
p-ADIC PROPERTIES OF EIGENVALUES OF FROBENIUS

EHUD DE SHALIT

This is a set of notes for two talks at Kazhdan's Basic Notions seminar in 2018. Nothing, except
for the mistakes, is due to me.

Part 1. Motivation and Examples

1. the problem: p-adic valuations of Weil numbers

Let X be a d-dimensional smooth projective variety over Fq. One is interested in the behavior
of

Nn = #X(Fqn)

when n varies. The Zeta function of X

Z(X;T ) = exp

( ∞∑
n=1

NnT
n

n

)
=
∏
x∈|X|

(1− T deg(x))−1

is a formal power series in T with coe�cients from Z, encoding the numbers Nn. For example, it is
an easy exercise to �nd that

Z(Pd;T ) =
1

(1− T )(1− qT ) · · · (1− qdT )
.

As another example, consider the elliptic curve C ⊂ P2 given by the equation

(1.1) C : y2z = x3 + bxz2 + cz3

with b, c ∈ Fq (saying that this is an elliptic curve implies that the cubic equation is non-singular).
Then E. Artin conjectured, and shortly after Hasse proved that

Z(C;T ) =
1− a(C)T + qT 2

(1− T )(1− qT )

with a(C) an integer satisfying |a(C)| ≤ 2
√
q. If we write

1− a(C)T + qT 2 = (1− αT )(1− α′T )

then Nn = 1 + qn − αn − α′n and what Hasse showed was actually that |α′| = |α| =
√
q so

|Nn − 1− qn| ≤ 2
√
qn. More generally, we have the famous Weil conjectures.

Theorem 1. (i) (Dwork) Z(X;T ) is a rational function of T .

(ii) (Grothendieck) For 0 ≤ m ≤ 2d there are polynomials Pm(T ) ∈ Z[T ], Pm(T ) =
∏bm
i=1(1 −

αm,iT ) such that

Z(X;T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T ) · · ·P2d(T )
.

1
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The Zeta function satis�es the functional equation

Z(X;
1

qdT
) = ±qdχ/2TχZ(X;T )

where χ =
∑2d
m=0(−1)mbm is the Euler characteristic.

(iii) (Deligne, RH for X) For every automorphism σ of Q, |σ(αm,i)| =
√
qm.

Remark. (i) Since every Galois conjugate of αm,i is an αm,j it is enough to verify that |αm,i| =
√
qm.

(ii) Given any l 6= p, Grothendieck showed that there are vector spaces

Hm
l (X) = Hm

et (XFq
,Zl)⊗Zl

Ql

overQl, dimHm
l (X) = bm, equipped with a linear transformation Frq, called (geometric) Frobenius,

such that

Pm(T ) = det(I − T · Fr−1q |Hm
l (X))

and the αm,i are therefore the �reciprocal eigenvalues of Frobenius�. Note that Pm(T ) is independent
of l and has coe�cients in Z, although it is in general impossible to �nd a vector space Hm(X)
over Q with a Frq from which all the Hm

l (X) are obtained by extension of scalars.
(iii) For curves, i.e. d = 1, the theorem is due to Weil, and b1 = 2g where g is the genus. The

RH for curves has the consequence that (and in fact is equivalent to)

|Nn − 1− qn| ≤ 2g
√
qn.

In this case

H1
l (X) = Hom(lim

←
J [lν ],Zl)

is the dual of the l-adic Tate module of J, the Jacobian of X. Recall that as an abelian group

J = Div0(X(Fq))/{principal divisors}
and J [lν ] is the subgroup of elements killed by lν . The inverse limit is w.r.t. multiplication by l.

(iv) One puts ζX(s) = Z(X, q−s). Then the RH says that the zeroes of Pm(q−s) lie on the line
Re(s) = m/2. This explains the relation to the classical Riemann Hypothesis.

De�nition. Let q be a power of a prime number p. Then a complex number α is called a q-Weil
number if α is an algebraic integer such that for every Galois automorphism σ we have |σ(α)| = √q.

The α = αm,i are algebraic integers (since they are roots of monic polynomials over Z) so the RH
implies that they are qm-Weil numbers. Let E be the Galois closure of Q(α). Then E is a number
�eld and since αα = q, the decomposition of the principal ideal (α) into a product of prime ideals
of OE involves only primes dividing p. Thus α has non-trivial valuations only at the places above
p and ∞. Knowing all these absolute values determines α up to a root of unity, and in many cases,
if there are no roots of unity other than ±1 in E, up to a sign. The archimedean valuations of the
αm,i teach us about the asymptotics of Nn. It is natural therefore to pose the following questions.

