PERFECTOID SPACES AND GALOIS REPRESENTATIONS

EHUD DE SHALIT

ABSTRACT. These are notes for a seminar conducted with David Kazhdan on
Scholze’s work. See the bibilography for references. The notes will be updated
periodically, as the seminar progresses.

Standard notation.

o A- the adele ring of Q, A =R x Ay

e S - a finite set of primes containing oo and the finite prime p

e (Gg - the Galois group of the maximal extension of Q which is unramified
outside S

e F'r; - the conjugacy class in Gg of a geometric Frobenius at a prime [ ¢ S

e G= Sp2n/Z; M= GLn/Z

e Ay - a maximal torus in the center of a connected split reductive group
H, Ay = Ag(R)°

o T =T%, resp. TM - the unramified Hecke algebra outside S of G, resp. M

o K = K K; where K, = SO(n), K; = KsK° C M(Ay) compact open
and similarly for other groups such as G

e Xy = X¢ - the locally symmetric space G(Q)\G(A)/AgK, similarly XM

etc.
* S, S]CV’} - the Satake transform, partial Satake transform (depending on
circumstances)

1. INTRODUCTION [1 WEEK]
1.1. Galois representations.
1.1.1. Geometric Galois representations.

Definition. A geometric Galois representation is a continuous representation

p: GQ — GLn(@p)
satisfying:
(i) p is unramified outside a finite set S of (finite or infinite) primes of Q. The
smallest such S is denoted Bad(p).
(ii) p is de Rham - a technical condition on p|Gq,, to be discussed later.

Remark. (a) Such a p is equivalent to a representation p : Gg — GL,(E) where
E is a finite extension of Q. Prove this as an exercise. Show first that it does not
simply follow from the compactness of Gg. Indeed, show that there exist compact
subgroups of GL, (Q,) that can not be conjugated into any GL,(E). Observe, that
if we knew that Gg,g were topologically finitely generated, the claim would follow

easily. This however, is not known to be true (and according to Neukirch, maybe
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not expected to be true). On the other hand, it is known that Gp s(p) (the Galois
group of the maximal pro-p extension of F' unramified outside S) is topologically
finitely generated for any number field F. Prove the claim as follows. Let R be the
ring of integers in @p. Prove that the R-span of the image of p is bounded, and
in fact finitely generated as an R-module, hence that p can be conjugated to lie in
GL,(R). Using compactness show that the image in GL,(F,) is finite. Using the
fact that G g(p) is finitely generated, prove the claim.

(b) Since Gg is compact, we may even assume that the image of p is contained
in GL,,(Og), hence we may reduce to get a representation into GL, (kg). Different
integral models may result, in general, in non-equivalent representations over the
residuel field.

(c) There are only countably many geometric Galois representations. This relies
on the notion of being “de Rham”.

(d) If n = 1, a Galois character into Oj; is de Rham if and only if, for a suitable
embedding of Q in both C and @p, p comes from a Hecke character of type Ag
(i.e. whose infinity type is z + 2* for some integer k) via Weil’s recipe of attaching
Galois characters to such Hecke characters.

Example. Let X/q be a proper and smooth variety. Then (V,p) = H, (X5, Qp)
is geometric. This is a deep theorem of Tsuji (1999, Inv. Math.). Of course,
point (i), more precisely, being unramified at every prime not equal to p where X
has good reduction, is old, and due to Grothendieck. Tsuji’s contribution was to
verify point (ii), that such an X is de Rham. Kisin generalized it to non-proper
varieties. Important related work was done by Fontaine and Messing, Faltings and
Kato-Hyodo.

The Fontaine-Mazur conjecture is a partial converse when n = 2. It states that
any 2-dimensional geometric p which is odd (in the sense that det p(c) = —1 where
¢ is complex conjugation) “comes from geometry”. In fact, it predicts that the
associated geometric object is a modular form for a congruence subgroup of S Ly (Z).
The precise way in which a modular form may be regarded as a geometric object
involves the notion of motives. However, to point at a modular form as the source
for the representation p is much more than to say that p “comes from geometry”.
Thus the Fontaine-Mazur conjecture encompasses all of the modularity results of
Taylor-Wiles. Thanks to work of Kisin, Khare and Wintenberger, this conjecture
is essentially proven today.

1.1.2. The L-function. Let (p,V) be as in the example. Let Fr; be a geometric
Frobenius at [. Then Deligne’s proof of the Weil conjectures implies that for a good
prime [ # p

P ,(X) =det(1 — p(Fr)X) € Z|X] C Q,[X]

and is independent of p. It furthermore implies that for S the set of finite primes
where X has bad reduction

Ls(p.s) = [ Ppli=)"
145

converges absolutely and uniformly on compact sets in the half-plane Re(s) > 1+ %.
Neither independence of p, nor convergence of the L-series are known for a general
geometric Galois representation p.
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1.1.3. A remark on torsion in the cohomology. Recall that
H;t(X@v Qp) = Hét(X@, Zp) ® 7Q

and that
Hét(X@v Lp) = hin Hét(X@v Z/pkz)

may contain a lot of torsion classes. These classes give rise to Galois representations
over rings like Z/p*Z but both the classes and the associated representations get
lost when we tensor by Q, and do not show up in the L function.

1.1.4. Pseudo-representations and Chenevier’s theory of determinants. The notion
of a pseudorepresentation was introduced by Wiles in his work on the Main Con-
jecture of Iwasawa theory, and developed further by Taylor. It is a technical notion
which is needed when one attempts to construct representations by p-adic interpo-
lation. In [Chen| Chenevier generalized it to work over arbitrary p-adic base rings,
and gave an elegant treatment of the subject. Roughly speaking a pseudorepre-
sentation of a group G with values in a ring A is a function from G to A that
“looks like a character of a representation”. Chenevier introduced the notion of a
“d-dimensional determinant” which is something that “looks like the characteristic
polynomial of d-dimensional representation”. [This subsection will be completed if
I need this part in the seminar].

1.2. The locally symmetric spaces associated with GL,, /o and their coho-
mologies.

1.2.1. The space Xk . Fix n > 1, a prime p, and a finite set S of (finite or infinite)
primes, containing p and co. Let Gg be the Galois group of the maximal extension
of Q which is unramified outside S.

Consider the group scheme M = GL,, 7. Let K9, = SO(n) and let Ky C M(Ay)
be a small enough compact, open subgroup (e.g. the full congruence group of level
> 3). We assume that

Ki=KsK?
where Kg C [];cs M(Z;) is open and K% = [Ti¢s M(Z)). Let K = K2 Ky, and
X =M(Q) \ M(A)/RYK = M(Q) \ [M(R)/RY K3, x M(Ay)/K¢].

This is the locally symmetric space of level Ky associated with M. It is a finite
union of real manifolds of the form I' \ H,, where' H,, = SL,(R)/SO(n) and T is
conjugate in SL,(R) to a congruence subgroup of SL,(Z).

If n =1 then X is a finite group, which is identified, by class field theory, with
the Galois group of a finite abelian extension of Q.

If n = 2 there is a natural complex structure on Xy induced from the identifica-
tion of Ho with the usual upper half plane. In this case X is the complex points
of a (disconnected, in general, and open) modular curve.

If n > 3 Xk is only a real manifold. If K’ C K then Xy — X is a finite
unramified cover of degree [K : K.

IThe map A — At Aidentifies H, with the space of positive definite symmetric real matrices
of determinant 1, hence its real dimension is n(n +1)/2 — 1.
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Fact. For any i,n, the (singular) cohomology groups H*(X,7) are finitely gen-
erated. This follows from work of Borel and Harish-Chandra who constructed fun-
damental domains of finite type for these locally symmetric space (following earlier
work of Siegel). See A. Borel: Introduction aux groupes arithmetiques. It also
follows from the Borel-Serre compactification of Xy into a manifold with corners,
which we discuss later.|

We shall consider singular cohomology groups with coefficients in an abelian
(additive) group R, such as FF,. Recall the relation between these groups and the
homology (with Z-coefficients). For any topological space X there is an exact
sequence

0 — Ext(H;_1(X),R) - H(X,R) — Hom(H;(X),R) — 0.

Later on we shall have to consider similar locally symmetric spaces attached to
other reductive groups. To stress the dependence on M we shall denote then X
by XM . In fact, this is the reason for our unusual choice of the letter M to denote
GL,. The letter G is reserved for a larger group (when the ground field is Q as in
these notes, it will be Spa,,, if the ground field were quadratic imaginary, it would
be an appropriate unitary group). The group M will show up as the Levi factor
of a parabolic subgroup of G and this will have consequences for X¥ as it will
“appear” in the boundary of a similar locally symmetric space for G. This set-up
is important for all that follows.

1.2.2. The Hecke algebra. We work with Z, coefficients throughout. For every
prime [ ¢ S (in particular [ # p) the local Hecke algebra at [ is
Ty = H(M(Qi), M(Z1)) = Zp[M(Z;) \ M(Qq)/M(Zy)].

Its elements are compactly supported, M(Z;)-bi-invariant, Z,-valued functions on
M(Q;). The product is convolution, where the Haar distribution is normalized so
that it gives M(Z;) the measure 1. Thus

oxvi)= [ olgh)uln)an.
M(Qi)
The theorem on elementary divisors says that each double coset in M(Z;) \
M(Q;)/M(Z;) is represented by a unique matrix of the form
diag[l®*, 12, ..., 1]

with integers e; > es > --- > e,. This gives the structure of T; as a module. The
ring structure is commutative and is given, over Z,[v/1], by the following theorem
(note that ! may or may not be a square in Z, so we may need to enlarge the ground
ring, but a more subtle point, often overlooked, is that in either case, the Satake
isomorphism depends on the choice of a square root of [).

Theorem. (Satake isomorphism) There is an isomorphism
S ¢ ZyWil @z, Ty =~ Z,[VI[XT, ..., X5
The ring on the right is the ring of symmetric Laurent polynomials.

Recall the construction of S. Let A be the torus of diagonal matrices in M(Q;)
and A its intersection with M(Z;). Then

ord;: A—> A=17%
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is surjective, has A for its kernel, and the ring H (A, A°) (defined in the same way
as the Hecke algebra for G L,,) is identified with Z,[A] = Z,[X', ..., XF']. Indeed,
if we denote by ch(\) the characteristic function of ord; ' (\) then ch(\) x ch(\) =
ch(A+ X) and the ch()\) make up a basis for H (4, A?). Now

S ¢ Zp[V1] @z, HM(Q:), M(Zr)) — Zp[V1] ©z, H(A, A°)
is defined by

S¢(a) = 6(a)'/? /U $(au)du.

Here U is the unipotent radical of the standard Borel subgroup AU of upper tri-
angular matrices in M(Q;) and du is normalized to give U(Z;) the measure 1. The
unimodular character § is given by

n—1_n—3

d(diaglay,...,an]) = |at ™ aj ~~a,1f”|l.

The theorem asserts that S is an isomorphism onto the invariants of the Weyl group
on Z,[V1] ®z, H(A, A?).

Let Tj; € Ty (1 <4 <n) be equal to [~*("=9/2 times the characteristic function
of the double coset of the matrix

l

1

where there are ¢ I’s and n — ¢ 1’s on the diagonal. Then one computes that 7} ;
gets mapped under the Satake isomorphism to the i-th elementary symmetric poly-
nomial. We shall identify 7;; with S(7;;) when necessary. Note that Tj, is the
characteristic function of IM(Z;), that it is invertible (its inverse being the char-
acteristic function of [71M(Z;)) and corresponds, under the Satake isomorphism,
to X7 Xs...X,. Every symmetric Laurent polynomial may be multiplied by a high
enough power of this element to make it a symmetric polynomial. Thus the Hecke
algebra is generated over Z,[V1] by Ti; (1 <i < n) and Tl_n1

Let P(X) € Z,[V1] ®z, T;[X] be given by

i=0 =0

This is the Hecke polynomial at the prime [.

The global (prime to S) Hecke algebra is

By the restricted tensor product we mean the direct limit of the finite tensor prod-
ucts, where we use the unit elements in the rings to embed one finite tensor product
in a larger one. The involution g — ¢g~* induces an involution ¢ — ¢ on T;, namely
¢(g) = ¢(g~1). Since le = Tl_anln_Z under the Satake isomorphism this involu-
tion carries over to the involution of the symmetric Laurent polynomials induced
by X; — X 1.
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Remark. (on normalizations). Scholze writes i(n+1)/2 instead of i(n—1)/2 for the
power of [ preceeding T; ;. My expression agrees with [Rec]. Of course, changing X
to [X transforms one into the other. When n = 2 one usually writes T} for \/ZTM
and (1) for T} 5. The Hecke polynomial becomes then 1 — T, X + [ (I) X2.

Another common normalization is to consider instead of P;(X) the polynomial

Pl(l—(n—l)/QX) — Z(_l)iTlﬂ‘Xi-
i=0

While the first normalization agrees with a functional equation relating s to n — s
the second agrees with s — 1 — s. The first normalization is generally preferred by
number theorists, and the second by representation theorists.

1.2.3. The action of the Hecke algebra on the cohomology of Xg. Write X =
M(Q) \ M(A)/RX so that Xx = X/K. Let g € M(Q;). Then the map kgK
k(K NgKg™') (k € K) is a bijection

KgK/K ~ g 'KgK/K ~ g 'Kg/(¢ ' KgNK)~ K/(KNgKg™ ')

so the degree of prx : Xgngrg1 — Xk is [KgK/K]. Consider also the maps
Prorg—1 @ Xingrg-1 — Xgrg-1 and Ry : X x,-1 ~ X given by z(gKg™!) —
(xg)K. Let
T!J = Rg ° (prgKg—l)* © (pTK)*  Xg - Xk

be the correspondence whose degree is [KgK/K].

If we let the double coset K;gK; act as T, and extend linearly to T, this defines
a right action of T; (taken now with Z-coefficients) as a ring of correspondences
on Xg. By “right action” we mean that the convolution product K;¢gK; - K;hK; in
T; corresponds to T} o Ty. Now quite generally, any correspondence T': X --» Y
between two manifolds induces, by pull-back, a homomorphism on the singular
cohomology

T : H(Y,Z,) — H(X,Z,)

and (T'oR)* = R*oT*, so if we let the double coset K;gK; act as Ty on H'(Xg,Zy)
we get a left action of the ring T, on H*(Xf,Z,). These actions, for various | ¢ S,
commute, so can be combined to give an action of the global Hecke algebra T.
In particular, we denote the operator Tl*J\H’ (Xk,Zyp) still by T; ; and call it the
jth Hecke operator at [ (on H (X, Zy)).

