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1. Introduction

Let K be a p-adic field, and Cp the completion of its algebraic closure. Let X

be the p-adic “upper half plane” over K introduced by Drinfel’d in [Dr]. The rigid
analytic de-Rham cohomology of X is the space of rigid analytic Cp-valued 1-forms
on X, modulo exact ones,

(1.1) H1
dR(X) = Ω/dO.

In contrast to the complex upper half plane, this cohomology does not vanish. In
fact, it is a classical result that it is isomorphic to the space of harmonic (Cp-
valued) 1-cochains on the Bruhat-Tits tree T of the group G = SL2(K). (See [D-T]
for background.) Recal that T is a q + 1 regular tree (where q is the cardinality of
the residue field of K), and a 1-cochain c on T is harmonic if (i) c(ē) = −c(e) if
ē is the edge e with reversed orientation, and (ii) the sum of c(e) for all the edges
flowing into any given vertex, is zero. We denote the space of harmonic 1-cochains
by C1

har. The isomorphism

(1.2) H1
dR(X) ' C1

har

is given by the residue homomorphism. If ω ∈ Ω, we let

(1.3) cω(e) = rese(ω)

be the residue of ω along the oriented edge e (see [G-vdP] p.94). Then cω is a
harmonic cochain, it vanishes if and only if ω is exact, and every harmonic cochain
is of this type. Both Ω and C1

har are inverse limits of Banach spaces (in the case
of C1

har these are finite dimensional Banach spaces), and carry a natural p-adic
Fréchet topology in which they are reflexive (see [Sch2]). The group G acts on
the two spaces. The residue homomorphism respects both the topology and the
G-action.

If M is a finite dimensional representation of G over K, we may tensor the
above spaces with M to get the notions of M -valued rigid analytic functions or
forms, cohomology with coefficients in M, and M -valued harmonic cochains. The
isomorphism

(1.4) H1
dR(X; M) ' C1

har(M)

(where the notation is self-explanatory) is obtained from the case of trivial coef-
ficients by tensoring with M . One should only be aware that the G-action now
involves both the geometric action on X, and the action on the coefficients.

An integral structure M in M is the assignment, for every simplex σ of T ,
of an OK-lattice M(σ) in M, such that M(γσ) = γM(σ) for every γ ∈ G, and
M(v) ⊂ M(ε) if the vertex v belongs to the edge ε. Integral structures exist,

1



2 EHUD DE SHALIT

and any two are commensurable. An M -valued harmonic cochain c is bounded
if there exists an integral structure M such that c(e) ∈ M(e) for every e. The
space of bounded M -valued harmonic cochains is preserved by the action of G. We
denote it by C1

har(M)bnd. It is not a-priori clear that bounded harmonic cochains
exist, namely that the two conditions of harmonicity and boundedness can coexist.
The simplest way to produce plenty of bounded harmonic cochains is to consider a
discrete cocompact subgroup Γ in G, and note that H0(Γ, C1

har(M)) ⊂ C1
har(M)bnd.

The spaces H0(Γ, C1
har(M)) have been studied in [dS1], among other places.

The cotangent space to X at z0 has a canonical integral structure Ω|z0
which

is the OCp
-span of dz/(z0 − ζ) for ζ ∈ K (this integral structure does not depend

on the choice of the coordinate z and is G-equivariant). Let r : X → |T | be the
reduction map from X to the real realization of the tree (see [G-vdP] or [dS1]). An
M -valued 1-form ω ∈ Ω(M) is called bounded if there exists an integral structure
M such that

(1.5) ω|z ∈ Ω|z ⊗M(σ)

whenever r(z) ∈ |σ|. The space of bounded M -valued forms is denoted by Ω(M)bnd.
It is G-stable. Once again, the simplest way to produce such forms is to produce
Γ-invariant ones for some Γ.

We shall describe below a filtration, due to Schneider and Stuhler, of the module
Ω(M), by certain coherent submodules F iΩ(M) of decreasing ranks, which are
direct summands (i.e. give rise to subvectorbundles), and which are G-stable. The
last step in the filtration, F nΩ(M), still maps surjectively onto H1

dR(X; M), so every
cohomology class is represented by an M -valued form from that last piece.

We shall check that bounded M -valued forms get mapped, by the residue homo-
morphism, to bounded M -valued harmonic cochains.

Theorem 1.1. The residue homomorphism induces an isomorphism

(1.6) F nΩ(M) ∩ Ω(M)bnd ' C1
har(M)bnd.

In other words, every bounded M -valued harmonic cochain is of the form cω for
an ω ∈ F nΩ(M) ∩ Ω(M)bnd, and if a bounded ω which lies in the last step of the
filtration is exact, then it is zero.

The theorem is not new. For a survey see [D-T], Theorem 2.3.2, Corollary 2.3.4
and the references therein. However, our approach to Morita duality, to the notion
of bounded differential forms, and to the injectivity statement in the theorem, is
different than what may be found in the literature. Except for a certain technical
verification of convergence at the very end, our exposition is self contained.

