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Abstract. Let F be a local …eld of characteristic 0. The Breuil-Schneider
conjecture for GL2(F ) predicts which locally algebraic representations of this
group admit an integral structure. We extend the methods of [K-dS12], which
treated smooth representations only, to prove the conjecture for some locally
algebraic representations as well.

1. Introduction

1.1. Background. Let F be a local …eld of characteristic 0 and residue character-
istic p, ¼ a …xed uniformizer of F; and q the cardinality of its residue …eld OF=¼OF :
Let E be an algebraic closure of F .

Let G be a reductive group over F and G =G(F ): A locally algebraic represen-
tation (½; V½) of G over E is a representation of the type

½ = ¿  ¾(1.1)

where (¿; V¿ ) is (the E-points of) a …nite dimensional rational representation of G,
and (¾; V¾) is a smooth representation of G over E: An integral structure V 0½ in V½
is an OE [G]-submodule which spans V½ over E; but does not contain any E-line.

If ¿ and ¾ are irreducible then ½ is irreducible as well ([P01], Theorem 1). In
such a case, a non-zero OE [G]-submodule V 0½ of V½ is an integral structure if and
only if it is properly contained in V½: Indeed, the union of all E-lines in V 0½ ; as well
as the subspace of V½ spanned by V 0½ over E; are both E[G]-submodules of V½: If
0 ½ V 0½ ½ V½ (both inclusions being proper), the irreducibility of ½ implies that the
…rst is 0, and the second is V½:

Two integral structures in V½ are commensurable if each of them is contained
in a scalar multiple of the other. In general, V½ need not contain an integral
structure. When such an integral structure exists, it need not be unique, even up to
commensurability. However, if ½ is irreducible, and an integral structure does exist,
there is a unique commensurability class of minimal integral structures, namely the
class of any cyclic OE [G]-module. Thus, when ½ is irreducible, to test whether
integral structures exist at all, it is enough to check that for some 0 6= v 2 V½;
OE [G]v is not the whole of V½:

The existence (and classi…cation) of integral structures in irreducible locally al-
gebraic representations is a natural and important question for the p-adic local
Langlands programme (see [Br10]). When G = GLn; a precise conjecture for the
conditions on ¿ and ¾ under which an integral structure should exist in ½ was
proposed by Breuil and Schneider in [Br-Sch07], and became known as the Breuil-
Schneider conjecture. The necessity of these conditions was proved there in some
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special cases, and by Hu [Hu09] in general. The su¢ciency tends to be, in the
words of Vigneras [V], either “obvious” or “very hard”, even for GL2:

Quite generally, ifG is an arbitrary reductive group, the simpler ¾ is algebraicly,
the harder the question becomes. An obvious necessary condition is for the central
character of ½ to be unitary1. Assume therefore that this is the case. If ¾ is
supercuspidal (its matrix coe¢cients are compactly supported modulo the center),
the existence of an integral structure is obvious. Using global methods and the trace
formula, existence of an integral structure can also be proved when ¾, realized over
C by means of some …eld embedding E ,! C, is essentially discrete series (its
matrix coe¢cients are square integrable modulo the center)2 [So13]. In these cases,
no further restrictions are imposed on ¿ . At the other extreme stand principal
series representations, where one should impose severe restrictions on ¿; and the
problem becomes very hard.

We warn the reader that for arithmetic applications, the minimal integral struc-
tures in an irreducible V½ are often insu¢cient. In particular, they may be non-
admissible, in the sense that their reduction modulo the maximal ideal of OE is
a non-admissible smooth representation over ¹Fq. In such a case, even if minimal
integral structures are known to exist, the existence of larger admissible integral
structures is a mystery, which is resolved only in special cases, again by global
methods. See [Br04].

1.2. The main result. We now specialize to G = GL2: In this case the full
Breuil-Schneider conjecture is known when F = Qp; but only by indirect methods
involving (Á;¡)-modules and Galois representations. It comes as a by-product of
the proof of the p-adic local Langlands correspondence (pLLC ). This large-scale
project [B-B-C] depends so far crucially on the assumption F = Qp: It is therefore
desirable to have a direct local proof of the Breuil-Schneider conjecture, which does
not depend on pLLC, and which holds for arbitrary F . As mentioned above, if ¾ is
either supercuspidal or special, there are no restrictions on ¿ and integral structures
are known to exist. We therefore assume that ¾ = Ind(Â1; Â2) is an irreducible
principal series representation.

In this work we prove the Breuil-Schneider conjecture forGL2(F ) in the following
cases: (1) The characters Â1 and Â2 are unrami…ed, ¿ = det(:)

m  Symn; and the
weight is low: n < q (2) The Âi are tamely rami…ed, and ¿ = det(:)m: The second
case has been done in [K-dS12] already, but the proof presented here is somewhat
cleaner.

To formulate our theorem, let Âi be smooth characters of F
£ with values in E£;

and ! the unrami…ed character3 for which !(¼) = q¡1. Let B be the Borel subgroup
of upper triangular matrices in G; and consider the principal series representation

(V¾ ; ¾) = IndGB(Â1; Â2):(1.2)

1A character Â : F£ ! E£ is unitary if its values lie in O£E :
2The notion of “essentially discrete series” should be invariant under Aut(C); hence indepen-

dent of the embedding of E in C. This is known for GLn by the work of Bernstein-Zelevinski,
and for the classical groups by Tadic.