Problem. (1) What is the meaning of the p-adic valuations of the αm,i at the primes of E? A nat-
ural guess would be that just as the archimedean absolute values taught us about the archimedean
size of Nn, the p-adic absolute values should tell us something about the p-adic size of Nn, namely
about congruences for Nn or related numbers modulo powers of p.

(2) Is there a natural cohomology theory Hm
p (X) over Qp, or over a �nite extension of Qp

perhaps, with an action of a �Frobenius�, by means of which we will be able to study the p-adic
absolute values of the αm,i?
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(3) We have at hand nice cohomology theories over Fq, namely algebraic de-Rham cohomology
Hm
dR(X/Fq) and the Hodge cohomology groups Hr,s(X) = Hs(X,Ωr). Are there relations between

them and the reduction modulo p of suitable lattices in Hm
p (X)?

2. Example: ordinary and supersingular elliptic curves

As a �rst example consider the elliptic curve (1.1). Then C is called ordinary if p - a(C) and
supersingular if p|a(C). Note that if q = p ≥ 5 and C is supersingular then from |a(C)| ≤ 2

√
p we

must have a(C) = 0. If C is ordinary then

T 2 − a(C)T + q = 0

has the two roots α, α′ in Zp, one of which, say α′, is a unit. Then |α|p = |q|p. In the supersingular
case both α and α′ are non-units. It follows that in the ordinary case for n su�ciently divisible,
p|Nn, but in the supersingular case always Nn ≡ 1 mod p. Thus C is supersingular if and only if
C(Fq)[p] = {0}.

However, the congruence Nn ≡ 1 mod p says more about the �nite abelian group C(Fqn) in the
supersingular case. In fact, since E = Q(α) is Q or a quadratic imaginary �eld in which p rami�es,
then Nn → 1 p-adically as n → ∞. Somehow, the lack of p-torsion forces the non-p torsion to
approach 1 p-adically, just as #Gm(Fqn)→ −1 p-adically.

3. Example: Stickelberger's theorem on Gauss sums

We write ζm = exp(2πi/m). Let q = pf and let p be a prime ideal of E = Q(ζq−1) dividing p.
Note that

pOE = p1 . . . pg

where gf = φ(q − 1) and the residue �eld of each pi is isomorphic to Fq. We take p = p1 and
identify OE/p = Fq. Let

ω : F×q → 〈ζq−1〉
be the p-Teichmüller character, de�ned by ω(a) mod p = a. For any 1 ≤ k ≤ q − 2 let the Gauss
sum of ωk be de�ned by

g(ωk) = −
∑
a∈F×q

ωk(a)ζ
TrFq/Fp (a)
p .

Then g(ωk) ∈ E(ζp) and if σ ∈ Gal(E(ζp)/E) satis�es σ(ζp) = ζdp (d ∈ F×p ) then

(3.1) σ(g(ωk)) = −
∑
a∈F×q

ωk(a)ζ
TrFq/Fp (da)
p = ω−k(d)g(ωk).

It follows that if mk ≡ 0 mod (p− 1) then g(ωk)m ∈ E. In any case

pOE(ζp) = P1 . . .Pg

where Pi is the unique prime above pi, and we let P = P1. If τ ∈ Gal(E(ζp)/Q(ζp)) maps ζq−1 to
ζeq−1 then

(3.2) τ(g(ωk)) = g(ωke).

It is also known that

(3.3) g(ωk)g(ωk) = q.
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It follows from (3.1), (3.2) and (3.3) that g(ωk) is a q-Weil number. The theorem of Stickelberger
gives its decomposition in E(ζp).

Theorem 2. (Stickelberger, 1890) Let k = a0 + a1p + · · · + af−1p
f−1 where the digits ai ∈

{0, 1, . . . , p− 1}. Let s(k) =
∑f−1
i=0 ai. Then

vP(g(ω−k)) = s(k).

Remark. Note that s(kp) = s(k) because k is taken modulo q − 1.

Example. Assume f = 1, so that q = p. Then s(k) = k. Let g = g(ω−m) (1 ≤ m ≤ p− 2), so that

g = −
p−1∑
a=1

ωm(a)ζa.

Then
gOE(ζp) =

∏
e∈(Z/(p−1)Z)×

τ−1e (P){me}

where 1 ≤ {me} ≤ p− 1 and {me} ≡ me mod (p− 1). Let us prove this special case (the general
case of the theorem is not much more di�cult).