The surjectivity statement in the theorem asserts that the map from forms to
cohomology splits G-equivariantly over the bounded cohomology. The existence of
such a splitting has been known for some time and follows from the theorem of
Amice-Velu-Vishik. Roughly speaking (we shall make everything precise below), to
a bounded M -valued harmonic cochain c one attaches a (scalar valued) distribution
λc on P1

K with “growth conditions” of order n. This distribution extends in a

natural way to a tempered distribution λ̃c, i.e. to a linear functional on the space
of the locally analytic functions on P1

K (this is where one needs the estimates of
Amice-Velu-Vishik). Teitelbaum’s Poisson integral

(1.7) f(z) =

∫

dλ̃c(ζ)

z − ζ
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makes sense since the integrand, 1/(z − ζ), is locally analytic in ζ ∈ P1
K . As a

function of z ∈ X, f(z) is rigid analytic. The M -valued form

(1.8) ω = f(z)(u− zv)ndz

(where we have realized M as the space of homogeneous polynomials of degree n
in the two variables u and v) lies in the last step of the filtration, is bounded, and
cω is our original c.

It is tempting to think about generalizations of the questions discussed in this
paper to higher dimensions. Let us only mention that the notions of bounded-
ness, either for differential forms, or for cohomology with coefficients in a rational
representation M , can be defined in precisely the same way, and the higher dimen-
sional residue homomorphism from k-forms to harmonic k-cochains (see [dS2]) car-
ries bounded closed M -valued k-forms to bounded M -valued harmonic k-cochains.
The paper [Sch1] discusses an analogue of the filtration F · studied here, but an
analogue of the theorem mentioned above is not known to hold. Such an analogue
would probably be non-void for forms of top degree only. For lower degree forms,
and non-trivial coefficients, the notion of boundedness has to be modified.

For trivial coefficients, we expect that the bounded k-forms are nothing else but
the Iovita-Spiess forms (see [I-S] and [A-dS]). This will be the case if we can show
that a bounded exact form must vanish, and it would be enough to check this last
assertion for forms of top degree. For that see [EGK].

1.1. Notation. Let K be a p-adic field (a finite extension of Qp), V a two di-
mensional vector space over K, and G = SL(V ). Fix a basis, and identify V with
column vectors, and G with SL2(K) acting from the left. Let u, v be the dual basis,
so that V ∨ = Ku + Kv. For n ≥ 0, let M = Mn = Symmn(V ∨). Then M is the
unique irreducible rational representation of G (viewed as an algebraic group over
K) of dimension n + 1. In coordinates,

(1.9) M = K[u, v]hom . deg .=n

and the action of γ ∈ G on P ∈M is

(1.10) γP = P ◦ γ−1 = P (au + bv, cu + dv)

where

(1.11) γ−1 =

(

a b
c d

)

, γ =

(

d −b
−c a

)

.

Let Cp be the completion of a fixed algebraic closure of K. The p-adic upper
half plane is the rigid analytic space X ⊂ P(V ∨) which is the complement of the
K-rational points:

(1.12) X = P(V ∨)\P(V ∨K ).

We do not distinguish between X (as a ringed space in a certain category) and the
set of its Cp-points. The latter is identified with the complement of K in Cp by
sending the line through tu + sv to its coordinate z = −st−1. With this convention
the action of γ on z is the usual action

(1.13) γ(z) =
dz − b

−cz + a
.

We denote by A the set of K-rational lines in V with its p-adic topology. Thus
A = P(VK). If a ∈ A the “hyperplane” Ha is the point b ∈ P(V ∨K ) given by 〈a, b〉 = 0,
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and the complement of X is the union of the Ha for a ∈ A. In coordinates, if
a = (x : y)t (column vector up to homothety) then Ha is the line through −yu+xv,
so its coordinate is

(1.14) z(Ha) = xy−1

and we see that the standard (left) G action on a corresponds to the action on
z, namely z(Hγa) = γ(z(Ha)). This allows us to identify A and P(V ∨)\X as G-
sets. Of course, we could do it without introducing coordinates by observing that
γ(Ha) = Hγa. This discussion may seem superfluous, but we shall soon need to
extend locally analytic functions on A to a rigid analytic neighborhood of A in X,
so it is necessary to view A and X in the same ambient space, despite the fact that
a-priori they live in dual projective spaces. The correct generalization of this in
higher dimensions requires some care.

We let T denote the Bruhat-Tits tree of G. Then A is identified canonically with
the set of the ends of T , and for an oriented edge e we let Ae denote the subset of
ends in the direction of e. Each Ae is a disk in P(VK) and A is the disjoint union
of Ae and Aē. Let

(1.15) O = O(X), Ω = Ω(X)

denote the Cp-algebra of rigid analytic functions on X, and the O-module of rigid
analytic differential forms. The underlined symbols represent the corresponding
sheaves in the rigid analytic topology. We let O(M) and Ω(M) stand for the same
spaces tensored (over K) with M. These are the M -valued functions or forms. An
element γ ∈ G acts on f ∈ O(M) via the rule

(1.16) (γf)(z) = (1⊗ γ)(f(γ−1z)).

It acts on ω ∈ Ω(M) via

(1.17) (γω)|z = (1⊗ γ)(γ−1)∗(ω|γ−1z).

2. Differential forms and cohomology with coefficients in M

2.1. Filtration on O(M). We follow [Sch-St], pp.95-97. Let

(2.1) O(M) = F 0 ⊃ F 1 ⊃ · · · ⊃ F n ⊃ {0} = F n+1

where

(2.2) F k = SpanO
{

(u− zv)kun−k−lvl; 0 ≤ l ≤ n− k
}

.