3This character is usually denoted j:j over C: We will have to consider j!(¼)j, the absolute
value of q¡1 as an element of E, and we found the notation jj¼jj too confusing.
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This is the space of functions f : G! E for which (i)

f

µµ
t1 s
0 t2

¶
g

¶
= Â1(t1)Â2(t2)f(g)(1.3)

and (ii) there exists an open subgroup H ½ G; depending on f; such that f(gh) =
f(g) for all h 2 H: The group G acts by right translation:

¾(g)f(g0) = f(g0g):(1.4)

The central character of ¾ is Â1Â2, and IndGB(Â1; Â2) ' IndGB(!Â2; !
¡1Â1); unless

this representation is reducible. In fact, ¾ is reducible precisely when Â1=!Â2 =
!§1: In this “special” case ¾ is indecomposable of length 2, and its irreducible
constituents are a one-dimensional character and a twist of the Steinberg represen-
tation by a character. Since the Breuil-Schneider conjecture for a twist of Steinberg,
and any ¿ , is known (for GL2(F ); see [T93] or [V08]), we exclude this case from
now on, and assume that ¾ is irreducible.

Next, …x integers m and n ¸ 0; and consider the rational representation

(V¿ ; ¿) = det(:)
m  Symn;(1.5)

where Symn denotes the nth symmetric power of the standard representation of
G. Put

¸ = Â1(¼); ¹ = !Â2(¼);(1.6)
~̧ = ¸¼m; ~¹ = ¹¼m:

The Breuil-Schneider conjecture for ½ = ¿  ¾ predicts that ½ has an integral
structure if and only if the following two conditions are satis…ed:

(i) j~̧~¹q¼nj = 1 (ii) j~̧j · jq¡1¼¡nj; j~¹j · jq¡1¼¡nj:(1.7)

Condition (i) means that the central character of ½ is unitary. Given (i), (ii) is
equivalent to 1 · j~̧j · jq¡1¼¡nj or to the symmetric condition for ~¹: It is known
(and easy to prove) that these two conditions are necessary.

Theorem 1.1. Assume that (i) and (ii) are satis…ed. Assume, in addition, that
either (1) Â1 and Â2 are unrami…ed and n < q; or (2) that Â1 and Â2 are tamely
rami…ed and n = 0: Then ½ has an integral structure.

Although our method is new, and gives some new insight into the minimal in-
tegral structure (see Theorem 1.2 below), the two cases have been known before:
case (1) by Breuil [Br03] (for Qp) and de Ieso [dI12] (for general F ), and case (2)
by Vigneras [V08]. It is interesting to note that the restriction n < q in case (1)
and the restriction on tame rami…cation in case (2) are also needed in the above
mentioned works. In fact, Breuil, de Ieso and Vigneras all use, in one way or an-
other, the method of compact induction, replacing the representation ½ by a local
system on the tree of G. Our approach takes place in a certain dual space of func-
tions on F: Any attempt to translate it to the set-up of the tree involves the p-adic
Fourier transform, which is unbounded, and makes it impossible to trace back the
arguments. The way in which the weight and rami…cation restrictions are brought
to bear on the problem are also not similar, yet the very same restrictions turn out
to be necessary for the proofs to work.
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1.3. An outline of the proof. As in [K-dS12], our approach is based on a study
of the Kirillov model of ½: For the sake of exposition we now exclude the case
Â1 = !Â2, which requires special attention. Assuming Â1 6= !Â2; the Kirillov
model of ½ is then the following space of functions on F ¡ f0g:

K = C1c (F; ¿)Â1 + C1c (F; ¿)!Â2:(1.8)

Here C1c (F; ¿) is the space of V¿ -valued locally constant functions of compact
support on F: The model K is obtained by tensoring ¿ with the classical Kirillov
model of the smooth representation ¾ (see [Bu98]). It contains K0 = C1c (F

£; ¿);
the subspace of functions vanishing near 0, and K=K0 consists of two copies of V¿ :
When ¿ = 1; this is just the Jacquet module of K: The characters Â1 and !Â2
are the exponents of the Jacquet module, the two characters by which the torus of
diagonal matrices acts on it.

We record the action of an element

g =

µ
a b
0 1

¶
2 B(1.9)

on Á 2 K: Fix an additive character Ã : F ! E£ under which OF is its own
annihilator. Then

½(g)Á(x) = ¿(g) (Ã(bx)Á(ax)) :(1.10)

The action of G in the model K depends on the choice of Ã; but only up to isomor-
phism.

At this point, we must introduce more notation and recall some easy facts. Let
1S be the characteristic function of S ½ F; and Ál = 1¼lUF (l 2 Z). If b 2 F , write
Ãb(x) = Ã(bx): The function Ãb(¼

¡lx)Ál(x) depends only on ¯; the image of b in
W = F=OF , so from now on we denote it by Ã¯(¼

¡lx)Ál(x): Any locally constant
function on the annulus ¼lUF can be expanded as a …nite linear combination of
these functions. Moreover, Fourier analysis on the disk ¼lOF implies that

X

¯2W
Cl(¯)Ã¯(¼

¡lx)Ál(x) = 0(1.11)

if and only if Cl(¯) depends only on ¼¯, i.e.