Proof. Because of the relation (3.2) it is enough to prove that vP(g(ω−m)) = m. Let π = ζp − 1 so
that vP(π) = 1 and recall that vP(p) = p− 1. We have

g(ω−m) ≡ −
p−1∑
a=1

a−m(1 + π)a mod p

and

(1 + π)a =

p−1∑
k=0

(
a

k

)
πk.

Now, if 0 ≤ i < m we have
∑p−1
a=1 a

i−m ≡ 0 mod p. This implies that
∑p−1
a=1 a

−m(a
k

)
≡ 0 mod p if

k < m. On the other hand, if k = m we get a unit (precisely −1/m! modulo p) so when we collect
terms according to powers of π we see that the lowest term where the coe�cient of πk is not 0
mod p is when k = m. This proves the theorem in the case of the example. �

4. The Fermat curve

Consider the curve Cd : Xd +Y d = Zd where d ≥ 3 is odd, and let (p, d) = 1. Let q = pf be any
power of p which is 1 modulo d. We consider Cd over Fq. The advantage of using Fq and not Fp is
that over this �eld the curve has many automorphisms obtained by multiplying the coordinates by
d-power roots of unity. The genus of Cd is

g = (d− 1)(d− 2)/2.

Use notation as before. Let χ = ωk be the unique power of ω which is of order d (possible since
d|q − 1 so a cyclic group of order q − 1 has a unique quotient of order d). If a, b are between 1 and
d− 1 but a+ b 6= d then χa, χb and χa+b are non-trivial characters of F×q . The Jacobi sum

Jq(χ
a, χb) = −

∑
u∈Fq,u 6=0,1

χa(u)χb(1− u) =
g(χa)g(χb)

g(χa+b)
.

There are (d− 1)(d− 2) = 2g pairs (a, b) as above.
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Theorem 3. (Weil) The reciprocal eigenvalues of Frobenius Frq on H1
l (Cd) are the numbers

Jq(χ
a, χb). Thus

Nn(Cd)− 1− qn =
∑

1≤a,b≤d−1, a+b 6=d

Jq(χ
a, χb)n.

Remark. (i) Weil in fact computed the LHS by the RHS directly, and from this deduced that the
Jacobi sums are the eigenvalues of Frobenius.

(ii) One may wonder what happens if we replace q by qn. One gets a similar equation with
Jqn(χa ◦ N,χb ◦ N) instead of Jq(χ

a, χb)n in the RHS. Here N is the norm from Fqn to Fq. The
relation

Jqn(χa ◦N,χb ◦N) = Jq(χ
a, χb)n

was in fact needed to prove the theorem for all n. Fortunately, it was available to Weil. It is the
Hasse-Davenport relation.

(iii) The estimate |Jq(χa, χb)| =
√
q gives the archimedean estimate

|Nn(Cd)− 1− qn| ≤ (d− 1)(d− 2)
√
qn.

This example was computed, historically, by Weil, before he proved the RH for curves, and was an
important motivation for the general case.

(iii) Stickelberger's theorem can now be viewed as telling us something about Nn as a p-adic
number. If we �x the prime p of E = Q(ζd) above p (note that all the Jacobi sums take values in
E) it turns out that some of the Jacobi sums are divisible by p and some are not - which exactly is
determined by the �combinatorics of CM types� in E.

(iv) Assume for simplicity that p ≡ 1 mod d and q = p. Note Jp(χ
a, χb) ∈ Q(ζd). If we denote

by P = p ∩Q(ζd) then for e ∈ (Z/dZ)× we get

vτ−1
e (P )(Jp(χ

a, χb)) =

{
−ae
d

}
+

{
−be
d

}
−
{
−(a+ b)e

d

}
,

where by {x} we denote the fractional part of x. This number is 1 for half of the 2g pairs of (a, b)
and 0 for the other half. As we shall see soon, this implies that the Newton polygon of Jac(Cd)[p

∞]
mod P equals to its Hodge polygon, or that this p-divisible group is ordinary at P .

In this case, if we let n be divisible by (p − 1)pr where r → ∞, then Nn(Cd) tends to 1 + (d −
1)(d− 2)/2 p-adically.