Then:

(1) The filtration is G-stable. In fact, if γ−1 is as above, f = (u− zv)kun−k−lvl

(2.3) (γf)(z) = γ(f(γ−1z)) = (cz + d)−k(u− zv)k(au + bv)n−k−l(cu + dv)l ∈ F k.

(2) F k = O·(u− zv)kvn−k ⊕ F k+1 (as O-modules, but not as G-modules).

(3) O(M) is free over O with basis (u− zv)kvn−k (0 ≤ k ≤ n).

(4) For any m ∈ Z let O(m) be the ring O with the twisted G-action

(2.4) γ · f = (cz + d)m
(

f ◦ γ−1
)

,

where (c, d) is the bottom row of γ−1. Then f 7→ f(z)(u− zv)kvn−k mod F k+1 is
an isomorphism

(2.5) Θk : O(n− 2k) ' F k/F k+1.
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(5) Similarly F ·Ω = Ω⊗O F · is a G-stable filtration on Ω(M) and

(2.6) f 7→ f(z)(u− zv)kvn−kdz mod Ω⊗ F k+1

is an isomorphism

(2.7) Θ′k : O(n− 2k − 2) ' Ω⊗ F k/Ω⊗ F k+1.

(6) For 1 ≤ k ≤ n, the G-homomorphism d : O(M) → Ω(M) maps F k to
Ω⊗ F k−1 (Griffiths transversality) and induces a commutative diagram

(2.8)
O(n− 2k)

(−k)·
→ O(n− 2k)

↓ Θk ↓ Θ′k−1

F k/F k+1 d
' Ω⊗ F k−1/Ω⊗ F k

.

(7) There is a decomposition as a direct sum of abelian groups with G-action

(2.9) Ω(M) = d(F 1)⊕ (Ω⊗ F n).

Indeed, (6) shows that
Ω(M) = d(F 1) + (Ω ⊗F 1) = d(F 1) + (Ω ⊗F 2) = · · · = d(F 1) + (Ω⊗ F n).
For every 1 ≤ k ≤ n, if f ∈ F k −F k+1, then df ∈ Ω⊗F k−1−Ω⊗F k. Since any

non-zero f ∈ F 1 falls in some F k − F k+1, df /∈ Ω⊗ F k, hence clearly df /∈ Ω⊗ F n

and the sum is direct.
Note that d(F 1) is not an O-submodule of Ω(M), so this decomposition is not

a splitting of the last step in the filtration of Ω(M). For example, if n = 1 the
decomposition is

(2.10) {αu dz}⊕ {βv dz} = {−fvdz + f ′(u− zv)dz} ⊕ {g(u− vz)dz}

where (f, g) = (−β − zα, 2α + β′ + zα′) and (α, β) = (g + f ′,−f − zf ′ − zg).

(8) Let n ≥ 0. There is a commutative diagram of additive (but not O-linear)
G-homomorphisms

(2.11)
O(n)

1
n! (

d
dz )

n+1

→ O(−n− 2)
↓ Θ0 ↓ Θ′n

O(M)/F 1 pr2◦d
→ Ω⊗ F n

,

where pr2 is the projection on the second factor in the decomposition (7).
Indeed, for 1 ≤ k ≤ n

(2.12)

d ◦Θk(f) =
{

f ′(z)(u− zv)kvn−k − kf(z)(u− zv)k−1vn−k+1
}

dz mod dF k+1

implies

(2.13) f ′(z)(u− zv)kvn−kdz ≡ kf(z)(u− zv)k−1vn−k+1dz mod dF 1

hence, iterating,

(2.14) f(z)vndz ≡
1

n!
f (n)(z)(u− zv)ndz mod dF 1.

From this we get

(2.15) d(g(z)vn) ≡
1

n!
g(n+1)(z)(u− zv)ndz mod dF 1,

or

(2.16) pr2 ◦ d ◦Θ0(g) = Θ′n(
1

n!
g(n+1)).
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Note that the fact that the top arrow is a G-homomorphism is not easy to establish
via a direct computation, since differentiation does not commute with the action of
G. It is rather a consequence of the fact that the other three arrows commute with
G. The surjectivity of the horizontal arrows has the following consequence.

Corollary 2.1. For n ≥ 0, let Pn(n) be the space of polynomials of degree at
most n, with G-action induced from (4). Then there is an exact sequence of G-
representations

(2.17) 0→ O(n)/Pn(n)
1
n!(

d
dz )

n+1

−→ O(−n− 2)→ H1
dR(X; Mn)→ 0.

Proof. De-Rham cohomology with values in M is given by

Ω(M)/dO(M) = Ω⊗ F n/ (dO(M) ∩ Ω⊗ F n)

= Ω⊗ F n/pr2 ◦ d
(

O(M)/F 1
)

(2.18)

so we conclude by the commutative diagram of step (8), and by the fact that the
kernal of n + 1-fold differentiation is Pn.

2.2. Morita duality (trivial coefficients). Locally analytic and meromor-
phic functions. Let Can be the space of locally-analytic, Cp-valued functions on
A. Since A is compact, each ϕ ∈ Can admits a decomposition of A into a finite
union of closed disks, such that ϕ is rigid analytic on each of them. Let C = Cmer

be the space of locally meromorphic Cp-valued functions on A, and R the subspace
of Cp-valued rational functions with poles in A. Note that R is a subring, but not
a field. Of course, R∩ Can = Cp, the constants, and R+ Can = C (the theorem on
principal parts).