Cl(¯) = Cl(¯
0) if ¯ ¡ ¯0 2W1 = ¼¡1OF=OF :(1.12)

The same applies of course to V¿ -valued functions, except that now the coe¢cients
Cl(¯) 2 V¿ :

An arbitrary function Á 2 K may be expanded annulus-by-annulus as

Á =
1X

l=l0

X

¯2W
Cl(¯)Ã¯(¼

¡lx)Ál(x);(1.13)

where Cl(¯) 2 V¿ ; and for every l only …nitely many Cl(¯) 6= 0: The only re-
striction on Á is imposed by the asymptotics as x ! 0: In particular, …nite linear
combinations as above represent the elements of K0. One should think of the ¯ as
frequencies, and of the Cl(¯) as the amplitudes attached to these frequencies on the
annulus ¼lUF : These amplitues are not uniquely de…ned since we may add to Cl(¯)
a perturbation ~Cl(¯) without a¤ecting Áj¼lUF ; provided ~Cl(¯) = ~Cl(¯

0) whenever
¯ ¡ ¯0 2W1: But as explained above, this is the only ambiguity.

Theorem 1.1 follows from the following more precise result, which makes the
integral structure on V½ “visible”.
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Theorem 1.2. Let the assumptions be as in Theorem 1.1. Let V 0½ be the OE [G]-
submodule of V½ = K spanned by a non-zero vector. Then there exist OE-lattices
M0(¯) ½ V¿ such that if Á 2 V 0½ vanishes outside OF ; it has an expansion as above
with C0(¯) 2M0(¯) for every ¯:

Note that we do not claim that the values of Á 2 V 0½ are bounded on UF ; nor at
any other point. The amplitudes can be bounded only separately, and only on the
…rst annulus where Á does not vanish. Since the C0(¯) are not uniquely de…ned,
one still needs a simple argument to show that this is good enough.

Proposition 1.3. Theorem 1.2 implies Theorem 1.1.

Proof. We shall show that V 0½ 6= V½; so in view of the irreducibility of ½; V 0½ will
be an integral structure. Consider the function Á = CÁ0 where C 2 V¿ lies outside
M =

P
¯2W1M0(¯): Suppose, by way of contradiction, that Á 2 V 0½ : Then Á is also

given by an expansion as in Theorem 1.2. For x 2 UF we must have then

C =
X

¯2W
C0(¯)Ã¯(x):(1.14)

This forces, as we have seen, the equality C0(0) ¡ C = C0(¯) for ¯ 2 W1 ¡ f0g :
But this contradicts the choice of C.

We now make some comments on the proof of Theorem 1.2. The …rst step is
standard. Using the decomposition G = BK; K = GL2(OF ); we show that V 0½ is
commensurable with a certain OE [B]-module of …nite type ¤ which also spans V½
over E. We may therefore prove the assertion of the theorem for ¤ instead of V 0½ :
Our ¤ will be spanned over OE by an explicit in…nite set E of nice functions.

Pick a Á 2 ¤; express it as a linear combination of the functions in E , and
expand it annulus-by-annulus as above. The coe¢cients Cl(¯) then satisfy recursive
relations, in which the coe¢cients used to express Á as a linear combination of E
…gure out.

Suppose that Á vanishes o¤ OF : It may still be the case that Cl(¯) 6= 0 for some
¯ and l < 0: However, cancellation must take place, and as we have seen, Cl(¯)
depends then, for l < 0; on ¼¯ only. We proceed by increasing induction on l
and show that Cl(¯) must belong, for l · 0; to a certain OE-lattice Ml(¯) ½ V¿ ;
depending on l and ¯; but not on Á: When l = 0 we reach the desired conclusion.

Two phenomena assist us in establishing these bounds on the coe¢cients. The
…rst, which has already been utilized in our previous work [K-dS12], is that in the
recursive relations for Cl(¯) we encounter terms such as

X

¼®=¯

Cl¡1(®):(1.15)

As long as l · 0; the q summands are all equal, so their sum is equal to qCl¡1(®¯);
where ®¯ is any one of the ®’s. The factor q is small, and helps to control Cl(¯):

The second phenomenon is new, and more subtle. The information that Cl(¯)
depends only on ¼¯; puts a further restriction on Cl(¯); beyond lying in Ml(¯);
which is vital for the deduction that the Cl+1(°) lie in Ml+1(°): For example,
assume that m = 0 and n = 1; so ¿ is the standard representation of G on E2, and
let e1 and e2 be the standard basis. In this example, up to scaling,

Ml(¯) = SpanOE
©
¼¡le1; e2 ¡ ¼¡l¯e1

ª
(1.16)
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(note that this is indeed well de…ned, i.e. depends only on ¯modOF ). It is easily
checked that if Cl(¯) 2Ml(¯) for all ¯; and in addition, Cl(¯) depends only on ¼¯;
then in fact

Cl(¯) 2 SpanOE
©
¼¡le1; ¼(e2 ¡ ¼¡l¯e1)

ª
:(1.17)

This minor improvement on Cl(¯) 2Ml is crucial for our method to work. Roughly
speaking, the …rst phenomenon described above takes care of the factor q¡1 in
condition (1.7)(ii), while the second one takes care of the ¼¡n:

The inductive procedure requires also the relation Ml(¯) ½Ml+1(¼¯): It is here
that we need the condition n < q: We may modify the de…nition of Ml(¯) to
guarantee this relation without any restriction on n; but we then lose the subtle
phenomenon to which we alluded in the previous paragraph. At present, we are
unable to hold the rope at both ends simultaneously.