In the same way we get actions of T on the finite-dimensional vector spaces
HZ(XK,QP) and Hz(XK,Fp)

Remark. On correspondences. Let X and Y be as above, two smooth oriented
manifolds of dimension d. A correspondence between them is a d-dimensional closed
submanifold Z C X x Y such that both projections px : 7 - X and py : Z —» Y
are “nice”. If X and Y are complex algebraic varieties and Z is a closed algebraic
subvariety of the product, then by “nice” we mean finite and flat (but possibly
ramified). For smooth real manifolds one may develop a similar notion, but we
shall not do it, as all our correspondences will eventually be given by explicit group
theoretic formulae obtained by decomposing double cosets to a finite union of one-
sided cosets. In any case, we should at least require “nice” to be “proper”. This
suffices to define a map

(2] = (py)« opk : H'(X,R) — H'(Y,R)
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between singular cohomology, and a similar map interchanging the roles of X and
Y . Here R is any ring of coefficients. Note that py is proper so the push-forward
on cohomology is defined. One way to see it is to use the version of Poincaré duality
for (arbitrary topological) manifolds asserting that H*(X) is naturally isomorphic
to the Borel-Moore homology HP (X). The latter is defined as singular homology,
when one replaces finite chains by locally finite chains (chains whose intersection
with every compact subset is finite). Borel-Moore homology is not functorial in
X, but for locally compact spaces it is covariant with respect to proper maps. If
we use R coefficients we can use instead the duality between H*(X) and HZ~*(X)
and the fact that compactly supported cohomology is contravariant with respect
to proper maps. However, we are specifically interested in torsion classes, so this
is not enough! In our example we take X = Xg,Y = X g -1 (which is isomorphic
to X under Ry) and Z = Xgngrg-1-

1.3. The main theorem and some corollaries.

1.3.1. Galois representations attached to eigen-classes in Hi(XK,E,). Let Xk, p
and S be as before. By a system of Hecke eigenvalues occuring in H'(Xk,F,) we
mean a homomorphism ¢ : T — F,, so that H*(Xg,F,)[s] # 0.

Theorem 1. [Torf, Corollary V.4.3] Let ¢ be a system of Hecke eigenvalues oc-
curing in H (X, F,). Then there exists a unique continuous semisimple represen-
tation
Oy ¢ GS — GLn<?p)
such that for any 1 ¢ S, if we denote by Fr; € Gg any geometric Frobenius at [,
det(1 — X - oy (Fry)) = ¢ (P(X)).

Remark. (i) Uniqueness is obvious since the Fr; are dense in Gg and their char-
acteristic polynomials determine their traces, hence the character of oy. But a
semi-simple representation is determined by its character. Note that o, factors
through a finite quotient of Gg.

(ii) When n = 1 X is the finite group Q* \ A* /R K, the Hecke operator T}
(I ¢ S) is the coset [K, its action is the action of I by (right) multiplication, only
i = 0 counts, H(Xf,F,) is the space of functions from Xy to F,, P(X)=1-X
and the theorem asserts the existence of a Galois character satisfying

oy (Fri) = ¢(I).

The theorem captures class field theory (over Q). Already here we see that it
was necessary to include oo in S, because in K2, we included only the connected
component of the identity.

(iii) When n = 2, Xg = Yx(C) where Yk is an open (i.e. without the cusps),
disconnected (in general) modular curve defined over Q. Let ¢ = 1 (this is the only
interesting index). We then have a canonical isomorphism

HY (Xg,Fp) =~ Helt(YK/@a Fp)

and the group on the right hand side carries a natural action of Gg. One has to
distinguish two cases: (a) ¢ is “Eisenstein”, i.e. it occurs in the cokernel of the
injective map

HY(Xk,Fp) — H'(Xk,F,)
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where X is the compactified modular curve. This case is easy, since one can
analyze directly the action of the Hecke algebra on the cusps. One can construct
oy “by hand”. It is reducible, the sum of two one-dimensional characters. (b)
Suppose that the system of Hecke eigenvalues comes from the cohomology of the
complete modular curve, i.e. H'(X ,F,)[)] # 0. The theorem asserts the existence
of a 2-dimensional semisimple representation o, such that

det(X — oy (Fry)) = X2 — (T) X + lp((1))

for every | ¢ S. This follows from the Eichler-Shimura congruence relation. It is
classicaly proved for cohomology (and Galois representations) with @p—coefﬁcients,
and the corresponding characteristic 0 Galois representation comes out to be irre-
ducible and odd. But curves do not have torsion in their cohomology, so the result
as stated follows from it. Let us also remark that cases (a) and (b) are not mutually
exclusive when one deals with IF)-coefficients, as there could be congruences modulo
p between Eisenstein series and cusp forms.

1.3.2. Working with Z/p™Z coefficients. One would like to state a similar theorem
for Z/p™Z coefficients. There are two technical difficulties. The first is that Scholze
does not quite construct, in this generality, a representation, but only a pseudorep-
resentation, or more precisely, a “determinant” in the sense of Chenevier. The other
difficulty is that the relation between the corresponding “determinant of Frobenius”
and “Hecke polynomial” only holds modulo a certain defect. Luckily, this defect is
independent of m (and in a certain sense, independent of K t00).

Theorem 2. [Tors, Theorem V.4.1] There ezists an integer N depending only on
n, such that for any K as above, and any indicesi > 0, m > 1, if we let T(K,i,m) be
the image of the Hecke algebra T in the endomorphism algebra of H (X, Z/p™Z),
then there is an ideal I C T(K,i,m) with IN = 0 and an n-dimensional determinant
D of Gs over the ring T(K,i,m)/I, which satisfies the relation

D(1-X-Fr)=PF(X) modI
for every 1 ¢ S.

1.3.3. Working with a local system Me¢/p™ M¢ as coefficients. With a little extra
effort, it is possible to extend Theorems 1 and 2 to include certain local systems as
coefficients. See [Tors, V.

1.3.4. An application to the Langlands correspondence for G L,over Q. Fix an iso-
morphism of C with @p. Let 7 be a cuspidal automorphic representation of GL,,(A).
We assume that 7 is regular L-algebraic [spell out what this means, and note that
by results of Clozel, this means that a certain Tate twist of  is cohomological]. As-
sume also that 7; is unramified if [ ¢ S, and let ¢ : T — @p be the hecke character
(“system of Hecke eigenvalues”) attached to .

Theorem 3. Under the above assumptions, there exists a unique continuous semisim-

ple representation o : Gs — GLn(Q,) such that for any | ¢ S
det(1 — X - 0,(Fr;)) = Y(P(X)).

This theorem is the main theorem of [HLTT], and was proved there by more
traditional methods. For self-dual 7 it has been known long before [Cloz].
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Remark. Venkatesh and Bergeron [V-B] have shown that the torsion in the coho-
mology of I'\ G (R)/K?. grows exponentially with the covolume of I, while the Betti
numbers only grow linearly. Thus Theorem 1 and 2 are significantly stronger than
Theorem 3 and can not be reduced to it. There are many torison Galois representa-
tions attached to torsion cohomology classes that do not come from characteristic
0 representations by reduction modulo p™.

2. A SURVEY OF THE PROOF OF THEOREM 1 [3 WEEKS]

2.1. Galois representations attached to Siegel modular forms.

2.1.1. Preliminaries on the symplectic group and its symmetric space. If one is
to attach Galois representations to cohomology classes on X, algebraic geometry
should show up somewhere. The key idea is due to Clozel. The space Xk “appears”
in a Hecke-compatible way in the boundary of a certain compactification of a similar
space associated with Sps,. But the locally symmetric spaces of Spa,, the Siegel
modular varieties, are algebraic. This is still a long way from attaching Galois
representations to Hecke eigenforms on Siegel modular varieties, let alone to torsion
classes in the cohomology of these varieties, but at least is a good starting point.
Let G = Spay,/z be the group scheme of all 2n x 2n matrices g satisfying

tg-J-g=1J

= (2 0)

is the matrix of the standard symplectic form (u,v) = *uJv. The subgroup P
consisting of all matrices

where

0 tA—l
is a maximal parabolic subgroup whose Levi factor is the group M = GL,,, the

projection from P to M being g — A. We regard M both as a quotient and a
subgroup. Thus

{g= ( 4B > | A7! B is symmetric}

P =MU
is a semi-direct product, and the unipotent radical U in our case, is commutative,
and isomorphic to Gr"+1/2,
Let Go = G(R). Identify C" with R?" via
(z1,...,2n) — (Re(z1), ..., Re(zpn), Im(21), ..., Im(zy,))

and let (z,w) = > Zpwy, be the standard hermitian inner product on C". Then
multiplicatoin by ¢ corresponds to —J and

(z,w) = (z,iw) + i (z,w) .

The group Ko = U(n) is therefore embedded in G, (check that it is equal to the
intersection of G, with SO(2n)). It is a maximal compact subgroup. Observe that

KL = K..N Py

is the subgrop of all matrices in P., where A = *A~! and B = 0, hence is the
standard K = O(n) inside GL,,(R). Since, by the Iwasawa decomposition,

Goo = PooKooa
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we get for the symmetric spaces
N =GCGuo/Ko = P /KE.

Recall that this is the Siegel space of all the complex symmetric matrices Z = X +iY
with Y > 0 (positive definite). Indeed, G, acts transitively on $ by

A B\ -1

< C D > :Zw— (AZ+ B)(CZ+ D)

and if Zy = il then its stabilizer is K,. When we restrict to P, we get the action
Z=X+iY — AZ'A+ B'A=(AX'A+ B'A) +i(AY 'A).

Now mod out also by the left action of the unipotent radical Uy, of P, i.e. project

9 to Moo /KM where My, = Uy \ Po and KZ ~ K under the projection. Since

the action of Uy, on $) amounts to adding an arbitrary symmetric matrix to the real

part of Z, the quotient is the cone of positive definite symmetric matrices. When
we further divide by positive homotheties (R}) we get the symmetric space of GL,,

H =M /RYKM = SL,(R)/SO(n).

The standard split (non compact) torus T is the set of matrices of the form

diaglai,...,an,a;t, ..., a;']. In our standard U(n) we have a maximal compact
torus T, consisting (under the identification of C™ with R?") of all the maps
(21, .oy 2n) = (G121, .., Cnzn) where || = 1.

The Weyl group of G (W = Ng(T)/T) is the group S, X (Z/2Z)"™ of signed
permutations. If we decompose Q%" into a direct sum of n hyperbolic planes Hy, =
(ek, en+k) in the standard way, the group S,, permutes the planes and the kth copy
of Z/27 has the effect ey, — €4k, €ntr — —ex in Hy (modulo the action of the
standard torus).

2.1.2. The symplectic Hecke algebra. Let | be a prime. The local (spherical) Hecke
algebra is
T) = Zp|G(Zi) \ G(Qi)/ G(Z1)] = (G, Ki).
As in the case of GL,, it is commutative and we have the Satake isomorphism
T, [\/Z] ~ Zp[\ﬁ][Xlil, o 7)(T:::l]Snlx(Z/QZ)n

whose image consists of all the symmetric Laurent polynomials which are symmetric
also under X; ~+ X; ! for each i. The formula for the Satake isomorphism and the
proof of the isomorphism is the same as in the case of GL,. The only thing that
changes is that the Weyl group is now larger. An excellent survey of the Satake
isomorphism is [Sat].

2.1.3. The local unramified transfer from Spa, to GLoyy1 and the Hecke polyno-
mial. [This subsection and in particular the next one are about things where my
understanding is limited. It is also where Scholze’s work still depends on work in
progress of Arthur, on the stabilization of the twisted trace formula. Surprisingly
here, the situation is better if one replaces the ground field by a quadratic imaginary
field, because then there are unconditional results of Shin which allow one to get the
desired representations of U(n,n), the group which replaces Spay,.]

Recall some definitions and conjectures from the theory of automorphic represen-
tations, specialized to our context. Let G be a split reductive group. Fix an integral
model Gz and assume that it has good reduction if [ ¢ S. Thus K; = G(Z;) is a
hyperspecial maximal compact subgroup of G; = G(Qy).
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The Langlands dual Gof Gis a complex reductive group.
Let m be a discrete automorphic representation of G(A), i.e. a closed subspace

™ C L*(G(Q) \ G(A))y
where y is a unitary character of the center of G(A), which is (topologically) irre-
ducible under right translation by G(A). Then
T = &,

(a completed tensor product) where v runs over the primes of Q, and m; (for a finite
prime [) is a smooth irreducible representation of G;. Assume that for [ ¢ S it is
unramified (also called spherical) i.e. 7TlKl is non-zero. Then the commutativity of
the spherical Hecke algebra T; (this time we take it with Z-coefficients) implies that
7rlKl is one-dimensional, so T; acts on this line via a homomorphism ; : T; — C
called the Hecke character of m;. Now, the Satake isomorphism is an isomorphism
of C® T; with

C[X.(T)1"

where T is a maximal torus of G, and W its Weyl group. If T is a maximal torus
in G then X, (T) = X*(T) and a homomorphism

(C[X*(T)]W —-C
is the same as a point of T/W, i.e. a semisimple conjugacy class in G (every
semi-simple element of G can be conjugated to lie in T and two elements of T" are
conjugate in G if and only if they are conjugate in N (T), i.e. if and only if they lie
in the same orbit of W). Thus via the Satake isomorphism, giving 1); is the same
as giving a semisimple conjugacy class s(m;) in G. This conjugacy class is called
the Langlands parameter of m at the unramified prime [. It determines i umquely

Let H be another split reductive group defined over Q, and let 7 : G — Hbea
homomorphism. We then have the following easy local lemma.

Lemma. Let G and H be as above (in particular, we assume that they are split).
Let ’]TlG and ']I‘{{ be the spherical Hecke algebras w.r.t. hyperspecial mazimal compact
subgroups at | (with complex coefficients). Let n : G — H be a homomorphism of
the Langlands dual groups (as algebraic groups over C). Then there exists a unique
homomorphism
*:TH - 1¢,

such that for any Hecke character v : T — C, if we let s(yF) € G be the
corresponding parameter, and vl = & on*, then n(s(¢F)) = s(vf).

Proof. The homomorphlsm 7 carries semisimple conjugacy classes in G to semisim-
ple conjugacy classes in H, hence induces a map T /Wa — Ty /Wy, which is a
morphism of affine algebraic varieties. By the above discussion and the definition of
the dual group, this map comes from an algebra homomorphism C[X, (Tx)]"V# —
C[X,(T¢)]"e. Invoking the Satake isomorphisms gives n*.

We remark that when the groups are not split, the lemma remains true if we
replace the Langlands dual by the notion of the L-group, which is a semi-direct
product of the dual group with the finite Galois group of a splitting field. However,
for our purposes, split groups suffice. The following is Langlands’ functoriality
conjecture.
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Conjecture. For every automorphic representation © of G(A) there exists an au-
tomorphic representation I1 of H(A) satisfying the following. Let ! be an unramified
prime for both groups (meaning that integral models have been fized and the cor-
responding groups of Z; points are mazimal compact hyperspecial). Then if m is
unramified, so is 11}, and n(s(m)) = s(IL;).

We emphasize that in general IT need not be unique, except when H = GLy,
in which case “strong multiplicity one” implies that knowing II; for all but finitely
many [ determines II.

Let us return to our setting. The Langlands dual of Sps, is SO(2n + 1)(C).
Consider the standard embedding 1 of SO(2n + 1)(C) in GL2yp+1(C). According to
the conjecture, to any automorphic representation 7 of Spa, (A) there should corre-
spond an automorphic representation II of G Lo, +1(A) such that, if 7; is unramified,
IT, is also unramified, and the Langlands parameter of 7; (a semi-simple conjugacy
class in SO(2n + 1)(C)) gets mapped under 1 to the Langlands parameter of II; (a
semisimple conjugacy class in GLay41(C)).