Topologies. The space O (hence Ω = Odz) is a locally convex topological
vector space (for nonarchimedean functional analysis consult [Sch2]). The topology
is given by the family of norms |.|Xn

where Xn is an increasing sequence of affinoids
exhausting X. In other words,

(2.19) Ω = lim
←

Ω(Xn).

The space Can on the other hand is topologized as an inductive limit (union)

(2.20) Can = lim
→

∏

U∈U

O(U),

where the limit is over all the finite coverings U of A by disjoint unions of closed
disks, and for a closed disk U, O(U) is given the usual Banach (sup norm) topology.

Pairing. We give C/R the natural topology arising from the identification

(2.21) C/R = Can/Cp.

If T ′ is a finite subtree of T we denote by Ends(T ′) the collection of oriented
edges (u, v) such that u ∈ T ′ but v /∈ T ′. If ϕ ∈ C and ω ∈ Ω we define a pairing

(2.22) 〈ϕ, ω〉 = lim
T ′

∑

e∈Ends(T ′)

rese(ϕω).

The limit means that we take T ′ large enough. The sum then makes sense and is
independent of T ′.
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Theorem 2.2. (Morita duality) The above pairing induces a perfect pairing of
topological vector spaces

(2.23) C/R× Ω→ Cp.

In other words, this pairing identifies each of the two spaces (algebraically) as the
space of all continuous linear functionals on the other.

In fact, more is true. Since A is a compact set, Can, hence C/R, is a topological
vector space of compact type (an inductive limit of Banach spaces under inclusion
maps which are compact). It is complete and reflexive, and its strong dual

(2.24) (Can)′b = lim
←

(

∏

U∈U

O(U)

)′

is a Fréchet space. The above pairing identifies Ω with (C/R)′b and C/R with Ω′b.

Theorem 2.3. The annihilator of the exact forms dO under the above pairing is
the closed space C∞/Cp of locally contstant functions on A modulo constants, so
one obtains a duality

(2.25) C∞/Cp ×H1
dR(X)→ Cp.

In fact, if ϕ is locally constant we have

〈ϕ, ω〉 = lim
T ′

∑

e∈Ends(T ′)

ϕ|Ae
rese(ω)

=

∫

A

ϕdµω .(2.26)

Here µω is the distribution defined by

(2.27) µω(Ae) = cω(e) = rese(ω).

2.3. Morita duality with values in M, and the filtrations. Now let M = Mn

as before. We introduce the filtration Φk = ΦkC on C(M) = C ⊗K M, as follows:

(2.28) C(M) = Φ0 ⊃ Φ1 ⊃ · · · ⊃ Φn ⊃ {0} = Φn+1

where

(2.29) Φk = SpanC
{

(u− ζv)kun−k−lvl; 0 ≤ l ≤ n− k
}

.

Then:

(1) The filtration is G-stable. In fact, if

(2.30) γ−1 =

(

a b
c d

)

and ϕ = (u− ζv)kun−k−lvl then

(2.31) (γϕ)(ζ) = γ(ϕ(γ−1ζ)) = (cζ +d)−k(u− ζv)k(au+ bv)n−k−l(cu+dv)l ∈ Φk.

Notice that we could not make this definition if we let C stand for Can because,
contrary to the situation with O(X), cζ + d may vanish on A.

(2) Φk = C·(u− ζv)kvn−k ⊕ Φk+1 (as C-modules, but not as G-modules).

(3) C(M) is free over C with basis (u− ζv)kvn−k (0 ≤ k ≤ n).
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(4) For any m ∈ Z let C(m) be the ring C with the twisted G-action

(2.32) γ · ϕ = (cζ + d)m
(

ϕ ◦ γ−1
)

,

where (c, d) is the bottom row of γ−1. Then ϕ 7→ ϕ(ζ)(u − ζv)kvn−k mod Φk+1 is
an isomorphism

(2.33) Ψk : C(n− 2k) ' Φk/Φk+1.

In a completely analogous way we introduce the filtration ΦkR

(2.34) ΦkR = R ∩ ΦkC

and deduce that

(2.35) Φk(C/R) = ΦkC/ΦkR

is a filtration on C/R.

Morita duality with values in M.
Consider the perfect pairing

(2.36) (., .) : Mn ×Mn → K

given by Symmn(det). Explicitly, fix an identification det of
∧2

V ∨ with K. For
xi, yi ∈ V ∨ the pairing

(2.37) (x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yn) =
1

n!

∑

σ∈Sn

n
∏

i=1

det(xσ(i) ∧ yi)

factors through the symmetric power. In particular if det(u ∧ v) = 1 then

(2.38)
(

uivn−i, un−ivi
)

=
i!(n− i)!

n!
(−1)n−i

and
(

uivn−i, ui′vn−i′
)

= 0 if i′ 6= n − i. Note that this pairing is symmetric for

even n and alternating for odd n.
If ϕ ∈ C(M) and ω ∈ Ω(M) we let (ϕ, ω) be the Cp-valued function obtained

from the above pairing of M with itself (defined in the complement of some large
enough affinoid in X), and

(2.39) 〈ϕ, ω〉 = lim
T ′

∑

e∈Ends(T ′)

rese((ϕ, ω)).