When Â1 and Â2 are unrami…ed this is the end of the story. When Â1 and
Â2 are rami…ed, two types of complications occur. First, we must give up the
algebraic part ¿ (except for the benign twist by the determinant). Second, in the
recursive relations used to de…ne Cl(¯); Gauss sums intervene. These Gauss sums
have denominators which are still under control if the characters are only tamely
rami…ed, but if the Âi are wildly rami…ed, our method breaks down. It is interesting
to note that the well-known estimates on Gauss sums intervene also in Vigneras’
proof of the tamely-rami…ed smooth case of the conjecture.

In the remaining cases, not covered by (1) or (2), it is possible that Theorem 1.2
fails, yet Theorem 1.1 continues to hold, for a di¤erent reason. It will be interesting
to check numerically whether one should expect Theorem 1.2 in general. Even for
F = Qp; where, as mentioned above, the full conjecture is known, it is unclear to
us whether Theorem 1.2 holds beyond cases (1) and (2).

2. Preliminary results

2.1. Fourier analysis on OF . The discrete group W = F=OF is the topological
dual of OF via the pairing

(¯; x) 7! Ã¯(x) = Ã(¯x):(2.1)

Every locally constant E-valued function on OF has a unique …nite Fourier expan-
sion

Á =
X

¯2W
c(¯)Ã¯(x):(2.2)

The proof of the following easy lemma is left to the reader.

Lemma 2.1. (i) ÁjUF = 0 if and only if c(¯) depends only on ¼¯:
(ii) Áj¼OF = 0 if and only if

P
¼¯=° c(¯) = 0 for every ° 2W:

The lemma is immediately translated to a similar one in the disk ¼lOF using
the functions Ã¯(¼

¡lx) as a basis for the expansion.

2.2. Lattices in V¿ . If ¯ 2W and l 2 Z let

Dl(¯) =
©
u 2 F j ju¡ ¼¡l¯j · j¼¡lj

ª
:(2.3)

This disk indeed depends only on ¯modOF : Note that
Dl+1(°) =

a

¼¯=°

Dl(¯):(2.4)
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Let ¿ = det(:)m  Symn: Identify V¿ with E[u]·n; the space of polynomials of
degree at most n; with the action

¿

µµ
a b
c d

¶¶
ui = (ad¡ bc)m(a+ cu)n¡i(b+ du)i:(2.5)

Let

Nl(¯) =
©
P 2 V¿ j jP (u)j · j¼j¡nl 8u 2 Dl(¯)

ª
:(2.6)

These are lattices in V¿ :

Lemma 2.2. (i) For any ° 2W
\

¼¯=°

Nl(¯) = ¼nNl+1(°):(2.7)

(ii) Assume that n < q: Then

Nl(¯) = SpanOE
©
(¼¡l)n¡i(u¡ ¼¡l¯)i (0 · i · n)

ª
:(2.8)

(iii) Assume that n < q: Then

Nl(¯) ½ Nl+1(¼¯):(2.9)

Proof. (i) If P 2 Nl(¯) then it is bounded by j¼j¡nl on Dl(¯): But the q disks
Dl(¯); for the ¯ satisfying ¼¯ = °; cover Dl+1(°): The result follows.

(ii) Clearly P 2 Nl(¯) if and only if ¼nlP (¼¡lu + ¼¡l¯) 2 N0(0): It is therefore
enough to prove that jP (u)j · 1 for all u 2 OF if and only if P 2 OE [u]·n: This is
well-known, but note that it fails if n ¸ q (consider ¼¡1(uq ¡ u)).

(iii) This is an immediate consequence of (ii).

2.3. Passing from OE [B]-modules to OE [G]-modules. Consider the represen-
tation V½; where ½ = ¿  ¾; ¿ = det(:)m  Symn; and ¾ = IndGB(Â1; Â2) are as in
the introduction.

Proposition 2.3. Let v1; : : : ; vr 2 V¾ be such that the module ¤¾ =
Pr

j=1OE [B]vj
spans V¾ over E: Let

¤ =
nX

i=0

rX

j=1

OE [B]
¡
ui  vj

¢
½ V½:(2.10)

Then ¤ is commensurable with every cyclic OE [G]-submodule of V½:
Proof. Let K = GL2(OF ) and recall that G = BK: If N · K is a subgroup of
…nite index …xing all the vj; then N preserves the …nitely generated OE-submoduleX

i;j

OE(ui  vj);(2.11)

because ¿(K) preserves OE [u]·n: It follows that
P

i;j OE [K](ui  vj) is …nitely
generated over OE : Since ¤ spans V½ over E; there is a constant c 2 E such that

X

i;j

OE [K](ui  vj) ½ c¤:(2.12)

But then X

i;j

OE [G](ui  vj) = OE [B]
X

i;j

OE [K](ui  vj)

½ OE [B](c¤) = c¤:(2.13)
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On the other hand, ¤ ½
P

i;j OE [G](uivj): The two inclusions prove the proposi-
tion, since the sum of a …nite number of cyclic modules, all being commensurable,
is again commensurable with any cyclic module.

