+s=2)=M t; u+ s):(1.57)

It is a line bundle over E via the second projection. We denote the class of (t; u)
modulo the action of ¤ by [t; u]:

3No confusion should arise from the use of the letter N to denote both the level and the
unipotent radical of P .
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Proposition 1.7. Let TR ½ T be the disk bundle consisting of all the points [t; u]
where

jtj < e¡¼j±j(R+u¹u)=M :(1.58)

(This condition is invariant under the action of ¤:) Let T 0R be the punctured disk
bundle obtained by removing the zero section from TR: Then the map (z; u) 7!
(q(z); u) induces an analytic isomorphism between ¡cuspnR and T 0R:

Proof. This follows from the discussion so far and the fact that ¸(z; u) > R is
equivalent to the above condition on t = q(z) ([Cog], Prop. 2.1).

To get a smooth compacti…cation ¹X¡ of X¡ (as a complex surface), we glue the
disk bundle TR to X¡ along T 0R. In other words, we complete T 0R by adding the
zero section, which is isomorphic to E: The same procedure should be carried out
at any other cusp of C¡:

Note that the geodesic (1.15) connecting (z; u) 2 X to the cusp c1 projects in
¹X¡ to a geodesic which meets E transversally at the point umod¤: We caution
that this geodesic in X¡ depends on (z; u) and c1 and not only on their images
modulo ¡:

The line bundle T is the inverse of an ample line bundle on E. In fact, T _ is the
N -th (resp. 2N-th) power of one of the four basic theta line bundles if dK ´ 1mod4
(resp. dK ´ 2; 3mod4). A basic theta function of the lattice ¤ satis…es, for u 2 C
and s 2 ¤;

µ(u+ s) = ®(s)e2¼¹s(u+s=2)=j±jN
2

µ(u)(1.59)

where ® : ¤ ! §1 is a quasi-character (see [Mu], p.25). Recalling the relation
between M and N , and the assumption that N was even, we easily get the relation
between T and the theta line bundles.

1.4.2. The smooth compacti…cation of S. The arithmetic compacti…cation ¹S of the
Picard surface S (over R0) is due to Larsen [La1] (see also [Bel] and [Lan]). We
summarize the results in the following theorem. We mention …rst that as SC has a
canonical model S over R0; its Baily-Borel compacti…cation S¤C has a similar model
S¤ over R0, and S embeds in S¤ as an open dense subscheme.

Theorem 1.8. (i) There exists a projective scheme ¹S; smooth over R0; of rela-
tive dimension 2, together with an open dense immersion of S in ¹S, and a proper
morphism p : ¹S ! S¤, making the following diagram commutative

S ! ¹S

#
p

.
S¤

:(1.60)

(ii) As a complex manifold, there is an isomorphism

¹SC '
ma

j=1

¹X¡j ;(1.61)

extending the isomorphism of SC with
`m

j=1X¡j :

(iii) Let C = p¡1(S¤ ¡ S): Let RN be the integral closure of R0 in the ray
class …eld KN of conductor N over K. Then the connected components of CRN

are geometrically irreducible, and are indexed by the cusps of S¤RN over which they
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sit. Furthermore, each component E ½ CRN is an elliptic curve with complex
multiplication by OK:

We call C the cuspidal divisor. If c 2 S¤C ¡ SC is a cusp, we denote the complex
elliptic curve p¡1(c) by Ec: Bear in mind that while Ec is in principle de…nable over
the Hilbert class …eld K1; no canonical model of it over that …eld is provided by ¹S:
On the other hand, Ec does come with a canonical model over KN , and even over
RN :

We refer to [La1] and [Bel] for a moduli-theoretic interpretation of C as a moduli
space for semi-abelian schemes with a suitable action of OK and a “level-N struc-
ture”. Unfortunately these references do not give such a moduli interpretation to
¹S. While they do construct a universal semi-abelian scheme over ¹S (see the next
section), the level-N structure over S does not extend to a ‡at level-N structure
over ¹S in the ordinary sense, and the notion has to be modi…ed over the boundary.
What is evidently missing is the construction of a “Tate-Picard” object similar to
the “generalized elliptic curve” which was constructed over the complete modular
curve by Deligne and Rapoport in [De-Ra].

1.4.3. Change of level. Assume that N ¸ 3 is even, and N 0 = QN: We then obtain
a covering map X¡(N 0) ! X¡(N) where by ¡(N) we denote the group previously
denoted by ¡: Near any of the cusps, the analytic model allows us to analyze this
map locally. Let E 0 be an irreducible cuspidal component of ¹X¡(N 0) mapping to the
irreducible component E of ¹X¡(N): The following is a consequence of the discussion
in the previous sections.

Proposition 1.9. The map E0 ! E is a multiplication-by-Q isogeny, hence étale
of degree Q2:When restricted to a neighborhood of E0; the covering ¹X¡(N0) ! ¹X¡(N)
is of degree Q3; and has rami…cation index Q along E; in the normal direction to
E.

Corollary 1.10. The pull-back to E0 of the normal bundle T (N) of E is the Qth
power of the normal bundle T (N 0) of E0:
1.5. The universal semi-abelian scheme A.

1.5.1. The universal semi-abelian scheme over ¹S. As Larsen and Bellaiche explain,
the universal abelian scheme ¼ : A ! S extends canonically to a semi-abelian
scheme ¼ : A ! ¹S: The polarization ¸ extends over the boundary C = ¹S ¡ S to a
principal polarization ¸ of the abelian part of A. The action ¶ of OK extends to an
action on the semi-abelian variety, which necessarily induces separate actions on
the toric part and on the abelian part.

Let E be a connected component of CRN ; mapping (over C and under the pro-
jection p) to the cusp c 2 S¤C: Then there exist (1) a principally polarized elliptic
curve B de…ned over RN ; with complex multiplication by OK and CM type §; and
(2) an ideal a of OK, such that every …ber Ax of A over E is an OK-group extension
of B by the OK-torus a  Gm: Both B (with its polarization) and the ideal class
[a] 2 ClK are uniquely determined by the cusp c: Only the extension class in the
category of OK-groups varies as we move along E. Note that since the Lie algebra
of the torus is of type (1; 1); the Lie algebra of such an extension Ax is of type (2; 1);
as is the case at an interior point x 2 S: If we extend scalars to C; the isomorphism
type of B is given by another ideal class [b] (i.e. B(C) ' C=b). In this case we say
that the cusp c is of type (a;b):
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The above discussion de…nes a homomorphism (of fppf sheaves over Spec(RN ))

E ! Ext1OK(B; aGm):(1.62)

As we shall see soon, the Ext group is represented by an elliptic curve with CM by
OK; de…ned over RN ; and this map is an isogeny.

1.5.2. OK-semi-abelian schemes of type (a;b). We digress to discuss the moduli
space for semi-abelian schemes of the type found above points of E: Let R be an
R0-algebra, B an elliptic curve over R with complex multiplication by OK and CM
type §; and a an ideal of OK: Consider a semi-abelian scheme G over R; endowed
with an OK action ¶ : OK ! End(G); and a short exact sequence

0! aGm ! G ! B ! 0(1.63)

of OK-group schemes over R: We call all this data a semi-abelian scheme of type
(a;B) (overR). The group classifying such structures is Ext1OK(B; aGm):Any Â 2
a¤ = Hom(a;Z) de…nes, by push-out, an extension GÂ of B by Gm; hence a point
of Bt = Ext1(B;Gm): We therefore get a homomorphism from Ext1OK(B; aGm)

to Hom(a¤;Bt). A simple check shows that its image is in HomOK(a
¤;Bt) =

±KaOK Bt, and that this construction yields an isomorphism

Ext1OK(B; aGm) ' ±KaOK Bt:(1.64)

Here we have used the canonical identi…cation a¤ = ±¡1K a¡1 (via the trace pairing).
Although (±K) is a principal ideal, so can be ignored, it is better to keep track of
its presence. We emphasize that the CM type of Bt; with the natural action of OK
derived from its action on B; is ¹§ rather than §:

Thus over ±KaOK Bt there is a universal semi-abelian scheme G(a;B) of type
(a;B); and any G as above, over any base R0=R; is obtained from G(a;B) by pull-
back (specialization) with respect to a unique map Spec(R0)! ±KaOK Bt:

When R = C; B ' C=b for a unique ideal class [b] (with OK acting via §).
Then, canonically, Bt = C=±¡1K b

¡1
(with OK acting via ¹§). The pairing between

the lattices, b£ ±¡1K b
¡1 ! Z is (x; y) 7! TrK=Q(x¹y): Since the OK action on Bt is

via ¹§;

Ext1OK(C=b; aGm) ' ±KaOK C=±¡1K b
¡1
= C=ab¡1:(1.65)

The universal semi-abelian variety G(a; B) will now be denoted G(a;b): In 1.6.2
below we give a complex analytic model of this G(a; b):

1.6. Degeneration of A along a geodesic connecting to a cusp.

1.6.1. The degeneration to a semi-abelian variety. It is instructive to use the “mov-
ing lattice model” to compute the degeneration of the universal abelian scheme
along a geodesic, as we approach a cusp. To simplify the computations, assume
for the rest of this section, as before, that N ¸ 3 is even, and that the cusp is the
standrad cusp at in…nity c = c1: In this case we have shown that Ec = C=¤; where
¤ = NOK; and we have given a neighborhood of Ec in ¹X¡ the structure of a disk
bundle in a line bundle T : See Proposition 1.7.

Consider the geodesic (1.15) connecting (z; u) to c1: Consider the universal
abelian scheme in the moving lattice model (cf (1.27)). Of the three vectors used
to span L0x overOK in (1.25) the …rst two do not depend on z: As u is …xed along the
geodesic, they are not changed. The third vector represents a cycle that vanishes



18 EHUD DE SHALIT AND EYAL Z. GOREN

at the cusp (together with all its OK-multiples). We conclude that A0x degenerates
to

C3=Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
1
0
u

1
A
9
=
; :(1.66)

Making the change of variables (³01; ³
0
2; ³
0
3) = (³1; ³2 + ¹u³1; ³3) does not alter the

OK action and gives the more symmetric model

Gu = C3=Span¶0(OK)

8
<
:

0
@
0
1
1

1
A ;

0
@
1
¹u
u

1
A
9
=
;(1.67)

(but note that ³02; unlike ³2; does not vary holomorphically in the family fGug; only
in each …ber individually).

Let e(x) = e2¼ix : C! C£ be the exponential map, with kernel Z: For any ideal
a of OK it induces a map

ea : a C! a C£(1.68)

with kernel a  1: As usual we identify a  C with C(§)© C(¹§); sending a 
³ 7! (a³; ¹a³): We now note that if we use this identi…cation to identify C3 with
C© (OK C) (an identi…cation which is compatible with the OK action) then the
¶0(OK)-span of the vector t(0; 1; 1) is just the kernel of eOK : We conclude that

Gu ' fC© (OK C£)g=Lu(1.69)

where Lu is the sub-OK-module

Lu = f(s; eOK(s¹u; ¹su))j s 2 OKg :(1.70)

This clearly gives Gu the structure of an OK-semi-abelian variety of type (OK;OK),
i.e. an extension

0!OK C£ ! Gu ! C=OK ! 0:(1.71)

1.6.2. The analytic uniformization of the universal semi-abelian variety of type
(a;b). We now compare the description that we have found for the degeneration of
A along the geodesic connecting (z; u) to c1 with the analytic description of the
universal semi-abelian variety of type (a; b):

Proposition 1.11. Let a and b be two ideals of OK: For u 2 C consider

Gu ' fC© (a C£)g=Lu(1.72)

where

Lu = f(s; ea(s¹u; ¹su))j s 2 bg :(1.73)

Then Gu is a semi-abelian variety of type (a;b); any complex semi-abelian variety
of this type is a Gu; and Gu ' Gv if and only if u¡ v 2 ab

¡1
:

Proof. That Gu is a semi-abelian variety of type (a;b) is obvious. That any abelian
variety of this type is a Gu follows by passing to the universal cover C2(§)©C(¹§),
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and noting that by a change of variables in the §- and ¹§-isotypical parts, we may
assume that the lattice by which we divide is of the form

a

0
@
0
1
1

1
A© b

0
@
1
¹u
u

1
A :(1.74)

Finally, the map u 7! [Gu] is a homomorphism C!Ext1OK(C=b; aC
£); so we only

have to prove that Gu is split if and only if u 2 ab
¡1
: But one can check easily that

Gu is trivial if and only if (s¹u; ¹su) 2 ker ea = a 1 = f(a; ¹a)ja 2 ag for every s 2 b;

and this holds if and only if u 2 ab
¡1
:

Corollary 1.12. Let N ¸ 3 be even. Let c = c1 be the cusp at in…nity. Then the
map

Ec ! Ext1OK(C=OK;OK  C
£)(1.75)

sending u to the isomorphism class of the semi-abelian variety above umod¤ is the
isogeny of multiplication by N .

Proof. In view of the computations above, and the description of a neighborhood
of Ec in ¹X¡ given in Proposition 1.7 this map is identi…ed with the canonical map

C=NOK ! C=OK:(1.76)

The extra data carried by u 2 Ec; which is forgotten by the map of the corollary,
comes from the level N structure. As mentioned before, according to [La1] and
[Bel] the cuspidal divisor C has a modular interpretation as the moduli space for
semi-abelian schemes of the type considered above, together with level-N structure
(M1;N structures in the language of [Bel]). A level-N structure on a semi-abelian
variety G of type (a;b) consists of (i) a level-N structures ® : N¡1OK=OK ' a¹N
on the toric part (ii) a level-N structure ¯ : N¡1OK=OK ' N¡1b=b = B[N] on the
abelian part (iii) an OK-splitting ° of the map G[N ]! B[N ]:

Over c = c1; when a = b = OK; there are obvious natural choices for ® and ¯
(independent of u) but the splittings ° in (iii) form a torsor under OK=NOK: If we
consider the splitting

°u : N
¡1OK=OK 3 s 7! (s; eOK(s¹u; ¹su))modLu(1.77)

then the tuples (Gu; ®; ¯; °u) and (Gv; ®; ¯; °v) are isomorphic if and only if u ´
vmodNOK; i.e. if and only if u and v represent the same point of Ec:

2. The basic automorphic vector bundles

2.1. The vector bundles P and L.

2.1.1. De…nition and …rst properties. Recall our running assumptions and notation.
The tame level N ¸ 3; S is the Picard modular scheme over the base ring R0; ¹S
is its smooth compacti…cation, and A is the universal semi-abelian scheme over ¹S
(an abelian scheme over S) constructed by Larsen and Bellaiche.

Let !A be the relative cotangent space at the origin of A. If e : ¹S ! A is the
zero section,

!A = e¤(1A= ¹S):(2.1)
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This is a rank 3 vector bundle over ¹S and the action of OK allows to decompose it
according to types. We let

P = !A(§); L = !A(¹§):(2.2)

Then P is a plane bundle, and L a line bundle.
Over S (but not over the cuspidal divisor C = ¹S¡S) we have the usual identi…-

cation !A = ¼¤1A=S : The relative de Rham cohomology of A=S is a rank 6 vector
bundle sitting in an exact sequence (the Hodge …ltration)

0! !A ! H1dR(A=S)! R1¼¤OA ! 0:(2.3)

Since, for any abelian scheme, R1¼¤OA = !_At (canonical isomorphism, see [Mu]),
and ¸ : A ! At is an isomorphism which reverses CM types, we obtain an exact
sequence

0! !A ! H1dR(A=S)! !_A(½)! 0:(2.4)

The notation M(½) means that M is a vector bundle with an OK action and in
M(½) the vector bundle structure is that of M but the OK action is conjugated.
Decomposing according to types, we have two short exact sequences

0 ! P ! H1dR(A=S)(§)! L_(½)! 0(2.5)

0 ! L ! H1dR(A=S)(¹§)! P_(½)! 0:

The pairing h; i¸ on H1dR(A=S) induced by the polarization is OS-linear, alter-
nating, perfect, and satis…es h¶(a)x; yi¸ = hx; ¶(¹a)yi¸ : It follows that H1dR(A=S)(§)
and H1dR(A=S)(¹§) are maximal isotropic subspaces, and are set in duality. As !A
is also isotropic, this pairing induces pairings

P £ P_(½)!OS ; L£L_(½)!OS :(2.6)

These two pairings (in this order) are the tautological pairings between a vector
bundle and its dual.

Another consequence of this discussion that we wish to record is the canonical
isomorphism over S

detP = L(½) det
¡
H1dR(A=S)(§)

¢
:(2.7)

2.1.2. The factors of automorphy corresponding to L and P. The formulae below
can be deduced also from the matrix calculations in the …rst few pages of [Sh2]. Let
¡ = ¡j be one of the groups used in the complex uniformization of SC; cf Section
1.3.5. Via the analytic isomorphism X¡ ' S¡ with the jth connected component,
the vector bundles P and L are pulled back to X¡ and then to the symmetric
space X; where they can be trivialized, hence described by means of factors of
automorphy. Let us denote by Pan and Lan the two vector bundles on X¡; in the
complex analytic category, or their pull-backs to X:

To trivialize Lan we must choose a nowhere vanishing global section over X. As
usual, we describe it only on the connected component containing the standard
cusp, corresponding to j = 1 (where L = Lg1 = L0). Recalling the “moving lattice
model” (1.27) and the coordinates ³1; ³2; ³3 introduced there, we note that d³3 is
a generator of Lan = !A(¹§): For reasons that will become clear later (cf Section
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2.6) we use 2¼i ¢ d³3 to trivialize Lan over X. Suppose

° =

0
@

a1 b1 c1
a2 b2 c2
a3 b3 c3

1
A 2 ¡ ½ SU1:(2.8)

If °(z; u) = (z0; u0) then

z0 =
a1z + b1u+ c1
a3z + b3u+ c3

; u0 =
a2z + b2u+ c2
a3z + b3u+ c3

(2.9)

and

°

0
@

z
u
1

1
A = j(°; z; u)

0
@

z0

u0

1

1
A ; j(°; z; u) = a3z + b3u+ c3:(2.10)

Lemma 2.1. The following relation holds for every ° 2 U1

¸(z; u) = ¸(°(z; u)) ¢ jj(°; z; u)j2:(2.11)

Proof. Let v = v(z; u) = t(z; u; 1): Then

¸(z; u) = ¡(v; v):(2.12)

As v(°(z; u)) = j(°; z; u)¡1 ¢ °(v(z; u)) the lemma follows from (°v; °v) = (v; v):

Let V = Lie(A=X) = !_A=X and W = V(¹§) = L_an (a line bundle). At a
point x = (z; u) 2 X the …ber Vx is identi…ed canonically with (VR; Jx) and then
Wx =Wx = C¢ t(z; u; 1):

Proposition 2.2. For x = (z; u) 2 X let

v3(z; u) = ¸(z; u)¡1

0
@

z
u
1

1
A 2 Wx:(2.13)

Then (i) v3(z; u) is a nowhere vanishing holomorphic section of W; (ii) hd³3; v3i ´
1; (iii) the automorphy factor corresponding to d³3 is the function j(°; z; u):

Proof. Since, by construction, d³3 is a nowhere vanishing holomorphic section of
L (over X), (i) follows from (ii). To prove (ii) we transfer v3(z; u) to the moving
lattice model and get t(0; 0; 1); which is the dual vector to d³3: To prove (iii) we
compute in VR (with the original complex structure!)