(v) At the other extreme, suppose that (Z/dZ)× is cyclic (e.g. d is a power of an odd prime) and
p is a primitive root modulo d. Then there is only one inert prime P above p in Q(ζd) and every
Jq(χ

a, χb) has vP = φ(d)/2 (note that q = pφ(d) in this case). In this case the Newton polygon of
Jac(Cd)[p

∞] mod P has constant slope 1/2 and is therefore supersingular (The di�erence between
φ(d)/2 and 1/2 is the di�erence between Frq and the absolute Frobenius Frp used to compute the
Newton polygon, because Jq(χ

a, χb) are the eigenvalues of Frq but Cd is de�ned over Fp.)
In this case, as n→∞, Nn(Cd) tends to 1 p-adically.

For more on this example, see [Ka2].

5. Crystalline cohomology

Let k be a perfect �eld of char. p, W = W (k) the ring of Witt vectors, K its �eld of fractions,
and X a proper and smooth scheme over W . We write X0 for its special �ber, and remark that
in general it is not true that a proper and smooth X0/k can be lifted to a proper and smooth



p-ADIC PROPERTIES OF EIGENVALUES OF FROBENIUS 6

X/W , although this is known in some cases, e.g. curves, or abelian varieties admitting a principal
polarization.

Crystalline cohomology Hm
cris(X0/W ) is a �nitely-generatedW -module functorially associated to

smooth and proper X0/k (Berthelot). Its construction has been improved and generalized over the
years, and nowadays is often replaced by Berthelot's rigid cohomology. In particular, the restriction
that X0 must be smooth and proper has been removed, but for simplicity we keep it. The key points
to know are the following.

• Although Hm
cris(X0/W ) is a W -module, it does not depend on the lifting (if such a lifting

exists at all), but only on X0.
• Assume that a proper smooth lifting X exists. Then there is a canonical isomorphism

Hm
cris(X0/W ) ' Hm

dR(X/W ) := Hm(X,Ω·X/W ).

In particular, (a) dimK H
m
cris(X0/W )K = bm is the mth Betti number and (b) Hm

dR(X/W )
and Hm

dR(X ′/W ) are canonically isomorphic, for any two smooth and proper liftings X and
X ′.

• The absolute Frobenius Frob : X0 → X
(p)
0 induces, by functoriality, a map

F : Hm
cris(X0/W )(p) → Hm

cris(X0/W ),

or, equivalently, a σ-semi-linear endomorphism F of Hm
cris(X0/W ), where σ is the absolute

Frobenius automorphism of W .
• Assume that k is a �nite �eld of q = pa elements. Then F a is a K-linear endomorphism of
Hm
cris(X0/W )K and (Katz-Messing) its eigenvalues are the αm,i obtained from l-adic etale

cohomology.

Part 2. Rigid (crystalline) cohomology and Katz's Conjecture

6. Rigid cohomology

6.1. p-adic cohomologies - history. Scholie: to understand the p-adic absolute values of the
eigenvalues of Frobenius, we want to have at our disposal a cohomology theory with p-adic coef-
�cients, and make sure that the eigenvalues of Frobenius on it are the same as the eigenvalues of
Frobenius on l-adic étale cohomology.

Set-up: k a perfect �eld of characteristic p, W = W (k) its ring of Witt vectors, K = Fr(W ).
Examples: Fq and Zq (q = pa), or Fp and the completion of the ring of integers in Qnrp . Let X be
a smooth variety over k. Say that X lifts to characteristic 0 in the strong sense if there exists a
scheme X smooth over W with X ×Spec(W ) Spec(k) ' X. Note X need not exist. In dimension
≥ 2, there is an example of Serre where X does not lift even weakly, i.e. does not lift to any local
noetherian domain with residue �eld k, even if we allow rami�cation. Using moduli spaces it is easy
to construct examples of abelian varieties that lift in the weak sense, but not to W . For example,
certain abelian varieties with a polarization of degree p. When X/W exists, it is clearly not unique.

There are situations where X does lift in the strong sense: e.g. X is a curve, or a principally
polarized abelian variety (X can then be lifted even with the polarization), or a smooth a�ne
variety. Both for curves and for a�ne varieties the liftability follows from the fact that one can
always lift locally Zariski, and the obstruction for global lifting lives in a coherernt H2, which
vanishes if either X is 1-dimensional or a�ne.

Failure of étale cohomology with p-adic coe�cients
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Why is it not a good candidate?