The local unramified transfer m, — II; is determined by the embedding 7, and
is dual, by the Lemma, to a homomorphism of the spherical Hecke algebras in the
opposite direction. In our case, 1 determines a homomorphism

0 Ly VIV YR 1 2, VX, L XEY S G20 — [V,

A little group theory (involving the definition of the Langlands dual) shows that
this is the homomorphism taking {Y7,...,Y2,41} to {Xl,Xf17...,Xn,Xgl,1}
(since the homomorphism ought to be defined only on symmetric Laurent poly-
nomials, any permutation of these sets will yield the same map). Note that if
¢ € Zy[VI[Y{, ... Y5EL []192n+1 then the image of ¢ and the image of ¢ in T;[v/]]
coincide. This means that IT; ~ II) (is self-dual). This can be also seen from the
fact that any representation into an orthogonal group is self-dual.

Using this, we can define the Hecke operator T;; (1 < i < 2n+ 1) to be the
image of the ith elementary symmetric polynomial in the Y} in Tl[\/ﬂ . In fact, it
belongs to T;. We can now define the Hecke polynomial to be

2.1.4. The global endoscopic transfer. The Langlands functoriality conjecture is in
fact known in our case, for certain 7’s, as a result of deep (ongoing) work of Arthur
on the twisted trace formula. For reasons unclear to me, it is called the theory of
endoscopic transfer.
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Let k£ > n. Then there exists a unique discrete series representation m; of G
with minimal K..-type det” and infinitesimal character?

(k—1,k—2,....k—n) € X*(T).

Let Xk be the Siegel modular variety of level K; = KsK* (notation as usual,
K = K Ky) which is small enough (e.g. principal level subgroup of level > 3). Tt
is a smooth quasi-projective variety defined over Q. Let X} be the minimal (Baily-
Borel) compactification of X, which is a normal projective variety. Let A be the
universal (principally polarized) abelian variety over Xx and w = det(e*Q} / XK)
(where e : X — A is the zero section) the Hodge bundle. Then w is an ample line
bundle and in fact

Xi = Proj(@p2 H (X, w")).

Thus H(Xk,w®) = H*(X},w*) (n > 2, by the Koecher principle) is the space of
holomorphic modular forms of weight & on Xg. If we let Z be the ideal sheaf of
X3\ Xg then HO(X}, w* ® T) is the space of cusp forms of weight k.

The Hecke algebra T = ®;¢S’]Tl acts on H(X},,w* ®T) by the same recipe used
to define its action on singular cohomology groups of the locally symmetric spaces
for GL,,, see section 1.2.3.

Recall that k > n. If f is a Hecke newform in H°(X} ¢, w" ®Z) and we denote
by

f: T:®2¢ST1—>C

also the corresponding system of Hecke eigenvalues, then there exists a cuspidal
automorphic representation m = 7y of G(A) associated to f, unramified outside S,
whose associated Hecke character at every [ ¢ S is f;. The archimedean component
T Of 7 is the above-mentioned 7.

Theorem. (Arthur) Let 7 be a cuspidal automorphic representation with Ts = k.
Assume that  is unramified outside S. Then there exist integers satisfying

nry+ -+ nprym =2n+1

and self-dual cuspidal automorphic representations II; of GL,,,(A) such that for all
1 ¢S all the I1; ; are unramified, and the Langlands parameters satisfy

m

n(s(m)) = @(S(Hi’l)l(mfl)ﬁ ® S(Hiyl)l(rifs)m @B S(niyl)l(lfn)/Q)’
i=1

Furthermore, for each i, a certain twist of I1; o by an integral power of |-| is reqular
L-algebraic.

2Recall that if 7oo is an irreducible admissible representation of a connected reductive Lie group
G~ and K« is a maximal (connected) compact subgroup then the subspace of Ko-finite vectors
forms a (g, Koo )-module and the center Z(g) of the universal enveloping algebra U(g) acts on it
via a character yx, called the infinitesimal character of the representation. The Harish-Chandra
isomorphism allows us to index the central characters x by weights A € h* where b is a Cartan
subalgebra. The characters x and x, are equal if and only if A + ¢ and p + ¢ are in the same
orbit of the Weyl group, where § is half the sum of the positive roots. One often abuses language
and refers to A itself (rather than x ) as the infinitesimal character. Recall also that m is called
regular L-algebraic if its infinitesimal character is the infinitesimal character of an algebraic (finite
dimensional) representation of g.
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2.1.5. The Galois representation attached to Siegel modular forms. In [Cloz], Clozel
proved the following theorem. Fix an isomorphism of Q, with C.

Theorem. Let IT be a self-dual cuspidal automorphic representation of GL,,(A)
such that T1| - |¥/2 is regular L-algebraic for some integer k. Then there exists a
unique continuous self-dual semisimple Galois representation

on:Gg — GLn(@p)
with the following property. For every finite prime | such that I1; is unramified, op
is unramified at | and
CTH(FT'I)SS = S(Hl)

Combining this with the last theorem on the existence of endoscopic transfer,
and our definition of the local Hecke polynomials P}, one gets the following.

Theorem 4. [Tors, V.1.7] Let k > n and let f : T — @p be a system of Hecke

eigenvalues occuring in HO(X;/@ ,wF ®T) (i.e. factoring through the image of T
P

in the endomorphism ring of this space). Then there exists a unique continuous

semisimple representation

ar: GS — GL2n+1(@p)
which is self-dual, and such that for anyl ¢ S
det(1 = X - oy (Fry)) = F(B(X)).

Proof. Let 7 be the cuspidal automorphic representation attached to f. As we have
noticed, it is unramified outside S and m,, = 7. Assume for simplicity that in
Arthur’s theorem there is only one (self-dual, cuspidal, regular L-algebraic) II so
that s(m;) maps under 1 to s(II;). Let oy be the Galois representation attached by
Clozel to II. Since the Langlands parameters of = and II at [ match, by the very
definition of ZBl(X ), its specialization under f gives the characteristic polynomial of
Frobenius. O

Remark. If n = 2 then Sps = SLy and f corresponds to a Hecke eigenform in the
classical sense. By the Eichler-Shimura congruence relation, there is a 2-dimensional
representation py attached to f. The representation o is nevertheless 3-dimensional
and self-dual. One most surely has the relation

oy = Hom"(py, py)

(the trace-zero endomorphisms of py).

2.2. The cohomology of the boundary. In this section we relate the locally
symmetric spaces of Sps,, and GL,, and their singular cohomologies. Since we have
to use both groups, we shall use the notation X¢ and X for these spaces. We
shall also agree that if we write just X g, we mean X[G(. Naturally, the open compact
level subgroups K should be compatible. We spell out these compatabilities. Recall
that M was the Levi quotient of a maximal parabolic subgroup P of G. Thus
K; = KgK* is open compact in G(Ay) as usual, Koo = U(n), K = KooK and

Xk = G(Q)\G(A)/K.

Let K¥ = K NP(A). This is a compact open subgroup of P (warning: P is not
reductive and its unipotent radical does not have a maximal compact subgroup!).
Let K™ be the image of K under the projection of P(A) to M(A). It is again open
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and compact, and for [ ¢ S equal to the maximal compact M; = GL,(Z;). Recall
that M also sits as a subgroup in P. In the following, we shall make the assumption
that K]{VI coincides with K}D N M(Ays). This can be arranged by shrinking K if
necessary.

2.2.1. Borel-Serre compactification. A manifold with corners is an m-dimensional
topological manifold with boundary (X,9X) endowed with a differentiable struc-
ture and a stratification of the boundary 0X by relatively open r-dimensional sub-
manifolds 90X, (0 <r <m — 1), such that if x € 0X, then x has a neighborhood
which is diffeomorphic to B, x [0,1)™ ", where B, is the r-ball and where x is
mapped to (0,0,...,0).

In this subsection we let G be a connected reductive algebraic group defined over
Q, K ¢ G(R) = G a maximal compact subgroup, and I' C G(Q) an arithmetic
group. Let D = G/K Ag be the corresponding symmetric space and X = I'\ D the
locally symmetric space. Here A¢ is the connected component of the identity of
the real points of the maximal Q-split torus in the center of G. If G is semisimple
it is trivial. If G = GL,, then Ag = Ri. We assume that I' is small enough, so
that X is a real manifold.

The Borel-Serre compactification X 9 is a certain topological compactification
of X which has the structure of a manifold with corners. For example, if X is a
modular curve, then X 2% is obtained by gluing to X a circle at each cusp. Note
that X < XP9 is a homotopy equivalence. Here is a brief sketch of the general
construction (following [Gor]).

We first describe a space DBS endowed with a certain “Satake topology” which
is obtained from D by adding to it a boundary component ep for every rational
parabolic subgroup P. The action of G(Q) on D will extend to it. We then let

XBS — F\DBS

and endow it with the quotient topology.

Let P be a rational parabolic subgroup of G and Lp its Levi quotient. Then
Lp is a reductive group over Q. Let A p be the maximal Q-split torus in the center
of Lp. For example, if Lp is GL,, x --- x GL,, then Ap = G’fn. Let Ap be
the connected component of the identity of Ap(R). By the Iwasawa decomposition
G = PK the group P acts transitively on D. Let Kp = K N P. Then

D= P/Kp.

Define a right action of Ap on D by gKp-a = gaKp. This is well-defined. The orbits
of Ap in this action are totally geodesic submanifolds of D (manifolds containing,
together with any pair of points, also the geodesic between them). If P is a maximal
parabolic, they are ordinary geodesics. We let

eEp = D/Ap = P/KPAP

Note that ep is “almost” a space like D, except that since P is not reductive, it
contains a unipotent part. Define DB as a set to be the union of D and all the
ep (one for each rational parabolic subgroup P).

Given P, we have Ap ~ (0,00)" for r > 0 and dimep = d—r where d = dim D. If
P C @Q then Ag C Ap and eg projects to ep. Fix Py, a minimal rational parabolic
(a rational Borel if G is quasi-split). We call @ a standard (rational) parabolic if it
contains Py. [We already see the structure of a “corner” with Py corresponding to
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the origin, and the maximal standard parabolics corresponding to the walls]. Let
Ap = (0,00]", let Ap act on it on the left by the convention that ¢ - co = co and

D(P) =D x4, Ap,

the quotient of the product D x Ap by the equivalence relation (zt,a) = (z,ta).
Endow it with the quotient topology. Denote the equivalence class of (x,a) by
[z,a]. Then D(P) contains D as the set [z,(1,1,...,1)] and also ep as the set
[z, (00,...,00)]. In fact, we easily see that

D(P) = lpcqeq

where we include () = G in the union, in which case we put e¢ = D. It comes
with a natural differentiable structure of a corner. Note that while the set of @Q’s
containing a given P is finite, the set of P contained in a given @ is countable.
Thus the same space eg will belong to infinitely many D(P) (just as D = egq is
contained in every D(P)).

Theorem. (Borel-Serre) There exists a unique topology on DPS such that: (a)
each D(P) is open and the induced topology on it is the given one (b) the action of
G(Q) extends continuously from D to DB,

Here is a list of properties of X5% =T\ D5¥ that will be useful to us.

e It is a space of finite type (i.e. a finite CW complex). This is clear from the
construction once we realize that there are only finitely many I'-conjugacy
classes of parabolics.

e The Hecke correspondences extend from X to X P9. This follows from the
fact that the action of G(Q) extends from D to DB,

e The inclusion X < XB% is a homotopy equivalence. In fact, the “geodesic
flow” used to construct X B9 also supplies the homotopy.

Let 0XB% = XP9\ X be the boundary.

2.2.2. Some long exact sequences in cohomology. Let us return to the situation
where G = Spay,, K = KoKy, K¢ = KgK* is small enough, and X = XIG( as
before. Then applying the Borel-Serre compactification to each connected compo-
nent of Xx we get a manifold with corners X ES and the inclusion of X in it is a
homotopy equivalence. Let the coefficients be F,, and drop them from the notation.
The long exact sequence for cohomology with compact supports reads

o= H(Xg) = H(XE%) = H'(0XE%) - HT (Xk) — -

and H (XE%) = H'(Xx) since X and X2 are homotopically equivalent. Warn-
ing: cohomology with compact supports is not a homotopy invariant.

Let P be the maximal parabolic with Levi factor M = GL,, that we have con-
sidered before. Let K = K NP(A). Then

XE =P(Q)\P(&)/Apk”

(Ap ~ R since P is maximal) is a finite union of spaces I'\ Po/KZ Ap which we
denoted by ep, and which appear as open submanifolds of X 2. Note that they
are open in the boundary because P is maximal, so in fact D(P) = DUep (in other
words, they are the open walls of the corners). The open embedding

XE — oxBs
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induce natural maps
H{(Xj) — H'(0XE®) — H'(Xg)

(the first since compactly supported cohomology is covariant for open embeddings,
and the second by contravariant functoriality of cohomology). The composition of
the two maps is the map of compactly supported cohomology to ordinary cohomol-

ogy.

2.2.3. Relating the locally symmetric spaces for P and M. Recall that K™ was the
image of K¥ in M(A) and Aj; = Ap by definition. Thus there is a projection prt;
from XE to

XK =M(Q)\ M(A)/Ay KM,

the locally symmetric space of GL, which appeared before, except that at the
archimedean place we have now K = O(n) and not SO(n).

Lemma. [Tors, V.2.2] The map prﬂ is open and proper. Its fibers are (S’l)”("+1)/2.
As a result we get two maps
(priy)™ :H(XK) = HA(XE), ()"« H'(XE) — HY(XE),
the first by contravariance of compactly supported cohomology with respect to
proper maps, and the second by pull-back along the embedding

e XM XE

This embedding uses the fact that M sits also as a subgroup of P and our assump-
tion that K}VI coincides with Kf NM(Ay). Note that at oo we have KX = KZ.

The map 4; is a section of prl;, hence if we denote by

37 Hy(XF) — H'(XE)
the usual map of compactly supported cohomology into ordinary cohomology, and
similarly j, then the composition

(tar)* 05" o (prap)* = ™.

Let H{(X) be the image of this last map. It is called the interior cohomology.
For example, when n = 2 and i = 1 both H} and H' of the open modular curve have
dimension 2g 4+ r — 1 where g is the genus of the complete curve and r the number
of cusps, while H{ (also called there parabolic cohomology) is 2g-dimensional.

Combining the maps obtained here with the maps obtained in the previous sub-
section, we get maps

H{(XM) - H(0XE%) — HY(XY).
These two maps define a homomorphism of modules
End(H'(0XE®)) — Hom(Hy(Xy ), H' (X))

in the obvious way.
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2.2.4. Compatability with Hecke. In this subsection we check that the last homo-
morphism is compatible with the action of the Hecke algebras. This is necessary
later on for shifting Hecke eigensystems from the (singular) cohomology of X to
the (singular) cohomology of Xy, where we can hope to attach to them Galois
representations.

Consider the Hecke algebras T;, TF, TM, of compactly supported, Z,-valued
functions on Gy, resp. Pj, resp. M; which are bi-invariant under Kj, resp. KlP,
resp. K lM . Restriction defines a map

T, — TF

and integration along the unipotent fibers (suitably multiplied by the unimodular
character of P;) a map

T, — TM.
The composition of the two is a “partial” Satake transform. We use the word
“partial” because, had P been a Borel, and M the standard torus, we would have
obtained the Satake transform S discussed before. But P is a maximal parabolic.
We extend this map to the global Hecke algebras and denote it by

S¢ T =T% - TM.
The action of T on the cohomlogiy of X extends to the cohomology of X 29
and to the cohomology of 9XZ9. We now have maps between the Hecke algebras of

G and M and also maps between cohomology groups related to these two groups
on which these algebras act. The following lemma says that they are compatible.