°¤v3(z; u)

v3(°(z; u))
=

¸(°(z; u))

¸(z; u)
j(°; z; u) = j(°; z; u)

¡1
;(2.14)

and recall that since W°(z;u) is precisely the line where the complex structure in
(VR; J°(z;u)) has been reversed, in (VR; J°(z;u)) we have

°¤v3(z; u)

v3(°(z; u))
= j(°; z; u)¡1:(2.15)

Dualizing, we get (x = (z; u))

(°¡1)¤d³3jx
d³3j°(x)

= j(°; x):(2.16)

This concludes the proof.



22 EHUD DE SHALIT AND EYAL Z. GOREN

Consider next the plane bundle Pan: As we will only be interested in scalar-
valued modular forms, we do not compute its matrix-valued factor of automorphy
(but see [Sh2]). It is important to know, however, that the line bundle detPan
gives nothing new.

Proposition 2.3. There is an isomorphism of analytic line bundles over X¡;

detPan ' Lan:(2.17)

Moreover, d³1 ^d³2 is a nowhere vanishing holomorphic section of detPan over X,
and the factor of automorphy corresponding to it is j(°; z; u):

Proof. Since a holomorphic line bundle on X¡ = ¡nX is determined, up to an
isomorphism, by its factor of automorphy, and j(°; z; u) is the factor of automorphy
of Lan corresponding to d³3; it is enough to prove the second statement. Let
U = V(§) be the plane bundle dual to Pan: Let

v1(z; u) = ¡¸(z; u)¡1
0
@
¹uz
(z ¡ ¹z)=±
¹u

1
A(2.18)

and

v2(z; u) = ¡¸(z; u)¡1
0
@
¹z + ±u¹u
u
1

1
A(2.19)

(considered as vectors in (VR; Jx) = Vx). As we have seen in (1.27), these two vector
…elds are sections of U and at each point x 2 X form a basis dual to d³1 and d³2:
It follows that they are holomorphic sections, and that v1 ^ v2 is the basis dual to
d³1 ^ d³2: We must show that the factor of automorphy corresponding to v1 ^ v2 is
j(°; z; u)¡1; i.e. that

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

= j(°; z; u)¡1:(2.20)

Working in VR = C3 (with the original complex structure)

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ 1

j(°; z; u)
=

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ °¤v3(z; u)
v3(°(z; u))

=
°¤(v1 ^ v2 ^ v3(z; u))
v1 ^ v2 ^ v3(°(z; u))

:(2.21)

But

v1 ^ v2 ^ v3(z; u) = ±¸(z; u)¡1e1 ^ e2 ^ e3;(2.22)

because

det

0
@
¹uz ¹z + ±u¹u z
(z ¡ ¹z)=± u u
¹u 1 1

1
A = ±¸(z; u)2:(2.23)

As det(°) = 1; this gives

°¤(v1 ^ v2(z; u))
v1 ^ v2(°(z; u))

¢ 1

j(°; z; u)
=

¸(°(z; u))

¸(z; u)
=

1

j(°; z; u)j(°; z; u)
;(2.24)

and the proof is complete.
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2.1.3. The relation detP ' L over ¹SK. The isomorphism between detP and L is
in fact algebraic, and even extends to the generic …ber ¹SK of the smooth compact-
i…cation.

Proposition 2.4. One has detP ' L over ¹SK:

Proof. Since Pic( ¹SK) ½ Pic( ¹SC) it is enough to prove the proposition over C: By
GAGA, it is enough to establish the triviality of detPL¡1 in the analytic category.
For each connected component X¡ of SC, the section (d³1 ^ d³2) d³¡13 descends
from X toX¡; because d³1^d³2 and d³3 have the same factor of automorphy j(°; x)
(° 2 ¡; x 2 X). This section is nowhere vanishing on X¡; and extends to a nowhere
vanishing section on ¹X¡; trivializing detP L¡1. In fact, if c is the standard cusp,
d³1 ^ d³2 and d³3 are already well-de…ned and nowhere vanishing sections of detP
and L in the neighborhood

¡cuspnR = (¡cuspnR) [Ec(2.25)

of Ec (see 1.4.1). This is a consequence of the fact that j(°; x) = 1 for ° 2 ¡cusp:
An alternative proof is to use Theorem 4.8 of [Ha]. In our case it gives a functor

V 7! [V] from the category of G(C)-equivariant vector bundles on the compact
dual P2C of ShK to the category of vector bundles with G(Af)-action on the inverse
system of Shimura varieties ShK : Here P2C = G(C)=H(C); where H(C) is the
parabolic group stabilizing the line C¢ t(±=2; 0; 1) in G(C) = GL3(C)£C£; and the
irreducible V are associated with highest weight representations of the Levi factor
L(C) of H(C): It is strightforward to check that detP and L are associated with
the same character of L(C); up to a twist by a character of G(C), which a¤ects the
G(Af )-action (hence the normalization of Hecke operators), but not the structure
of the line bundles themselves. The functoriality of Harris’ construction implies
that detP and L are isomorphic also algebraically.

We de not know if detP and L are isomorphic as algebraic line bundles over S:
This would be equivalent, by (2.7), to the statement that for every PEL structure
(A; ¸; ¶; ®) 2 M(R); for any R0-algebra R; det(H1dR(A=R)(§)) is the trivial line
bundle on Spec(R). To our regret, we have not been able to establish this, although
a similar statement in the “Siegel case”, namely that for any principally polarized
abelian scheme (A; ¸) over R; detH1dR(A=R) is trivial, follows at once from the
Hodge …ltration (2.4). Our result, however, su¢ces to guarantee the following
corollary, which is all that we will be using in the sequel.

Corollary 2.5. For any characteristic p geometric point Spec(k)! Spec(R0); we
have detP ' L on ¹Sk. A similar statement holds for morphisms SpecW (k) !
Spec(R0):

Proof. Since ¹S is a regular scheme, detP  L¡1 ' O(D) for a Weil divisor D
supported on vertical …bers over R0: Since any connected component Z of ¹Sk is
irreducible, we can modify D so that D and Z are disjoint, showing that detP 
L¡1jZ is trivial. The second claim is proved similarly.

2.1.4. Modular forms. Let R be an R0-algebra. A modular form of weight k ¸ 0
and level N ¸ 3 de…ned over R is an element of the …nite R-module

Mk(N;R) = H0( ¹SR;Lk):(2.26)
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We usually omit the subscript R; remembering that ¹S is now to be considered over
R: The well-known Koecher principle says that H0( ¹S;Lk) = H0(S;Lk). See [Bel],
Section 2.2, for an arithmetic proof that works integrally over any R0-algebra R.
A cusp form is an element of the space

M0
k (N;R) =H0( ¹S;Lk O(C)_):(2.27)

As we shall see below (cf Corollary 2.10), if k ¸ 3; there is an isomorphism Lk 
O(C)_ ' 2¹S  L

k¡3: In particular, cusp forms of weight 3 are “the same” as
holomorphic 2-forms on ¹S.

An alternative de…nition (à la Katz) of a modular form of weight k and level
N de…ned overR, is as a “rule” f which assigns to every R-scheme T; and every A =
(A; ¸; ¶; ®) 2M(T ); together with a nowhere vanishing section ! 2 H0(T; !A=T (¹§));

an element f(A;!) 2 H0(T;OT ) satisfying
² f(A;¸!) = ¸¡kf(A;!) for every ¸ 2 H0(T;OT )£
² The “rule” f is compatible with base change T 0=T:

Indeed, if f is an element ofMk(N;R); then given such an A and !; the universal
property of S produces a unique morphism ' : T ! S over R; '¤A = A; and we
may let f(A; !) = '¤f=!k: Conversely, given such a rule f we may cover S by
Zariski open sets T where L is trivialized, and then the sections f(AT ; !T )!kT (!T
a trivializing section over T ) glue to give f 2Mk(N;R):While viewing f as a “rule”
rather than a section is a matter of language, it is sometimes more convenient to
use this language.

Let R ! R0 be a homomorphism of R0-algebras. Then Bellaiche proved the
following theorem ([Bel], 1.1.5).

Theorem 2.6. If k ¸ 3 (resp. k ¸ 6) then M0
k (N;R) (resp. Mk(N;R)) is a locally

free …nite R-module, and the base-change homomorphism

R0 M0
k (N;R) 'M0

k (N;R0)(2.28)

is an isomorphism (resp. base change for Mk(N;R)).

Bellaiche considers only weights divisible by 3, but his proofs generalize to all k
(cf remark on the bottom of p.43 in [Bel]).

Over C; pulling back to X and using the trivialization of L given by the nowehere
vanishing section 2¼i ¢ d³3, a modular form of weight k is a collection (fj)1·j·m of
holomorphic functions on X satisfying

fj(°(z; u)) = j(°; z; u)kfj(z; u) 8° 2 ¡j(2.29)

(the Koecher principle means that no condition has to be imposed at the cusps).

2.2. The Kodaira Spencer isomorphism. Let ¼ : A! S be an abelian scheme
of relative dimension 3, as in the Picard moduli problem. The Gauss-Manin con-
nection

r : H1dR(A=S)! H1dR(A=S)OS 1S(2.30)

de…nes the Kodaira-Spencer map

KS 2 HomOS (!A OS !At ;1S)(2.31)
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as the composition of the maps

!A = H0(A;1A=S) ,! H1dR(A=S)
r! H1dR(A=S)OS 1S

³ R1¼¤OA OS 1S ' !_At OS 1S ;(2.32)

and …nally using Hom(L;M_N) =Hom(LM;N): Recall that if A is endowed
with an OK action via ¶ then the induced action of a 2 OK on At is induced from
the action on Pic(A); taking a line bundle M to ¶(a)¤M. As the polarization
¸ : A! At is OS-linear but satis…es ¸ ± ¶(a) = ¶(a½) ±¸; it follows that the induced
OK action on At is of type (1; 2), hence !_At is of type (1; 2):

Lemma 2.7. The map KS induces maps

KS(§) : !A(§)! !_At(§)OS 1S
KS(¹§) : !A(¹§)! !_At(¹§)OS 1S(2.33)

hence maps, denoted by the same symbols,

KS(§) : !A(§)OS !At(§)! 1S
KS(¹§) : !A(¹§)OS !At(¹§)! 1S :(2.34)

The CM-type-reversing isomorphism ¸¤ : !At ! !A induced by the principal polar-
ization satis…es

KS(§)(¸¤x y) = KS(¹§)(¸¤y  x)(2.35)

for all x 2 !At(¹§) and y 2 !At(§):

Proof. The …rst claim follows from the fact that the Gauss-Manin connection com-
mutes with the endomorphisms, hence preserves CM types. The second claim is a
consequence of the symmetry of the polarization, see [Fa-Ch], Prop. 9.1 on p.81 (in
the Siegel modular case).

Observe that !A(§)OS!At(§), as well as !A(¹§)OS!At(¹§); are vector bundles
of rank 2.

Lemma 2.8. If S is the Picard modular surface and A = A is the universal abelian
variety, then

KS(§) : !A(§)OS !At(§)! 1S(2.36)

is an isomorphism, and so is KS(¹§):

Proof. This is well-known and follows from deformation theory. For a self-contained
proof, see [Bel], Prop. II.2.1.5.

Proposition 2.9. The Kodaira-Spencer map induces a canonical isomorphism of
vector bundles over S

P  L ' 1S :(2.37)

Proof. We need only use ¸¤ to identify !At(§) with !A(¹§):

We refer to Corollary 2.16 for an extension of this result to ¹S:

Corollary 2.10. There is an isomorphism of line bundles L3 ' 2S :
Proof. Take determinants and use detP ' L: We emphasize that while KS(§) is
canonical, the identi…cation of detP with L depends on a choice, which we shall
…x later on once and for all.
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The last corollary should be compared to the case of the open modular curve
Y (N), where the square of the Hodge bundle !E of the universal elliptic curve,
becomes isomorphic to 1Y (N): Over C; as the isomorphism between L3 and 2S
takes d³33 to a constant multiple of dz ^ du (see Corollary 2.18), the di¤erential
form corresponding to a modular form ( fj)1·j·m of weight 3, is (up to a constant)
(fj(z; u)dz ^ du)1·j·m:

2.3. Extensions to the boundary of S.

2.3.1. The vector bundles P and L over C. LetE ½ CRN be a connected component
of the cuspidal divisor (over the integral closure RN of R0 in the ray class …eld KN ):
As we have seen, E is an elliptic curve with CM by OK: If the cusp at which E
sits is of type (a;B) (a an ideal of OK; B an elliptic curve with CM by OK de…ned
over RN) then E maps via an isogeny to ±Ka OK Bt = Ext1OK(B; a  Gm): In
particular, E and B are isogenous over KN :

Consider G; the universal semi-abelian OK-abelian three-fold of type (a;B); over
±KaOK Bt: The semi-abelian scheme A over E is the pull-back of this G: Clearly,
!A=E = P © L and P = !A=E(§) admits over E a canonical rank 1 sub-bundle
P0 = !B: Since the toric part and the abelian part of G are constant, L;P0 and
P¹ = P=P0 are all trivial line bundles when restricted to E. It can be shown that
P itself is not trivial over E.

2.3.2. More identities over ¹S. We have seen that 2S ' L3: For the following propo-
sition, compare [Bel], Lemme II.2.1.7.

Proposition 2.11. Working over KN ; let Ej (1 · j · h) be the connected com-
ponents of C. Then

2¹S ' L
3 

hO

j=1

O(Ej)
_:(2.38)

Proof. By [Hart] II.6.5, 2¹S ' L
3
Nh

j=1O(Ej)nj for some integers nj and we want
to show that nj = ¡1 for all j: By the adjunction formula on the smooth surface
¹S; if we denote by K¹S a canonical divisor, O(K ¹S) = 2¹S ; then

0 = 2gEj ¡ 2 = Ej:(Ej +K¹S):(2.39)

We conclude that

deg(2¹S jEj) = Ej:K¹S = ¡Ej :Ej > 0:(2.40)

Here Ej :Ej < 0 because Ej can be contracted to a point (Grauert’s theorem). As
LjEj and O(Ei)jEj (i 6= j) are trivial we get

¡Ej:Ej = njEj :Ej ;(2.41)

hence nj = ¡1 as desired.

2.4. Fourier-Jacobi expansions.
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2.4.1. The in…nitesimal retraction. We follow the arithmetic theory of Fourier-
Jacobi expansions as developed in [Bel]. Let bS be the formal completion of ¹S
along the cuspidal divisor C = ¹S ¡ S: We work over R0; and denote by C(n) the
n-th in…nitesimal neighborhood of C in ¹S: The closed immersion i : C ,! bS admits
a canonical left inverse r : bS ! C; a retraction satisfying r ± i = IdC : This is not
automatic, but rather a consequence of the rigidity of tori, as explained in [Bel],
Proposition II.2.4.2. As a corollary, the universal semi-abelian scheme A=C(n) is the
pull-back of A=C via r: The same therefore holds for P and L; namely there are
natural isomorphisms r¤(PjC) ' PjC(n) and r¤(LjC) ' LjC(n) : As a consequence,
the …ltration

0! P0 ! P ! P¹ ! 0(2.42)

extends canonically to C(n): Since L;P0 and P¹ are trivial on C; they are trivial
over C(n) as well.

2.4.2. Arithmetic Fourier-Jacobi expansions. We …x an arbitrary noetherian R0-
algebra R and consider all our schemes over R; without a change in notation.
As usual, we let ObS = limÃOC(n) (a sheaf in the Zariski topology on C). Via
r¤; this is a sheaf of OC -modules. Choose a global nowhere vanishing section
s 2 H0(C;L) trivializing L: Such a section is unique up to a unit of R on each
connected component of C. This s determines an isomorphism

LkjbS ' ObS ; f 7! f=sk(2.43)

for each k; hence a ring homomorphism

FJ : ©1k=0Mk(N;R)! H0(C;ObS):(2.44)

We call FJ(f) the (arithmetic) Fourier-Jacobi expansion of f: It depends on s in
an obvious way.