• May be too small. E.g. if X is a proper smooth curve of genus g, H1
et(Xk,Qp) has dimension

less than 2g and may even vanish.
• If X lifts to X ,H∗et(XK ,Qp) has the right size but depends on X , and the Galois action on
it is in general rami�ed, so we do not get an action of Frobenius.
• Base change in étale cohomology does not hold with p-adic coe�cients, so we cannot com-
pare H∗et(XK ,Qp) with H∗et(Xk,Qp).
• Eventually, there will be a comparison theorem between H∗et(XK ,Qp) and H∗cris(X/W )⊗W
K but it requires the introduction of a very large �eld BdR and is quite di�cult (Fontaine-
Messing, Faltings).

History

• (protohistory: 1960) Dwork's proof of the rationality of the Zeta function Z(X;T ).
• (1968) Monsky-Washnitzer cohomology. A good theory when X is smooth and a�ne over
k.

• (1974) Berthelot: crystalline cohomology, following a blue-print by Grothendieck (1966).
Idea: replace Zariski open sets by nilpotent thickening of Zariski open sets with a divided
power structure on the ideal de�ning the thickening. Then go to a limit over the thickenings.
Crystalline cohomology satis�ed the axioms of a Weil cohomology, but gave a good theory
only when X was smooth and proper. It produces aW -module, possibly with torsion, which
can be a head-ache. Advantages: works in the relative setting X → S, and works also �with
coe�cients� (crystals) as coe�cients. Developed further by Berthelot, Messing, Ogus, Illusie
and Mazur. Key feature: has a natural comparison to the de Rham cohomology of a lifting.

• (1986) Berthelot: rigid cohomology. Works well for any X a scheme of �nite type over
k, and produces K-vector spaces of �nite dimension. When X is smooth and a�ne it
agrees with Monsky-Washnitzer, when X is smooth and proper it agrees with (rational)
crystalline cohomology. Uses de Rham cohomology of certain rigid analytic �pieces� of a
lift to characteristic 0 to de�ne it, so comparison with de Rham cohomology is more or less
automatic.

6.2. An example.

6.2.1. The example. I will follow a nice set of slides by Bernard Le Stum (2012) [L-S] that can be
found on the web.
k = Fq, q = pa, p > 3, q = 1 mod 4 (otherwise elliptic curve is supersingular, and counting

points becomes trivial in this example). Note that we allow p = 3 mod 4 and a even. Note that
±i ∈ k.
X = Spec(A), A = k[x, y, y−1]/(y2−x3−x), X = Proj

(
k[x, y, z]/(y2z − x3z − xz2)

)
an elliptic

curve.
Thus X = X \X[2] and it projects via x to P1 \ {0, i,−i,∞}.
Take X = Spec(A), A = W [x, y, y−1]/(y2 − x3 − x) and similarly X .
Quite generally, assume X is smooth over k, X a smooth lifting over W , and assume that there

exists X smooth and proper over W containing X so that X \X is a divisor with normal crossings,
all of whose irreducible components are smooth over W . This is the �best of all worlds�, but it very
often holds, e.g. in our example.

Then de�ne

H∗rig(X) = H∗dR(XK/K) = H∗(XK ,Ω·XK/K
).



p-ADIC PROPERTIES OF EIGENVALUES OF FROBENIUS 8

If X is a�ne then

H∗rig(X) = h·(Ω·(XK/K), d).

In our example A = B ⊕ By where B = K[x, 1/(x3 + x)] and

dy =
3x2 + 1

2(x3 + x)
ydx ∈ Bydx.

Thus

H1
rig(X) = h1(A → Adx) = h1(B → Bdx)⊕ h1(By → Bydx)

where

h1(B → Bdx) = K

[
dx

y2

]
⊕K

[
xdx

y2

]
⊕K

[
x2dx

y2

]
h1(By → Bydx) = K

[
dx

y

]
⊕K

[
xdx

y

]
.

These two pieces can be interpreted as the ± parts w.r.t. the automorphism (x, y) 7→ (x,−y), or
alternatively as the pull backs of the cohomologies of P1 \ {0, i,−i,∞} and of X respectively.

6.2.2. Lifting Frobenius. Quite generally let Fr : X → X(p) be �raising the coordinates to power
p�. If k = Fq then Frq = Fra : X → X is an endomorphism of the variety.