Lemma. [Tors, V.2.8] The following diagram commutes
T — End(H*(0XE%))
5 1 T
T S Hom(Hi(XM), H'(XM))

We also have the following corollary.

Corollary. [Tors, V.2.4] Let T and TM be the images of the corresponding Hecke
algebras in End(H (0XE®)) and in End(H}(XM)). Then there is a commutative
diagram

T —> T
St L
™ - T

of Z,-algebras.

Proof. To deduce the corollary from the lemma one only needs to know that a
Hecke operator T € T™ induces the 0 map H:(XM) — HY(XM) if and only of it
acts trivially on the interior cohomology, which should be obvious because Hecke
commutes with the map between compactly supported cohomology and ordinary
cohomology. |

2.2.5. Calculating the partial Satake transform. [To be completed. There is an
annoying issue of normalization, see my remark on normalizations of the Satake
isomorphisms and the Hecke polynomials earlier.| Recall that we have identified
the local Hecke algebra for G = Spa,, (tensored with Z,[v/1]) as

TuVI) = Z VI X, . XS (/2
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while the local Hecke algebra for M = GL,, (tensored with Z,[v/1]) was identified
as

TV VI = Z,[VIIX . XG5
We have also defined a polynomial P, of degree 2n + 1 with coefficients in T}
and a polynomial P; of degree n with coefficients in TM[v/I]. These are the Hecke
polynomials at [ ¢ S for G and M respectively. The net result is this.

Lemma. After possibly renormalizing the partial Satake transform (or, equiva-
lently, multiplying the Hecke operators which appear as the coefficients of the Hecke
polynomials by appropriate powers of 1) S$; carries P,(X) to

(1= X)R(X)B(X)
where P is obtained from P by the substitution X; — X;l.
2.3. End of the proof of Theorem 1.

2.3.1. Shifting Hecke eigensystems from XM to Xg. Let vM : TM — F, be a
system of Hecke eigenvalues occuring in H{(X¥ F,) (i.e. factoring through TM).
We ignore the slight difference between H®, H: and H{ (with which one has to deal
eventually). Recall that our goal is to attach to it a certain n-dimensional Galois
representation of Gg over F,. Using the last corollary we see that

p=9pMoS:T =T,

factors through T, i.e. occurs in H (X E% F,).
We now go back to the exact sequence

H (Xg,F,) — H(0XES F,) - H (Xg,F,)

and find out that H' (X g, F,)[¢)] # 0 or HP (X g, Fp,) )] # 0.

Now suppose we had the following analogue of Theorem 4, but with the singular
cohomology with compact supports H:(X g, F,) replacing the coherent cohomology
(space of weight & cusp forms) HO(X;(/@ ,wh ®T).

Theorem 5. [Tors, V.1.11] Let 1 : T — F, be a system of Hecke eigenvalues
occuring in Hi(Xk,F,) (i.e. factoring through the image of T in the endomorphism
ring of this space). Then there exists a unique continuous semisimple representation

Oy : GS — GL2n+1(IFp)
which is self-dual, and such that for anyl ¢ S
det(1 — X - oy (Fry)) = %(BPi(X)).

Using this theorem we would be able to attach to any system of Hecke eigenvalues
occuring in H!(Xf,F,) a Galois representation with the desired properties, and
by Poincaré duality, also to eigenvalues occuring in H(Xk,F,). Thus to ¥ we
will have attached a 2n + 1-dimensional (self-dual) representation whose Frobenius
determinant at [ is equal to the Hecke polynomials P, of G; = Spon(Qy) for every
1 ¢S.

This is not the end of the story, because our Galois representation is 2n + 1-
dimensional (and self-dual) while we are looking for an n-dimensional representation
(which need not be self-dual). In the next subsection we briefly explain how to
use the fact that ¢ comes from ¢, a system of Hecke eigenvalues for GL,,, to
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finally construct an n-dimensional representation as in Theorem 1, whose Frobenius
determinants are equal to the Hecke polynomials of GL,,. See part V.3 of [Tors|,
called “divide and conquer”. Scholze uses a trick from [HLTT], of twisting »* by
infinitely many 1-dimensional Hecke characters. One also needs, of course, to relate
the Hecke polynomials for Sps, and for GL,, but this comes from the calculation
of the partial Satake transform

S5 T=T% - TV

which we have done above.

The bulk of Scholze’s work is, however, in deducing Theorem 5 from Theorem
4. We are now in the realm of algebraic geometry (on Siegel modular varieties) but
Scholze has to introduce new kinds of spaces which only live at the limit, when we
add more and more level at p. This is where perfectoid spaces enter the picture.

Recall how how Galois representations are attached to eigenclasses in cohomol-
ogy in the classical case of modular curves (n = 2). First, since we are deal-
ing with curves, every torsion class comes by reduction modulo p from a class in
Helt(XK/@, Q,). But the latter is (as far as the Hecke action goes, if we forget Galois
action) nothing but singular cohomology tensored with Q,,. Assume for the moment
that we have replaced X by the complete modular curve. The difference between
the cohomologies of the two is easy to control. Then via the de-Rham isomorphism
and the Hodge decomposition, the singular cohomology (tensored with C) can be
replaced by

H°(Xg/c, Q) & HO (X, Q).

Finally, H*(Xg,c,Q) ~ H°(Xg/c,w? ® I) since Q ~ w? ® T by the Kodaira-
Spencer isomorphism (or by a direct calculation of factors of automorphy on H,
and comparison between the analytic and the algebraic categories). All this is
either missing or far from tivial in higher dimensional cases, but most annoying is
the fact that torsion classes in general can not be lifted to characteristic 0.

2.3.2. Getting n-dimensional representations from 2n + 1-dimensional ones. As
promised, we have to explain how the fact that ¢ comes from ¥ allows us to
construct from the 2n + 1 dimensional representation provided by Theorm 5, an
n-dimensional representation as in Theorem 1.

Let ' be a finite group, F an algebraically closed field, p a d-dimensional semi-
simple representation of I" over F and P,(g) = det(1 — Xp(g)) the characteristic
polynomial of p(g). Suppose that there is an integer e < d and for every g € T’
polynomials Q(g) and Q’(g) of degrees e and d — e respectively, such that

P,(g9) = Q(9)Q'(9).

When is it true that p = 0 ® ¢’ with P, = Q and P,, = Q' ? If this is so, let
x be an arbitrary character of Z, and consider the representation o ® x of the
group I' x Z whose characteristic polynomial at (g,n) is Q(g)(x(n)X). Similarly
consider the representation o’ ® x~! whose characteristic polynomial at (g,n) is

Q'(9)(x *(n)X). Then
Py (9,m) = Q9)(x(n)X)Q'(9) (x " (n) X)

is the characteristic polynomial of the representation (¢ ® x) ® (¢’ @ x 1) of I x Z.
The following proposition says that this is also a sufficient condition.



PERFECTOID SPACES AND GALOIS REPRESENTATIONS 21

Proposition. [Tors V.5.8] Suppose that for every x : Z — F* there is a rep-
resentation of I' x Z whose characteristic polynomial is given by P, (g,n). Then
p=0c®c with P, =Q and Py = Q.

Recall that 9™ is a system of eigenvalues of TM occuring in Hf(X%,Fp). Let
lp be an auxiliary prime not in S and So = S U {lp}. Let

X: Q¥ \AX — F:
be any character ramified only at [y and use the same symbol to denote the associ-
ated Galois character (a character factoring through Gal(Q(ug)/Q)). For I ¢ Sp
define ' .
Py (X) = P(x(Fr)™'X), Piy(X) = R(x(Fr)X)
(polynomials with coefficients in TM) and P, (X) = (1 — X )P, (X)P,(X). Note
that the roots of (P, ) are the reciprocals of the roots of ¥™ (P, ).

After shrinking K 1,, one can easily check? that there is a system of Hecke eigen-
values* ¢ : TM — F,, occuring in H{ (X, F,), such that for every I ¢ Sy

D (P) = M (P, o3 (B) = oM (Py).
It follows that if we let ¢y = ¢M 0 S§} : T — F, then

wx(pl) - 1/JM(PI,X)-
Apply Theorem 5 to this ¢, which as before, occurs in the cohomology of a Siegel
modular variety (with the shrunken K). We get a Galois representation

Oy,x - GSO — GL2n+1(Fp)
which is self-dual, and such that for any [ ¢ Sy

det(1 — X - oy, (Fr1)) = ¥y (Ri(X)) = (1 = X)9M (P v ™ (By).

The (1—X) term allows us to split off from o, ,, a copy of the trivial representation.
Let I be the finite quotient of Gg through which o, factored. Then (with our fixed
choice of ly) for all the x factoring through the unique Z;, extension of Q, oy
factors through I' x Z;, and we are essentially in the situation of the proposition,
except that Z is replaced by Z;,. A little algebra allows us to deduce, as before, the
existence of an n-dimensional direct summand of o, whose associated characteristic
polynomial at Fr; is ¥ (P)), as predicted by Theorem 1.

2.4. Scholze’s main theorem and where the problem is. Granted Theorem
4, it is clear that to deduce Theorem 5, it is enough to prove the following theorem.

Theorem 6. [Tors I.5 and IV:S’.I] Let X be the Siegel modular variety of some
level K as before and 1 : T — F,, a system of eigenvalues occuring in H:(Xk,F,).
Then there exists a K' C K obtained by shrinking K, and an integer k > n, such

that v is the reduction modulo p of a system of eigenvalues U which occurs in
0 * k * - - *
H (XK,/Zp,w ®7T). Here XK'/ZP is an integral model of XK,/@p.
3Use the cup product
(prit ) H' (X)) @ HO(X )= H (X,

4There is a slight abuse of notation here, as we must now take the Hecke algebra prime to So
and not only S
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Indeed, to the system of eigenvalues ¥ occuring in HO(X* Wk ®T) we can

K’/Zp )
attach, by Theorem 4, a representation into GLanJ’_l(Zp) whose Frobenius determi-
nant at [ ¢ S is U(P,(X)). The Frobenius determinant at ! of the reduction modulo
p of the same representation is ¢ (P, (X)), as required.

Here are three difficulties that one faces when trying to prove theorem 6:

e We are given a topological eigenclass, and we are asked to construct a
geometric object: a modular form with the same eigenvalues, namely, a
section of a line bundle. This requires to compare between topological and
analytic (or even better, coherent algebraic) cohomologies. The prototype
of this is the de Rham theorem on a complex projective variety, which is
a comparison theorem between singular cohomology with coefficients in C
and analytic or (equivalently, by GAGA) algebraic de Rham cohomology
(hyper-cohomology of the complex of algebraic differential forms). p-adic
comparison theorems between p-adic étale cohomology and de Rham (co-
herent) cohomology do exist, but they require that we enlarge the coeffi-
cients to very large rings (Fontaine’s rings B-) whose construction stimu-
lated Scholze’s notion of a perfectoid ring.

e A further twist is that the topological class with which we start lives in
characteristic p and need not lift to characteristic 0, where the geometric
object is eventually constructed. It turns out that if we add level structure
at p (shrink K,) we can lift it modulo p™ and the more level structure at p
we add, the larger we can make m, but to lift it to characteristic 0 we need
“to go to the limit” over K.

e Finally, we must relate an ith cohomology class to a global section. For
this Cech cohomology is useful (and perhaps inevitable). In any reasonable
cohomology theory, if i/ = {U,} is a covering of a space X and F is a sheaf,
then one has the spectral sequence

HY (U, H (F)) = HT (X, F).

Here H’ is the presheaf U — H7(U, —). For this to be useful, we want the
U, to be such that for any finite set of indices J = {jo, ..., jx}, if we denote
by U the corresponding intersection of the Uj,, then U is F-acyclic. That
every cover has a refinement by such a cover is usually called the “Poincaré
lemma”. However, in our case we can not use any reasonable algebro-
geometric topology (étale, or even rigid-étale) to reduce the computation
of H(Xk,F,) to Cech cohomology, because the Poincaré lemma does not
hold in these topologies: there need not exist a cover, for which the Fp—
cohomology of its members vanishes. The picture that one should have in
mind is the unit circle. Its universal covering space is the real line. In
the classical topology we can cover it by contractible open intervals. But
in the étale topology, every finite cover will be again the circle, and only
in the limit will the fundamental group disappear. One might think that
introducing the topological space

lim St
+—
where the limit is, say, with respect to the maps z — 2P, will solve the

problem. But this space (called the “solenoid”) is not a manifold. A new
type of space appears at the limit.
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Scholze’s ingenius idea is that all three problems are resolved by introducing a new
class of spaces, the perfectoid spaces, which show up (often, but not exclusively)
as limits of towers of “ordinary” rigid analytic spaces. In particular, for Shimura
varieties such as X this is achieved by shrinking K.

3. PERFECTOID SPACES [5 WEEKS]
3.1. Perfectoid fields.

3.1.1. Definition. Throughout this chapter we fix a prime p. A non-archimedean
field is a field K equipped with a non-archimedean norm |-| : K* — R*. We denote
by K° or by O the valuation ring and by K or by my its maximal ideal. The
residue field is K/K% and we assume it is of characteristic p. Do not confuse the
residue field with K°/pK?°, a ring which may have many nilpotents, unless K is
absolutely unramified.

Definition. A perfectoid field is a complete non-archimedean field K of residue
characteristic p such that (i) the value group |K*| C R* is non-discrete (ii) the
map @ : z > 2P is surjective on K°/pK?°.

Note that if the characteristic of K is p, the second condition simply means that
® is bijective, i.e. K is perfect.

3.1.2. Ezamples.
e C,, the completion of a fixed algebraic closure of Q.
The completion of Q, (jtpe)
The completion of Q,(p*/?™)
The completion of F,((t))(t'/7™)
Q,, is not perfectoid ((i) does not hold)
The completion of Q,(p*/*™) is not perfectoid if I # p ((ii) does not hold)

3.1.3. Tilting. Given a perfectoid field K we define another field K by setting
OKb = lim(OK/pOK)
o

where the transition maps are the Frobenius morphism ®. This is easily seen to
be an integral domain in characteristic p, and we let K° be its fraction field. If
char.K = p this is just K. Assume from now on that char.K = 0. If

x = (20, 71,%2,...) € O
and we let Z, € Ok be any lift of x,, then (n > 0)

2™ =lmat

is independent of the lift, (z(»*1))? = £(") and this (extended to the fraction field)
identifies K” (multiplicatively) as the set of vectors (z(™) with entries from K
satisfying (z(*1))P = ("), The addition can then be defined

@) + (™) = (=)
with 2(") = lim,, (z("+™) 4y +m))P"  Write 2# = 2(9). If we define a norm on K”
by
2| = |27
then it is easily checked that K” becomes a perfectoid field in characteristic p,
called the tilt of K, with valuation ring Ox». The map z + 2 is multiplicative
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and (by definition) norm preserving. It is in general not surjective, e.g. in the
second example above, K does not contain all the p-power roots of p. Note that
there does not exist a map “z — 2°” in the opposite direction, namely from K to
K.

For example, if K is the completion of Q,(p'/?™) and we let

t= (p,pl/p,pl/pz,...) € O
then K’ becomes the completion of F,((t))(t'/7™).