To understand the structure of H0(C;ObS) let I ½ O ¹S be the sheaf of ideals
de…ning C; so that C(n) is de…ned by In: The conormal sheaf N = I=I2 is the
restriction i¤O ¹S(¡C) of O¹S(¡C) to C: It is an ample invertible sheaf on C; since
(over RN ) its degree on each component Ej is ¡E2j > 0:

Now r¤ supplies, for every n ¸ 2; a canonical splitting of
0! I=In !O¹S=In

x!O ¹S=I ! 0:(2.45)

Inductively, we get a direct sum decomposition

O ¹S=In '
n¡1M

m=0

Im=Im+1(2.46)

as OC -modules, hence, since Im=Im+1 ' Nm, an isomorphism

H0(C;OC(n)) '
n¡1M

m=0

H0(C;Nm); f 7!
nX

m=0

cm(f):(2.47)

This isomorphism respects the multiplicative structure, so is a ring isomorphism.
Going to the projective limit, and noting that the cm(f) are independent of n; we
get

FJ(f) =
1X

m=0

cm(f) 2
1Y

m=0

H0(C;Nm):(2.48)
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2.4.3. Fourier-Jacobi expansions over C. Working over C; we shall now relate the
in…nitesimal retraction r to the geodesic retraction, and the powers of the conormal
bundleN to theta functions. Recall the analytic compacti…cation ofX¡ described in
Proposition 1.7. LetE be the connected component of ¹X¡¡X¡ corresponding to the
standrad cusp c1. As before, we denote by E(n) its nth in…nitesimal neighborhood.
The line bundle T jE is just the analytic normal bundle to E, hence we have an
isomorphism

Nan ' T _(2.49)

between the analyti…cation of N = I=I2 and the dual of T .

Lemma 2.12. The in…nitesimal retraction r : E(n) ! E coincides with the map
induced by the geodesic retraction (1.15).

Proof. The meaning of the lemma is this. The in…nitesimal retraction induces a
map of ringed spaces

ran : E
(n)
an ! Ean(2.50)

where Ean is the analytic space associated to E with its sheaf of analytic functions
Ohol
E , and E

(n)
an is the same topological space with the sheaf Ohol

¹S
=Inan: The geodesic

retraction (sending (z; u) to umod¤) is an analytic map rgeo : Ean(") ! Ean;
where Ean(") is our notation for some tubular neighborhood of Ean in ¹San: On the
other hand, there is a canonical map can of ringed spaces from E

(n)
an to Ean("): We

claim that these three maps satisfy rgeo ± can = ran:

To prove the lemma, note that the in…nitesimal retraction r : E(n) ! E is
uniquely characterized by the fact that the OK-semi-abelian variety Ax at a point
x of E(n), obtained as a specialization of the universal family A; is the pull-back of
the universal semi-abelian variety at r(x): See [Bel], II.2.4.2. The computations of
section 1.6 show that the same is true for the in…nitesimal retraction obtained from
the geodesic retraction. We conclude that the two retractions agree on the level of
“truncated Taylor expansions”.

Consider now a modular form of weight k and level N over C; f 2 Mk(N;C):
Using the trivialization of Lan over the symmetric space X given by 2¼i ¢ d³3 as
discussed in Section 2.1.2, we identify f with a collection of functions fj on X;
transforming under ¡j according to the automorphy factor j(°; z; u)k: As usual we
look at ¡ = ¡1 only, and at the expansion of f = f1 at the standard cusp c1;
the other cusps being in principle similar. On the arithmetic FJ expansion side
this means that we concentrate on one connected component E of C; which lies
on the connected component of SC corresponding to g1 = 1: It also means that as
the section s used to trivialize L along E; we must use a section that, analytically,
coincides with 2¼i ¢ d³3:

Pulling back the sheaf Nan from E = C=¤ to C; it is clear that q = q(z) =
e2¼iz=M maps, at each u 2 C; to a generator of T _ = Nan = Ian=I2an, and we
denote by qm the corresponding generator of Nm

an = Iman=Im+1an : If

f(z; u) =
1X

m=0

µm(u)e
2¼imz=M =

1X

m=0

µm(u)q
m(2.51)

is the complex analytic Fourier expansion of f at a neighborhood of c1; then
cm(z; u) = µm(u)qm 2 H0(E;Nm

an) is just the restriction of the section denoted



p-ADIC PROPERTIES OF PICARD MODULAR SCHEMES AND MODULAR FORMS 29

above by cm(f) to E: The functions µm are classical elliptic theta functions (for the
lattice ¤).

2.5. The Gauss-Manin connection in a neighborhood of a cusp.

2.5.1. A computation of r in the complex model. We shall now compute the Gauss-
Manin connection in the complex ball model near the standard cusp c1: Recall that
we use the coordinates (z; u; ³1; ³2; ³3) as in Section 1.2.4. Here d³1 and d³2 form
a basis for P and d³3 for L: The same coordinates served to de…ne also the semi-
abelian variety Gu (denoted also Au) over the cuspidal component E at c1; cf
Section 1.6. As explained there (1.69), the projection to the abelian part is given
by the coordinate ³1 (modulo OK), so d³1 is a basis for the sub-line-bundle of
!A=E coming from the abelian part, which was denoted P0: In section 2.4.1 above
it was explained how to extend the …ltration P0 ½ P canonically to the formal
neighborhood bS of E using the retraction r; by pulling back from the boundary. It
was also noted that complex analytically, the retraction r is the germ of the geodesic
retraction introduced earlier. From the analytic description of the degeneration of
A(z;u) along a geodesic, it becomes clear that P0 = r¤(P0jE) is just the line bundle
ObS ¢ d³1 ½ !A=bS : It follows that P¹ = ObS ¢ d³2modP0:

We shall now pull back these vector bundles to the ball X, and compute the
Gauss Manin connection r complex analytically on !A=X. We write P0 = OX ¢ d³1
for P0;an etc. dropping the decoration an. Let

®1 =

0
@
0
1
1

1
A ; ®2 =

0
@
1
0
u

1
A ; ®3 =

0
@

u
¡z=±
z=±

1
A(2.52)

and

®01 = ¶0(!K)®1 =

0
@
0
!K
¹!K

1
A ; ®02 = ¶0(!K)®2 =

0
@

!K
0
¹!Ku

1
A ;(2.53)

®03 = ¶0(!K)®3 =

0
@

!Ku
¡!Kz=±
¹!Kz=±

1
A :

These 6 vectors span L0(z;u) over Z: Let ¯1; : : : ; ¯
0
3 be the dual basis to f®1; : : : ; ®03g

in H1dR(A=OX); i.e.
R
®1

¯1 = 1 etc. As the periods of the ¯i’s along the integral
homology are constant, the ¯-basis is horizontal for the Gauss-Manin connection.
The …rst coordinate of the ®i and ®0i gives us

d³1 = 0 ¢ ¯1 + 1 ¢ ¯2 + u ¢ ¯3 + 0 ¢ ¯01 + !K ¢ ¯02 + !Ku ¢ ¯03;(2.54)

and we …nd that

r(d³1) = (¯3 + !K¯
0
3) du:(2.55)

Similarly, we …nd

r(d³2) = ¡±¡1(¯3 + !K¯
0
3) dz(2.56)

r(d³3) = (¯2 + ¹!K¯
0
2) du+ ±¡1(¯3 + ¹!K¯

0
3) dz:
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2.5.2. A computation of KS in the complex model. We go on to compute the
Kodaira-Spencer map on P; i.e. the map denoted KS(§): For that we have to
take r(d³1) and r(d³2) and project them to R1¼¤OA(§) 1X: We then pair the
result, using the polarization form h; i¸ on H1dR(A) (re‡ecting the isomorphism

R1¼¤OA(§) = Lie(At)(§) = !_At(§) ' L_(½)(2.57)

coming from ¸), with d³3:
To perform the computation we need two lemmas

Lemma 2.13. The Riemann form on L0x, associated to the polarization ¸; is given
in the basis ®1; ®2; ®3; ®01; ®

0
2; ®
0
3 by the matrix

J =

0
BBBBBB@

1
¡1

1
¡1

1
¡1

1
CCCCCCA
:(2.58)

Proof. This is an easy computation using the transition map T between L and L0x
and the fact that on L the Riemann form is the alternating form h; i = Im±(; ):

For the formulation of the next lemma recall that if A is a complex abelian
variety, a polarization ¸ : A! At induces an alternating form h; i¸ on H1dR(A) as
well as a Riemann form on the integral homology H1(A;Z): We compare the two.

Lemma 2.14. Let (A;¸) be a principally polarized complex abelian variety. If
®1; : : : ; ®2g is a symplectic basis for H1(A;Z) in which the associated Riemann
form is given by a matrix J, and ¯1; : : : ; ¯2g is the dual basis of H1dR(A); then the
matrix of the bilinear form h; i¸ on H1dR(A) in the basis ¯1; : : : ; ¯2g is (2¼i)¡1J:

Proof. These are essentially Riemann’s bilinear relations. For example, if A is the
Jacobian of a curve C and the basis ®1; : : : ; ®2g has the standard intersection matrix

J =

µ
0 I
¡I 0

¶
(2.59)

then the lemma follows from the well-known formula for the cup product (»; ´ being
di¤erentials of the second kind on C)

» [ ´ = 1

2¼i

gX

i=1

ÃZ

®i

»

Z

®i+g

´ ¡
Z

®i

´

Z

®i+g

»

!
:(2.60)

Using the two lemmas we get

KS(d³1  d³3) =

¯3 + !K¯

0
3; d³3

®
¸
¢ du(2.61)

= ¡±(2¼i)¡1du:
Similarly,

KS(d³2  d³3) =

¡±¡1(¯3 + !K¯

0
3); d³3

®
¸
¢ dz(2.62)

= (2¼i)¡1dz:

We summarize.
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Proposition 2.15. Let z; u; ³1; ³2; ³3 be the standard coordinates in a neighborhood
of the cusp c1: Then, complex analytically, the Kodaira-Spencer isomorphism

KS(§) : P  L ' 1X(2.63)

is given by the formulae

KS(d³1  d³3) = ¡±(2¼i)¡1du; KS(d³2  d³3) = (2¼i)
¡1dz:(2.64)

Corollary 2.16. The Kodaira-Spencer isomorphism P  L ' 1S extends mero-
morphically over ¹S: Moreover, in a formal neighborhood bS of C; its restriction to
the line sub-bundle P0L is holomorphic, and on any direct complement of P0L
in P  L it has a simple pole along C:

Proof. As we have seen, d³1  d³3 and d³2  d³3 de…ne a basis of P  L at the
boundary, with d³1  d³3 spanning the line sub-bundle P0L: On the other hand
du is holomorphic there, while dz has a simple pole along the boundary.

Corollary 2.17. The induced map

· : 1X ! P¹ L(2.65)

(P¹ = P=P0) obtained by inverting the isomorphism KS(§) and dividing P by P0
kills du and maps dz to 2¼i ¢ d³2  d³3:

Proof. As we have seen, d³1 is a basis for P0:

Corollary 2.18. The isomorphism L3 ' 2S maps d³33 to a constant multiple of
dz ^ du:

Proof. The isomorphism detP ' L carries d³1 ^ d³2 to a constant multiple of d³3;
so the corollary follows from (2.64).

2.5.3. Transferring the results to the algebraic category. The computations in the
analytic category over X of course descend (still in the analytic category) to SC;
because they are local in nature. They then hold a fortiori in the formal completion
bSC along the cuspidal component E. But the Gauss-Manin and Kodaira-Spencer
maps are de…ned algebraically on S; and both 1bS and !A= bS are ‡at over R0; so

from the validity of the formulae over C we deduce their validity in bS over R0;
provided we identify the di¤erential forms …guring in them (suitably normalized)
with elements of 1bS and !A=bS de…ned over R0: In particular, they hold in the
characteristic p …ber as well.

From the relation

dq

q
=
2¼i

M
dz(2.66)

we deduce that the map · has a simple zero along the cuspidal divisor.
Finally, although we have done all the computations at one speci…c cusp, it is

clear that similar computations hold at any other cusp.

2.6. Fields of rationality.
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2.6.1. Rationality of local sections of P and L. We have compared the arithmetic
surface S with the complex analytic surfaces ¡jnX (1 · j · m), and the compact-
i…cations of these two models. We have also compared the universal semi-abelian
scheme A and the automorphic vector bundles P and L in both models. In this
section we want to compare the local parameters obtained from the two presenta-
tions, and settle the question of rationality. To avoid issues of class numbers, we
shall work rationally and not integrally.

We shall need to look at local parameters at the cusps, and as the cusps are
de…ned only over KN ; we shall work with SKN instead of SK: With a little more
care, working with Galois orbits of cusps, we could probably prove rationality over
K; but for our purpose KN is good enough.

If » and ´ belong to a KN -module, we write » » ´ to mean that ´ = c» for some
c 2 K£N :

We begin with the vector bundles P and L: Over C they yield analytic vector
bundles Pan and Lan on each X¡j (1 · j · m). Assume for the rest of this section
that j = 1 and write ¡ = ¡1: Similar results will hold for every j: The vector
bundles P and L are trivialized over the unit ball X by means of the nowhere
vanishing sections d³3 2 H0(X;Lan) and d³1; d³2 2 H0(X;Pan): These sections do
not descend to X¡; but

¾an = (d³1 ^ d³2) d³¡13 2 H0(X¡;detP  L¡1)(2.67)

does, as the factors of automorphy of d³1 ^ d³2 and d³3 are the same (cf Section
2.1.2). Furthermore, this factor of automorphy (i.e. j(°; z; u)) is trivial on ¡cusp;
the stabilizer of c1 in ¡; so d³1 ^ d³2 and d³3 de…ne sections of detP and L on
bSC; the formal completion of ¹SC along the cuspidal divisor Ec = p¡1(c1) ½ ¹SC:
We have noted already that along Ec;P has a canonical …ltration

0! P0 ! P ! P¹ ! 0(2.68)

and that d³1 is a generator of P0: (Compare (1.63) and (1.71) and note that the
projection to C=OK = B(C) is via the coordinate ³1; so d³1 is a generator of
P0jEc = !B). As we have shown in Section 2.4.1, this …ltration extends to the
formal neighborhood bSC of Ec: The vector bundles P and L; as well as the …ltration
onP over bSC; are de…ned overKN . It makes sense therefore to ask if certain sections
are KN -rational. Recall that the cusp c1 is of type (OK;OK):

Proposition 2.19. (i) 2¼i ¢ d³3 2 H0(bSKN ;L). In other words, this section is
KN -rational.

(ii) Similarly 2¼i ¢ d³2 projects (modulo P0) to a KN -rational section of P¹:
(iii) Let B be the elliptic curve over KN associated with the cusp c1 as in Section

1.5.1. Let B 2 C£ be a period of a basis ! of !B = H0(B;1B=KN ) (i.e. the lattice

of periods of ! is B ¢ OK). This B is well-de…ned up to an element of K£N : Then
B ¢ d³1 2 H0(bSKN ;P0) is KN -rational.
Proof. Let E be the component of CKN which over C becomes Ec: Let G be the
universal semi-abelian scheme over E: Then G is a semi-abelian scheme which is an
extension of B£KN E by the torus (OKGm;KN )£KN E: At any point u 2 E(C) we
have the analytic model Gu (1.69) for the …ber of G at u; but the abelian part and
the toric part are constant. Over E the line bundle P0 is (by de…nition) !B£E=E :
As the lattice of periods of a suitable KN -rational di¤erential is B ¢ OK; while the
lattice of periods of d³1 is OK; part (iii) follows. For parts (i) and (ii) observe that
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the toric part of G is in fact de…ned over K, and that e¤OK maps the cotangent space
of OK Gm;K isomorphically to the K-span of 2¼id³2 and 2¼id³3.

Corollary 2.20. B ¢¾an is a nowhere vanishing global section of detPL¡1 over
S¡; rational over KN :

Proof. Recall that we denote by S¡ the connected component of SKN whose asso-
ciated analytic space is the complex manifold X¡: We have seen that as an analytic
section B ¢ ¾an descends to X¡ and extends to the smooth compacti…cation ¹X¡:
By GAGA, it is algebraic. Since ¹X¡ is connected, to check its …eld of de…nition, it
is enough to consider it at one of the cusps. By the Proposition, its restriction to
the formal neighborhood of Ec (c = c1) is de…ned over KN :

The complex periods B (and their powers) appear as the transcendental parts
of special values of L-functions associated with Grossencharacters of K. They are
therefore instrumental in the construction of p-adic L functions on K: We expect
them to appear in the p-adic interpolation of holomorphic Eisenstein series on the
groupG; much as powers of 2¼i (values of ³(2k)) appear in the p-adic interpolation
of Eisenstein series on GL2(Q):

2.6.2. Rationality of local parameters at the cusps. We keep the assumptions and
the notation of the previous section. Analytically, neighborhoods of Ec1 were
described in Section 1.4.1 with the aid of the parameters (z; u): Let bS denote the
formal completion of ¹SKN along E: Let r : bS ! E be the in…nitesimal retraction
discussed in Section 2.4.1. If i : E ,! bS is the closed embedding then r ± i = IdE :
If I is the sheaf of de…nition of E; then N = I=I2 is the conormal bundle to E;
hence its analyti…cation is the dual of the line bundle T ;

Nan = T _:(2.69)

Consider r¤N on bS: The retraction allows us to split the exact sequence

0!N ! i¤1bS ! 
1
E ! 0(2.70)

using 1E = i¤r¤1E ½ i¤1bS . Thus i
¤1bS = N £

1
E : The map i ± r : bS ! bS induces

a sheaf homomorphism r¤i¤1bS ! 
1
bS ; which becomes the identity if we restrict it

to E (i.e. follow it with i¤). By Nakayama’s lemma, it is an isomorphism. It follows
that

1bS = r¤i¤1bS = r¤N £ r¤1E :(2.71)

Let x 2 E and represent it by u 2 C (modulo ¤). Then q = e2¼iz=M , where
M is the width of the cusp (1.54), is a local analytic parameter on a classical
neighborhood Ux of x which vanishes to …rst order along E. Note that q depends
on the choice of u (see Remark below). It follows that dq; the image of q in Ian=I2an;
is a basis of Nan (on Ux \E). But

2¼i ¢ dz =M
dq

q
(2.72)

is independent of u (see (1.55)), so represents a global meromorphic section of
r¤Nan; with a simple pole along E ½ bSC: By GAGA, this section is (meromorphic)
algebraic.