In general, even in the �best of all worlds� situation, k = Fq, there need not be a lifting of Frq
to an endomorphism of X . In our example, by the theory of complex multiplication, Frq lifts to an
endomorphism of X , but this is an accident, and if we took X to be the curve y2 = x3 + x− p for
example, such a lifting would not exist. So let's try to do something that would work for all liftings
X .
Idea: replace X by its p-adic completion X̂ = {X mod pn+1}∞n=0, strictly speaking a formal

scheme (a�ne if X is a�ne).
On the level of functions, in our example,

Â = W
{
x, y, y−1

}
/(y2 − x3 − x) = Γ(X̂ ,O)

and we tensor with K to get

ÂK = K
{
x, y, y−1

}
/(y2 − x3 − x)

where K
{
x, y, y−1

}
is the Tate algebra of all the power series

∑
i∈N,j∈Z aijx

iyj converging on

|x| ≤ 1, |y| = 1. A lifting of Frobenius then may be de�ned as

F : (x, y) 7→ (xq, yq

√
x3q + xq

(x3 + x)q
)

(note that the RHS indeed belongs to X̂ ). The expression under the square root is congruent to 1

modulo p, so a square root of it exists in Â.
This fact is general.

Proposition 4. Let k = Fq and assume X̂K = Spm(ÂK) is an a�noid over K with good reduction,
i.e. the a�ne scheme X obtained upon its reduction is smooth over k. Then Frq lifts (in a non-

unique way) to an endomorphism F of X̂K .

Alas, we solved one problem and created another !
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6.2.3. Overconvergence. Problem: Unless X is proper, H∗dR(XK/K) 6= H∗dR(X̂K/K). Example:

Take X = Spec(k[x]), X = Spec(K[x]), X̂K = Spm(K{x}). The cohomology of X or X vanishes,

but the cohomology of X̂K is in�nite dimensional, because a general power series di�erential

∞∑
n=0

anx
ndx

with an → 0 is not integrable to a function in K{x}.

Solution: Introduce the ring

A ⊂ A† ⊂ ÂK
of all �overconvergent functions�, i.e. functions that converge on some �wide open neighborhood�

of the a�noid X̂K (not specifying the neighborhood). In our example

A† = K[x, y, 1/y]†/(y2=x3=x)

where K[x, y, 1/y]† is the ring of formal power series that converge in |x| < 1+ε, 1−ε < |y| < 1+ε
for some ε > 0.

Facts (in the smooth a�ne case)

(1) Any lifting F of Frq to ÂK is overconvergent, i.e. preserves A†.
(2) Any two liftings induce the same endomorphism on H∗dR(X †) = h∗(Ω·(A†/K), d). Think of

the two liftings as being homotopic to each other.
(3) The de Rham cohomology H∗dR(X †) is �good� - gives what is expected - and agrees with

H∗dR(X/K) in the �best of all worlds� situation. Notice that to de�ne H∗dR(X †) we do not
need X . Only the formal weak (dagger) completion counts.

These three facts are basically due to Monsky-Washnitzer. Thus we get a well-de�ned action of F
on H∗rig(X) = H∗dR(X †/K).

6.3. Rigid cohomology.

6.3.1. Tubes. Start with any perfect �eld k and any k-variety X. Take a closed embedding X ↪→ P
where P is a smooth formal scheme over W (should really say over Spf(W )). Take this to mean
that we have closed embeddings

Pn+1

1 ↑
X

in
↪→ Pn

where Pn is a smooth scheme overWn = W/pn+1W and the vertical map identi�es Pn+1×Spec(Wn+1)

Spec(Wn) with Pn. It is important to allow P to be large. In applications, it is sometimes taken as
projective space, but to develop the theory and prove independence of the embedding we can not
restrict to projective space.

If X is smooth and liftable we can take P to be a smooth formal scheme having X = P0 as the
special �ber, but again this choice is too narrow for the general theory.

Any formal scheme P over W has a �generic �ber� PK which is a (rigid/ Berkovich) analytic
space. Its reduction is the scheme P0 = Pk and it has a specialization map

sp : PK → Pk ⊃ X.
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If, locally, Pn = Spec(Wn[T1, . . . , Tm]/an) where an+1 mod pn = an, then

PK = Spm(K{T1, . . . , Tm}/â)

and sp takes the coordinates (t1, . . . , tm) ∈ D(0, 1)m (�closed� unit ball) of a point on PK and
reduces them modulo p. De�ne the tube ]X[P of X in P to be the analytic space

]X[P= {x ∈ PK | sp(x) ∈ X} .

Example. P is Âm, f1, . . . , fr, g are primitive polynomials in W [T1, . . . , Tm] and

X = Spec
(
k[T1, . . . , Tm]/(fi)

)
[g−1].

Then

]X[P= {x ∈ D(0, 1)m| |fi(x)| < 1, |g(x)| = 1} .
For example, if X is a point (say, the origin) then ]X[P= D(0, 1−)m (�open� ball). At the other

extreme, if X is open in Pk then X = X̂k for an open formal subscheme X̂ ⊂ P over W, and

]X[P= X̂K is its generic �ber.