The usual Morita duality implies that this is a perfect pairing between C(M)/R(M)
and Ω(M) with values in Cp. Of course,

(2.40) C(M)/R(M) ' Can(M)/Cp ⊗K M.

We now study the filtrations in this pairing.

Lemma 2.4. Φk and Ω⊗ F n+1−k are orthogonal to each other under the pairing
of C/R(M) and Ω(M).

Proof. This is a computation that reduces to the fact that for 0 ≤ d ≤ k − 1

(2.41)

k
∑

m=0

md

m!(k −m)!
(−1)m = 0.

To prove this well-known identity, differentiate d times the function (1− ex)k and
evaluate at x = 0.
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Corollary 2.5. The isomorphisms Θ′n−k and Ψk induce a duality

(2.42) (C/R) (n− 2k)× Ω(2k − n)→ Cp

identifying each side with the strong dual of the other side. This is nothing else
than the pairing

(2.43) Φk(C/R)/Φk+1(C/R)× F n−kΩ/F n−k+1Ω→ Cp

induced from the lemma (where we have written F n−kΩ for Ω⊗ F n−k).

Corollary 2.6. Φk (C/R) and F n+1−kΩ are exact annihilators of each other.

Another interpretation. It is often desirable to have an interpretation for
C/R(m) as we had when m = 0 :

(2.44) C/R = Can/Cp.

Note that (m ≥ 0)

(2.45) C/R = Can[m∞]/Pm

where Can[m∞] denotes the functions that are locally analytic, except near∞ where

(2.46) ord∞ϕ + m ≥ 0,

and

(2.47) Pm = Can[m∞] ∩ R.

This means that at∞ the functions are allowed to have a polynomial part of degree
at most m, and Pm is of course the polynomials of degree at most m. If m < 0,
then Pm = 0, and Can[m∞] are functions vanishing to order |m| at infinity. The
point is that these spaces are invariant under the mth twisted action of G : if ϕ is
of this sort,

(2.48) (cζ + d)mϕ

(

aζ + b

cζ + d

)

is also there: you only have to check zeroes and poles at ζ =∞ and ζ = −d/c.
In particular we get, when k = 0 and n ≥ 0

(2.49) Ω(−n)
′

b ' (Can[n∞]/Pn) (n)

(the twist reminding us of the action of G). This is [D-T], Theorem 2.2.1 (their k
is our n + 2, and their O(k) is our O(−k)).

The subspace dO(M) is closed in Ω(M). We have seen that its annihilator is the
space C∞(M)/Cp ⊗K M, which is therefore dual to H1

dR(X; M), or to C1
har(M).

Under projection of C/R ⊗M modulo Φ1 onto C/R(n) = (Can[n∞]/Pn) (n), the
space C∞(M)/Cp ⊗K M gets mapped isomorphically onto

(2.50) C∞(M)/Cp ⊗K M '
(

Cpol,n[n∞]/Pn

)

(n).

Here Cpol,n is the space of locally-polynomial-of-degree-n functions on A and the
[n∞] is there only to remind us that they are locally analytic everywhere except at
∞ where they have a pole of order n. The notation (n) refers to the G action. The

map can be computed. It sends χuivn−i for a locally constant function χ to χζ i.
The (strong) dual of the exact sequence

(2.51) 0→ O(n)/Pn(n)→ F nΩ→ H1
dR(X; M)→ 0
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in which the first arrow takes f to 1
n!f

(n+1)(z)(u− zv)ndz, is the exact sequence
(2.52)

0← Can[(−n− 2)∞](−n− 2)← (Can[n∞]/Pn) (n)←
(

Cpol,n[n∞]/Pn

)

(n)← 0

where the first (backward) arrow is (−1)n

n!

(

d
dζ

)n+1

. Note that this operator kills

the principal (polynomial) part at ∞ and increases the order of the zero at infinity
to n + 2.

Summary. On X we have
(2.53)

0 → O(n)/Pn(n)
1
n!(

d
dz )n+1

→ O(−n− 2) = F nΩ → H1
dR(X; Mn) → 0

∩ ∩ ||
0 → dO(Mn) → Ω(Mn) → C1

har(Mn) → 0

The strong dual of this diagram is
(2.54)
Can[(−n− 2)∞](−n− 2) � (Can[n∞]/Pn) (n) ←↩

(

Cpol,n[n∞]/Pn

)

(n)
↑ ↑ mod Φ1 || mod Φ1

Can(Mn)/C∞(Mn) � C/R(Mn) ←↩ C∞(Mn)/Cp ⊗K Mn

The maps I and J ( = the Poisson kernel) in [D-T] are the duality isomorphisms

(Ik) I : O(−n− 2)′b ' (Can[n∞]/Pn) (n)

λ 7→ I(λ)(ζ) = λ(
1

z − ζ
)(2.55)

and

(tIk = Jk) J : (Can[n∞]/Pn) (n)′b ' O(−n− 2)

µ 7→

∫

P1(K)

1

z − ζ
dµ(ζ).(2.56)

3. Bounded forms and bounded cohomology

3.1. Bounded differential forms. Let M be an integral structure on M (as
defined in the introduction).

Definition 3.1. f ∈ O(M) is M-integral if for any σ ∈ T (vertex or an open
edge), f(z) ∈ M(σ) ⊗OK

OCp
for all z ∈ Xσ = r−1(|σ|), where r : X → |T | is the

reduction map.