34 EHUD DE SHALIT AND EYAL Z. GOREN

Proposition 2.21. (i) The section 2¼i ¢ dz is KN -rational, i.e. it is the analyti…-
cation of a section of r¤N : (ii) The section B ¢ du is KN -rational, i.e. belongs to
H0(E;1E=KN ):

Proof. The proof relies on the Kodaira-Spencer isomorphism KS(§) (2.64), which
is a KN -rational (even K-rational) algebraic isomorphism between PL and 1S : As
we have shown, it extends to a meromorphic homomorphism from PL to 1¹S over
¹S: Over bS it induces an isomorphism of P0 L onto r¤1E ½ 1bS carrying the KN -
rational section Bd³1  2¼id³3 to ¡B± ¢ du, proving part (ii) of the proposition.
It also carries 2¼id³2  2¼id³3 to 2¼idz; but the latter is only meromorphic. We
may summarize the situation over bS by the following commutative diagram with
exact rows:

0 ! bI P0 L ! bI  P  L ! bI P¹ L ! 0
# # KS(§) #

0 ! r¤1E ! 1bS ! r¤N ! 0
:(2.73)

Let h be a KN -rational local equation of E; i.e. a KN -rational section of I in some
Zariski open U intersecting E non-trivially, vanishing to …rst order along E \ U:
The di¤erential ´ = h ¢ (2¼idz) is regular on U; and to prove that it is KN -rational
we may restrict it to bS and check rationality there. But in bS we have a KN -
rational product decomposition 1bS = r¤N £ r¤1E and the projection of ´ to the
second factor is 0, so it is enough to prove rationality of its projection to r¤N : This
projection is the image, under KS(§); of h ¢ (2¼id³2  2¼id³3modP0 L); so our
assertion follows from parts (i) and (ii) of the previous proposition. This proves
that ´; hence h¡1´ = 2¼idz is a KN -rational di¤erential. An alternative proof of
part (ii) is to note that E is isogenous over KN to B; so up to a KN -multiple has
the same period.

Remark 2.1. Unlike 2¼idz =Mdq=q; the parameter q is not a well-de…ned para-
meter at x, and depends not only on x; but also on the point u used to uniformize
it. If we change u to u+s (s 2 ¤) then q is multiplied by the factor e2¼i±¹s(u+s=2)M ;

so although Ohol
¹SC;x
½ bO ¹SC;x and analytic parameters may be considered as formal

parameters, the question whether q itself is KN -rational is not well-de…ned (in sharp
contrast to the case of modular curves!).

2.6.3. Normalizing the isomorphism detP ' L. Let us …x a nowhere vanishing
section

¾ 2 H0(SK; detP L¡1):(2.74)

This section is determined up to K£: From now on we shall use this section to
identify detP with L whenever such an identi…cation is needed. From Corollary
2.20 we deduce that when we base change to C; on each connected component X¡

¾ » B ¢ ¾an:(2.75)

3. Picard moduli schemes modulo an inert prime p

3.1. The strati…cation.
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3.1.1. The three strata. Fix a prime p > 2 which is inert in K and relatively prime
to N . Then R0=pR0 = Fp2 and we consider the characteristic p …ber of the smooth
compacti…cation ¹S of S;

¹S £Spec(R0) Spec(R0=pR0):(3.1)

From now on we shall write ¹S to denote this scheme, rather than the original one
over R0: We let A, as before, stand for the universal semi-abelian variety over ¹S.
The structure of ¹S has been worked out by Vollaard [V]. We record her main results.
Recall that an abelian variety over a …eld of characteristic p is called supersingular
if the Newton polygon of its p-divisible group is of constant slope 1=2: It is called
superspecial if it is isomorphic to a product of supersingular elliptic curves.

Theorem 3.1. (i) There exists a closed reduced 1-dimensional subscheme Sss ½ ¹S
(the supersingular locus), disjoint from the cuspidal divisor (i.e. contained in S),
which is uniquely characterized by the fact that for every geometric point x of S;
the abelian variety Ax is supersingular if and only if x 2 Sss.

(ii) Let Sssp be the singular locus on Sss: Then x lies in Sssp if and only if Ax
is superspecial. If s0 2 Sssp then s0 is rational over Fp2 and

bOS;s0 ' Fp2 [[u; v]]=(up+1 + vp+1):(3.2)

(iii) Assume that N is large enough (depending on p). Then the irreducible
components of Sss are rational over Fp2 ; nonsingular, and in fact are all isomorphic
to the Fermat curve

xp+1 + yp+1 + zp+1 = 0:(3.3)

There are p3 + 1 points of Sssp on each irreducible component, and through each
such point pass p + 1 irreducible components. Any two irreducible components are
either disjoint or intersect transversally at a unique point.

We call ¹S¹ = ¹S ¡ Sss (or S¹ = ¹S¹ \ S) the ¹-ordinary or generic locus, Sgss =
Sss ¡ Sssp the general supersingular locus, and Sssp the superspecial locus. Then
¹S = ¹S¹ [Sgss [Sssp is a strati…cation. The three strata are of dimensions 2,1, and
0 respectively, the closure of each stratum contains the lower dimensional ones, and
each of the three is open in its closure.

3.1.2. The p-divisible groups. Bültel and Wedhorn [Bu-We] and Vollaard describe
the p-divisible group Ax(p) of the abelian variety Ax for x in the various strata.
Let x : Spec(k) ! S¹ be a geometric point (k an algebraically closed …eld of
characteristic p) and A = Ax (an abelian variety over k). Then the p-divisible
group A(p) has a three-step OK-invariant …ltration

0 ½ Fil2A(p) ½ Fil1A(p) ½ Fil0A(p) = A(p)(3.4)

such that gr2 = Fil2 is a group of multiplicative type (connected, with étale dual),
gr1 = Fil1=F il2 is connected with a connected dual, and gr0 = Fil0=Fil1 is
étale. Each of the three graded pieces is a p-divisible group of height 2 (OK-height
1). As every p-divisible group over an algebraically closed …eld of characteristic p
splits canonically into a product of a group of multiplicative type, a group which
is connected with a connected dual, and an étale group, the above …ltration splits.
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We have

gr2A(p) ' a ¹p1

gr1A(p) ' G

gr0A(p) ' cQp=Zp(3.5)

where a and c are ideals of OK and G is the p-divisible group of a supersingular
elliptic curve over ¹Fp (the group denoted by G1;1 in the Manin-Dieudonné classi…-
cation [Dem]). Although, up to isomorphism, it is possible to substitute OK for a
or c; it is sometimes more natural to allow this extra freedom in notation.

Geometric points of Sss classify abelian varieties A = Ax for which A(p) is
isogenous to G3; and such a point x is superspecial if and only if A(p) is isomorphic
to G3:

The a-number of A is the dimension of the k-linear space Hom(®p;A[p]): It is
1 if x 2 S¹ [ Sgss and 3 if x 2 Sssp: The strati…cation which we have described
coincides, in our simple case, with the Ekedahl-Oort strati…cation [Oo],[Mo],[We].

3.2. New relations between automorphic vector bundles in characteristic
p.

3.2.1. The line bundles P0 and P¹ over ¹S¹. Consider the universal semi-abelian
variety A over the Zariski open set ¹S¹: As we have seen in Section 2.3.1, over the
cuspidal divisor C; P = !A(§) admits a canonical …ltration

0! P0 ! P ! P¹ ! 0(3.6)

where P0 is the cotangent space to the abelian part of A; and P¹ the §-component
of the cotangent space to the toric part of A: This …ltration exists already in
characteristic 0, but when we reduce modulo p it extends, as we now show, to the
whole of ¹S¹:

Let A[p]0 be the connected part of the subgroup scheme A[p]: ThenA[p]0 is …nite
‡at over ¹S¹ of rank p4: (It is clearly ‡at and quasi-…nite, and the …ber rank can be
computed separately on C and on S¹: Since the rank is constant, the morphism to
¹S¹ is actually …nite, cf. [De-Ra], Lemme 1.19.) Let

0 ½ A[p]¹ ½ A[p]0(3.7)

be the maximal subgroup-scheme of multiplicative type. Since at every geometric
point of ¹S¹, A[p]¹ is of rank p2; this subgroup is also …nite ‡at over ¹S¹: It is also
OK-invariant. Over the cuspidal divisor C, A[p]¹ is the p-torsion in the toric part
of A; and over S¹

A[p]¹ = A[p] \ Fil2A(p):(3.8)

As !A is killed by p; we have !A = !A[p] = !A[p]0 . Let !
¹
A = !A[p]¹; a rank-2

OK-vector bundle of type (1; 1): The kernel of !A[p]0 ! !A[p]¹ is then a line bundle
P0 of type (1; 0) and we get the short exact sequence

0! P0 ! !A ! !¹A ! 0(3.9)

over the whole of ¹S¹: Decomposing according to types and setting P¹ = !¹A(§); we
get the desired …ltration.
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3.2.2. Frobenius and Verschiebung. Write G forA[p]0 (a …nite ‡atOK-group scheme
over ¹S) and G(p) for the base-change of G with respect to the absolute Frobenius
morphism of degree p: In other words, if we denote by Á the homomorphism x 7! xp

(of any Fp-algebra), and by © : ¹S ! ¹S the corresponding map of schemes, then

G(p) = ¹S £©; ¹S G:(3.10)

The relative Frobenius is an O¹S-linear homomorphism FrobG : G ! G(p); char-
acterized by the fact that pr2 ± FrobG is the absolute Frobenius morphism of G:
The relative Verschiebung is an OS-linear homomorphism V erG : G(p) ! G: Under
Cartier duality V erG is dual to FrobGD ; where we denote by GD the Cartier dual
of G:

Recall that !G = !A; and similarly !G(p) = !A(p) = !
(p)
A = O ¹S Á;O ¹S !A: The

morphism V erG : G(p) ! G induces a homomorphism of vector bundles V : !A !
!
(p)
A , and taking §-components we get

V : P = !A(§)! !
(p)
A (§) = !A(¹§)

(p) = L(p):(3.11)

Over ¹S¹ this map …ts in a commutative diagram

0 Ã !¹A(§) = P¹ Ã P Ã P0 Ã 0
#' # V #

0 Ã (!¹A(
¹§))(p) Ã L(p) Ã 0 Ã 0

:(3.12)

The right vertical arrow is 0 since V kills P0; as G is of local-local type. The left
vertical map is an isomorphism, since V er is an isomorphism on p-divisible groups
of multiplicative type. We conclude that

P0 = ker(V : P ! L(p)):(3.13)

3.2.3. Relations between P0;P¹ and L over ¹S¹. We …rst recall a general lemma.

Lemma 3.2. Let M be a line bundle over a scheme S in characteristic p: Let
© : S ! S be the absolute Frobenius andM(p) = ©¤M: Then the mapM(p) !Mp

am 7! a ¢m ¢ ¢ ¢ m(3.14)

is an isomorphism of line bundles over S:

Since L(p) ' Lp by the lemma, we have
Lp ' P=P0 = P¹:(3.15)

Finally, from P0 P¹ ' detP ' L we get

P0 ' L1¡p:(3.16)

We have proved:

Proposition 3.3. Over ¹S¹; P¹ ' Lp and P0 ' L1¡p:

In the same vein we get a commutative diagram for the ¹§ parts

0 Ã !¹A(
¹§) Ã L Ã 0 Ã 0

#' # V #
0 Ã (!¹A(§))

(p) Ã P(p) Ã P(p)0 Ã 0

(3.17)

and deduce that V is injective on L and

P(p) = P(p)0 © V (L):(3.18)
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Thus over ¹S¹; P has a canonical …ltration by P0; but the induced …ltration on P(p)
already splits as a direct sum.

Remark 3.1. Working over ¹Fp; and restricting attention to a connected component
E of C; PjE is a non-split extension of P¹ by P0: However, both P¹ and P0 are
trivial on E; so the extension is described by a non-zero class » 2 H1(E;OE): The
extension P(p)jE is then described by »(p): The semilinear map » 7! »(p) is the
Cartier-Manin operator, and since E is a supersingular elliptic curve, »(p) = 0 and
P(p)jE splits. Thus at least over C; the splitting of P(p) is consistent with what we
know so far.

Since V induces an isomorphism of L onto P(p)=P(p)0 ' (P=P0)p and P=P0 ' Lp
we conclude that over ¹S¹; L ' Lp

2

: In the next section we realize this isomorphism
via the Hasse invariant. Combining what was proved so far we easily get the
following.

Proposition 3.4. Over ¹S¹, Lp
2 ' L. For k ¸ 1 odd, P(pk) ' Lp¡1©L: For k ¸ 2

even, P(pk) ' L1¡p © Lp; but for k = 0 we only have an exact sequence

0! L1¡p ! P ! Lp ! 0:(3.19)

Corollary 3.5. Over ¹S¹; Lp
2¡1;Pp2¡1¹ and Pp+10 are trivial line bundles.

3.2.4. Extending the …ltration on P over Sgss. In order to determine to what extent
the …ltration on P and the relation between L and the two graded pieces of the
…ltration extend into the supersingular locus, we have to employ Dieudonné theory.

Proposition 3.6. Let P0 = ker(V : P ! L(p)): Then over the whole of ¹S ¡ Sssp;

V (P) = L(p) and P0 is a rank 1 submodule. Let P¹ = P=P0: Then P¹ ' Lp;
P0 ' L1¡p and the …ltration (3.19) is valid there.

Proof. Everything is a formal consequence of the fact that V maps P onto L(p);
and the relation detP ' L: Over ¹S¹ the proposition was veri…ed in the previous
subsection, so it is enough to prove that V (P) = L(p) in the …ber of any geometric
point x 2 Sgss(k) (k algebraically closed). We use the description of H1dR(Ax=k)
given in Lemma 4.9 below, due to Bültel and Wedhorn. In the notation of that
lemma, Px is spanned over k by e1 and e2 and Lx by f3; while V (e1) = 0; V (e2) =
f
(p)
3 : This concludes the proof.

Proposition 3.7. Over the whole of ¹S ¡ Sssp, V maps L injectively onto a sub-
line-bundle of P(p):

Proof. Once again, we know it already over ¹S¹; and it remains to check the assertion
…ber-wise on Sgss: We refer again to Lemma 4.9, and …nd that V (f3) = e

(p)
1 ; which

proves our claim.

The emerging picture is this: Outside the superspecial points, V maps L injec-
tively onto a sub-line-bundle of P(p), and V (p) maps P(p) surjectively onto L(p2):
However, the line V (L) coincides with the line P(p)0 = ker(V (p)) only on the general
supersingular locus, while on its complement ¹S¹ the two lines make up a frame for
P(p) (3.18). One can be a little more precise. The equation

V (L) = P(p)0(3.20)
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(i.e. V (p) ± V (L) = 0) is the de…ning equation of Sss in the sense that when
expressed in local coordinates it de…nes Sss with its reduced subscheme structure.
See Proposition 3.9 below.

For a superspecial x; Ax is isomorphic to a product of three supersingular elliptic
curves, so V vanishes on the whole of !Ax : The analysis of the last paragraph breaks
up. To complete the picture, we shall now prove that there does not exist any way
to extend the …ltration (3.19) across such an x:

Proposition 3.8. It is impossible to extend the …ltration 0! P0 ! P ! P¹ ! 0
along Sss in a neighborhood of a superspecial point x.

Proof. To simplify the computations we change the base …eld to ¹Fp: At any super-
special point there are p+ 1 branches of Sss meeting transversally. We shall prove
the proposition by showing that along any one of these branches (labelled by ³;
a p + 1-st root of ¡1) P0 approaches a line Px[³ ] ½ Px; but these p + 1 lines are
distinct. In other words, on the normalization of Sss we can extend the …ltration
uniquely, but the extension does not come from Sss:

Before we go into the proof a word of explanation is needed. In Section 4.3 below
we study the deformation of the action of V on !A near a general supersingular
point x 2 Sgss. For that purpose the …rst in…nitesimal neighborhood of x su¢ces,
and we end up using Grothendieck’s crystalline deformation theory, even though
we cast it in the language of de Rham cohomology. At a point x 2 Sssp; in contrast,
we need to work in the full formal neighborhood of x in S, or at least in an Artinian
neighborhood which no longer admits a divided power structure. The reason is that
the singularity of Sss at x is formally of the type Spec(¹Fp[[u; v]]=(up+1 + vp+1));
as we shall see in (3.27). Crystalline deformation theory is inadequate, and we
need to use Zink’s “displays”. As the theory of displays is covariant, we start with
the covariant Cartier module of A = Ax rather than the contravariant Dieudonné
module, and look for its universal deformation.

Let us review the (confusing) functoriality of these two modules. For the moment,
let A be any abelian variety over ¹Fp: If D is the (contravariant) Dieudonné module
of A and M is its (covariant) Cartier module, then D=pD = H1dR(A) and M=pM =
H1dR(A

t) are set in duality. The dual of

V : D=pD ! (D=pD)(p)(3.21)

(V = V er¤A, V erA being the Verschiebung isogeny from A(p) to A) is the map

F : (M=pM)(p) !M=pM(3.22)

(F = Frob¤At ; FrobAt being the Frobenius isogeny from At to At(p)). As usual,
since ¹Fp is perfect, we may view V as a Á¡1-linear map of D=pD, and F as a
Á-linear map of M=pM: Replacing A by At we then also have a map F on D=pD
and V on M=pM: The Hodge …ltration !A ½ H1dR(A) is (D=pD)[F ]. Its dual is the
quotient Lie(A) = H1(At;O) of H1dR(At); identi…ed with M=VM: Compare [Oda],
Corollary 5.11.

This reminder tells us that when we pass from the contravariant theory to the
covariant one, instead of looking for the deformation of V on !A we should look for
the deformation of F on Lie(A) = M=VM: At a superspecial point F annihilates
Lie(A); but at nearby points in S it need not annihilate it anymore.