6.3.2. Rigid cohomology in the proper case. Assume �rst that X is proper. Let X ↪→ P be a closed
embedding in a smooth formal scheme over W as before. De�ne

H∗rig(X) = H∗dR(]X[P )

(hypercohomology). If X happens to be also smooth and liftable and we put P = X̂ as before then
we recover H∗rig(X) = H∗dR(XK/K).

To prove (a) independence of the embedding in P and (b) functoriality in X, Berthelot uses two
key results:

(1) Local Poincaré Lemma: If V is an a�noid variety and D = D(0, 1−) is the open unit
disk with parameter t then the sequence

0→ Γ(V,O)→ Γ(V ×D,O)
∂/∂t→ Γ(V ×D,O)→ 1

is exact.
(2) Weak �bration theorem: Let

P ′

↗ ↓ π
X

i
↪→ P

be a diagram of closed embeddings of X in smooth formal schemes P, P ′ over W with π a
smooth map. Then, locally on ]X[P (in the analytic topology)

]X[P ′']X[P×Dr

with D as above.

Functoriality yields of course that Fr : X → X(p) induces a K-linear map

F : H∗rig(X)(p) → H∗rig(X),

which is the same as a σ-semilinear endomorphism ofH∗rig(X) (σ being the Frobenius automorphism
of K).
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6.3.3. Rigid cohomology in general. If X is not proper anymore, we encounter the same problem
that we encountered in the example, in that de Rham cohomology of a�noids / Tate algebras is
not well-behaved, and we must opt for overconvergent cohomology. One still embeds X as a locally
closed embedding (open in closed) in a smooth and proper P (even if X is not proper, e.g. projective
space) and de�nes then

H∗rig(X) = H∗dR(]X[†P ).

We skip the precise de�nitions and details.

7. Katz' conjecture

7.1. Newton and Hodge polygons. From now on let q = pa, k = Fq and X proper and smooth
over k. In this case

Hm
rig(X) = Hm

cris(X/W )⊗W K.

The following assumption was made by Mazur in his proof of the conjecture of Katz that we are
about to discuss. It was later removed by Ogus, who gave a new proof of the conjecture, but the
formulation had to be also changed somewhat, so we stick to it for the exposition.

(Ass) X is liftable to a proper and smooth X/W and the Hodge groups Hj(X ,Ωi) areW -torsion
free.

In this case we have the following theorem.

Theorem 5. (Katz-Messing) The characteristic polynomial of F a on Hm
rig(X) is the same as the

characteristic polynomial of the arithmetic Frobenius Fr−1q on Hm
et (Xk,Ql).

Etesse and Le Stum proved the same result when X is only assumed to be smooth, but not
necessarily proper.

Write the characteristic polynomial as

fm(t) = det(1− t(F a)∗|Hm
rig(X)) = 1 + a1t+ a2t

2 + · · ·+ aβt
β =

β∏
i=1

(1− αi,mt)

where the αi,m are the eigenvalues of F a. They are qm-Weil numbers and make up a complete set

of Galois conjugates. Let ordq be the valuation on Qp normalized by ordq(q) = 1.
To record the absolute value of the αi,m we introduce the Newton polygon of fm, which is

NP (fm) = conv {(0,∞), (i, ordq(ai)), (β,∞)}0≤i≤β .

Sometimes we shall denote by NP (fm) also the lower boundary of this polygon. Since aβ = qβm/2,
it connects (0, 0) to (β, βm/2). We have the following elementary lemma.

Lemma 6. If the slopes of the segments making up NP (fm) are 0 ≤ r1/s1 < r2/s2 < · · · < rk/sk
with horizontal lengths si then there are precisely si eigenvalues α with ordq(α) = ri/si.

On the other hand we have the Hodge polygon Hdg(Hm). Let

hi,m−i = dimHm−i(X,Ωi)
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and let Hdg be the polygon connecting the points (
∑i
j=0 h

j,m−j ,
∑i
j=0 jh

j,m−j) for −1 ≤ i ≤ m.
The degeneration of the Hodge spectral sequence is equivalent to the equality

i∑
j=0

hj,m−j = β

and the Hodge symmetries hi,j = hj,i imply that the last point is (β, βm/2). Thus Hdg(Hm) has
the same end points as NP (Hm).