Corollary 2.4. To prove Theorem 1.2 we may replace V 0½ by ¤:

2.4. The Kirillov model and a choice of ¤. Assume from now on that Â1 6=
!Â2: The exceptional case Â1 = !Â2 requires special attention and will be dealt
with in the end. Let K be the model of V½ described in the introduction. For fvjg
we choose the two functions

v1 = F 00(x) = 1OFÂ1; v2 = F 000 = 1OF!Â2:(2.14)

Let F 0k(x) = F 00(¼
¡kx) and similarly F 00k (x) = F 000 (¼

¡kx): Since

¾

µµ
¼¡k ¡¼¡k¯

1

¶¶
F 00(x) = Ã¯(¡¼¡kx)F 0k(x)(2.15)

and similarly for F 000 (x); we see that ¤¾ = OE [B]F 00 +OE [B]F 000 spans V¾ over E.

Lemma 2.5. Let ¤ =
Pn

i=0

P2
j=1OE [B]

¡
ui  vj

¢
; where v1 = F 00 and v2 = F 000 :

Then every element of ¤ can be written as a …nite sum

Á =
1X

k=k0

X

¯2W
c0k(¯)Ã¯(¡¼¡kx)F 0k(x) + c00k(¯)Ã¯(¡¼¡kx)F 00k (x);(2.16)

where c0k(¯); c
00
k(¯) 2 ¼¡kmNk(¯):

Proof. Since the central character of ½ is unitary (condition (1.7)(i)), it is enough
to span ¤ by matrices in the mirabolic subgroup

½µ
a b
0 1

¶¾
· B:(2.17)

Furthermore, as B \K stabilizes
Pn

i=0

P2
j=1OE

¡
ui  vj

¢
; we see that

¤ =
X

k2Z

X

¯2W
OE½

µµ
¼¡k ¡¼¡k¯

1

¶¶¡
ui  vj

¢

=
X

k2Z

X

¯2W
¼¡km(¼¡k)n¡i(u¡ ¼¡k¯)i  Ã¯(¡¼¡kx) (OEF 0k(x) +OEF 00k (x)) :

The coe¢cients (¼¡k)n¡i(u¡ ¼¡k¯)i 2 Nk(¯); see Lemma 2.2(ii).

3. The unramified case

3.1. The recursion relations. Assume now that Â1 and Â2 are unrami…ed. Then

F 0k(x) =
1X

l=k

¸l¡kÁl; F 00k (x) =
1X

l=k

¹l¡kÁl:(3.1)

Pick a Á 2 ¤: Substituting (3.1) in the expression (2.16), and rearranging the
sum “by annuli” we get

Á =
1X

l=k0

X

¯2W
Cl(¯)Ã¯(¡¼¡lx)Ál(x);(3.2)
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where

Cl(¯) = C0l(¯) + C00l (¯);(3.3)

C 0l(¯) =
lX

k=k0

¸l¡k
X

¼l¡k®=¯

c0k(®);

C 00l (¯) =
lX

k=k0

¹l¡k
X

¼l¡k®=¯

c00k(®):

We deduce that

C 0k0(¯) = c0k0(¯)(3.4)

C0l(¯) = ¸
X

¼®=¯

C 0l¡1(®) + c0l(¯);

and similarly for C 00l (¯); with ¹ instead of ¸: We now derive from these relations a
recursion relation for the Cl(¯); going two generations backwards.

Lemma 3.1. Let cl = c0l + c00l : Then Ck0(¯) = ck0(¯) and

Cl+1(°) = (¸+ ¹)
X

¼¯=°

Cl(¯)¡ ¹¸
X

¼¯=°

X

¼®=¯

Cl¡1(®)

¡
X

¼¯=°

(¸c00l (¯) + ¹c0l(¯)) + cl+1(°):(3.5)

Proof. We add the relations that we have obtained for C 0l(¯) and C 00l (¯) and re-
arrange them. We do the same at level l+ 1. Letting ®; ¯ and ° range over W as
usual, we get

Cl(¯) = ¸
X

¼®=¯

Cl¡1(®) + (¹¡ ¸)
X

¼®=¯

C 00l¡1(®) + cl(¯);

Cl+1(°) = ¸
X

¼¯=°

Cl(¯) + (¹¡ ¸)
X

¼¯=°

C 00l (¯) + cl+1(°):(3.6)

To deal with the middle term in the second equation we use the recursive relation
for C 00l (¯) and then eliminate (¹¡ ¸)

P
¼®=¯ C

00
l¡1(®) using the …rst equation:

(¹¡ ¸)
X

¼¯=°

C 00l (¯) = (¹¡ ¸)
X

¼¯=°

0
@¹

X

¼®=¯

C00l¡1(®) + c00l (¯)

1
A

= ¹
X

¼¯=°

0
@Cl(¯)¡ ¸

X

¼®=¯

Cl¡1(®)¡ cl(¯)

1
A

+(¹¡ ¸)
X

¼¯=°

c00l (¯)

= ¹
X

¼¯=°

Cl(¯)¡ ¹¸
X

¼¯=°

X

¼®=¯

Cl¡1(®)

¡
X

¼¯=°

(¸c00l (¯) + ¹c0l(¯)):(3.7)

The lemma follows from this.
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3.2. Conclusion of the proof. Let ½ satisfy the conditions of Thoerem 1.2, i.e.
the estimates (1.7)(i) and (ii) on ¸ and ¹; and n < q: Pick a Á 2 ¤ as before, and
expand it as in (3.2). Assume that it vanishes outside of OF : Let