Now let x 2 Sssp and A = Ax: The Cartier module (modulo p) M=pM of A
admits a symplectic basis f3; e1; e2; e3; f1; f2 where OK acts on the ei via § and
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on the fi via ¹§, where the polarization pairing is hei; fji = ¡hfj ; eii = ±ij and
hei; eji = hfi; fji = 0; and where f3; e1; e2 project to a basis of Lie(A) = M=VM:
With an appropriate choice of the basis, the Frobenius F on M=pM is the Á-linear
map whose matrix with respect to the basis f3; e1; e2; e3; f1; f2 is

0
BBBBBB@

0 0
0 0
0 0

1 0
1 0
1 0

1
CCCCCCA
:(3.23)

All this can be deduced from [Bu-We], 3.2.
To construct the universal display we follow the method of [Go-O]. See also [An-

Go]. With local coordinates u and v we write bS = Spf ¹Fp[[u; v]] for the formal
completion of S at x: We study the deformation of F to

F : H1dR(At=bS)(p) ! H1dR(At=bS):(3.24)

We use a basis f3; e1; : : : ; f2 satisfying the same assumptions as above with respect
to the OK-type and the polarization pairing. Then one can choose u and v and the
basis of H1dR(At=bS) so that the universal Frobenius is given by the matrix

F =

0
BBBBBB@

0 u v 0
u 0 0
v 0 0
1 0
1 0
1 0

1
CCCCCCA
:(3.25)

Since the …rst three vectors project onto a basis of Lie(A), the matrix of F :
Lie(A)(p) ! Lie(A) is the 3£3 upper left corner, and the matrix of F 2(= F ±F (p))
is (note the semilinearity)

0
@

up+1 + vp+1

up+1 uvp

vup vp+1

1
A :(3.26)

This matrix is sometimes called the Hasse-Witt matrix. Thus on Lie(A)(¹§)(p2) =
L(p2)_ the action of F 2 is given by multiplication by up+1 + vp+1. As the super-
singular locus is the locus where the action of F on the Lie algebra is nilpotent, it
follows that the local (formal) equation of Sss at x is

up+1 + vp+1 = 0:(3.27)

Note that this equation guarantees also that the lower 2£2 block, representing the
action of F 2 on the §-part of the Lie algebras is (semi-linearly) nilpotent, i.e.

µ
up+1 uvp

vup vp+1

¶Ã
up
2(p+1) up

2

vp
3

vp
2

up
3

vp
2(p+1)

!
= 0:(3.28)

We write bSss = Spf(¹Fp[[u; v]]=(up+1 + vp+1)) for the formal completion of Sss at
x: Letting ³ run over the p + 1 roots of ¡1 we recover the p + 1 formal branches



p-ADIC PROPERTIES OF PICARD MODULAR SCHEMES AND MODULAR FORMS 41

through x as the “lines”

u = ³v:(3.29)

We write bSss[³ ] = Spf(¹Fp[[u; v]]=(u¡ ³v)) for this branch. When we restrict (pull
back) the vector bundle Lie(A) to bSss[³], ker(F ) \ Lie(A)(p) (the dual of P¹)
becomes

ker

0
@
0 ³v v
³v 0 0
v 0 0

1
A :(3.30)

When v 6= 0 (i.e. outside the point x) this is the line

¹Fp

0
@
0
1
¡³

1
A(3.31)

As these lines are distinct, the …ltration of P can not be extended across x:

3.3. The Hasse invariant h¹§.

3.3.1. De…nition of h¹§. The construction and main properties of the Hasse invari-
ant that we are about to describe, have been given (for any unitary Shimura variety)
by Goldring and Nicole in [Go-Ni]. Let R be an R0=pR0 = Fp2-algebra. Let A be
an abelian scheme over R and

A(p) = A£SpecR;Á SpecR(3.32)

where Á is the p-power map. If ® is an endomorphism of A then ®(p) = ®£ 1 is an
endomorphism of A(p) and

®(p) ± FrobA=R = FrobA=R ± ®:(3.33)

If ¶ : OK ! EndR(A) is a ring homomorphism we de…ne ¶(p) : OK ! EndR(A(p))
by

¶(p)(a) = ¶(a)(p):(3.34)

If, via ¶, A has CM by OK and type (2; 1); then A(p) will have, via ¶(p); type (1; 2):
The isogenies FrobA=R and V erA=R induce R-linear maps (FA=R)¤ and (VA=R)¤ on
Lie algebras. Since

¶(p)(a)¤ ± (FA=R)¤ = (FA=R)¤ ± ¶(a)¤(3.35)

(and similarly for VA=R), (FA=R)¤ and (VA=R)¤ preserve types. As Lie(A(p))(¹§) is
2-dimensional but Lie(A)(¹§) is 1-dimensional,

(VA=R)¤ : Lie(A
(p))! Lie(A)(3.36)

must have a kernel in Lie(A(p))(¹§) which is at least one-dimensional. Consider

V 2¤ := (VA=R)¤ ± (VA(p)=R)¤ : Lie(A)(p
2) ! Lie(A)(3.37)

which again preserves types. We remark that under the identi…cation of Lie(A)
with H1(At;O); (VA=R)¤ = (FAt=R)¤:

De…nition 3.1. The Hasse invariant is

h¹§ = V 2¤ (¹§) : Lie(A)(¹§)
(p2) ! Lie(A)(¹§):(3.38)
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Recall (Lemma 3.2) that if M is a line bundle on a scheme S in characteristic
p; thenM(p) = OS Á;OSM is another line bundle over S and the map

M(p) 3 1m 7!m ¢ ¢ ¢ m 2Mp(3.39)

is an isomorphism of line bundles over S. This applies in particular to the line
bundle Lie(A)(¹§) = L_ on the Picard modular surface S (over R0=pR0).

We conclude that

h¹§ 2 HomS(Lie(A)(¹§)p
2

; Lie(A)(¹§))
= H0(S;Lp

2¡1):(3.40)

This means that the Hasse invariant is a modular form of weight p2¡ 1 in charac-
teristic p.

Theorem 3.9. The Hasse invariant is invertible on S¹ and vanishes on Sss =
S ¡ S¹ to order one. More precisely, S¹ is an open subscheme whose complement
Sss is a divisor, and when we endow this divisor with its induced reduced subscheme
structure, it becomes the Cartier divisor div(h¹§):

Proof. Dualizing the de…nition, the Hasse invariant vanishes precisely where V ¤A(L)
is contained in ker(V ¤A(p) : P

(p) ! L(p2)): We have already seen that over S¹ the

latter is the line bundle P(p)0 and that V ¤ sends L isomorphically onto a direct
complement of P(p)0 , cf (3.18). Thus the Hasse invariant does not vanish on S¹: To
prove that h¹§ vanishes on Sss to order 1 we must study the Dieudonné module at an
in…nitesimal neighborhood of a point x 2 Sgss and compute V ¤(p) ± V ¤ using local
coordinates there. This can be extracted from [Bu-We], but since later in our work
we explain it in deatil (for the purpose of studying the theta operator), we shall
now refer to Section 4.3. In Lemma 4.9 we describe the (contravariant) Dieudonné
module at x: In subsection 4.3.3 we describe its in…nitesimal deformation. Using
the local coordinates u and v; and the notation used there, f3¡uf1¡ vf2 becomes
a basis for L over the …rst in…nitesimal neighborhood of x: We then compute

V ¤(f3 ¡ uf1 ¡ vf2) = e
(p)
1 ¡ ue

(p)
2

V ¤(p)(e(p)1 ¡ ue
(p)
2 ) = ¡uf (p

2)
3 = ¡u ¢ (f3 ¡ uf1 ¡ vf2)

(p2):(3.41)

Apart from working in the cotangent space instead of the tangent space, V ¤(p) ±V ¤
is the Hasse invariant (use Hom(M;N) = Hom(N_;M_)). It follows that after L
has been locally trivialized, the equation h¹§ = 0 becomes u = 0; which is the local
equation for Sgss:

3.3.2. Nonvanishing of h¹§ at the cusps.

Proposition 3.10. The Hasse invariant extends to a holomorphic section of Lp2¡1
over ¹S; which is nowhere vanishing on ¹S¹: If we trivialize LjC then the restriction of
h¹§ to the cuspidal divisor C becomes a nowhere vanishing locally constant function.

Proof. Extendibility holds by the Koecher principle for any modular form. One can
even deduce non-vanishing at the cusps, but here we may argue directly. The same
de…nition as the one given over S, with the abelian variety A replaced by G = A[p]0
(A signifying now the semi-abelian variety over ¹S); de…nes h¹§ over the complete
Picard surface:

h¹§ = (VG)¤ ± (VG(p))¤ : Lie(G)(¹§)(p
2) ! Lie(G)(¹§):(3.42)
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The same argument as above shows that h¹§ is nowhere vanishing on the whole of
¹S¹: Since LjC is trivial, the last statement is obvious.

Corollary 3.11. The scheme S¤¹ = S¤¡Sss is a¢ne and over ¹Fp; the intersection
of Sss with every connected component of S is connected.

Proof. The line bundle L is ample on S, even over R0.4 Hence for large enough
m; which we can take to be a multiple of p2 ¡ 1; Lm is very ample, and by [La1]
the Baily-Borel compacti…cation S¤ is the closure of S in the projective embedding
supplied by the linear system H0(S;Lm): It follows that Lm has an extension to a
line bundle on S¤ which we denote OS¤(1); since it comes from the restriction of
the O(1) of the projective space to S¤:Moreover, Larsen proves that on the smooth
compacti…cation ¹S; Lm = ¼¤OS¤(1) where ¼ : ¹S ! S¤.5

Replacing h¹§ by its power h
m=(p2¡1)
¹§

, this power becomes a global section of
Lm, hence its zero locus Sss a hyperplane section of S¤ in the projective embeding
supplied by H0(S;Lm): Its complement is therefore a¢ne. The last claim follows
from the fact [Hart], III, 7.9, that a positive dimensional hyperplane section of a
smooth (or more generally, normal) projective variety is connected.

The scheme ¹S¹ is of course far from a¢ne, as it contains the complete curves E
as cuspidal divisors.

3.4. A secondary Hasse invariant on the supersingular locus. In his forth-
coming Ph.D. thesis [Bo], Boxer develops a general theory of secondary Hasse in-
variants de…ned on lower strata of Shimura varieties of Hodge type. See also [Kos].
In this section we provide an independent approach, in the case of Picard modular
surfaces, a¤ording a detailed study of its properties. As an application we relate the
number of irreducible components of Sss to the Euler number of SC; and through
it to the value of the function L(s; (DK¢ )) at s = 3:

3.4.1. De…nition of hssp. As we have seen, along the general supersingular locus
Sgss; Verschiebung induces isomorphisms

VL : L ' P(p)0 ; VP : P¹ ' L(p):(3.43)

(The …rst is unique to Sgss; the second holds also on the ¹-ordinary stratum.)
Consider the isomorphism

V
(p)
P  V ¡1L : P(p)¹  P(p)0 ' L(p2)  L ' Lp2+1:(3.44)

Its source is the line bundle detP(p) which is identi…ed with L(p) ' Lp:We therefore
get a nowhere vanishing section

~hssp 2 H0(Sgss;Lp
2¡p+1):(3.45)

Our “secondary” Hasse invariant is the nowhere vanishing section

hssp = ~h
p+1
ssp 2 H0(Sgss;Lp

3+1):(3.46)

We shall show that hssp extends to a holomorphic section on Sss, and vanishes at
the superspecial points (to a high order).

4One way to see it is to use the ampleness of the Hodge bundle det!A ' L2 (pull back from
Siegel space, where it is known to be ample by [Fa-Ch]).

5It is not clear that L itself has an extension to a line bundle on S¤; or that ¼¤L; which is a
coherent sheaf extending LjS ; is a line bundle (the problem lying of course only at the cusps). In
other words, it is not clear that we can extract an mth root of OS¤ (1) as a line bundle.
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3.4.2. Computations at the superspecial points. We refer again to the computations
of Proposition 3.8, and work over ¹Fp: Dualizing the display described there, and
using the letters ei; fj to denote the dual basis to the basis used there we get the
following.

Lemma 3.12. Let x 2 Sssp be a superspecial point. There exist formal coordi-
nates u and v so that the formal completion of S at x is bS = Spf(¹Fp[[u; v]]); and
D = H1dR(A=bS) has a basis f3; e1; e2; e3; f1; f2 over ¹Fp[[u; v]] with the following
properties:

(i) f3; e1; e2 is a basis for !A
(ii) The basis is symplectic, i.e. the polarization form is hei; fji = ¡hfj; eii =

±ij; hei; eji = hfi; fji = 0:
(iii) OK acts on the ei via § and on the fj via ¹§:
(iv) V : D ! D(p) is given by V f3 = ue

(p)
1 + ve

(p)
2 ; V e1 = uf

(p)
3 ; V e2 = vf

(p)
3 ;

V e3 = f
(p)
3 ; V f1 = e

(p)
1 ; V f2 = e

(p)
2 :

Using the lemma, we compute along bSss[³]; where u = ³v (³p+1 = ¡1). Denote
by P [³]; P0[³] and L[³] the pull-backs of the corresponding vector bundles to the
branch bSss[³ ]: The map VL is given by

f3 7! ue
(p)
1 + ve

(p)
2 = v ¢ (³e(p)1 + e

(p)
2 ) = v ¢ (³pe1 + e2)

(p) 2 P(p)0 [³]:(3.47)

Use e1 ^ e2 = e1 ^ (³pe1 + e2) as a basis for detP[³]: Since V
(p)
P maps e

(p)
1 to

(³v)pf (p
2)

3 ; ~hssp maps e
(p)
1 ^ e

(p)
2 = e

(p)
1 ^ (³

pe1 + e2)
(p) to

~hssp(e
(p)
1 ^ e

(p)
2 ) = ³pvp¡1f

(p2)
3  f3

= ³pvp¡1fp
2+1
3 = ³up¡1fp

2+1
3 :(3.48)

Lemma 3.13. There does not exist a function g 2 ¹Fp[[u; v]]=(up+1 + vp+1) on bSss
whose restriction to the branch bSss[³ ] is ³up¡1:
Proof. Had there been such a function, represented by a power series G 2 ¹Fp[[u; v]];
then we would get vg = up on bSss[³] for every ³; hence

vG¡ up 2 (up+1 + vp+1) ½ ¹Fp[[u; v]]:(3.49)

But any power series in the ideal (up+1+vp+1) contains only terms of degree ¸ p+1;
while in vG¡ up we can not cancel the term up:

The lemma means that ~hssp can not be extended over Sss to a section of
Hom(detP(p);Lp2+1) ' Lp2¡p+1: However, when we raise it to a p + 1 power
the dependence on ³ disappears. It then extends to a section hssp of Lp3+1 over
Sss; given over bS by the equation

hssp = "up
2¡1fp

3+1
3 ;(3.50)

where " 2 ¹Fp[[u; v]]£ depends on the isomorphism between detP and L:

Theorem 3.14. The secondary Hasse invariant hssp belongs to H0(Sss;Lp
3+1): It

vanishes precisely at the points of Sssp: The subscheme \hssp = 0" of Sss is not
reduced. At x 2 Sssp, with u and v as above, it is the spectrum of

¹Fp[[u; v]]=(up+1 + vp+1; up
2¡1; vp

2¡1):(3.51)
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From now on we assume thatN is large enough (depending on p) so that Theorem
3.1(iii) holds. Each irreducible component of Sss is non-singular, and hssp has a zero
of order p2 ¡ 1 at each superspecial point on such a component. Each component
contains p3 + 1 superspecial points. It follows that if Z is such a component,

deg(Lp3+1jZ) = deg(divZ(hssp)) = (p3 + 1)(p2 ¡ 1):(3.52)

We get the following corollary.

Corollary 3.15. Let Z be an irreducible component of Sss; and assume that N is
large enough. Then deg(LjZ) = p2 ¡ 1:

3.4.3. Application to the number of irreducible components of Sss. We want to give
an interesting application of the last corollary to the computation of the number of
irreducible components of Sss: Let

Z =
n[

i=1

Zi(3.53)

be the decomposition into irreducible components of a single connected component
Z of Sss (recall that Z is the intersection of Sss with a connected component of ¹S).
The Zi are smooth, and their genus is p(p¡ 1)=2:

Theorem 3.16. Let c2 be the Euler characteristic of the connected component of
¹S containing Z; i.e. if over C this connected component is ¹X¡ then

c2 =
4X

i=0

(¡1)i dimCHi( ¹X¡;C):(3.54)

Then

3n = c2:(3.55)

Proof. Computing intersection numbers,

(Z:Z) = n(p3 + 1)p+
nX

i=1

(Zi:Zi):(3.56)

Denote by K ¹S a canonical divisor on the given connected component of ¹S: From
the adjunction formula,

p(p¡ 1)¡ 2 = 2g(Zi)¡ 2 = Zi:(Zi +K¹S):(3.57)

As we have seen in Proposition 2.11, O(K ¹S + C) ' L3 where C is the cuspidal
divisor. Hence

(Zi:K ¹S) = Zi:(K¹S + C) = deg(L3jZi) = 3(p2 ¡ 1)(3.58)

by the last Corollary. We get

(Zi:Zi) = ¡2p2 ¡ p + 1:(3.59)

Plugging this into the expression for (Z:Z) we get

(Z:Z) = n(p2 ¡ 1)2:(3.60)

On the other hand, since Z is the divisor of the Hasse invariant on ¹S, div(h¹§) = Z;

we get O(Z) = Lp2¡1 so
n = c1(L)2:(3.61)
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From this we get 9n = (K¹S+C):(K ¹S+C): Holzapfel [Ho] (4.3.11’) on p.184, implies

9n = 3c2(X¡) = 3c2( ¹X¡)(3.62)

proving the theorem.

In [Ho] (5A.4.3), p.325 Holzapfel proves that for ¡ the stabilizer of L0

c2(X¡) = "
3jDKj5=2
32¼3

L

µ
3;

µ
DK
¢

¶¶
= ¡3"

16
L

µ
¡2;

µ
DK
¢

¶¶
;(3.63)

where " = 1; unless DK = ¡3; in which case " = 3: For a congruence subgroup
¡0 we have c2(X¡0) = [¡ : ¡0]c2(X¡): Formulae of this form have been previously
obtained, for split reductive groups, by Harder.