Definition 3.2. (i) The canonical integral structure Ω on Ω is the OCp
-subsheaf of

all the sections ω such that the image of ω in the fiber at any z0 ∈ X, denoted ω|z0
,

belongs to the OCp
-span of d log(z− ζ)|z0, for all ζ ∈ K. (Note that this submodule

is independent of the coordinate z.)
(ii) Call ω ∈ Ω(M) M-integral if for any σ and any z0 ∈ Xσ

(3.1) ω|z0
∈ Ω|z0

⊗OK
M(σ).

(iii) As before, bounded means integral w.r.t. some integral structure.

Proposition 3.1. The residue map ω 7→ cω maps a bounded M -valued differential
form to a bounded M -valued harmonic cochain.

(3.2) Ω(M)bnd → C1
har(M)bnd.



BOUNDED COHOMOLOGY 11

Proof. Let M be an integral structure such that ω is M-integral. Fix a vertex v
and let X(v) be the preimage, under the reduction map r, of the vertex v and the
q +1 edges e0, . . . , eq starting at v. We label them so that e0 is the unbounded edge
(i.e. ∞ ∈ Ae0

). Let

(3.3) ρ = dist(z, P1
K)

be the distance from any z ∈ Xv = r−1(v) to the boundary of X. Let ζ i ∈ Aei
and

ζ0 ∈ Aē0
. Then the Mittag-Leffler decomposition of ω in X(v) is

(3.4) ω =

q
∑

i=0

fei
(z)dz

where for 1 ≤ i ≤ q

(3.5) fei
=

∞
∑

ν=1

ai,ν(z − ζi)
−ν

and

(3.6) fe0
=

∞
∑

ν=0

a0,ν(z − ζ0)
ν .

For z ∈ Xv and 1 ≤ j ≤ q, |z − ζj | = ρ so (z − ζj)
−1dz is a basis of the fiber Ω|z

over OCp
.

Let l be any linear functional M(v) → OK . For any z ∈ Xv l(ω) ∈ Ω|z and
therefore

(3.7)

∣

∣

∣

∣

∣

q
∑

i=0

l(fei
(z))

∣

∣

∣

∣

∣

≤ ρ−1.

By the Mittag-Leffler theorem each |l(fei
(z))| ≤ ρ−1 thoughout Xv, and by the

equality of the Gauss norm and the sup norm, for every 1 ≤ i ≤ q, ν ≥ 1

|l(ai,ν)| ≤ ρν−1

and in particular |l(ai,1)| ≤ 1 for every l, so ai,1 ∈ OCp
⊗OK

M(v). But these are
the residues of ω along ei, and the residue along e0 is, up to a sign, the sum of
them. It follows that cω(ei) ∈M(v) ⊂M(ei) for every i. Since v was arbitrary, cω

is M-integral.

Theorem 3.2. The residue homomorphism induces an isomorphism

(3.8) Ω(Mn)bnd ∩ F nΩ ' C1
har(Mn)bnd.

We begin by checking the injectivity. Let

(3.9) ω = f(z)(u− zv)ndz

be a form in F nΩ. To proceed we need to introduce some notation. For every vertex
v let ρv be the diameter of the set Xv, which is also the distance from it to the
boundary of X. Let E(v) be the set of the q + 1 oriented edges starting at v. If e
is an edge and Xe = r−1(|e|) is the corresponding annulus, then its complement
consists of two closed disks, and we denote by ρe the diameter of the disk which
is bounded, and ζe a K-rational point in it, chosen at random. If e ∈ E(v) then
ρe = |π|ρv if e is bounded, and ρe = ρv if e is unbounded.
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Lemma 3.3. There exist functions fe, one for each oriented edge e, with the fol-
lowing properties:

(i) If e is bounded, fe is defined in the complement of {z| |z − ζe| ≤ ρe} by a
convergent Laurent series without constant term

(3.10) fe =

∞
∑

ν=1

ae,ν(z − ζe)
−ν .

If e is unbounded, fe is defined in
{

z| |z − ζe| < |π|
−1ρe

}

by a convergent Taylor
series

(3.11) fe =
∞
∑

ν=0

ae,ν(z − ζe)
ν .

(ii) If T ′ is a finite connected subtree of T and E(T ′) is the set of edges not in T ′

but adjacent to it, oriented away from T ′, then if X(T ′) = r−1(|T ′|) is the affinoid
reducing to T ′, we have the Mittag-Leffler decomposition

(3.12) f |X(T ′) =
∑

e∈E(T ′)

fe.

(iii) For every bounded edge e

(3.13) reseω = resefe(z)(u− zv)ndz.