Remark. Tt is extremely interesting to study, for a given perfectoid field L in char-
acteristic p, the “moduli space” of all the perfectoid fields K in characteristic 0
yielding L as their tilt. This leads to the Fargues-Fontaine “curve” [FF].

In the sequel we fix any element 0 # 7 € K with |p| < |7| < 1. Then, as in the
above example, there exists an element 7” € K” with |7°| = ||, and then

OK/WOK >~ OKI;/TFbOKb, (’)K/mK >~ OKb/me.

For the first isomorphism note that 7°Oy» is the kernel of the surjective homo-
morphism Og» > z — xogmodr € Ok /mOk. The isomorphism between the residue
fields follows at once.

Fontaine and Wintenberger [FW] proved the following important theorem, which
allows one to reduce many questions about local fields in characteristic 0 to local
fields in characteristic p.

Theorem. Let K be a perfectoid field. FEvery finite extension of K is again a
perfectoid field. Tilting induces a natural equivalence between the category of finite
extensions of K and the category of finite extensions of K° (although one concerns
fields in characteristic 0 and the other fields in characteristic p). In particular,

there is a canonical isomorphism between the absolute Galois groups of K and of
K.

For more on this theme see [Del]. For two applications of these ideas, to explicit
reciprocity laws, and to Néron models of tori, see [dS1] and [dS2].

3.2. Almost mathematics.

3.2.1. The category of almost modules. Faltings’ notion of “almost mathematics”,
expounded in the book of Gabber and Romero [Ga-Ra], is a systematic approach
that explains the argument behind the theorem of Fontaine and Wintenberger.
Observe first that if K is a perfectoid field, then m% = my because the valuation
is non-discrete. Call an Ox-module almost zero if it is annihilated by mg. (More
generally, the almost-zero elements in M are M[mg].) The almost-zero modules
make up a full subcategory C of the category Ox-mod. Call a morphism between
two Og-modules an almost isomorphism if its kernel and cokernel are almost zero.
Then thanks to m% = my an extension of almost-zero modules is almost zero, and
the composition of two almost isomorphisms is again an almost isomorphism. Thus
the category C is a thick Serre subcategory (closed under sub-objects, quotients
and extensions) and we may localize by it (i.e. by the multiplicative set of almost
isomorphisms) and form the category

O%-mod= Og-mod/C
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which we call the category of almost Og-modules. Recall that its objects are
the same as those of Og-mod, although we denote a module M by M® when
considered in this new category. The morphisms, however, are such that all almost-
isomorphisms are inverted. As a result, two distinct morphisms between M and
N in the category of modules, may become the same morphism between M* and
N® in the almost category, and it does not make sense to talk about the image of
an element of M under a morphism from M?* to N*. Note that Ok /mg is almost
isomorphic to 0, but Ok /pOk is not. We follow the excellent exposition [AM] by
Bhatt.

In general, computing in localized categories is a nuisance. In our case it is easy,
because the functor M — M has right and left adjoints. In fact, for M € Og-mod,
let

M, = HomoK(mK,M), My =mg ®o, M.
Then
Homo, (M, N) = Homos (M“,N*) = Homo, (M, N.).
The map from Homo, (M, N) to Homes (M*?, N*) associates to ¢ the equivalence
class of ¢ o (x ® 1) where x : Oxg — m is the inverse of the almost isomorphism
mg — Og. One proves that this map is bijective and respects the Og-module
structure. That Homeo, (M), N) = Home, (M, N,) is standard.

Exercise. (a) (OK)* = (mK)* = OK, (OK/mK)* = {O} (b) (OK)! = (mK)! =
mg, (Og/mg) ={0}. (c) For any N, Homp, (O /mg, N) = N[mg] is the mod-
ule of almost-zero elements in N, but Homos ((Ox /mx)*, N¢) = 0.

Note that (M))* and M are canonically isomorphic (in the almost-category)
and similarly (M,)* and M®, but M and M, or M and M, are in general not
isomorphic (in the usual category of modules). Thus going from the almost world
to the usual world and back does not change anything, but not vice versa.

The module N, is called the module of almost-elements in N. Note that it is
equal to Homes (0%, N?) and that it does not contain any almost-zero elements
except 0. There is a canonical map of N to N, whose kernel is N[mg| and one has
(N.)x = N,. Here is another example.

Exercise. (a) Assume that K is as in the third example above. The module
(Ok /pOk )+ contains “elements” of the form

oo
_ n
T = E pl 1/p T,
n=1

where z,, € Ok /pOk are arbitrary, but only finite sums (i.e. sums where all but
finitely many x,, vanish) are in Ok /pOk. What we mean by « is the homomorphism
mg — Ok /pOk sending a to az. Notice that ax makes sense because ax,, vanishes
for almost all n. (b) (Og/mgp). = (Ok/pOk ).

The category O%-mod is an abelian tensor category (tensor product is inherited
from the one between usual modules) and has internal hom’s®. These are the almost
homomorphisms

alHom(M*,N®) := Homoa (M*, N“)".

5An object Hom(B,C) € A in an abelian tensor category A is called the internal hom of B to
C' if it represents the contravariant functor A ~» AbelianGroups sending A to Hom (A ® B, C).
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We emphasize that although objects of the almost-category are sets, since mor-
phisms are not set-maps, kernels of morphisms are defined only up to unique iso-
morphisms, so the kernel of ¢ : M* — N may not be identified with any submodule
of M. However, the module of almost elements ker(¢), is an ordinary submodule
of M,.

Exercise. Exactness properties: (a) M ~» M, is an exact functor on Og-mod
(b) N ~ N, is left exact, but in general not right-exact (hint: use the previous
exercise) (c) the functor M ~» M® is an exact functor from Ox-mod to O%-mod
(since it has both right and left adjoints).

Since tensor products are defined and satisfy the usual rules, it is possible to
define O%-algebras (“almost Ok-algebras”) by the standard diagrams in the cat-
egory of almost-modules. If A is an “almost Ox-algebra” then A, is an ordinary
Ox-algebra. Since A = (A,)® every “almost O-algebra” comes via localization
from an ordinary Og-algebra.

3.2.2. Almost commutative algebra. Let R be an O-algebra and M an R-module.
We call M® (almost) flat over R® if the functor X — X ® g M is exact in the almost
category. This is equivalent to the standard Tor groups Tor*(M, —) being almost
zero for i > 0. Flatness over O% is particularly simple: M“ is flat over O% if and
only if M, is flat over Og.

We call M*® almost finitely presented if for any ¢ € m there exists a finitely
presented R-module M, and a map f. : M. — M whose kernel and cokernel are
killed by e. It is uniformly almost f.p. if there is an integer n such that all the M,
are generated by n elements. For example, my is almost finitely presented, but not
finitely presented in the ordinary sense.

An A-algebra B is called unramified (in the almost category, or almost unrami-

fied) if there exists an almost element e € (B ® 4 B), satisfying

06226

e ule)=1

e ker(u)-e=0
where 4 : B®4 B — B is the multiplication map. (Note that in standard com-
mutative algebra, if B is of finite type over A, then the existence of e € B ®4 B
satisfying the three properties is an equivalent condition for B/A being unramified.
Geometrically, if X = SpecA and Y = SpecB it means that the diagonal embedding
of YinY xx Y is an open immersion. We call e therefore a diagonal idempotent.
See [Mi], Proposition 1.3.5). It is (almost) étale if it is (almost) flat and (almost)
unramified and finite étale if it is in addition almost finitely presented.

There are several competing definitions for these notions in the almost category.

It turns out that the given ones work the best.

Example. Let p > 2 and consider the fields
Kn = Qp (un)

where ugp = p and v = u,_1. Let K be their union and K its completion, a
perfectoid field. Now consider Ly = Q,(vg) where v3 = ug = p and L, = LoK,,
L = LoK. It is easily seen that L, and L are quadratic extensions of K, and
K respectively. Now L/K is unramified, of course, and this is reflected by the
isomorphism

Lk L~L®L, xz®y— (vy,ay).
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The idempotent e corresponding to (1,0) under this isomorphism is the unique
element of L ®k L satisfying the above equations. If v € L is any element with
v = —v and if u = v? € K we can take

vyv 1®1
+

2u 2

Now, suppose we want to do the same with the rings of integers. Then O, =
Ok, [vn] with v2 = u,,. To see this it is enough to note that for appropriate integers
i, the element viul is a 2p™ root of p. Thus choosing v, for v shows that we can
make the denominator in the first term in e very close to a unit, although, strictly
speaking, it will never be a unit, and we will not be able to take e € (O ®¢p,. OL).
However, the argument shows that e € (O ®o, Or)« so Of is almost unramified
over Ok . This idea, that the ramification is swallowed in the tower, is due to Tate.

The same type of argument shows that although Oy, is not a finite O x-module®,
it is almost finitely presented. In fact, it is uniformly almost finitely presented in
the sense that all the M, can be taken of the same rank (here, 2). Flatness is easy,
so altogether this shows that the extension is finite étale in the almost category
although it is neither finite nor étale in the usual sense.

We remark that Qg, o, =0 (and is not only almost zero). Indeed, at a finite

level v2 = w, yields 2v,dv, = 0, and this in itself only shows that the different
at a finite level is (2v,,) which becomes smaller and smaller. However, assuming
vP | = vy yields pv? | dv,41 = dv, so dv, = 0 in the n + 1 step already, hence in
the limit. Since Of, = |J Ok [v,], the module of Kéhler differentials vanishes at the
limit.

Here is another example.

Example. Let K be a perfectoid field of characteristic p and 0 # ¢t € mg. Let A
be a flat Ok algebra, integrally closed in the generic fiber A’ = A[t~!]. Let B’ be
a finite étale A’-algebra and B the integral closure of A in B’. Then if A is perfect
(®: A— Ais surjective), B® is almost finite étale over A%.

Proof. Let e € B’ ® 4 B’ be the diagonal idempotent. Then for some N > 0
tVe € B®4 B. If A is perfect then A’ hence B’ hence B are all perfect. Since
el/P = ¢ we have tV/P"e¢ € B®,4 B for all n and hence e is an almost element of
B ® 4 B. This shows that B is almost unramified over A. Note how the fact that
A was perfect is used in the proof.

Let tr be the trace map from B’ to A’. Since B is integral over A, and A is
integrally closed, it maps B to A. Now let € € mg and consider ee = Zf\il Ti®Y; €
B ®4 B. The endomorphism of B

b—=trel((bel)e)
is multiplication by €. But it factors as B — A" — B where the two maps are
b (tr(be:)), (ai) = Y aiyi.

Thus for any e the module eB is finitely generated over A, which means that B
is almost finitely generated. With a little more effort one can prove that B is flat
and almost finitely presented over A (see [Perf, Prop. 4.10]). Since we have already
seen that it is almost unramified, B is almost finite étale over A. ([

6Since Oy, is integral over Ok this means that Oy, is not even of finite type as an Og-algebra.
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3.2.3. Deforming almost finite étale algebras over nilpotent thickenings. The most
important property of finite étale maps is that they lift uniquely over nilpotent
thickenings. The same holds in the almost category. As before, fix a non-zero
7 € mi which divides p.

Theorem. [Perf, Thm 4.17][Ga-Ra, Thm 5.8.27] Let A be an Ok-algebra and
assume that in the category of O% -modules A is flat over O% and m-adically com-
plete: A ~ lim, (A/n™A). Then the functor B — B ®4 A/m is an equivalence of
categories

between the corresponding categories of almost finite étale algebras. Any B € Afét
is again flat over O% and w-adically complete.

The theorem of Fontaine and Wintenberger is now a consequence of the following
string of equivalences between categories

Ko = (O%)gat = (Ofc/mget, = (s /7" )get, = (O o = Ky

The equivalence in the middle is tautological as O% /7 = 0%,/ 7°, and being almost
finite étale over this ring is the same whether we view it as an O%-algebra or O%,-
algebra. The two equivalences on both sides of it follow from the theorem.
Finally, the outermost equivalences are properties of perfectoid fields and will
be discussed in the next section, in the more general setting of perfectoid algebras.
One has to show, as we have seen explicitly in one example, that for any finite
separable field extension L/K, the corresponding extension O, /O is almost finite
étale. If K is of characteristic p, this is the case A = K of the second example
above, as Op is the integral closure of Ok in L. In general, the proof is similar.

3.3. Perfectoid algebras.

3.3.1. Definition.

Definition. Let K be a perfectoid field. A perfectoid K -algebra is a commutative
Banach K-algebra R such that the subring R° of power-bounded elements is a
bounded subring, and such the Frobenius ® : x ~— xP is surjective on R°/pR°.
Morphisms between perfectoid rings are continuous morphisms.

The condition on R" is made to ensure that the topology induced by the basis
at 0 consisting of all multiples of R® by scalars from K, coincides with the metric
topology induced by the Banach norm. Recall that the norm on a Banach algebra
(unlike a valued field) is only assumed to be sub-multiplicative. In particular,
this condition implies that perfectoid algebras are reduced, i.e. contain no non-
zero nilpotents. One can thus replace the given Banach norm by the spectral
Banach norm [|.|| g, whose unit ball is precisely R, obtaining an isomorphic (albeit
not necessarily isometric) Banach algebra. A perfectoid K-algebra R embeds in
a perfectoid field if and only if its spectral norm is multiplicative (and not only
sub-multiplicative).

Note that we consider perfectoid K-algebras only up to isomorphism, and not
up to isometry. In other words, we care about the ensuing Banach topology, but
we allow to change the Banach norm to an equivalent one.
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3.3.2. Ezamples.

e The basic example is R = K<T1/T’W>. This is, by definition, K ®o,
Ok (TV/?™) where O (T/P™) is the p-adic completion of O [T/P™] =
U Ok[T'/?™]. Geometrically, we should think of this as the inverse limit of
the closed unit disc under raising to power p map. We can give the same
example in several variables. Here the norm is actually multiplicative and
RO = O (TP

e [Perf, Prop. 5.23] Let R be a perfectoid K-algebra and S an R-algebra
which is finite étale over R. Then: (a) S is naturally equipped with a Banach
topology which makes it into a perfectoid K-algebra, (b) The ring of power
bounded elements S° is almost finite étale over R°. This generalizes what
we have seen for R = K and S = L a finite field extension.

3.3.3. Tilting. Let R be a perfectoid K-algebra. Fontaine’s construction
RbO _ w@(RO/pRO)
defines an Oy -algebra and
b b b
R =R’ ®o,, K

is identified, as usual, multiplicatively, with @¢R, i.e. with sequences

= (2,20, )

of elements of R with (D7 = z() We let 2# = 2(©). Then z — z# is a mul-
tiplicative homomorphism from R’ back to R. We call R the tilt of R. It is a
perfectoid K’-algebra with subring of power-bounded elements R*°. Note that ® is
bijective on R*°. In fact it is bijective on S (hence also on S) for any perfectoid
K’-algebra S because S° = S°/pS°, ® is surjective by assumption, and injective
since perfectoid algebras are reduced.

Theorem. [Perf, Thm 5.2] The functor R ~ R’ is an equivalence between the
category K -Perf of perfectoid K -algebras and the similar category of perfectoid K°-

algebras. Under tilting, R® is a perfectoid field if and only if R is a perfectoid
field.