3.4.4. The classes of Ekedahl-Oort strata in the Chow ring of ¹S. Let us denote by
CH = CH( ¹S) the Chow ring with Q coe¢cients of ¹S over ¹Fp; and let CHL the Q-
subalgebra generated by c1(L) (note that we now use ci to denote Chern classes of
vector bundles in CH and not in cohomology). Recall that the Ekedahl-Oort strata
of ¹S consist of ¹S itself, Z = Sss in codimension 1, and W = Sssp in codimension 2.

Proposition 3.17. The classes [ ¹S]; [Z] and [W ] in CH belong to CHL:

A similar result for Siegel modular varieties has been proved by van der Geer in
[vdG] and for Hilbert modular varieties in [Go-O].

Proof. Without loss of generality we may assume that N is large enough, so that
Theorem 3.1(iii) applies. As the divisor of the Hasse invariant is Z; [Z] = (p2 ¡
1)c1(L): It remains to deal with [W ]: Let f : ~Z ! ¹S be the map from the normal-
ization of Z to ¹S with image Z: Then the projection formula implies

[Z]:c1(L) = f¤(f
¤(c1(L)) = f¤(c1(f

¤L)):(3.64)

Write ~Z =
`n

i=1
~Zi and note that (p3 + 1)c1(f¤L) is the class of div(hssp) on ~Z;

which is represented by the 0-cycle consisting of the superspecial points on each ~Zi
with multiplicities p2 ¡ 1: It follows that

(p3 + 1)[Z]:c1(L) = (p2 ¡ 1)(p+ 1)[W ]:(3.65)

Substituting [Z] = (p2 ¡ 1)c1(L) we get
[W ] = (p2 ¡ p+ 1)c1(L)2:(3.66)

3.5. The open Igusa surfaces.

3.5.1. The Igusa scheme. Let N ¸ 3 as always, and letM be the moduli problem
of Section 1.3.1. Let n ¸ 1 and consider the following moduli problem on R0=pR0-
algebras:

² MIg(pn)(R) is the set of isomorphism classes of triples (A;A[pn]¹; ") where
A 2 M(R), A[pn]¹ ½ A[pn] is a …nite ‡at OK-subgroup scheme of rank p2n

of multiplicative type, and

" : ±¡1K OK  ¹pn ' A[pn]¹(3.67)

is an isomorphism of OK-group schemes over R:



p-ADIC PROPERTIES OF PICARD MODULAR SCHEMES AND MODULAR FORMS 47

It is clear that if (A;A[pn]¹; ") 2MIg(pn)(R) then A is …ber-by-…ber ¹-ordinary
and therefore A 2M(R) de…nes an R-point of S¹: It is also clear that the functor
R ÃMIg(pn)(R) is relatively representable over M; and therefore as N ¸ 3 and
M is representable, this functor is also representable by a scheme Ig¹(p

n) which
maps to S¹: See [Ka-Ma] for the notion of relative representability. We call Ig¹(pn)
the Igusa scheme of level pn:

Proposition 3.18. The morphism ¿ : Ig¹(p
n) ! S¹ is …nite and étale, with the

Galois group ¢(pn) = (OK=pnOK)£ acting as a group of deck transformations.

Proof. Every ¹-ordinary abelian variety has a unique …nite ‡atOK-subgroup scheme
of multiplicative type A[pn]¹ of rank p2n: Such a subgroup scheme is, locally in the
étale topology, isomorphic to ±¡1K OK  ¹pn ; and any two isomorphisms di¤er by a
unique automorphism of ±¡1K OK  ¹pn : But ¢(p

n) = AutOK(±
¡1
K OK  ¹pn): If we

let ° 2 ¢(pn) act on the triple (A;A[pn]¹; ") via

°((A;A[pn]¹; ")) = (A;A[pn]¹; " ± °¡1)(3.68)

¢(pn) becomes a group of deck transformation and the proof is complete.

3.5.2. A compacti…cation over the cusps. The proof of the following proposition
mimics the construction of ¹S: We omit it.

Proposition 3.19. Let Ig¹(p
n) be the normalization of ¹S¹ = ¹S ¡ Sss in Ig¹(p

n):

Then Ig¹(p
n) ! ¹S¹ is …nite étale and the action of ¢(pn) extends to it. The

boundary Ig¹(p
n)¡ Ig¹(pn) is non-canonically identi…ed with ¢(pn)£C:

We de…ne similarly Ig¤¹; and note that it is …nite étale over S¤¹:

Proposition 3.20. Let A denote the pull-back of the universal semi-abelian variety
from ¹S¹ to Ig¹(p

n): Then A is equipped with a canonical Igusa level structure

" : ±¡1K OK  ¹pn ' A[pn]¹:(3.69)

Over C and after base change to RN=pRN the toric part of A is locally Zariski of
the form a  Gm and " is then an OK-linear isomorphism between ±¡1K OK  ¹pn
and a ¹pn :

3.5.3. A trivialization of L over the Igusa surface. From now on we focus on Ig¹ =

Ig¹(p) although similar results hold when n > 1; and would be instrumental in the
study of p-adic modular forms. The vector bundle !A pulls back to a similar vector
bundle over Ig¹: But there

!¹A := !A[p]¹(3.70)

is a rank 2 quotient bundle stable under OK (of type (1; 1)), and the isomorphism
" induces an isomorphism

"¤ : !¹A ' !±¡1K OK¹p
:(3.71)

Now Lie(±¡1K OK  ¹p) = ±¡1K OK  Lie(¹p) = ±¡1K OK Lie(Gm) and by duality

!±¡1K OK¹p
= OK  !Gm ;(3.72)

with 1  dT=T as a generator (if T is the parameter of Gm). Here we have used
the fact that the Z-dual of ±¡1K OK is OK via the trace pairing. This is the constant
vector bundle OK R = R(§)©R(¹§):
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Proposition 3.21. The line bundles L; P0 and P¹ are trivial over Ig¹:

Proof. Use "¤ as an isomorphism between vector bundles and note that L = !¹A(
¹§)

and P¹ = !¹A(§): The relation P0 P¹ = detP ' L implies the triviality of P0 as
well.

Note that the trivialization of L and P¹ is canonical, because it uses only the
tautological map " which exists over the Igusa scheme. The trivialization of P0 on
the other hand depends on how we realize the isomorphism detP ' L:

We can now give an alternative proof to the fact that Lp2¡1 and Pp2¡1¹ are trivial

on ¹S¹: Since Ig¹ is an étale cover of ¹S¹ of order p
2¡1; det ¿¤(¿¤L) ' Lp

2¡1: As ¿¤L
is already trivial, so is Lp2¡1 on the base. The same argument works for P¹ and for
P0: The fact that Pp+10 is already trivial could be deduced by a similar argument
had we worked out an analogue of Ig(p) classifying symplectic isomorphisms of G[p]
with gr1A[p]: The role of ¢(p) for such a moduli space would be assumed by

¢1(p) = ker(N : (OK=pOK)£ ! F£p );(3.73)

which is a group of order p + 1: We do not go any further in this direction here.

3.6. Compacti…cation of the Igusa surface along the supersingular locus.

3.6.1. Extracting a p2¡1 root from h¹§ over Ig¹. Let a(1) be the canonical nowhere
vanishing section of L over Ig¹ which is sent to e¹§ ¢ (1 dT=T ) under the trivial-
ization

"¤ : L = !¹A(
¹§) ' (OK  !Gm)(¹§) = R(¹§):(3.74)

Here R is any R0=pR0-algebra over which we choose to work. In other words,
a(1) = ("¤)¡1(e¹§ ¢ 1  dT=T ): Dually, a(1) is the homomorphism from Lie(A)(¹§)
to ±¡1K  Lie(Gm)(¹§) arising from "¡1: Let a(k) = a(1)k 2 H0(Ig¹;Lk):

Proposition 3.22. (i) Let ° 2 ¢(p) = (OK=pOK)£: Then¢(p) acts onH0(Ig¹;L)
and

°¤a(1) = ¹§(°)¡1 ¢ a(1):(3.75)

(ii) The section a(1) is a p2 ¡ 1 root of the Hasse invariant over Ig¹, i.e.

a(p2 ¡ 1) = h¹§:(3.76)

Proof. (i) This part is a restatement of the action of ¢(p): At two points of Ig¹(R)
lying over the same point of S¹(R) and di¤ering by the action of ° 2 ¢(p); the
canonical embeddings

±¡1K  ¹p ,! A[p](3.77)

di¤er by ¶(°) (3.68). The induced trivializations of Lie(A)(¹§) di¤er by ¹§(°) and
by duality we get (i).

(ii) Since over any Fp-base, V erGm = 1, we have a commutative diagram

Lie(A)(¹§)(p2) V 2¤! Lie(A)(¹§)
# a(1)(p2) # a(1)
±¡1K  Lie(Gm)(¹§) = ±¡1K  Lie(Gm)(¹§)

:(3.78)
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Using the isomorphism Lie(A)(¹§)(p2) ' Lie(A)(¹§)p2 to which we alluded before,
we get the commutative diagram

Lie(A)(¹§)p2 h¹§! Lie(A)(¹§)
# a(p2) # a(1)
±¡1K Lie(Gm)(¹§) = ±¡1K Lie(Gm)(¹§)

;(3.79)

from which we deduce that h¹§ = a(p2¡ 1). Note that we can interprete a(1) as an
arrow as above rather than as a section of L = Lie(A)(¹§)_ because of the identity
Hom(M;N) = Hom(N_;M_):

3.6.2. The compacti…cation Ig of Ig¹. Quite generally, let L! X be a line bundle
associated with an invertible sheaf L on a scheme X. Write Ln for the line bundle
Ln over X. Let s : X ! Ln be a section. Consider the …ber product

Y = L£Ln X(3.80)

where the two maps to Ln are ¸ 7! ¸n and s: Let p : Y
pr2! X be the projection

which can also factor as Y
pr1! L! Ln ! X (since X s! Ln ! X is the identity).

Consider

p¤L = L£X (L£Ln X):(3.81)

This line bundle on Y has a tautological section t : Y ! p¤L;

t : y = (¸; x) 7! (¸; y) = (¸; (¸; x))(3.82)

Here s(x) = ¸n and

tn(y) = (¸n; y) = (s(x); y) = p¤s(y)(3.83)

so t is an nth root of p¤s: Moreover, Y has the universal property with respect
to extracting nth roots from s: If p1 : Y1 ! X, and t1 2 ¡(Y1; p¤1L) is such that
tn1 = p¤1s; then there exists a unique morphism h : Y1 ! Y covering the two maps
to X such that t1 = h¤t:

The map L! Ln is …nite ‡at of degree n and if n is invertible on the base, …nite
étale away from the zero section. Indeed, locally onX it is the map A1£X ! A1£X
which is just raising to nth power in the …rst coordinate. By base-change, it follows
that the same is true for the map p : Y ! X : this map is …nite ‡at of degree n
and étale away from the vanishing locus of the section s (assuming n is invertible).
We remark that if L is the trivial line bundle, we recover usual Kummer theory.

Applying this in our example with n = p2 ¡ 1 we de…ne the complete Igusa
surface of level p; Ig = Ig(p) as

Ig = L£Lp2¡1 ¹S(3.84)

where the map S ! Lp2¡1 is h¹§: From the universal property and part (ii) of
Proposition 3.22 we get a map of ¹S-schemes

Ig¹ ! Ig:(3.85)

This map is an isomorphism over ¹S¹ because both schemes are étale torsors for
¢(p) = (OK=pOK)£ and the map respects the action of this group. We sum-
marize the discussion in the following theorem (for the last point, consult [Mu2],
Proposition 2, p.198).
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Theorem 3.23. The morphism ¿ : Ig! ¹S satis…es the following properties:
(i) It is …nite ‡at of degree p2 ¡ 1; étale over ¹S¹; totally rami…ed over Sss:
(ii) ¢ acts on Ig as a group of deck transformations and the quotient is ¹S:
(iii) Let s0 2 Sgss(¹Fp): Then there exist local parameters u; v at s0 such that

bOS;s0 = ¹Fp[[u; v]], Sgss ½ S is formally de…ned by u = 0; and if ~s0 2 Ig maps to s0
under ¿; then bOIg;~s0 = ¹Fp[[w; v]] where wp2¡1 = u: In particular, Ig is regular in
codimension 1.

(iv) Let s0 2 Sssp(¹Fp): Then there exist local parameters u; v at s0 such that
bOS;s0 = ¹Fp[[u; v]], Sgss ½ S is formally de…ned by up+1 + vp+1 = 0; and if ~s0 2 Ig
maps to s0 under ¿ ; then

bOIg;~s0 = ¹Fp[[w; u; v]]=(wp2¡1 ¡ up+1 ¡ vp+1)(3.86)

In particular, ~s0 is a normal singularity of Ig:

3.6.3. Irreducibility of Ig. So far we have avoided the delicate question of whether
Ig is “relatively irreducible”, i.e. whether ¿¡1(T ) is irreducible if T ½ ¹S is an irre-
ducible (equivalently, connected) component. Using an idea of Katz, and following
the approach taken by Ribet in [Ri], the irreducibility of ¿¡1(T ) could be proven
for any level pn if we could prove the following:

² Let q = p2: For any r su¢ciently large and for any ° 2 (OK=pnOK)£ there
exists a ¹-ordinary abelian variety with PEL structure A 2 S¹(Fqr ) such that
the image of Gal(¹Fq=Fqr ) in

Aut
³
Isom¹Fq (±

¡1
K  ¹pn ;A[p

n]¹)
´
= (OK=pnOK)£(3.87)

contains °:

Instead, we shall give a di¤erent argument valid for the case n = 1:

Proposition 3.24. The morphism ¿ : Ig ! ¹S induces a bijection on irreducible
components.

Proof. Since Ig is a normal surface, connected components and irreducible compo-
nents are the same. Let T be a connected component of ¹S and Tss = T \ Sss: Let
¿¡1(T ) =

`
Yi be the decomposition into connected components. As ¿ is …nite and

‡at, each ¿(Yi) = T: Since ¿ is totally rami…ed over Tss; there is only one Yi:

4. Modular forms modulo p

4.1. Modular forms mod p as functions on Ig.

4.1.1. Representing modular forms by functions on Ig. The Galois group ¢(p) =
(OK=pOK)£ acts on the coordinate ring H0(Ig¹;O) and we let H0(Ig¹;O)(k) be
the subspace where it acts via the character ¹§k. Then

H0(Ig¹;O) =
p2¡2M

k=0

H0(Ig¹;O)(k)(4.1)

and each H0(Ig¹;O)(k) is free of rank 1 over H0(S¹;O) =H0(Ig¹;O)(0):
For any 0 · k the map f 7! f=a(k) is an embedding

Mk(N;R0=pR0) ,! H0(Ig¹;O)(k):(4.2)
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Lemma 4.1. Fix 0 · k < p2 ¡ 1: Then we have a surjective homomorphism
M

n¸0
Mk+n(p2¡1)(N;R0=pR0)³ H0(Ig¹;O)(k):(4.3)

Proof. Take f 2 H0(Ig¹;O)(k); so that f ¢ a(k) 2 H0(Ig¹;Lk)(0); hence descends
to g 2 H0(S¹;Lk): This g may have poles along Sss; but some hn¹§g will extend
holomorphically to S, hence represents a modular form of weight k + n(p2 ¡ 1);
which will map to f because a(k + n(p2 ¡ 1)) = hn¹§a(k):

Proposition 4.2. The resulting ring homomorphism

r :
M

k¸0
Mk(N;R0=pR0)³ H0(Ig¹;O)(4.4)

obtained by dividing a modular form of weight k by a(k) is surjective, respects the
Z=(p2¡ 1)Z-grading on both sides, and its kernel is the ideal generated by (h¹§¡ 1).

Proof. We only have to prove that anything in ker(r) is a multiple of h¹§ ¡ 1; the
rest being clear. Since r respects the grading, we may assume that for some k ¸ 0
we have fj 2Mk+j(p2¡1)(S;R0=pR0) and

mX

j=0

a(k)¡1h¡j¹§ fj = 0:(4.5)

But then fm = ¡hm¹§
³Pm¡1

j=0 h¡j¹§ fj

´
; so

Pm
j=0 fj =

Pm¡1
j=0 (1¡ hm¡j¹§

)fj belongs to

(1¡ h¹§):

As a result we get that

Ig¤¹ = Spec

0
@M

k¸0
Mk(N;R0=pR0)=(h¹§ ¡ 1)

1
A(4.6)

and

S¤¹ = Spec

0
@M

k¸0
Mk(p2¡1)(N;R0=pR0)=(h¹§ ¡ 1)

1
A :(4.7)

4.1.2. Fourier-Jacobi expansions modulo p. The arithmetic Fourier-Jacobi expan-
sion (2.48) depended on a choice of a nowhere vanishing section s of L along the
boundary C = ¹S ¡ S of ¹S: As the boundary ~C = Ig¹ ¡ Ig¹ is (non-canonically)
identi…ed with ¢(p)£ C; we may “compute” the Fourier-Jacobi expansion on the
Igusa surface rather than on S: But on the Igusa surface, a(1) is a canonical choice
for such an s: We may therefore associate a canonical Fourier-Jacobi expansion

FJ(f) =
1X

m=0

cm(f) 2
1Y

m=0

H0( ~C;Nm)(4.8)

along the boundary of Ig; for every

f 2M¤(N;R) =
1M

k=0

Mk(N;R)(4.9)

(R an R0=pR0-algebra). The following proposition becomes almost a tautology.
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Proposition 4.3. The Fourier-Jacobi expansion FJ(h¹§) of the Hasse invariant is
1. Moreover, for f1 and f2 in the graded ring M¤(N;R); r(f1) = r(f2) if and only
if FJ(f1) = FJ(f2):

Proof. The …rst statement is tautologically true. For the second, note that for
f 2 Mk(N;R); FJ(f) is the (expansion of the) image of f=a(k) in H0( ~C;OcIg)
where cIg is the formal completion of Ig along ~C; while r(f) is the image of f=a(k)
in H0(Ig¹;O): The proposition follows from the fact that by Proposition 3.24 the
irreducible components of Ig¹ are in bijection with the connected components of ¹S;
so every irreducible component of Ig¹ contains at least one cuspidal component (“q-
expansion principle”). A function on Ig¹ that vanishes in the formal neighborhood
of any cuspidal component must therefore vanish on any irreducible component, so
is identically 0:

4.1.3. The …ltration of a modular form modulo p. Let f 2 Mk(N;R); where R is
an R0=pR0-algebra as before. De…ne the …ltration !(f) to be the minimal j such
that r(f) = r(f 0) (equivalently FJ(f) = FJ(f 0)) for some f 0 2 Mj(N;R): The
following proposition follows immediately from previous results.