Proof. For a given finite subtree T ′, the existence of a collection of functions as
in (i), indexed by e ∈ E(T ′), satisfying (ii), is guaranteed by the Mittag-Leffler
decomposition for the affinoid subdomain X(T ′). Let us employ temporarily the
notation fe,T ′ (e ∈ E(T ′)) for this collection, to emphasize the dependence on T ′.
We claim that the fe do not depend on T ′. It is enough to consider the case where
T ′′ is obtained from T ′ by adding a vertex u and an edge e0 = (v, u) for somed
v ∈ T ′. Let e1, . . . , eq be the edges starting at u different from ē0. Define

(3.14) fe0,T ′ =

q
∑

i=1

fei,T ′′

and fe,T ′ = fe,T ′′ for every e ∈ E(T ′) ∩ E(T ′′). If e0 is bounded, then so are all
the ei (1 ≤ i ≤ q), and it is readily checked that fe0,T ′ is holomorphic in the
complement of the bounded disk defined by e0, and vanishes at infinity, so is given
by a Laurent series without constant term. If e0 is unbounded, then precisely one of
the ei is unbounded, and again it follows that fe0,T ′ is holomorphic in the bounded
disk defined by e0 and given by a convergent Taylor series there. Finally the fact
that f |X(T ′) =

∑

e∈E(T ′) fe,T ′ follows from the analogous decomposition for T ′′ by

restricting the domain.
To prove (iii), look at the Mittag-Leffler decomposition in X(v) where v is the

origin of e, and note that all the other fe′ appearing in that decomposition extend
holomorphically accross {z||z − ζe| ≤ ρe} so do not contribute to the residue.

Lemma 3.4. Let ||fe|| denote the sup norm of fe in
{

z||z − ζe| ≥ |π
−1|ρe

}

if e is
bounded, and in {z||z − ζe| ≤ ρe} if e is unbounded. Note that

(3.15) ||fe|| = ||fe||Xv
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if v is the origin of e. Assume that ω is bounded and that all its residues vanish.
Then

(3.16) ||fe||ρ
n+2

2
e

are bounded as e runs over the oriented edges of the tree.

Proof. The vanishing of the residues of ω is equivalent to the vanishing of the
residues along every e of zif(z)dz for 0 ≤ i ≤ n. If e is bounded this simply means
that the Laurent series giving fe starts in degree −n−2, and has no terms in higher
degrees, or equivalently that it vanishes at infinity to order which is at least n + 2.
Let v0 be the standard vertex of T and pick an arbitrary vertex v = γ(v0). Since
ω is bounded there exists an OK-lattice M0 in M independent of v or γ such that
for w ∈ Xv

(3.17) ω|w ∈ Ω|w ⊗OK
γ(M0).

Write w = γ(z) for z ∈ Xv0
and note that Ω|w = (γ−1)∗Ω|z. It follows that

(γ−1ω)|z = (1⊗ γ−1)γ∗(ω|w)

∈ Ω|z ⊗OK
M0.(3.18)

Let us invoke the Mittag-Leffler decomposition of ω at v :

(3.19) ω|Xv
=
∑

e∈E(v)

fe(z)(u− zv)ndz.

Then

(3.20) γ−1ω|Xv0
=

∑

e∈E(v0)

fγe(γz)(cz + d)−n−2(u− zv)ndz

where (c, d) is the bottom row of γ. The key to the lemma is the observation
that since all the residues of zif(z)dz for 0 ≤ i ≤ n vanish, this last sum is the
Mittag Leffler decomposition of γ−1ω at v0. Indeed, let us distinguish three types
of e ∈ E(v0). If γe and e are both bounded, then

(3.21) ge(z) = fγe(γz)(cz + d)−n−2

is holomorphic everywhere in {z||z − ζe| > ρe} , including the questionable point
−d/c, since fγe vanishes at infinity to order ≥ n + 2. It also clearly vanishes at
infinity (in fact, to order ≥ n + 2). If γe is bounded but e is unbounded, the same
analysis applies, noting that γ carries the bounded disk {z||z − ζe| ≤ ρe} onto the
unbounded disk

{

w||w − ζγe| ≥ |π
−1|ργe

}

. If γe is unbounded then −d/c does not
belong to the domain of definition of ge (whether bounded or not) so again ge

is holomorphic there. It follows that ge satisfy the conditions characterizing the
Mittag-Leffler decomposition of γ−1ω at v0, so by the uniqueness of the decompo-
sition,

(3.22) γ−1ω =
∑

e∈E(v0)

ge(z)(u− zv)ndz

is the Mittag-Leffler decomposition of γ−1ω at v0.
Now we have seen above that the boundedness of ω is translated to the uniform

boundedness of all the γ−1ω (in the usual sense) on Xv0. This means that ||ge|| =
||ge||Xv0

are uniformly bounded (for every γ). However, if ζ is a point in one of
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the bounded disks in the complement of Xv0
, for which γ(ζ) also lies in one of the

bounded disks in the complement of Xv (v = γ(v0)), then

(3.23) γ(z)− γ(ζ) =
z − ζ

(cz + d)(cζ + d)

and

(3.24) |cζ + d| = |c||ζ − (−d/c)| = |c||z − (−d/c)| = |cz + d|

(note that ζ and −d/c do not lie in the same disk, as the latter is mapped to ∞ by
γ and the first to a bounded disk). This computation shows that

(3.25) |cz + d|2 = ρv0
/ρv.

It follows that

(3.26) ||ge|| = ||fγe||(ρv/ρv0
)

n+2

2

and the lemma follows because ρv and ργe at most differ by a factor of |π|.

Proposition 3.5. A bounded form in F nΩ, all of whose residues vanish, is iden-
tically 0. In other words, the map

(3.27) Ω(Mn)bnd ∩ F nΩ→ C1
har(Mn)bnd

is injective.