Remark. Without the liftability of X, neither the degeneration of the Hodge spectral sequence, nor
the Hodge symmetries must hold. Serre gave an example of a surface with h0,1 = 1 but h1,0 = 0.
In the non-liftable case substitute for hi,j the reduced Hodge numbers made from the E∞ page of
the Hodge spectral sequence.

Theorem 7. (Mazur, Katz' conjecture) The Newton polygon lies on or above the Hodge polygon.
Viewing these polygons as graphs of functions

Hdg(Hm)(t) ≤ NP (fm)(t).

For example, if X is a curve of genus g and m = 1 then Hdg has two segments of horizontal
lengths g and slopes 0 and 1. The NP must have, by Poincaré duality, slopes λ and 1−λ with equal
multiplicities (horizontal lengths). This in itself, together with coincidence of end points, implies
the theorem. The same is true for abelian varieties and any m. But in general, the theorem says
that the Hodge numbers impose further severe restrictions on the Newton polygon, hence on the
p-adic absolute values of the eigenvalues of Frobenius. For example, it has the following immediate
corollary.

Corollary 8. Suppose that hj,m−j = 0 for j < i. Then all the eigenvalues α have ordq(α) ≥ i.

7.2. Spans and the abstract Hodge polygon. Mazur's approach to Katz' conjecture is based
on the following idea. First, generalize and assume that k is any perfect �eld, and consider the
absolute Frobenius, rather than its ath power. Let H be Hm

dR(X/W ) and M = H(p). Both are free
W -modules of rank β. By the theory of elementary divisors there are bases of these two modules
over W w.r.t. which the matrix of F is diag.(1, 1, . . . , 1, p, . . . , p, p2, . . . , . . . , pm, . . . , pm). This is
because F (M) ⊃ pmH. The number hi of times pi appears is called the abstract ith Hodge number.

The abstract Hodge polygon H̃dg(Hm) of Hm is the polygon having slope i with multiplicity hi.
On the other hand, using the Manin-Dieudonné classi�cation of F -isocrystals one can associate

to Hm a Newton polygon NP (Hm) even if k is not a �nite �eld and the eigenvalues of F a do not
make sense for any a. If k = Fq it is the same NP (fm) that was de�ned before.

The proof of the Theorem is based on the following two results.

Theorem 9. NP (Hm) ≥ H̃dg(Hm).

This theorem is easy. It involves only simple semi-linear algebra.

Theorem 10. H̃dg(Hm) = Hdg(Hm).

The proof of this theorem, given in Mazur's Annals paper, is complicated. It is amazing and not
at all clear why the Hodge numbers are determined by the elementary divisors of F : M → H. For
lack of time and expertese we shall not go into any more details.
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7.3. Families. We shall only make a few remarks about what happens when we vary X in a family.
Suppose now that X → S is a proper smooth family over a smooth base S over an algebraically
closed �eld k. A typical example would be the universal abelian scheme over the moduli space Ag,n
of principally polarized abelian varieties of genus g and full level n structure, n ≥ 3.

Let m be any degree for cohomology. The Betti number β = dimHm
rig(Xs) is independent of

s ∈ S. Fix a Newton polygon Π connecting (0, 0) to (β, βm/2).

Theorem 11. (Grothendieck) The set {s ∈ S|NP (Hm(Xs)) ≥ Π} is Zariski closed.

This theorem is often phrased as saying that the �Newton polygon rises under specialization�.
Maybe Grothendieck only proved it for families of abelian varieties and m = 1 because he was
dealing with Dieudonné modules, but the general theorem should also be true, see e.g. [Ka1],
Theorem 2.3.1.

The theorem implies, for example, that Ag,n is strati�ed by the Newton polygon of the abelian
varieties uniformized by it. These Newton polygons are symmetric (because of the polarization),
i.e. the slopes λ and 1− λ appear with the same multiplicity.

Theorem 12. (i) (Manin's conjecture) Any symmetric Newton polygon connecting (0, 0) to (g, g/2)
is realized by a principally polarized abelian variety of genus g.

(ii) (Grothendieck's conjecture) If s ∈ Ag,n is such that the universal abelian variety As has NP
β which lies above a symmetric Newton polygon γ then s belongs to the Zariski closure of Ag,n[γ].

The �rst assertion is a consequence of Honda-Tate theory, but for the second one needs defor-
mation theory. It was proved by Oort.

We end with an open problem.

Problem 13. Is every symmetric Newton polygon connecting (0, 0) to (g, g/2) realized by a Jaco-
bian of a curve?

A lot of work has been done on this question by Oort, van der Geer, and others.
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