Ml(¯) = q¡1¼¡n¡lmNl(¯):(3.8)

Lemma 3.2. For every k0 · l · 0 and every ¯ 2W; Cl(¯) 2Ml(¯):

Proof. We apply Lemma 2.2 and Lemma 2.5, and prove the desired bound on Cl(¯)
by increasing induction on l:

When l = k0; Ck0(¯) = ck0(¯) 2 ¼¡k0mNk0(¯) ½ Mk0(¯): Suppose that the
lemma has been established up to index l; and l+1 · 0: Then Cl(¯) (resp. Cl¡1(®))
depends only on ¼¯ (resp. ¼®), since Á vanishes on F¡OF :We invoke the recursion
relation (3.5) for Cl+1(°): The term

X

¼¯=°

(¸c00l (¯) + ¹c0l(¯)) 2Ml+1(°)(3.9)

since c0l(¯); c
00
l (¯) 2 ¼¡lmNl(¯), j¹j; j¸j · jq¡1¼¡n¡mj; and because of the relation

Nl(¯) ½ Nl+1(°); that holds whenever ¼¯ = °: That

cl+1(°) 2Ml+1(°)(3.10)

is clear. The term

(¸+ ¹)
X

¼¯=°

Cl(¯) 2Ml+1(°)(3.11)

because the q summands Cl(¯) are equal, hence belong to
\

¼¯=°

Ml(¯) = q¡1¼¡n¡lm
\

¼¯=°

Nl(¯) = q¡1¼¡lmNl+1(°):(3.12)

Thus
P

¼¯=° Cl(¯) 2 ¼¡lmNl+1(°); while j¸+ ¹j · jq¡1¼¡n¡mj: Finally,

¹¸
X

¼¯=°

X

¼®=¯

Cl¡1(®) 2Ml+1(°)(3.13)

for similar reasons: For a given ¯; the q summands Cl¡1(®) are equal, so belong to
\

¼®=¯

Ml¡1(®) = q¡1¼¡n¡(l¡1)m
\

¼®=¯

Nl¡1(®) = q¡1¼¡(l¡1)mNl(¯):(3.14)

This implies that their sum,
P

¼®=¯ Cl¡1(®) 2 ¼¡(l¡1)mNl(¯) ½ ¼¡(l¡1)mNl+1(°):

But j¹¸j = jq¡1¼¡n¡2mj; so for every ¯;

¹¸
X

¼®=¯

Cl¡1(®) 2 q¡1¼¡n¡(l+1)mNl+1(°) =Ml+1(°):(3.15)

Since each of the four terms in (3.6) has been shown to lie in Ml+1(°), the proof
of the induction step is complete.

When l = 0; C0(¯) 2M0(¯); and this proves Theorem 1.2.

4. The tamely ramified case

For the sake of completeness we treat also case (2) of the theorem, which is
covered by [K-dS12]. The proof is the same, except that we have cleaned up the
computations.



KIRILLOV MODELS AND INTEGRAL STRUCTURES 11

4.1. The recursion relations. Assume from now on that at least one of the
characters Â1 and Â2 is rami…ed, but ¿ = det(:)

m; i.e. n = 0: Since a twist of ½
by a character of …nite order does not a¤ect the validity of Theorem 1.2, we may
assume that Â2 is unrami…ed. We let " be the restriction of Â1 to UF ; and extend
it to a character of F£ so that "(¼) = 1: We denote by º ¸ 1 the conductor of ":
Letting ¸ = Â1(¼) and ¹ = Â2(¼) as before, we have

Â1(u¼
k) = "(u)¸k; Â2(u¼

k) = ¹k(4.1)

if u 2 UF :
Recall that

F 0k = "
1X

l=k

¸l¡kÁl; F 00k =
1X

l=k

¹l¡kÁl:(4.2)

The module ¤ consists this time of functions of the form

Á(x) =
1X

k=k0

X

¯2W
c0k(¯)Ã¯(¡¼¡kx)F 0k(x) + c00k(¯)Ã¯(¡¼¡kx)F 00k (x)(4.3)

=
1X

l=k0

X

¯2W
Cl(¯)Ã¯(¡¼¡lx)Ál(x);

with c0k(¯); c
00
k(¯) 2 ¼¡mkOE ; and some Cl(¯) which we are now going to compute.

Let, as before

C0l(¯) =
lX

k=k0

¸l¡k
X

¼l¡k®=¯

c0k(®)

C 00l (¯) =
lX

k=k0

¹l¡k
X

¼l¡k®=¯

c00k(®):(4.4)

These coe¢cients satisfy the recursion relations

C 0k0(¯) = c0k0(¯)(4.5)

C0l(¯) = ¸
X

¼®=¯

C 0l¡1(®) + c0l(¯);

and similarly for C 00l (¯); with ¹ instead of ¸: In terms of the C 0l(¯) and the C 00l (¯)
we have

Á(x) = "(x)
1X

l=k0

X

¯2W
C 0l(¯)Ã¯(¡¼¡lx)Ál(x) +

1X

l=k0

X

¯2W
C 00l (¯)Ã¯(¡¼¡lx)Ál(x):

(4.6)

Invoking the Fourier expansion of "(x)Ál(x) (see [K-dS12], Corollary 2.2) we
…nally get the formula