This theorem generalizes the theorem of Fontaine and Wintenberger from fields
to the relative set-up. In fact, more is true. Scholze defines what he means by a
perfectoid O%-algebra (in the category of almost algebras). This is a m-adically
complete, flat Of-algebra A for which

d:A/r/PA~ AJTA.

Here by 7!/ we mean any element of K with |7'/?| = |7|'/? (7 itself need not be
a pth power). Scholze then shows that a perfectoid K-algebra, which is an object
“over the generic fiber of Og”, has a canonical extension to a perfectoid O%-algebra,
and the latter is canonically and uniquely determined by its reduction modulo 7.
Moreover, any perfectoid O% /m-algebra (i.e. a perfectoid O%-algebra killed by )
has a unique deformation to a perfectoid Of%-algebra. Thus, there are equivalences
of categories

K-Perf = O%-Perf = (0% /m)-Perf
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of perfectoid algebras in the correspodning categories of algebras (or almost alge-
bras), and similarly between these three categories and the three tilted categories
over K”, with the element 7° replacing .

In these equivalences of categories, the first (extension from the generic fiber in
the almost-world) is relatively easy, and only uses “almost mathematics™ To go from
R € K-Perf to A € O%-Perf take A = R%®. To go from A to R take R = A,[r 1]
and put on it the Banach structure in which A, is the unit ball. In showing that
these two maps are inverse to each other one has to use the fact that for R?, the
ring of power bounded elements in R, (R%®), = R" (not true for a general A).

On the other hand, the second equivalence (uniquely deforming a perfectoid
Of /m-algebra to a perfectoid O%-algebra) is more subtle. We have already en-
countered this equivalence for almost-finite-étale algebras. In general, it is done via
the theory of the cotangent complex of Quillen, as generalized by Illusie. See [Perf,
Theorem 5.10].

We make a few general remarks on deformations. If f : A — B is a map
of commutative rings then there is a complex Lp,4 in the derived category of
B-modules (in non-positive degrees) D<°(B-mod) which controls the deformation
theory of f. We give two simple-minded examples. If f is smooth then

Lp/a=Qp40]

If B = A/I and I is generated by a regular sequence of elements (f then corre-
sponding to a nice closed embedding) then

Lpsa = (I/1%)[-1]

is the conormal bundle (in degree -1). In both these examples it is known that
deformation theory is related to Lp,4. Let X = SpecA, Y = SpecB and globalize,
leaving the affine case, so that f corresponds now to amap f:Y — X. In the first
case the obstruction to lifting f : Y — X to a square-zero thickening X of X lies in
H*(Y,Ty;x) (Kodaira-Spencer), and if the obstruction vanishes the isomorphism
classes of these liftings become a torsor under H'(Y, Ty, x)- In the second case, the

obstruction of extending f : Y — X to a square zero thickening Y of Y lies in
H(Y, Ny/X) and the isomorphism classes of extensions make up a torsor under
HO(Y, Ny/x). Note that the shift by 1 in the degree of the cohomology reflects
the shift by 1 in the degree in which Qj y = Ty, or I/I? = Ny, are placed
in Ly,x. In some cases, e.g. when in the first case X =X x,kl] (2=0,Fka
field) the obstruction vanishes, as there is a trivial deformation. See [Luc|. What
we have to remember from all this is only the extreme case: when Ly ,x = 0, f
deforms uniquely.

For example, suppose that A =F, and B is a perfect reduced A-algebra. Then
® : B ~ B is an isomorphism so by functoriality d® : Lg/4 ~ Lp/4. But in
characteristic p we always have d® = 0, hence Lp,4 = 0 and B deforms uniquely
over nilpotent thickenings of A. For example, there exists a unique flat Z/p"Z-
algebra W,,(B) lifting B, explicitly given by the Witt vectors construction.

Gabber-Ramero and Scholze extended this to the perfectoid world. If A —
B is now a morphism of O%-algebras, they show that there exists a complex
Lp/a € D(B-mod) with the expected properties, and show that if B is a perfectoid
0% /mO%-algebra then Lp/0g /=) = 0. The proof of this relies on the fact that the

relative Frobenius is again an isomorphism between B/7'/?B and B. Furthermore
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the unique lifting of B to an O% /7" O%-algebra is again perfectoid. Going to the
limit over n gives the desired equivalence

O%-Pert = (0% /)-Pert.

Another way to prove the theorem “directly at the level of generic fibers”, avoiding
almost mathematics altogether, is to write down explicitly an inverse functor using
the map O of p-adic Hodge theory (see [CDM], p.6, or [Perf], Remark 5.19). This
invokes (not surprisingly) Witt vectors again and we do not give it here. However,
the extra information provided by the equivalence with the categories of perfectoid
almost-algebras is needed elsewhere.

3.3.4. “Almost purity” theorem. Note that the equivalence of categories
Kigr, = (Ok)get, = (Ok /et

that we have encountered in the Fontaine-Wintenberger theorem is “embedded” in
the equivalence between categories of pefectoid algebras, because every finite étale
K-algebra is automoatically perfectoid (and similarly over O%). The same holds
when we replace K by any R € K-Perf (resp. O% by R°® where R? is the ring of
power-bounded elements in R).

Proposition. [Perf. Theorem 7.9 and Prop. 5.3, especially discussion following
it] Let R be a perfectoid K-algebra and S € Rfét' Then S € K-Perf (resp. S% €
0% -Perf, resp. S°%/m € (0% /n)-Perf), S°% is (almost) finite étale over R°® and
this establishes an equivalence of categories

Rpg = R}gt =~ (R% /) fét-

3.4. Perfectoid spaces.

3.4.1. Perfectoid affinoid K -algebras. Let K be a perefectoid field as before and R
a perfectoid K-algebra. We think of R as the ring of “functions” on a certain space
(which is yet to be defined). Let R* be an open and integrally closed (in R) subring
of RY. Note that R itself is open and integrally closed (easy exercise). In general
R™ must contain all topologically nilpotent elements (because it is integrally closed
and open), so mgR? ¢ Rt c R°, Rt is almost isomorphic” to R, and for all
practical purposes one may asssume that the two are equal. One should think of
R* as the subring of functions which are “everywhere bounded by 1 in absolute
value”.

Definition. A perfectoid affinoid K -algebra is a pair (R, R™) where R is a perfec-
toid K-algebra and R*an open and integrally closed subring of RP.

As with perfectoid K-algebras, the categories of perfectoid affinoid K-algebras
and perfectoid affinoid K’-algebras are equivalent under tilting.

7Scholze does not even assume that Rt is an O -algebra, although this actually holds in
almost every application. Here we implicitly assume it.
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3.4.2. Valuations. Let I' be a totally ordered abelian group (example: R? with the
lexicographic ordering). Write I multiplicatively.

Definition. A valuation on a commutative ring R with value group I is a surjective
map |-|: R — I'U{0} such that |0| = 0, |1] = 1, |zy| = |z|ly| and |z + y| <
max{|z|, |y|}. The kernel of the valuation is the set n of elements with |z| = 0. It
is a prime ideal and R/n is a domain. The valuation extends to a valuation of the
field of fractions F' of R/n. Let

D ={x € Fl|lz| <1}.

Then D is a valuation ring in F (for every =, x or ! lies in D). Let m be the
unique maximal ideal of D. Then p = mnN (R/n) is a prime ideal and (R/n), C D
and is dominated by D. If R is a topological ring the valuation is called continuous
if for every v € T' the set of x with |z| < v is open. Two valuations are called
equivalent if |z| < |y| holds in one if and only if |z|" < |y|" holds in the other.

Note that we do not insist that T is of rank 1 (equivalently, embeddable in R).
A typical non-rank 1 valuation is obtained when I' = Z? with (n,m) < (n/,m/) if
n <n orn=n"and m < m'. For R we take Z,[t]. We let v(f) = (—n,—m)
if n = ordyf and m = ordpa,(f) where f = Y27 ap(f)t*. In this case n = 0,
F = Qy(t), D is the collection of f for which |f(0)| < 1, m the collection of f with
|f(0)] <1 and p the maximal ideal (p,t) of R. Here R, C D but the element ¢/p is
not in Ry. Note that m = pD so D is a local ring whose maximal ideal is principal,
but it is of Krull dimesnion 2, the ideal q of all f vanishing at 0 being a prime
ideal. Note also that D is non-noetherian, as q is not finitely generated. In fact,
q= (t,t/p,t/p?,...) and this infinite sequence of generators does not have a finite
subsequence which generates it.

3.4.3. The adic spectrum of a perfectoid affinoid K -algebra. Let (R, RT) be a per-
fectoid affinoid K-algebra. Following Huber [Hu| we define Spa(R, R") (the adic
spectrum of (R, R™)) to be the set of equivalence classes of continuous valuations
on R for which |f| <1 for every f € R*. If z € Spa(R, RT) we usually denote x(f)
by |f(x)|]. We can recover Rt as the set of f € R for which |f(z)| < 1 at every
x € Spa(R, RT).

Remark. (a) This definition works also for R a (usual, not perfectoid) finite type
affinoid algebra, i.e. a quotient R of the Tate algebra K (T, ..., T,) by some (neces-
sarily closed and finitely generated) ideal. In this case one considers in rigid analysis
the mazimal spectrum Spm(R) consisting of maximal ideals m of R, with the asso-
ciated valuation being the unique extension of the valuation of K to a valuation of
R/m (a finite field extension of K). It is then true that Spm(R) C Spa(R, R°), but
Spa(R, R®) contains “points” corresponding to non-maximal ideals in R. However,
rigid analytic geometry, or its variants defined by Berkovich and Huber, always
invoke noetherianity assumptions. Prefectoid rings are never noetherian. (b) The
Berkovich spectrum of R, denoted Sp(R), is the set of rank-1 continuous valuations
on R. A rank-1 continuous valuation automoatically satisfies |f(z)| < 1 for every
f € R° (easy exercise) so Sp(R) is just the rank-1 valuations in Spa(R, R") and is
independent of the choice of RT. (c) As sets we have therefore

Spm(R) C Sp(R) C Spa(R, R")



PERFECTOID SPACES AND GALOIS REPRESENTATIONS 33

The topology that is induced on Sp(R) by the topology defined below on Spa(R, R™)
is the same as the topology defined by Berkovich on Sp(R). In the case of Spm(R)
this is a little more subtle, as the topology defined in rigid analysis on Spm(R) is
not an ordinary topology but a Grothendieck topology.

Let fi,...,fn,g9 € R be such that R=>""" | Rf;. The set
U=U(fi,---, falg) = {x € Spa(R, RT)||fi(z)| < |g(2)[}

is called a rational subset of Spa(R, R"). It is clear that g does not vanish on it,
but one can actually prove more, that if 7 € K and |r|x < 1 then for some N,
|7 (z)|Y < |g(z)] on U. It is easily verified that the rational sets form a basis for a
topology on Spa(R, RT), and that they are quasi-compact.

Let (R, RT) be a perfectoid affinoid K-algebra and (R, R°") the tilted perfectoid
affinoid K°-algebra. For z € Spa(R, Rt) define 2° € Spa(R’, R°*) by setting

(@) = 1f*(2)]
(note that this is compatible with the valuations on K and K°).

Theorem. This assignment defines a homeomorphism between Spa(R, R*) and
Spa(Rb, R'”‘) mapping rational subsets to rational subsets.

This is far from obvious. As Scholze remarks in [ICM], it is not clear a-priori
that 2° is a valuation at all, because the map # is multiplicative but not additive,
so one should show that the strong triangle inequality persists. This is easy, but
even if we grant this, it is not clear that z — z” is injective, because the image of
# is not dense in general. What is crucial in proving the injectivity is a certain
approximation lemma, which roughly says that for every f € R there is a g € R
such that |¢g7#(z)| = |f(z)| except where both f and ¢g# are small. See [Perf],
Lemma 6.5, and [ICM], Lemma 6.6.

The theorem is used in the proof that the structure sheaf Ox constructed below
is indeed a sheaf.

3.4.4. The structure sheaf (Ox,0%) on X = Spa(R, RT). Let X be the topological
space that has just been defined. If U is a rational set of the shape given above, equip
R[g™'] = R[z]/(zg — 1) with the norm for which the image of R*[f1g7!,..., fag™!]
is the unit ball, let

R<flg_17"'7fng_1>

be its completion (a Banach K-algebra) and R <flg*1, ey fng’1>Jr the completion
of the integral closure of R*[fig7},..., fng~']. Then the pair

(OX(U)ao;r((U)) = (R <f19717 .. '7fngil> ,R<flgila .. '7fngil>+)

turns out to be independent of the choices of the f; and g, i.e. depends only on the
set U and not on how this set was constructed. Moreover, restriction of valuations
defines a map
Spa((Ox(U), 0% (U)) — Spa(R, R")

which is a homoeomorphism onto U, preserving rational subsets. The pair of rings
(Ox(U), 0% (U)) satisfies a universal property with respect to maps of Spa(S, S*)
into Spa(R, RT) factoring set-theoretically through U : any such map is obtained
from a unique map of (Ox (U), 0% (U)) to (S, S*) by pull-back of valuations.



PERFECTOID SPACES AND GALOIS REPRESENTATIONS 34

Define Ox (W), for any open subset W C X as the inverse limit of Ox (U) over
the rational subsets U C W and similarly for O% (W).

One of the main theorems of Huber, in the case where R was a finite type affinoid
K-algebra, was that this Ox is a sheaf of K-algebras on X and that it satisfies
Cartan’s theorem A and B. Huber relied strongly on noetherianity. However, in
the context of perfectoid affinoid K-algebras, Scholze managed to prove the same
using the perfectoid assumption as a substitute for noetherianity.

Theorem. [Perf, Theorem 6.3],[ICM, Theorem 6.8] (i) Let (R, RT) be a perfectoid
affinoid K -algebra. Then the presheaf Ox just constructed is a sheaf of K-algebras
and (’)} is a sheaf of sub-O%-algebras. (ii) These sheaves behave well with respect
to tilting, i.e. for every rational subset U the pair (Ox(U),0%(U)) is a perfectoid
affinoid K-algebra which tilts to (Oxb(Ub),O;b(Ub)). (i) For any i > 0 the
cohomology H'(X,Ox) = 0, while H'(X,0%) is almost-zero (killed by m ).

We emphasize that the presheaf (9} satisfies the sheaf axiom only in the almost-
category, i.e. the corresponding diagrams of Ok-algebras are only almost exact.
This is the source of the “almostness” in part (iii). The topological space X with
the pair of sheaves (Ox, O}) is called a perfectoid affinoid space.

Scholze’s strategy for proving the theorem is: (a) First prove part (ii), about
tilting, independently of (i) and (iii). (b) Prove the rest of the theorem in char-
acteristic p, in the special case where R is the completed perfection of a reduced
affinoid K-algebra S of topological finite type (a nilpotent-free quotient of the Tate
algebra K (Ty,...,T,)). Le. take such an S, let ST be an open and integrally
closed sub-O-algebra of S (e.g. S°) and

R* = lim, ((limeS*)/7"), R=K ®o, RF.