Proposition 4.4. Let f 2Mk(N;R): Then !(f) · k and

!(f) ´ kmod(p2 ¡ 1):(4.10)

Let !(f) = k¡ (p2 ¡ 1)n: Then n is the order of vanishing of f along Sss: Equiva-
lently, k ¡ !(f) is the order of vanishing of the pull-back of f to Ig along Igss: In
addition, !(fm) = m!(f):

4.2. The theta operator.

4.2.1. De…nition of £(f). From now on we work over ¹Fp: We …rst recall some
notation. Let S be the (open) Picard surface over ¹Fp and Ig = Ig(p) the Igusa
surface of level p over S (completed along the supersingular locus as explained
above). We denote by Z = Sss = S¡S¹ the supersingular locus of S; by ~Z = Igss =
Ig¡Ig¹ its pre-image under the covering map ¿ : Ig ! S; by Z0 = Sgss = Sss¡Sssp
the smooth part of Z; and by ~Z 0 = Iggss = Igss ¡ Igssp the pre-image of Z0 under
¿ : When we need to compactify these schemes at the cusps, we let ¹S and Ig stand
for the smooth compacti…cations. By the Koecher principle, the space of mod p
modular forms of weight k ¸ 0 and level N can be regarded as sections of Lk over
either S or ¹S:

Mk(N; ¹Fp) = H0(S;Lk) = H0( ¹S;Lk):(4.11)

We recall (Theorem 3.23) that ¿ : Ig ! ¹S is …nite Galois of degree p2 ¡ 1; that it
is étale outside Z; and fully rami…ed over Z: The Galois group of the covering may
be canonically identi…ed with

¢ = (OK=pOK)£:(4.12)

IfM is an ¹Fp[¢] module, and Â : ¢! ¹F£p a character, we letMÂ be the submodule
on which ¢ acts via Â. We continue to denote by A the universal abelian scheme
over Ig (or its extension to a semi-abelian scheme over Ig) and by P and L the §-
and ¹§-parts of !A=Ig : These vector bundles are just the base-change by ¿¤ of their
counterparts over ¹S. We let a(1) be the canonical section of L over Ig; trivializing
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L over Ig¹ = Ig¡ ~Z; and vanishing to …rst order along ~Z: The Galois group ¢ acts
on a(1) via ¹§¡1:

Let f 2 H0(S;Lk): Let g = r(f) = ¿¤f=a(1)k 2 H0(Ig¹;O): This function
has a pole of order k along ~Z; and the Galois group acts on it via ¹§k: Let dg 2
H0(Ig¹;

1
Ig) = H0(Ig¹; ¿

¤1S): The Kodaira-Spencer isomorphism KS(§) is an
isomorphism

KS(§) : P L ' 1S :(4.13)

Write KS(§)¡1 for its inverse: 1S ' P L. Let
· = (V  1) ±KS(§)¡1 : 1S ! L(p) L ' Lp+1(4.14)

be the map obtained from KS(§)¡1 when we apply V to P: Over S ¡ Sssp this is
the same as dividing out by the line sub-bundle P0 = kerVP ; since

P=P0 = P¹ ' V (P) = L(p):(4.15)

We denote by · also the map induced on the base-change of these vector bundles
by ¿¤ to Ig ¡ Igssp; and consider ·(dg): As ¢ still acts on ·(dg) via ¹§k; its action
on a(1)k·(dg) is trivial, so it descends to S¹: We de…ne

£(f) = a(1)k·(dg) 2 H0(S¹;Lk+p+1):(4.16)

A priori, this extends only to a meromorphic modular form of weight k + p+ 1; as
it may have poles along Z.

4.2.2. The main theorem. For the formulation of the next theorem we need to de…ne
what we mean by the standard cuspidal component of ¹S or Ig: Recall that according
to [Bel] and [La1] the cuspidal scheme C = ¹S¡S classi…es OK-semi-abelian varieties
with level N structure. The standard component of C is the component (over C)
which classi…es extensions of the elliptic curve C=OK by the OK-torus OK  C£
(thus sits over a cusp of type (OK;OK) in S¤C), together with a level-N structure
(®;¯; °) (see [Bel], I.4.2 and Section 1.6.2), where

® : OK=NOK = OK  Z=NZ!OK  C£(4.17)

is given by 1 (a 7! exp(2¼ia=N)) and
¯ : OK=NOK = N¡1OK=OK ! C=OK(4.18)

is the canonical embedding. (The splitting ° varies along the component.) The
standard component of C over RN is the one which becomes this component after
base change to C (our convention is that all number …elds are contained in C).
Let P be a prime of RN above p at which we reduce the Picard surface. The
standard component of C over RN=PRN is the reduction modulo P of the standard
component of C over RN . Finally, Ig maps to ¹S (over RN=PRN ) and the cuspidal
components mapping to a given component E of C are classi…ed by the embedding
of ±¡1K OK¹p in the toric part ofA: Since the toric part of the universal semi-abelian
variety over the standard component is OK  Gm; we may de…ne the standard
cuspidal component of Ig to be the component where the map

" : ±¡1K OK  ¹p !OK Gm(4.19)

is the natural embedding. Here we use the fact that

±¡1K OK  ¹p = OK  ¹p(4.20)

since ±K is invertible in OK=pOK: Let ~E ½ ~C = Ig¡Ig be this standard component.
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Theorem 4.5. (i) The operator £ maps H0(S;Lk) to H0(S;Lk+p+1):
(ii) The e¤ect of £ on Fourier-Jacobi expansions is a “Tate twist”. More pre-

cisely, let

FJ(f) =
1X

m=0

cm(f)(4.21)

be the Fourier-Jacobi expanison of f along ~E (thus cm(f) 2 H0( ~E;Nm)). Then

FJ(£(f)) =M¡1
1X

m=0

mcm(f):(4.22)

Here M (equal to N or 2¡1N) is the width of the cusp.
(iii) If f 2 H0(S;Lk) and g 2 H0(S;Ll) then

£(fg) = f£(g) + £(f)g:(4.23)

(iv) £(h¹§f) = h¹§£(f) (equivalently, £(h¹§) = 0).

Corollary 4.6. The operator £ extends to a derivation of the graded ring of mod-
ular forms, and for any f; £(f) is a cusp form.

Parts (iii) and (iv) of the theorem are clear from the construction. The proof of
(i), that £(f) is in fact holomorphic along Sss; will be given in the next section.
We shall now study its e¤ect on Fourier-Jacobi expansions, i.e. part (ii). That a
factor like M¡1 is necessary in (ii) becomes evident if we consider what happens
to FJ expansions under level change. If N is replaced by N 0 = NQ then the
conormal bundle becomes the Q-th power of the conormal bundle of level N 0; i.e.
N = N 0Q (see Section 1.4.3). It follows that what was the m-th FJ coe¢cient at
level N becomes the Qm-th coe¢cient at level N 0: The operator £ commutes with
level-change, but the factor M¡1; which changes to (QM)¡1, takes care of this.

4.2.3. The e¤ect of £ on FJ expansions. Let E be the standard cuspidal component
of ¹S (over the ring RN). As the reader probably noticed, we have trivialized the
line bundle L along E on two di¤erent occasions in two seemingly di¤erent ways,
that we now have to compare. On the one hand, after reducing modulo P and
pulling L back to the Igusa surface, we got a canonical nowhere vanishing section
a(1) trivializing L over Ig¹; and in particular along any of the p2 ¡ 1 cuspidal
components lying over E in Ig¹: On the other hand, extending scalars from RN to
C; shifting to the analytic category, restricting to the connected component ¹X¡ on
which E lies, and then pulling back to the unit ball X; we have trivialized LjE by
means of the section 2¼id³3; which we showed to be KN -rational.

Lemma 4.7. The sections a(1) and 2¼id³3 “coincide” in the sense that they come
from the same section in H0(E;L):

Proof. Let A be the universal semi-abelian variety over E: Its toric part isOKGm,
hence, taking ¹§-component of the cotangent space at the origin

Lj ~E = !A= ~E(
¹§) = (±¡1K OK  !Gm)(

¹§)(4.24)

admits the canonical section e¹§ ¢ (1dT=T ): Tracing back the de…nitions and using
(1.69), this section becomes, under the base change RN ,! C; just 2¼id³3: On the
other hand, when we reduce it modulo P and use the Igusa level structure " at the
standard cusp, it pulls back to the section “with the same name” e¹§ ¢ (1 dT=T ),
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because along ~E (4.19) induces the identity on cotangent spaces. The lemma follows
from the fact that, by de…nition, "¤a(1) = e¹§ ¢ (1 dT=T ) too.

Lemma 4.8. The sections a(1)p+1 and 2¼id³2  2¼id³3 “coincide” in the sense
that they come from the same section in H0(E;P¹  L):

Proof. Let ¾2 (resp. ¾3) be the KN -rational section of P¹ (resp. L) along E, which
over C becomes the section 2¼id³2 (resp. 2¼id³3). We have just seen that modulo
P; when we identify ~E with E (via the covering map ¿ : Ig ! ¹S), ¾3 reduces to
a(1): To conclude, we must show that the map

V : P=P0 = P¹ ' L(p)(4.25)

carries ¾2 to ¾
(p)
3 : This will map, under L(p) ' Lp; to a(1)p: Along E the line

bundles P¹ and L are just the §- and ¹§-parts of the cotangent space at the origin
of the torus OK Gm; and ¾2 and ¾3 are the sections

¾2 = e§ ¢ (1 dT=T ); ¾3 = e¹§ ¢ (1 dT=T ):(4.26)

Since in characteristic p; V = V er¤ : !Gm ! !
(p)
Gm maps dT=T to (dT=T )(p); for the

OK-torus, V (¾2) = ¾
(p)
3 , and we are done.

To prove part (ii) we argue as follows. Let g = f=a(1)k be the function on Ig¹
obtained by trivializing the line bundle L:We have to study the FJ expansion along
~E of ·(dg)=a(1)p+1; where · is the map de…ned in (4.14). For that purpose we may
restrict to a formal neighborhood of ~E. This formal neighborhood is isomorphic,
under the covering map ¿ : Ig¹ ! ¹S¹; to the formal neighborhood bS of E in S: We
may therefore regard dg as an element of 1bS : Now

· : 1bS ! P¹ L(4.27)

is a homomorphism of ObS-modules de…ned over RN so, having restricted to bS,
we may study the e¤ect of · on FJ expansions by embedding bSC in a tubular
neighborhood ¹S(") of E and using complex analytic Fourier-Jacobi expansions. We
are thus reduced to a complex-analytic computation, near the standard cusp at
in…nity.

Let

g(z; u) =
1X

m=0

µm(u)q
m(4.28)

where q = e2¼iz=M and µm is a theta function, so that µm(u)qm is a section of Nm

along E (now over C). Then

dg = 2¼iM¡1
1X

m=0

mµm(u)q
mdz +

1X

m=0

µ0m(u)q
mdu:(4.29)

According to Corollary 2.17, ·(du) = 0; and ·(dz) = 2¼id³2  d³3: It follows that

·(dg) =M¡1
1X

m=0

mµm(u)q
m ¢ 2¼id³2  2¼id³3:(4.30)

Recalling that in characteristic p; 2¼id³2  2¼id³3 reduced to a(1)p+1; the proof
of part (ii) of the theorem is now complete. For the convenience of the reader
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we summarize the transitions between complex and p-adic maps in the following
diagram:

= ¹Fp 1¹S¹=¹Fp
KS(§)¡1! P L

\ # modP0
=¹Fp 1bS=¹Fp

·! P¹  L
V1' Lp+1

" modP "
=RN 1bS=RN

·! P¹  L
# #

=C 1bS=C
·! P¹  L

[ " modP0
=C 1¹S(")=C

KS(§)¡1an! P L

:(4.31)

We next turn to part (i).

4.3. A study of the theta operator along the supersingular locus.

4.3.1. De Rham cohomology in characteristic p. We continue to consider the Pi-
card surface S over ¹Fp: Let U = Spec(R) ,! S be a closed point s0 (R = ¹Fp =
OS;s0=mS;s0), a nilpotent thickening of a closed point, or an a¢ne open subset of S:
We consider the restriction of the universal abelian scheme to R and denote it by
A=R: Let A(p) = R Á;R A be its base change with respect to the map Á(x) = xp:
Let

D = H1dR(A=R);(4.32)

a locally free R-module of rank 6: The de Rham cohomology of A(p) is

D(p) = RÁ;R D:(4.33)

The R-linear Frobenius and Verschiebung morphisms Frob : A ! A(p); V er :
A(p) ! A induce (by pull-back) linear maps

F : D(p) ! D; V : D! D(p):(4.34)

Both F and V are everywhere of rank 3, which implies that their kernel and image
are locally free direct summands. Moreover, ImF = kerV and ImV = kerF =
!A(p)=R: The maps F and V preserve the types §; ¹§; but note that D(p)(§) =

D(¹§)(p) etc.
The principal polarization on A induces one on A(p), and these polarizations

induce symplectic forms

h; i : D £D! R; h; i(p) : D(p) £D(p) ! R(4.35)

where the second form is just the base-change of the …rst. For x 2 D(p); y 2 D we
have

hFx; yi = hx; V yi(p) :(4.36)

In addition, for a 2 OK
h¶(a)x; yi = hx; ¶(¹a)yi :(4.37)

As V F = FV = 0; the …rst relation implies that ImF and ImV are isotropic
subspaces. So is !A=R:
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The Gauss-Manin connection is an integrable connection

r : D! 1R D:(4.38)

It is a priori de…ned (e.g. in [Ka-O]) when R is smooth over ¹Fp, but we can
de…ne it by base change also when R is a nilpotent thickening of a point of S (see
[Kob], where R is a local Artinian ring). Note however that if R = OS;s0 and
Rm = OS;s0=mm+1

S;s0
(m ¸ 0), and if we extend scalars from R to Rm we get by base

change the connection

r : DRm ! (1R R Rm)Rm DRm ! 1Rm Rm DRm(4.39)

but 1R R Rm ! 1Rm is not an isomorphism. In fact, 1Rm is not Rm-free. As a
result the Kodaira-Spencer map

KS(§) : PRm Rm LRm ! 1Rm(4.40)

will not be an isomorphism over Rm; as it is over R: It is nevertheless true that
KS(§) induces an isomorphism

KS(§) : PRm¡1 Rm¡1 LRm¡1 ' 1Rm Rm Rm¡1:(4.41)

This follows from the fact that 1Rm Rm Rm¡1 = 1R R Rm¡1 (if u; v are local
parameters at s0 then fuivjdu; uivjdvgi+j·m¡2 are linearly independent over ¹Fp in
1Rm; the only dependencies between these di¤erentials occuring for i+ j = m¡ 1).

We shall need to deal only with the …rst in…nitesimal neighborhood of a point,
R = OS;s0=m2S;s0 : In this case, D has a basis of horizontal sections. Indeed, R =
¹Fp[u; v]=(u2; uv; v2) where u and v are local parameters at s0; and

1R = (Rdu+Rdv)= hudu; vdv; udv + vdui

(p is odd). If x 2 D and

rx = du x1 + dv  x2(4.42)

then ~x = x¡ ux1 ¡ vx2 satis…es

r~x = ¡urx1 ¡ vrx2:(4.43)

But if rx1 = du x11 + dv  x12 and rx2 = du x21 + dv  x22 then

0 = r2x = du ^ dv  (x21 ¡ x12)(4.44)

hence x21 ¡ x12 2 mS;s0D: It follows that

r~x = ¡udv  x12 ¡ vdu x21

= du v(x12 ¡ x21) = 0:(4.45)

This means that ~x is a horizontal section having the same specialization as x in the
special …ber, so the horizontal sections span D over R by Nakayama’s lemma.

Let e1; e2; f3; f1; f2; e3 be any six horizontal sections over R, specializing to a
basis of H1dR(As0=

¹Fp): Let D0 be their ¹Fp-span. As we have just seen,

R¹Fp D0 =D(4.46)

and r = d  1: Since Rd=0 = ¹Fp; it follows that D0 = Dr; i.e. there are no more
horizontal sections besides D0: Thus every x 2H1dR(As0=

¹Fp) has a unique extension
to a horizontal section x 2 H1dR(A=R):
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There is a similar connection on D(p): The isogenies Frob and V er; like any
isogeny, take horizontal sections with respect to the Gauss-Manin connection to
horizontal sections, e.g. if x 2 D and rx = 0 then V x 2 D(p) satis…es r(V x) = 0:

The pairing h; i is horizontal for r; i.e.

d hx; yi = hrx; yi+ hx;ryi :(4.47)

Remark 4.1. In the theory of Dieudonné modules one works over a perfect base.
It is then customary to identify D with D(p) via x $ 1  x: This identi…cation is
only ¾-linear where ¾ = Á, now viewed as an automorphism of R: The operator F
becomes ¾-linear, V becomes ¾¡1-linear and (4.36) reads hFx; yi = hx;V yi¾ : With
this convention F and V switch types, rather than preserve them.

4.3.2. The Dieudonné module at a gss point. Assume from now on that s0 2
Z0 = Sgss is a closed point of the general supersingular locus. We write D0 for
H1dR(As0=

¹Fp):

Lemma 4.9. There exists a basis e1; e2; f3; f1; f2; e3 of D0 with the following prop-
erties. Denote by e

(p)
1 = 1 e1 2 D

(p)
0 etc.