Cl(¯) =
¿("¡1)

qº

X

u2UF =UºF

"¡1(u)C0l(¯ ¡ ¼¡ºu) +C 00l (¯):(4.7)
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Here Uº
F denotes the group of units which are congruent to 1 modulo ¼º ; and ¿("¡1)

is the Gauss sum

¿("¡1) =
X

u2UF =UºF

Ã(¼¡ºu)"(u):(4.8)

We recall the well-known identity

¿(")¿("¡1) = "(¡1)qº:(4.9)

4.2. Operators on functions on W . As in [K-dS12], Section 3.4, we introduce
some operators on the space C of E-valued functions on W with …nite support. If
f 2 C we de…ne
² The suspension of f

Sf(¯) =
X

¼®=¯

f(®):(4.10)

² The convolution of f with a character » of UF ; of conductor º ¸ 1

E»f(¯) =
¿(»¡1)

qº

X

u2UF=Uº
F

»¡1(u)f(¯ ¡ ¼¡ºu):(4.11)

² The operator ¦

¦f(¯) = f(¼¯):(4.12)

We decompose C as a direct sum C = C0
L
C1; where

C0 =

(
f j 8¯;

X

¼t=0

f(¯ + t) = 0

)
(4.13)

C1 = ff j f(¯) depends only on ¼¯g :

Lemma 4.1. (i) The projection onto C1 is

P1 =
1

q
¦S:(4.14)

(ii) Let » be any non-trivial character. Then the projection onto C0 is

P0 = E»E»¡1 = E»¡1E» :(4.15)

(iii) If » is non-trivial then SE» = 0 and E»E»¡1E» = E» :

Proof. All the statements are elementary, and best understood if we associate to f
its Fourier transform

f̂(x) =
X

¯2W
f(¯)Ã¯(x)(4.16)

(x 2 OF ) and apply Lemma 2.1. See [K-dS12], Section 3.4.

For f; g1; : : : ; gr 2 C we write f = O(g1; : : : ; gr) to mean that in the sup norm
jjf jj · max jjgijj:
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4.3. Conclusion of the proof in the tamely rami…ed case. We assume from
now on that º = 1; i.e. " is tamely rami…ed. The Breuil-Schneider estimates on ¸
and ¹ are

j¼¡mj · j¸j; j¹j · jq¡1¼¡mj
j¸¹j = jq¡1¼¡2mj:

Fix a Á 2 ¤ as in (4.3), so that

c0k; c
00
k = O(¼¡mk);(4.17)

and assume that it vanishes o¤ OF : We shall prove by increasing induction on l
that for l · 0

C0l ; C
00
l = O(q¡1¼¡ml):(4.18)

When we reach l = 0 this will imply Theorem 1.2, even uniformly in ¯, thanks to
the fact that the algebraic part of ½ is essentially trivial.

Using the notation of the last sub-section, we can write the recursion relations
(4.5) as

C 0k0 = c0k0 ; C
00
k0 = c00k0

C 0l = ¸SC 0l¡1 + c0l(4.19)

C00l = ¹SC00l¡1 + c00l :

Besides Cl(¯) we introduce ~Cl(¯) so that the following formulae hold

Cl = E"C
0
l + C00l(4.20)

~Cl = E"¡1C
00
l + C0l :

Here the …rst formula is just (4.7). The second shows that the amplitudes ~Cl(¯)

are analogously associated with the function ~Á(x) = "¡1(x)Á(x):
Next, we observe that since SE" = SE"¡1 = 0; we can rewrite the recursion

relations as

C 0l = ¸S ~Cl¡1 + c0l
C00l = ¹SCl¡1 + c00l :(4.21)

For l · 0 the functions Cl¡1 and ~Cl¡1 belong to the subspace that we have called
C1; because Á and ~Á vanish on ¼l¡1UF . This implies the following result.

Lemma 4.2. For l · 0;
C 0l = O(¸q ~Cl¡1; c

0
l)

C 00l = O(¹qCl¡1; c
00
l ):(4.22)

We can now proceed with the induction. When l = k0 (4.17) clearly implies
(4.18). Assume that l · 0 and that (4.18) has been established up to index l¡1: As
C0l¡2 = O(q¡1¼¡m(l¡2)); and as C 00l¡2 = O(q¡1¼¡m(l¡2)) = O(q¡2¿("¡1)¼¡m(l¡2));
we obtain from (4.20) and the fact that º = 1 the estimate

Cl¡2 = O(q¡2¿("¡1)¼¡m(l¡2)):(4.23)

By the lemma, this gives

C 00l¡1 = O(¹q¡1¿("¡1)¼¡m(l¡2); c00l¡1) = O(¹q¡1¿("¡1)¼¡m(l¡2))(4.24)
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(the last equality coming from j¹q¡1¿("¡1)j ¸ j¼¡mj). A second application of
(4.20), the identity (4.9), and the induction hypothesis for C0l¡1 (recall j¹j ¸ j¼¡mj)
yield

~Cl¡1 = O(¹q¡1¼¡m(l¡2)):(4.25)

A second application of the lemma …nally gives

C 0l = O(¸¹¼¡m(l¡2); c00l )

= O(q¡1¼¡ml; c00l ) = O(q¡1¼¡ml):(4.26)

Symmetrically, we get the same estimate on C 00l : This completes the proof of (4.18)
at level l, and with it, the proof of Theorem 1.2.