Perfectoid affinoid K-algebras (R, RT) of this type are called p-finite. In this case
one deduces easily both the sheaf proprety and the vanishing of Ox-cohomology
in positive degrees from the analogous theorems proven by Tate (Tate’s acyclicity
theorem). Taking direct limit over ® extends the vanishing of O x-cohomology
to an almost-vanishing of O}—cohomology. (c) Prove the theorem in the general
characteristic p case by writing an arbitrary perfectoid affinoid K-algebra (R, R™)
as the completed direct limit of p-finite algebras as in step (b). (d) Deduce parts
(i) and (iii) in characteristic 0 from the characteristic p case using tilting and part
(ii).

As usual, one denotes by Ox , the stalk of the structure sheaf at x € X. It is a
local ring whose maximal ideal consists of all the (germs of) functions in the kernel
of the valuation z, i.e. for which |f(z)| = 0. The residue field k(x) inherits the
valuation | - |,. For example (in the context of Huber adic spaces, the reader may
easily transport the example to the perfectoid world) if X = Spa(K (T),Ok (T))
is the unit disc and x is a closed (type 1) K-rational point, k(x) = K. But if z is
the generic point (the Gauss norm on K (T')) its kernel is 0, and k(z) is the field of
fractions of K (T').

3.4.5. Perfectoid spaces in general. The final step in defining the category of perfec-
toid spaces is standard. A perfectoid space is a space that is glued from perfectoid
affinoid spaces. One works in a very general category V of locally ringed topological
spaces (X, Ox) where Ox is a sheaf of complete topological K-algebras, and where
we further equip the pair (X, Ox) with continuous valuations f — |f(x)| on the
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stalks Ox , for each x € X. Morphisms in V are defined in the obvious way. Huber
defines the category Adic of adic spaces which is the full subcategory of V consisting
of objects which locally are of the form Spa(R, RT), where R is, quite generally, a
Tate K-algebra (a complete topological K-algebra whose topology is defined by a
basis for the topology of the form aRy, a € K, Ry a fixed open subring). Perfectoid
rings (as well as affinoid K-algebras topologically of finite type) are examples of
Tate K-algebras. A perfectoid space is an adic space that is locally isomorphic in
Y to a perfectoid affinoid space.

One way in which perfectoid spaces are better than general adic spaces is that
they admit fiber products (the category of adic spaces does not admit fiber products
in general).

Proposition. [Perf, 6.18] Let X — Y and Z — Y be morphism of perfectoid
spaces over K. Then the fiber product X Xy Z exists in the category Adic and is
again a perfectoid space.

3.4.6. An open problem. It is an open problem whether being a “prefectoid affinoid”
is a local property. More precisely, suppose R is a Tate K-algebra and R* an open
integrally closed subring. Suppose the adic affinoid X = Spa(R, R") is a perfec-
toid space, i.e. is covered by (finitely many) perfectoid affinoids. Is R necessarily
perfectoid, i.e. is X itself a perfectoid affinoid?

3.4.7. Inverse limits. An (adic) affinoid K -algebra is a pair (R, RT) where R is a
Tate K-algebra (not necessarily topologically of finite type) and R is an open,
integrally closed, subring. For any affinoid K-algebra one can define the adic space
Spa(R, R") (as an object in the category V) by the same procedure as before.
If (R, RT) is topologically of finite type then we recover rigid analytic affinoids in
Huber’s sense. If (R, RT) is a perfectoid affinoid K-algebra we recover the perfectoid
affinoid spaces defined above.

The category of affinoid K-algebras does not admit filtered direct limits, hence
the category of adic affinoid spaces does not admit inverse limits.

Let (X;) (¢ > 1) be a tower of reduced adic spaces of finite type over K (e.g. the
adic spaces associated to quasi-projective varieties over K) with finite transition
maps X;11 — X;. Let X be a perfectoid space and

a compatible systems of maps of adic spaces (recall that X is also reduced).
Definition. (i) If all are affinoids, X; = Spa(R;, R}") with R; a Tate K-algebra of
topological finite type, and X = Spa(R, R™) with R a perfectoid K-algebra, then
we say that X is a naive inverse limit of the X; if RT is the m-adic completion of
hgle (i) In general, say that X is a naive inverse limit of the X; and write

X ~ l'ngi
if this holds locally on X.

In this case
e | X[~ lim|X;]| for the topological spaces
e if x € | X| maps to (z;) then hgk(xz) — k() (on residue fields) has dense
image.
[One can show that there is a good category of “locally spectral adic spaces” such
that X becomes the true inverse limit of the X, in this category.]
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3.4.8. Ezample: the perfectoid projective space. Scholze gives examples of perfectoid
toric varieties in Section 8 of [Perf]. Projective space is a sub-example. We do
here P, the generalization to P} being obvious. We first have to recall the adic
projective line over K, (Pk)?%¢. This is obtained by gluing Spa(K (X),Ox (X))
and Spa(K (Y), Ok (Y)) along Spa(K (Z,Z7') Ok (Z,Z7')) using X = Z, Y =
Z~1. Recall that points of the adic unit disk Spa(K (X), Ok (X)) come in 5 types:
(i) type-1 points are classical points correspodning to maximal ideals in K (X)
whose residue field is a finite extensionL of K. Here | f(z)| is just the p-adic absolute
value of the evaluation of f at a point x € L. (ii), (iii) Points of these types map
f to supp |f| where D is a closed sub-disk of the unit disk. If D degenerates to
a point we recover type (i), if the radius of D is positive and belongs to |K| the
point is of type (ii), and if the radius does not belong to |K]| it is of type (iii). The
case of D being the whole unit disk is called the Gauss point, and corresponds to
the Gauss norm. Points of type (iv) correspond to phantom disks, i.e. to infinite
sequences of closed disks D7 D Dy D --- with ND; = @ (examples occuring only
if K is not spherically complete). Points of type (i)-(iv) are all Berkovich points
(rank 1 valuations) and the topology on them is that of a tree, rooted in the Gauss
point, with bifurcations occuring at points of type (ii), “true ends” corresponding to
points of type (i), and points of type (iv) corresponding to “dead ends” of the tree.
Points of type (v) are rank 2 valuations and sit infinitesimally close to points of
type (ii), at the root of every branch coming out of it. Note that when K = C,, for
example, there are infinitely many branches at each bifurcation point of the tree.

The two pictures, for the two half-spaces of Pk, are glued in the obvious way.
One obtains the standard tree with the action of PGLs(K).

Now to define (PL)P*"/ we need to fix a lifting of Frobenius, which is non-
canonical. The simplest choice in the case of P} is to take

e(x:y) = (2P, y").

Proposition. There exists a unique perfectoid space (]P)}()p”f such that
(]P)}()perf ~ @W(P}()adic.

Indeed, one simply glues Spa(K <X1/”w> , Ok <X1/p°°>) and the corresponding
other half-space Spa(K (Y'/?™), Ok (Y1/P™)) as before (XY = 1). It should be
stressed that in characteristic 0, the resulting space (P}()pe’f depends on the choice
of the lifting of Frobenius ¢, although its tilt, which is (P}, yperf is unique. The
map

|(PRes) ] 2 [P )P | = | (P )P | = Jimg | (PR )] — | ()]

is (x : y) + (27 : y¥). The first isomorphism stems from the fact that in charac-
teristic p the map ¢ is bijective, as a map of topological spaces.

3.5. The étale topology of a perfectoid space.

3.5.1. Etale morphisms.

Definition. (i) Let (R, RT) — (S, S™) be a morphism of (adic) affinoid K-algebras
(thus R and S are Tate K-algebras). It is called finite étale if S is finite étale over
R (in the usual sense), has the induced topology, and SV is the integral closure of
R* in S (but ST can well be ramified over R*). (ii) A morphism f: X — Y of
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adic spaces over K is called finite étale if there is a cover of Y by open adic affinoids
V C Y such that U = f~!(V) is an adic affinoid, and the associated map

(Oy(V), 05:(V)) = (Oy (U), 05 (U))

is finite étale. (iii) A morphism f: X — Y of adic spaces is called étale if for any
x € X there are neighborhoods x € U’, y € V, a finite étale morphism fy : U — V
and an open embedding j : U’ C U, such that

fIU" = fyoj.

As we have noted before, if (R, RT) is a perfectoid affinoid K-algebra, then so is
(S,587) and in this case S%¢ is (almost) finite étale over R%®. Since R%and R* are
almost isomorphic, the same holds for S*¢ over R™®. The fiber product of étale
morphisms between perfectoid spaces is again étale.

The étale site of a pefectoid space X is the category X; of all Y — X which
are étale. Morphisms are X-morphisms Y — Y’ and are necessarily étale (this is a
fundamental property of étale morphisms in any category). Coverings are families
of (étale) morphisms {f, : Y, — Y} (over X) for which |Y| = (J fo(|Ya|). The
étale topos X, is the category of abelian sheaves on X.;. The following theorem is
an immediate consequence of all that has been said on tilting.

Theorem. Let X be a perfectoid space over K. Let X" be the tilted perfectoid space
over K°. Then tilting induces an isomorphism of sites Xe; ~ Xebt.

If X - Y and Z — Y are morphisms between perfectoid spaces, and if the first
is étale (resp. finite étale), then so is X xy Z — Z.

3.5.2. Vanishing of H (X, Ox) for perfectoid affinoids X. The analogue of Tate’s
acyclicity theorem holds in the étale topology as well (with a similar proof):
Proposition. Let X = Spa(R, R") be a perfectoid affinoid space. Then
H'(Xe,0x) =0
fori >0 and H (X, 0%) is almost zero.
Here is an application of this proposition and tilting. Let Y be a perfectoid space

in characteristic p. Then one has the Artin-Schreier exact sequence of sheaves on
Yet:

0—-F, = Oy (I)SlOy%O.
It follows from the proposition that if Y is a perfectoid affinoid and i > 1, then
H(Y,F,) =0 . So far we have not used the fact that Y was perfectoid. Now let
X be a perfectoid affinoid in characteristic 0 and Y = X its tilt. Since the étale
sites of X and Y are canonically isomorphic we get the following corollary.

Corollary. Let X be a perfectoid affinoid over K. Then
H' (X, Fp) =0
for every i > 1.

Another corollary of the proposition is that for any perfectoid space X and
any locally free sheaf £ on X, H'(X., L) coincides with H'(X, L) (the latter
computed in the analytic topology), and that both vanish if X is a perfectoid
affinoid and 7 > 0. This is proved as for schemes, because the proposition reduces
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the computation of cohomology to Cech cohomology w.r.t. a covering by perfectoid
affinoid subdomains.

Caution: there does not seem to be a good notion of coherent sheaves for
perfectoid spaces. Perfectoid rings are not noetherian and localization is not flat,
and this makes many of the standard foundational results difficult to prove. See
the work of Kedlaya and Liu on p-adic Hodge theory I (in Astérisque) and II (in
preparation).

To be able to apply étale cohomology of perfectoid spaces to the study of usual
(rigid) analytic varieties, we need the following proposition.

Proposition. [Perf, Corollary 7.18] Let {X,,} be an inverse system of (noetherian
rigid) analytic spaces, and suppose that X is a perfectoid space such that X ~ @Xn
in the sense described above. Let F' be any sheaf of abelian groups on X and
similarly F,, a sheaf on X, ct. Assume that the sheaves are compatible in the sense
that the pre-image of F,, on X, ot for m > n is F,,, and likewise on X.; we get F.
Then for any i >0

HY(X,F) = lim HY (X, F,).

3.5.3. The pro-étale topology of a rigid analytic space. Let X be a locally noether-
ian adic space. Recall that the site X.; is a certain category equipped with a
Grothendieck topology. The pro-category Pro-X.; is the category whose objects
are inverse systems U = (U;);c; where I is a directed set, and whose morphisms
are
Mor(U,V) =limcolim Morx,, (U;, V;).
J 1

Here lim is inverse limit and colim is direct limit. We would like to think of U as
a new geometric object that lives in the limit, but there is a problem: the image
of an étale morphism is an open set, and these open sets may shrink indefinitely,
so that in the limit we will be left with no image at all in X. We therefore define
the category X,roet to be the full subcategory of Pro-X,; consisting of systems (U;)
where the U; — X are étale but the U; — U; are (surjective) finite étale.

Next we turn this category into a site by singling out (for U and V as above) good
morphisms in Mor(U, V) that are called pro-étale morphisms. First, a morphism
U — V is called étale (resp. finite étale) if it is of the form

U=Uyxy, VoV

for a single étale (resp. finite étale) morphism Uy — V; in X.;. Then, using the fact
that the category Pro-X,; has cofiltered inverse limits (this amounts to combining
a directed system of directed systems I; into a single directed system), we can
“repeat” the condition used to define morphisms in X, ce; and say that a morphism
U — V is pro-étale if it can be written as a cofiltered inverse system U; — V (each
U; = (Uij)je, itself an inverse system) where each U; — V' is étale and U; — Uj is
finite étale.

This defines the “admissible morphisms” of the Grothendieck topology. “Cover-
ings” of V' = (V;) are families of such morphisms U" — V that cover |V| = lim |V}
set theoretically.

It can be shown then that this is indeed a site, that pro-étale morphisms are
open and that the category X,,.c: has finite projective limits. Finally cohomology
of abelian sheaves behaves well, in the sense that

HY(U,v*F) = colim H'(U,, F)
n
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if F'is a sheaf in X¢; and v : Xpr0et — Xt is the obvious projection.

It may happen that an object U = (U;) in X,oet is represented by a perfectoid
space Z in the sense that Z ~ lim U; as we have encountered before. In this case
we shall say that “U is perfectoid”.

The key result is this.

Proposition. Every locally noetherian adic space (in particular every rigid analytic
space) is covered in the pro-étale topology by perfectoids.

Example. Consider X = Spa(K (T),Ok (T)), the affinoid unit disc, as before.
The family of coverings induced by T = Tf;n is étale over the affinoid subdomain
IT| = 1, i.e. over U = Spa(K <Ti1> , Ok <Ti1>), and in the limit become per-
fectoid. Embedding X as a small affinoid disk around 1 in U and restricting the
coverings to it does the same job for X (an observation of Colmez). The idea be-
hind this example works in all cases, and in higher dimensions as well, to prove the
proposition.

3.6. Cohomology of rigid analytic spaces.

3.6.1. The Main Theorem on comparison of étale cohomology and coherent coho-
mology. The main use of perfectoid spaces to the cohomology of rigid analytic
varieties is in proving the following theorem:

Theorem 7. [CDM, Theorem 8.3] [pHT, Theorem 5.1] Let X be a proper smooth
locally noetherian adic space over C,. Let L be an étale local system of Fp-modules
on X. Then:

(i) H(Xe,L) is a finite-dimensional F,-vector space and vanishes for i >
2dim X.

(i4) There exists an almost isomorphism of O -modules (here O, = Oc,)

H'(Xet, £) ®5, Oy /pO, =~ H (Xey, L& OF)°.

Part (i) of the theorem holds for any proper smooth locally noetherian adic
space. It has been previously known (by Faltings) for the analytification of smooth
projective (or maybe even proper) varieties, but there are many rigid analytic or
adic spaces which are not algebraizable. Finiteness of cohomology is false for non-
proper spaces, even for H'(X.;,F,) when X is the closed unit disk, due to the
existence of many étale Artin-Schreier coverings. Part (ii) of the theorem establishes
the key relation between étale cohomology and coherent coohmology. It has a
version for Z,-local systens, but we shall need only local systems of IF,,-vector spaces.