(i) OK acts on the ei via § and on the fi via ¹§ (hence it acts on the e(p)i via ¹§
and on the f (p)i via §):

(ii) The symplectic pairing satis…es

hei; fji = ¡hfj; eii = ±ij; hei; eji = hfi; fji = 0:(4.48)

(iii) The vectors e1; e2; f3 form a basis for the cotangent space !A0=¹Fp: Hence e1
and e2 span P and f3 spans L:

(iv) ker(V ) is spanned by e1; f2; e3: Hence P0 = P \ ker(V ) is spanned by e1:

(v) V e2 = f
(p)
3 ; V f3 = e

(p)
1 ; V f1 = e

(p)
2 :

(vi) Ff(p)1 = ¡e3; Ff (p)2 = ¡e1; Fe(p)3 = ¡f2:

Proof. Up to a slight change of notation, this is the unitary Dieudonné module
which Bültel and Wedhorn call a “braid of length 3” and denote by ¹B(3); cf [Bu-
We] (3.2). The classi…cation in loc. cit. Proposition 3.6 shows that the Dieudonné
module of a ¹-ordinary abelian variety is isomorphic to ¹B(2) © ¹S; that of a gss
abelian variety is isomorphic to ¹B(3) and in the superspecial case we get ¹B(1) ©
¹S2:

4.3.3. In…nitesimal deformations. Let OS;s0 be the local ring of S at s0; m its
maximal ideal, and R = OS;s0=m2: This R is a truncated polynomial ring in two
variables, isomorphic to ¹Fp[u; v]=(u2; uv; v2):

As remarked above, the de Rham cohomology D = H1dR(A=R) has a basis of
horizontal sections,

D = R¹Fp D
r; r = d 1(4.49)

and since D0 = ¹Fp R D; we may identify Dr canonically with D0:
Grothendieck tells us thatA=R is completely determined byA0 and by the Hodge

…ltration !A=R ½ D = R¹FpD0: Since A is the universal in…nitesimal deformation
of A0, we may choose the coordinates u and v so that

P = SpanRfe1 + ue3; e2 + ve3g:(4.50)
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The fact that !A=R is isotropic implies then that

L = SpanRff3 ¡ uf1 ¡ vf2g:(4.51)

Consider the abelian scheme A(p): It is not the universal deformation of A(p)0
over R: In fact, the map Á : R! R factors as

R
¼! ¹Fp

Á! ¹Fp
i! R;(4.52)

and therefore A(p); unlike A; is constant: A(p) = Spec(R)£Spec¹Fp A
(p)
0 : As with D;

D(p) = R¹Fp D
(p)
0 ; r = d 1; but this time the basis of horizontal sections can be

obtained also from the trivalization of A(p); and !A(p)=R = SpanRfe(p)1 ; e
(p)
2 ; f

(p)
3 g:

Since V and F preserve horizontality, e1; f2; e3 span ker(V ) over R in D; and the
relations in (v) and (vi) of Lemma 4.9 continue to hold. Indeed, the matrix of V
in the basis at s0 prescribed by that lemma, continues to represent V over Spec(R)
by “horizontal continuation”. The matrix of F is then derived from the relation
(4.36).

The Hodge …ltration nevertheless varies, so we conclude that

P0 = P \ ker(V ) = SpanRfe1 + ue3g:(4.53)

The condition V (L) = P(p)0 ; which is the “equation” of the closed subscheme Z0 \
Spec(R) (see Proposition 3.9) means

V (f3 ¡ uf1 ¡ vf2) = e
(p)
1 ¡ ue

(p)
2 2 R ¢ e(p)1(4.54)

and this holds if and only if u = 0: We have proved the following lemma.

Lemma 4.10. Let s0 2 Sgss as above. Then the closed subscheme Sgss \ Spec(R)
is given by the equation u = 0:

4.3.4. The Kodaira-Spencer isomorphism along the general supersingular locus. We
keep the assumptions of the previous subsections, and compute what the Gauss-
Manin connection does to P0: A typical element of P0 is g(e1+ue3) for some g 2 R:
Then

r(g(e1 + ue3)) = dg  (e1 + ue3) + gdu e3:(4.55)

Note that when we divide by !A=R and project H1dR(A=R) to H1(A;O); e1 + ue3
dies, and the image e3 of e3 becomes a basis for the line bundle that we called
L_(½) = H1(A;O)(§). Recall the de…nition of · given in (4.14), but note that this
de…nition only makes sense over Spec(OS;s0) or its completion, where KS(§) is an
isomorphism, and can be inverted.

Proposition 4.11. Let s0 2 Z 0 = Sgss: Choose local parameters u and v at s0 so
that in OS;s0 the local equation of Z0 becomes u = 0: Then at s0; ·(du) has a zero
along Z0:

Proof. Let i : Z 0 ,! S be the locally closed embedding. We must show that in
a suitable Zariski neighborhood of s0; where u = 0 is the local equation of Z0;
i¤·(du) = 0: It is enough to show that the image of ·(du) in the …ber at every
point s of Z 0 near s0; vanishes. All points being alike, it is enough to do it at s0:
In other words, we denote by ·0 the map

·0 : 
1
S;s0 ! P¹  Ljs0 ' L

p+1js0 :(4.56)
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and show that ·0(du) = 0: We may now work over Spec(R); where R = OS;s0=m2.
It is enough to show that in the diagram

PR  LR
KS(§)! 1R

# #
Ps0 Ls0 ' 1S;s0

(4.57)

KS(§) maps the line sub-bundle P0;R  LR onto Rdu: Once we have passed to
the in…nitesimal neighborhood Spec(R) we can replace the local parameters u; v
by any two formal parameters for which u = 0 de…nes Z0 \ Spec(R): We may
therefore assume, in view of Lemma 4.10, that u and v have been chosen as in
section 4.3.3. But then equation (4.55) shows that the restriction of KS(§) to Z0;
i.e. the homomorphism i¤KS(§); maps i¤P0 onto i¤R ¢due3. This concludes the
proof.

4.3.5. A computation of poles along the supersingular locus. We are now ready to
prove the following.

Proposition 4.12. Let k ¸ 0; and let f 2 H0(S;Lk) be a modular form of weight
k in characteristic p: Then £(f) 2 H0(S;Lk+p+1).
Proof. A priori, the de…nition that we have given for £(f) produces a meromorphic
section of Lk+p+1 which is holomorphic on the ¹-ordinary part S¹ but may have
a pole along Z = Sss: Since S is a non-singular surface, it is enough to show that
£(f) does not have a pole along Z0 = Sgss; the non-singular part of the divisor
Z. Consider the degree p2 ¡ 1 covering ¿ : Ig ! S; which is …nite, étale over
S¹ and totally rami…ed along Z: Let s0 2 Z 0 and let ~s0 2 Ig be the closed point
above it. Let u; v be formal parameters at s0 for which Z 0 is given by u = 0; as
in Theorem 3.23. As explained there we may choose formal parameters w; v at ~s0
where wp2¡1 = u (and v is the same function v pulled back from S to Ig). It follows
that in 1Ig we have

du = ¡wp2¡2dw:(4.58)

We now follow the steps of our construction. Dividing f by a(1)k we get a function
g = f=a(1)k on Ig with a pole of order k along ~Z; the supersingular divisor on Ig;

whose local equation is w = 0: In bOIg;~s0we may write

g =
1X

l=¡k
gl(v)w

l:(4.59)

Then

dg =
1X

l=¡k
lgl(v)w

l¡1dw +
1X

l=¡k
wlg0l(v)dv

= ¡
1X

l=¡k
lglw

l¡(p2¡1)du+
1X

l=¡k
wlg0l(v)dv:(4.60)

Applying the map · (extended OIg-linearly from S to Ig), and noting that ·(du)
has a zero along Z0; hence a zero of order p2 ¡ 1 along ~Z0; we conclude that ·(dg)
has a pole of order k (at most) along ~Z 0: Finally £(f) = a(1)k ¢ ·(dg) becomes
holomorphic along ~Z 0; and also descends to S. It is therefore a holomorphic section
of P¹  Lk+1 ' Lk+p+1:
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It is amusing to compare the reasons for the increase by p+1 in the weight in£(f)
for modular curves and for Picard modular suraces. In the case of modular curves
the Kodaira-Spencer isomorphism is responsible for a shift by 2 in the weight, but
the section acquires simple poles at the supersingular points. One has to multiply
it by the Hasse invariant, which has weight p¡1; to make the section holomorphic,
hence a total increase by p + 1 = 2 + (p ¡ 1) in the weight. In our case, the
Kodaira-Spencer isomorphism is responsible for a shift by p+1 (the p coming from
P¹ ' Lp), but the section turns out to be holomorphic along the supersingular
locus. See Section 4.5.

4.4. Relation to the …ltration and theta cycles. In part (ii) of the main
theorem we have described the way £ acts on Fourier-Jacobi expansions at the
standard cusp. A similar formula inevitably exists at any other cusp. We may
deduce from it that modular forms in the image of £ have vanishing FJ coe¢cients
in degrees divisible by p: Moreover, for such a form f 2 Im(£), £p¡1(f) and f
have the same FJ expansions, and hence the same …ltration. Note also that if
r(f1) = r(f2) then r(£(f1)) = r(£(f2)): We may therefore de…ne unambiguously

£(r(f)) = r(£(f)):(4.61)

As we clearly have

!(£(f)) = !(f) + p+ 1¡ a(p2 ¡ 1)(4.62)

for some a ¸ 0 we deduce the following result.

Proposition 4.13. Let f 2 Mk(N; ¹Fp) be a modular form modulo p; and assume
that r(f) 2 Im(£): Then

r(f) = r(£p¡1(f)):(4.63)

There exists a unique index 0 · i · p¡ 2 such that

!(£i+1(f)) = !(£i(f)) + p+ 1¡ (p2 ¡ 1):(4.64)

For any other i in this range

!(£i+1(f)) = !(£i(f)) + p+ 1:(4.65)

This is reminiscent of the “theta cycles” for classical (i.e. elliptic) modular forms
modulo p; see [Se], [Ka2] and [Joc]. Recall that if f is a mod p modular form of
weight k on ¡0(N) with q-expansion

P
anq

n (an 2 ¹Fp), then £(f) is a mod p
modular form of weight k + p + 1 with q expansion

P
nanq

n (Katz denotes £(f)
by Aµ(f)). One has !(£(f)) < !(f)+p+1 if and only if !(f) ´ 0mod p. In such
a case we say that the …ltration “drops” and we have

!(£(f)) = !(f) + p+ 1¡ a(p¡ 1)(4.66)

for some a > 0: As a corollary, !(f) can never equal 1mod p for an f 2 Im(£):
Assume now that f 2 Im(£) is a “low point” in its “theta cycle”, namely, !(f) is
minimal among all !(£i(f)): Then !(£i+1(f)) < !(£i(f)) + p+ 1 for one or two
values of i 2 [0; p ¡ 2]; which are completely determined by !(f)mod p [Joc].

This is not true anymore for Picard modular forms. Not only the drop in the
theta cycle is unique, but the question of when exactly it occurs is mysterious and
deserves further study. We make the following elementary observation showing
that whether a drop in the …ltration occurs in passing from f to £(f) can not be
determined by !(f) modulo p alone. Let f and k be as in the Proposition.
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1. If k · p2 ¡ 1 then !(f) = k:
2. If k < p+1 then !(£i(f)) = k+ i(p+1) for 0 · i · p¡ 2; so the drop occurs

at the last step of the theta cycle, i.e. at weight k + (p¡ 2)(p + 1); which is
congruent to k ¡ 2 modulo p:

3. If k < p+1 but f =2 Im(£) then starting with £(f) instead of f; one sees that
the drop in the theta cycle of £(f) occurs either in passing from £p¡2(f) to
£p¡1(f), or in passing from £p¡1(f) to £p(f):

4.5. Compatability between theta operators for elliptic and Picard mod-
ular forms.

4.5.1. The theta operator for elliptic modular forms. The theta operator for elliptic
modular forms modulo p was introduced by Serre and Swinnerton-Dyer in terms of
q-expansions, cf. [Se], but its geometric construction was given by Katz in [Ka1] and
[Ka2], where it is denoted Aµ: Katz’ construction relied on a canonical splitting of
the Hodge …ltration over the ordinary locus, but it coincides with a slightly modi…ed
construction, similar to the one we have been using over the Picard modular surface.
This construction was suggested in [Gr], Proposition 5.8, see also [An-Go] in the
Hilbert modular case.

Let X be the modular curve X(N) over ¹Fp (N ¸ 3; p - N) and Iord the Igusa
curve of level p lying overXord = X¡Xss; the ordinary part ofX: Let ¹X and ¹Iord be
the curves obtained by adjoing the cusps to X and Iord respectively. Let L = !E=X
be the cotangent bundle of the universal elliptic curve, extended over the cusps as
usual. Classical modular forms of weight k and level N are sections of Lk over
¹X: Let a(1) be the tautological nowehere vanishing section of L over ¹Iord: Given
a modular form f of weight k; we consider r(f) = ¿¤f=a(1)k where ¿ : ¹Iord ! ¹X
is the covering map, and apply the inverse of the Kodaira-Spencer isomorphism
KS : L2 ! 1Iord to get a section ·(dr(f)) of L2 over ¹Iord: When multiplied by
a(1)k it descends to ¹Xord; and when this is multiplied further by h = a(1)p¡1; the
Hasse invariant for elliptic modular forms, it extends holomorphically over Xss to
an element

µ(f) = a(1)k+p¡1·(dr(f)) 2 ¡( ¹X;Lk+p+1):(4.67)

4.5.2. An embedding of a modular curve in ¹S. To illustrate our idea, and to simplify
the computations, we assume that N = 1 and dK ´ 1mod4; so that D =DK = dK:
We shall treat only one special embedding of the modular curve ¹X = X0(D) into
¹S (there are many more).
Embed SL2(R) in G01 via

µ
a b
c d

¶
7!

0
@

a b
1

c d

1
A :(4.68)

This embedding induces an embedding of symmetric spaces H ,! X; z 7! t(z; 0):
One can easily compute that the intersection of ¡; the stabilizer of the lattice L0
in G01; with SL2(R); is the subgroup of SL2(Z) given by

¡0(D) =

½µ
a b
c d

¶
: Djb

¾
:(4.69)

Let E0 = C=OK, endowed with the canonical principal polarization and CM type
§: For z 2 H let ¤z = Z + Zz and Ez = C=¤z: Let Mz be the cyclic subgroup of
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order D of Ez generated by D¡1zmod¤z: Using the model (1.27) of the abelian
variety Az associated to the point t(z; 0) 2 X; we compute that

Az ' E0 £ (OK Ez=±K Mz)(4.70)

with the obvious OK-structure. The principal polarization on Az provided by the
complex uniformization is the product of the canonical polarization of E0 and the
principal polarization of OKEz=±KMz obtained by descending the polarization

¸can : OK Ez ! ±¡1K Ez = (OK  Ez)
t(4.71)

of degree D2; modulo the maximal isotropic subgroup ±K Mz of ker(¸can):
It is now clear that over any R0-algebra R we have the same moduli theoretic

construction, sending a pair (E;M) where M is a cyclic subgroup of degree D to
A(E;M); with OK structure and polarization given by the same formulae. This
gives a modular embedding X ! S which is generically injective. To make this
precise at the level of schemes (rather than stacks) one would have to add a level
N structure and replace the base ring R0 by RN :

4.5.3. Comparison of the two theta operators. From now on we work over ¹Fp: The
modular interpretation of the embedding j : ¹X ! ¹S allows us to complete it to a
diagram

¹Iord
j! Ig¹

¿ # # ¿
¹Xord

j! ¹S¹

:(4.72)

Lemma 4.14. The pull-back j¤!A=S decomposes as a product !E0£(OK!E=X):
Under this isomorphism

j¤L = (OK  !E=X)(¹§)(4.73)

j¤P0 = !E0
j¤P¹ ' (OK  !E=X)(§):

The line bundle j¤P0 is constant, and P¹; originally a quotient bundle of P ;
becomes a direct summand when restricted to ¹X.

Proof. This is straightforward from the construction of j, and the fact that E0 is
supersingular, while E is ordinary over ¹Xord: Note thatOKE=±KM and OKE
have the same cotangent space.

Proposition 4.15. Identify j¤L with !E=X (OK acting via ¹§). Then for f 2
¡( ¹S;Lk) =Mk(N; ¹Fp)

µ(j¤(f)) = j¤(£(f)):(4.74)

Proof. We abbreviate Iord by I and Ig¹ by Ig: The pull-back via j of the tauto-
logical section a(1) of L over Ig is the tautological section a(1) of j¤L = !E=X : We
therefore have

j¤(dr(f)) = dr(j¤(f))(4.75)
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(r(f) = ¿¤f=a(1)k is the function on Ig denoted earlier also by g). It remains to
check the commutativity of the following diagram

1Ig
KS(§)¡1! P L V1! Lp+1

# j¤0 # j¤

1I
KS¡1! j¤L2 £h! j¤Lp+1

:(4.76)

Here j¤0 is the map j
¤1Ig ! 1I on di¤erentials whose kernel is the conormal bundle

of I in Ig. For that we have to compare the Kodaira-Spencer maps on S and on
X: As we have seen in the lemma, P=P0 = P¹ pulls back under j to L(½) (the line
bundle L with the OK action conjugated). But, KS(§)(P0 L) maps under j¤ to
the conormal bundle, so we obtain a commutative diagram

1Ig
KS(§)Ã P L

# j¤0 # modP0
1I

KSÃ j¤L(½) j¤L
:(4.77)

The commutativity of the diagram

P¹
V! L(p)

# #
j¤L(½) £h! j¤L(p)

(4.78)

follows from the de…nition of the Hasse invariant h on X: Identifying L(p) with
Lp as usual and tensoring the last diagram with L provides the last piece of the
puzzle.
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