Proof. (compare [dS], (3.9.5) where the same proof was applied to Γ-invariant forms
for a discrete cocompact subgroup Γ). Let ω be as in the proposition. From the
last lemma we know that there exists a constant R such that

(3.28) ||fe||
(

|π−1|ρe

)

n+2

2 ≤ R

for every e. Fix an affinoid K = X(T ′) for a finite connected subtree T ′ and let
0 < δ < 1 be small enough so that if e ∈ E(T ′) is bounded, δ < ρe and if e is
unbounded, ρe < δ−1. Fix a second affinoid K′ = X(T ′′) containing K so that its

ends satisfy the same estimates on ρe with δ replaced by |π|δ4. Let z ∈ K and
consider the Mittag-Leffler decomposition which corresponds to K′:

(3.29) ω =
∑

e∈E(T ′′)

fe(z)(u− zv)ndz.

If e is bounded, |z − ζe| > δ since z ∈ K, so
∣

∣ae,ν(z − ζe)
−ν
∣

∣ ≤ δ−ν ||fe||(|π
−1|ρe)

ν ≤ δ−νR(|π−1|ρe)
ν−n+2

2(3.30)

≤ Rδ3ν−2(n+2) ≤ Rδn+2.

In the last step we used the fact that only ν ≥ n + 2 count. On the other hand, if
e is the unbounded end, and ν ≥ 0,

|ae,ν(z − ζe)
ν | ≤ ||fe|| ≤ R

(

|π−1|ρe

)−n+2
2(3.31)

≤ R|π|n+2δ2(n+2).

In any case, letting δ → 0, we see that f vanishes on K. Since K was arbitrary,
ω = 0.
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3.2. The theorem of Amice-Velu-Vishik. Next we deal with surjectivity.

Proposition 3.6. Every c ∈ C1
har(Mn)bnd is obtained as cω for an ω ∈ Ω(Mn)bnd∩

F nΩ.

We follow the sketch of [D-T], 2.3.2, fill in some details, but omit verifications of
convergence which may be found at [MTT] and [C].

Let c ∈ C1
har(Mn)bnd and let

(3.32) λc ∈
(

Cpol,n[n∞]/Pn

)

(n)′

be the corresponding linear functional defined by

(3.33) λc(ζ
iχU(ε)) =

(

c(ε), uivn−i
)

for 0 ≤ i ≤ n, ε an oriented edge of T and U(ε) the subset of P1(K) = Ends(T ) to
which ε “is pointing” (denoted Aε before). Here χU is the characteristic function
of U . Let

(3.34) g =

(

π−m −π−ma
0 πm

)

∈ G = SL2(K)

so that g : D(a, |π2m|) ' D(0, 1). Then in the G action on
(

Cpol,n[n∞]/Pn

)

(n)

(3.35) g−1
(

ζjχD(0,1)

)

= πmng(ζ)jχD(a,|π2m|)

so

λc

(

(ζ − a)jχD(a,|π2m|)

)

= λc

(

π(2j−n)mg−1
(

ζjχD(0,1)

))

= π(2j−n)mg(λc)
(

ζjχD(0,1)

)

= π(2j−n)m
〈

c(g−1ε0), g
−1(ujvn−j)

〉

(3.36)

where ε0 is the edge corrresponding to the standard annulus such that U(ε0) =
D(0, 1)∩K. Now by boundedness, and by the G-equivariance of the pairing on Mn,
the expression in the brackets belongs to some lattice which is independent of g.
We conclude that as long as 2j > n the whole thing tends to 0 as m→∞.

A similar computation holds in the unbounded disk: take

(3.37) g =

(

0 −π−m

πm 0

)

so that g : D(∞, |π−2m|) ' D(0, 1) and

(3.38) g−1
(

ζjχD(0,1)

)

= (−1)jπ(n−2j)mζn−jχD(∞,|π−2m|)

and

λc

(

ζn−jχD(∞,|π−2m|)

)

= (−1)jπ(2j−n)m
〈

c(g−1ε0), g
−1(ujvn−j)

〉

(3.39)

and the same conclusion holds. Note that this time it is ζn−j for 2j > n whose
integrals over smaller and smaller neighborhoods of ∞ tend to 0.

As a corollary of the computations above we can make the following definition.
Let ϕ ∈ (Can[n∞]/Pn) (n) and c as above. Extend λc to ϕ by taking a large subtree
T ′, finding for any ε ∈ Ends(T ′) a Taylor (resp. MacLaurin) expansion of ϕ in
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U(ε) centered at some ξε ∈ U(ε) (resp. at∞ if U(ε) is an unbounded disk), letting
T n

ξε
(ϕ) be the truncation of this expansion at degrees ≤ n (resp. degrees ≥ 0) and

setting

(3.40) λ̃c(ϕ) = lim
T ′

∑

ε

〈

c(ε), T n
ξε

(ϕ)
〉

where you identify Pn(n) with Mn via ζi 7→ uivn−i.

Theorem 3.7. The limit exists and is independent of the choices involved. Fur-
thermore if we put

(3.41) ωc =

(

∫

P1(K)

dλ̃c(ζ)

z − ζ

)

(u− zv)ndz

then the Poisson integral (which is defined for every z pointwise since the integrand
is locally analytic in ζ) is a holomorphic function of z so ωc ∈ F nΩ and it represents

the functional λ̃c under Morita duality. Moreover, ωc is bounded.

For the verification, based on the growth estimates on λc derived above, see
[MTT], Section 11 (where the same estimates are used in the construction of p-
adic L functions), or [C], Theorem 2.5 (where it is shown that λc extends to a
distribution “of order n”, and not just to locally analytic functions).
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