5. The case Â1 = !Â2

We …nally deal with the one excluded case, when Â1 = !Â2. After a twist by a
character of …nite order we may assume that Â1 is unrami…ed. In this case ¸ = ¹
and the Kirillov model is the space

K = C1c (F; ¿)Â1 +C1c (F; ¿)vÂ1;(5.1)

where v : F£ ! Z ½ E is the normalized valuation. The action of B is still given
by (1.10). Once more, K contains K0 = C1c (F

£; ¿) as a subspace. When ¿ = 1;
the quotient K=K0 is the Jacquet module. The torus acts on it non-semisimply, byµ

t1
t2

¶
7! Â1(t1t2)

µ
1 v(t1=t2)
1

¶
:(5.2)

Following the notation of Section 3, we let

F 00 = Â11OF ; F 000 = ¡vÂ11OF(5.3)

and

F 0k =
1X

l=k

¸l¡kÁl; F 00k =
1X

l=k

(k ¡ l)¸l¡kÁl:(5.4)

The module ¤ consists of all the functions Á as in (2.16), and any such Á can be
expanded “by annuli” as in (3.2). The coe¢cients of the expansion are given by
(3.3), except that the last equation now takes the shape

C 00l (¯) =
lX

k=k0

(k ¡ l)¸l¡k
X

¼l¡k®=¯

c00k(®):(5.5)

The recursion relation for C 0l(¯) is given by (3.4) but C 00l (¯) needs a modi…cation.

Lemma 5.1. We have C 00k0(¯) = 0; C
00
k0+1

(¯) = ¡¸
P

¼®=¯ c
00
k0
(®), and for l > k0

C 00l+1(°) = 2¸
X

¼¯=°

C00l (¯)¡ ¸2
X

¼¯=°

X

¼®=¯

C 00l¡1(®)¡ ¸
X

¼¯=°

c00l (¯):(5.6)

Proof. A straightforward exercise.

Lemma 5.2. The following recursion relation holds:

Cl+1(°) = 2¸
X

¼¯=°

Cl(¯)¡ ¸2
X

¼¯=°

X

¼®=¯

Cl¡1(®)¡ ¸
X

¼¯=°

(c00l (¯) + c0l(¯)) + c0l+1(°):

(5.7)
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Proof. We write

C0l+1(°) = ¸
X

¼¯=°

C 0l(¯) + c0l+1(°)

= 2¸
X

¼¯=°

C 0l(¯)¡ ¸
X

¼¯=°

0
@¸

X

¼®=¯

C0l¡1(®) + c0l(¯)

1
A+ c0l+1(°)

= 2¸
X

¼¯=°

C 0l(¯)¡ ¸2
X

¼¯=°

X

¼®=¯

C0l¡1(®)¡ ¸
X

¼¯=°

c0l(¯) + c0l+1(°)(5.8)

and we add the result to the recursive relation for C00l+1(°):

Note the similarity with Lemma 3.1. The rest of the proof of Theorem 1.2 is
now identical to that given in the case ¸ 6= ¹ in Section 3.2.

References

[B-B-C] L.Berger, C.Breuil, P.Colmez (Eds.): Représentations p-adiques de groupes
p-adiques, Astérisque, 319, 330, 331 (2008-2010).

[Br03] C. Breuil: Sur quelques représentations modulaires et p-adiques de GL2(Qp)
II, J. Inst. Math. Jussieu 2 (2003), 1-36.

[Br04] C.Breuil, Invariant L et série spéciale p-adique, Annales Scienti…ques
E.N.S. 37 (2004), 559-610.

[Br10] C.Breuil: The emerging p-adic Langlands programme,Proceedings of the
International Congress of Mathematicians, Hyderabad, India, 2010.

[Br-Sch07] C.Breuil, P.Schneider: First steps towards p-adic Langlands functo-
riality, J. Reine Angew. Math. 610 (2007)149-180.

[Bu98] D.Bump: Automorphic Forms and Representations, Cambridge Univer-
sity Press, 1998.

[dI12] M.de Ieso, Analyse p-adique et complétés unitaires universeles pour GL2(F );
Ph.D. thesis, Orsay, 2012.

[dS08] E.de Shalit: Integral structures in locally algebraic representations, un-
published notes (2008).

[Hu09] Y.Hu: Normes invariantes et existence de …ltrations admissibles, J. Reine
Angew. Math. 634 (2009), 107-141.

[K-dS12] D.Kazhdan, E.de Shalit: Kirillov models and integral structures in p-
adic smooth representations of GL2(F ); J.Algebra 353 (2012), 212-223.

[P01] D.Prasad, appendix to P.Schneider, J.Teitelbaum: U(g)-…nite locally ana-
lytic representations, Representation Theory 5 (2001), 111-128.

[So13] C.Sorensen: A proof of the Breuil-Schneider conjecture in the indecom-
posable case, Annals of Mathematics 177 (2013), 1-16.

[T93] J.Teitelbaum, Modular representations of PGL2 and automorphic forms
for Shimura curves, Invent. Math. 113 (1993), 561-580.



16 ERAN ASSAF, DAVID KAZHDAN, AND EHUD DE SHALIT

[V08] M.-F.Vigneras, A criterion for integral structures and coe¢cient systems
on the tree of PGL(2; F ); Pure and Appl. Math. Quat. 4 (2008), 1291-1316.

Hebrew University, Jerusalem, Israel
E-mail address : deshalit@math.huji.ac.il