One of the applications of this theorem is a Byg-comparison theorem between
p-adic étale cohomology and de Rham cohomology of proper smooth varieties over
Qp. This has been done by Fontaine-Messing, Faltings, and other authors, but is
extended here to non-algebraizable situations. It should be considered a p-adic
analogue of the classical de Rham theorem. Other applications include (a) the
degeneration of the Hodge-to-de Rham spectral sequence for proper smooth rigid
analytic varieties, or more generally proper smooth locally noetherian adic spaces
defined over a discretely valued field.® (b) a Hodge-Tate decomposition of p-adic
étale cohomology tensored with C,,, if X is defined over a discretely valued subfield
of C,. See [pHT], Theorem 8.4.

8No analogue of the Kéhler condition is neeed in the p-adic setup!
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Note that the theorem implies a remarkable behavior of the cohomology groups
H'(Xet, OF). After inverting p in the coefficients, these groups become the (an-
alytic) cohomologies of the structure sheaf H* (X, Ox) = H(X,Ox), so vanish
for i > dim X (and if X is algebraizable, they coincide with the algebraic coher-
ent cohomology by GAGA). On the other hand, the cohomology groups of the
sheaf 0% taken modulo p coincide with H' (X, F,) ®r, Op/pO,. In the region
dimX < i < 2dim X the groups H'(X.;, O%) are therefore torsion. From the
exact sequence

0— 0L 5 of - 0f/pof —0
we get the exact sequence
0— H'(Xe,0%)/p = H' (Xer, 0% /pO%) — H ( Xy, OF)[p] — 0.

The essence of the proof of the theorem is to “cover” X by perfectoid spaces,
and for these use (a) the result that H'(Z,0}) is almost 0 if Z is a perfectoid
affinoid space (b) the Artin-Schreier exact sequence in characteristic p, or a variant
of it in characteristic 0. Strictly speaking, however, it is not possible to cover X by
perfectoids in the étale topology, but only in the pro-étale topology. This is where
the pro-étale site enters the game.

3.6.2. Proof of the main theorem (sketch). Step 1. First one proves a variant of
(i), that H7 (X, £L® OF)® is almost finitely generated over O, and is almost 0 for
j > 2dim X. See [pHT], Lemma 5.8. One knows (by de-Jong and van-der-Put)
that the cohomological dimension of X,, (i.e. X with the analytic topology) is
n = dim X. On the other hand if V' C X is a nice (see loc. cit. Lemma 5.6) smooth
affinoid adic space with an étale map V' — T" to the n-dimensional torus we can
take V =V Xpn T as a pro-étale affinoid perfectoid cover of V' where T is the
standard pro-étale perfectoid cover of the torus. We then have by “almost purity”
that H'(V,L ® Of)* = 0 for i > 0. Since V/V is a Galois pro-étale cover with
profinite Galois group isomorphic to Zy, and since the cohomological dimension of
Zy is n (for continuous group cohomology), we get by the Leray spectral sequence’
that
H'(Ver, L® Oj—()a = HZ(VpToetv L& O})a =

for ¢ > n. Sheafifying this means that if A : X.; — X, is the projection between
the two sites, RIA(L® OF)® = 0 for i > n. Another application of a Leray spectral
sequence'® shows that this result, together with the fact that the cohomological
dimension of X,, is n, imply H? (X, L ® (’)})“ = 0 for j > 2n. The statement
about almost-finite-generation is more difficult, but uses similar ideas.

Step 2. A purely algebraic lemma on almost finitely generated O,/pQ, =
O;/pb(’);—modules which can be lifted to a “p-divisible group” of almost-f.g. modules

over (9; / (p")kO; for all k, satisfying some functorial properties, allows one to deduce
that such modules are almost free [pHT Lemma 2.12]. Using tilting, Scholze proves
that this is indeed the case with the almost-finitely generated module H*(X.;, £ ®
O%)%. We therefore have

H'(Xet, L& O%)* =~ (Op/pO,)"

9The functor of global sections on V is the composition of the functor of Galois invariants on
the functor of global sections on \7, and this leads as usual to a spectral sequence.

10f1ere one uses that global sections of a sheaf F' on X¢; can be obtained as global sections of
the sheaf A\« F on Xan.
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for some integer r. Apply now cohomology to the short exact sequence of sheaves
on X

0L L0t Loot »0
to get
H'(Xer, L) = H (Xey, LR OF)*= >~ F7.
Note that ® — 1 is surjective on O,/pO,, (because C, is algebraically closed). Ten-
soring back with O,/pO,, gives the desired result.

4. FROM ETALE COHOMOLOGY CLASSES TO MODULAR FORMS [4 WEEKS]
4.1. Recall.

4.1.1. Recall of notation and what was left to prove. Recall that G denoted the
group Spa, /7 and S a finite set of rational primes which contained oo and p. Recall
that K = KoKy C G(A) where K, = U(n) is the standard (connected) maximal
compact subgroup of G, = G(R). We furthermore assume that K; = K*° Kg where
K® = [li¢s G(Z1), Ks = [;e5 Ki, each K is open compact in G(Z;) and K is
“small enough” (e.g. of full tame level N > 3). In the following we shall assume
that K? is held fixed and K, shrinks. For example, we may let it run over a the
sequence of principal level-p” subgroups, i.e. the kernels of G(Z,) — G(Z/p"Z).

With each K we have the Siegel modular variety X “of level K” and its Satake-
Baily-Borel (normal, projective) compactification Xj,. These are varieties defined
over Q, and in what follows we consider them always over the algebraically closed
perfectoid field C = C,,. The reader may fix an isomorphism C ~ C,, and identify
Cp-valued modular forms with complex ones, but this is not necessary.

On X7 there exists a canonical ample line bundle w, which on the open variety
Xk is the determinant of the relative cotangent bundle of the universal abelian
variety. Global sections of w* for & > 0 are nothing but C-valued Siegel modular
forms of scalar weight k. We let Z be the ideal sheaf of 0x = X} — Xg.

We have introduced the local spherical Hecke algebras

T, =Z, K\ Gi/K|]
with coefficients in Z,,, for all I ¢ S. Then Tg = ®; ¢ 5T is their restricted tensor
product. It is a large commutative algebra that “acts on everything in sight”.

Our goal in this seminar has been reduced to proving the following theorem,
which was called Theorem 6 before.

Theorem. [Tors 1.5 and IV.3.1] Let ¢ : T — Fp be a system of eigenvalues occuring
in H(Xr,Fp) (étale cohomology with compact supports) Then there exists a K' C
K obtained by shrinking K,, and an arbitrarily large integer k, such that v is the
reduction modulo p of a system of eigenvalues ¥ which occurs in H*(X},, w* @ T).

Part of the statement is that the system of eigenvalues W is in O¢. By “reduction
modulo p” we mean reduction modulo the maximal ideal of O¢.

4.1.2. How theorem 7 is put to use. It is convenient to introduce the compactly
supported completed cohomology with coefficients in Z/p"Z as

H; jeo (Z/p"T) = im H{(X gk, Z/p"Z)

where the direct limit is taken with respect to the transition maps when K, shrinks.
The cohomology groups on the right are étale cohomology groups with compact
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supports of Xx»x, over the algebraically closed field C' = C,,, but if we identify C
with the complex numbers, can be identified with the usual singular cohomology
groups with compact supports of the open Siegel variety. Here we use the fact that
if K’ ¢ K then the map Xy — Xk is finite and flat, so compactly supported
cohomology is contravarient for such maps. [We shall only need the case n = 1, but
note in passing that if one takes now an inverse limit over n, one gets Emerton’s
p-adic completed cohomology. It is important to take the limits in the right order:
first, with fixed finite coefficients, a direct limit over the level, then an inverse limit
over the coefficients. It is the case that torsion classes at finite levels build up to
give p-adic classes in the completed cohomology that survive after we tensor with
Qp. The resulting cohomology is significantly richer than the direct limit of the
usual groups H:(Xgrk, . Qp).|

The Hecke algebra T acts on each H!(Xgrk,,Z/p"Z) and commutes with the
transition maps, so induces an action on the completed cohomology. Since the tame
level will be fixed throughout we abbreviate

Hé(Fp) = é,KP (Fp)-

We shall denote by X and X} the corresponding adic spaces over Spa(C, O¢)
obtained by the analytification of the open or closed Siegel modular variety. The
space

HO (X}, Wh)
is the space of p-adic modular forms of weight k£ and level K = K,KP?, and by
GAGA is identified with H°(X},wF). The same is true for cusp forms, if we
consider sections of w® ® Z. Our goal is thus to relate the Hecke eigensystems
appearing in spaces of p-adic modular forms and in completed étale cohomology.

Theorem 7 is a prototype of such a comparison theorem. It cannot be applied
directly, though, because “on the coherent side” it does not quite give the desired
spaces of modular forms (even modulo p). However, the idea behind the proof of
Theorem 7 was to use a perfectoid cover of our adic space X, work at the level
of the perfectoid cover, and descend to deduce results on the cohomology of X. It
turns out that in our case we have such an explicit perfectoid cover at hand !

4.2. The perfectoid Siegel modular variety and the Hodge-Tate map.

4.2.1. The Siegel varieties become perfectoid in the limit over K,. Fix the tame
level K? as before.

Theorem 8. There exists a prefctoid space X* = X}, over C which is similar (in
the precise sense defined before) to the inverse limit of the Siegel spaces when K,
shrinks, i.e.

Xiep ~ IPX;pKP.

This perfectoid space is clearly unique. Its construction goes hand in hand with
the construction of a certain map of adic spaces

THT X* — Fl
where F1 is the adic space associated with the Grassmanian of all maximal isotropic
subspaces in (C?7,(,)), i.e. the analytic space behind G /P where P is the standard
parabolic subgroup discussed earlier. This is the Hodge Tate period map. It exists

only at the infinite (perfectoid) level: it does not come as a limit of morphisms of
algebraic varieties defined at the finite levels.
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We shall not say much more about the proof of Theorem 8, except that it is done
in two steps. One first studies a certain piece X*(0), of the ordinary locus X*(0) of
X* (the so called anti-canonical ordinary locus) and a strict neighborhood X*(e),
of it where the Hasse invariant is not too small, or alternatively, where the abelian
variety has a canonical subgroup. One shows that this piece is perfectoid. In the
second step one uses the action of G, on the tower to prove the perfectoid-ness of
the whole A'*.

4.2.2. The Hodge Tate decomposition for abelian varieties. Let A be an abelian
variety over O¢, i.e. an abelian variety over C' with good reduction. The case
of bad reduction can be treated similarly, but requires the introduction of Néron
models, and we shall skip it. There are various ways to get the Hodge-Tate exact
sequence for A. We follow the original construction by Tate [pdiv].

For any p-torsion module M we let

Tp(M) = Homz, (Qp/Zy, M) = lim M[p"], V,,(M) = Homz, (Qp, M) = T,,(M)®Q

be its integral (resp. rational) Tate modules. We write 7,(A) and V,(A) for the
corresponding modules with M = A(C)[p>].

Denote by A the dual abelian scheme over O¢. Recall that Lie(A*) = H' (A, O4)
canonically. Since A[p"],o,, is the Cartier dual of the finite group scheme A*[p"] 0.,
a point z, € A[p"](O¢) is a homomorphism of group schemes Af[p™] — pi,» over
O¢. A point € T),(A) is therefore a homomorphism of p-divisible groups A*(p) —
ppe. Passing to the Lie algebras over O¢ it yields a homomorphism from Lie(A?")
to Lie(pipo ). But the latter is canonically O¢. This gives a map

oA TP(A) ®Zp Oc — Lie(At)v.
Replacing A by A! and dualizing we get
o« Lie(A) = Tp(A)Y @, Oc = Tp(A)(~1) &z, Oc

where the last step involves the (perfect) Weil pairing T, A x T,,A* — Z,(1). Taken
together, and tensoring with QQ, one obtains the Hodge-Tate sequence

0— Lie(A/c)(l) — Vp(A) ®Qp C - Lie(Af]C)v —0

which, as Tate proved, is exact. Moreover, when A is defined over a discretely
valued subfield'! K of C this sequence is split-exact, as a sequence of Gal(K /K)-
modules. This follows from the fundamental theorems of Tate on the continuous
Galois cohomology of C(j). Dualizing again, Tate got in this case the (canonical)
Hodge-Tate decomposition

H},(A,Qp) ®g, C~ H (A, Qi) @k C(—1) & H'(A,0) @k C.

Fontaine-Messing (in the good reduction case) and Faltings (in general) have gen-
eralized this to the étale cohomology of any proper smooth variety over K, in any
dimension. Finally, in [pHT], Scholze extended the Hodge-Tate decomposition to
any proper smooth rigid analytic space (not necessarily algebraizable).

Suppose now that A,c comes equipped with a polarization A (as is the case for
the A’s parametrized by the Siegel modular variety X ). Then H},(A,Qp) ®q, C

Ly appologize for using the same letter for the compact group K and the discretely valued
field. No confusion should occur, as the field K will soon disappear and we shall return to work
over C'.
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is equipped with a symplectic polarization pairing (,), ® 1 and one proves that the
subspace H(A,04) = Lie(A?) ~ Lie(A) is a maximal isotropic subspace.

Finally we note that if L is any complete subfield of C' over which all the p-power
torsion A[p>°] is defined, then the Hodge-Tate exact sequence (but not its splitting)
is defined over L.

4.2.3. Another way to define the Hodge-Tate exact sequence (after Fontaine). Sup-
pose again that A is defined over a discretely valued subfield K. One notes first
that the map
OI_( ®Zp /,Lpoo — Q%DK/OK

given by (a, () — a% is surjective with a kernel that is killed by some power of p
(depending on the absolute different of K).

Consider now w € H(A, Q). If v € A(Og) then z*(w) € Q4 0, - The
two pairings that we have described yield first an isomorphism

Vo(Q0, j0,) = C(1)
(Tate twist of C) and secondly a pairing
HO(AvQ,lax/o,c) x Vp(4) — Vp(Q%ok/oK) ~ C(1).
We get the Galois equivariant map
¢a: HO(A, Q) @ C — Hom(V,(A), C(1)) = Hzy(A,Qy) g, C(1).

As before, it is possible to get the map from H*(A,0)®x C to H}(A,Q,) ®q, C
from ¢4 playing with duality and the dual abelian variety.

4.2.4. The Hodge- Tate period morphism. Consider now a C-valued point z € |X™| =
lim, |Xf%, Kp|. As we are taking an inverse limit over all the level subgroups at p,
such a point parametrizes a principally polarized abelian variety A over C, a tame
level structure away from p, and a full p°-level structure, i.e. a trivialization of
Vp(A), or, by duality, a symplectic isomorphism

(He(A,Qp) ®g, C, (), ®1) = (C*",(,) ).

Here (,), is the Weil pairing in cohomology induced by the principal polarization
A, and (,) ; is the standard symplectic form given by the matrix J. This symplectic
isomorphism carries H'(A,0) ®x C to a certain maximal isotropic subspace of
C?", hence defines a C-valued point 7z () of FI. We emphasize that to get it we
needed to work with full level structure. This defines the Hodge-Tate morphism
at the level of C-valued points. See [Tors, Lemma II1.3.4]. Scholze proves the
following.

Theorem 9. [Tors, II1.3.18 and IV.1.1] (i) There is a unique Gp-equivariant map
of adic spaces over Qp, myr : X* — Fl which realizes the above map on C-valued
points.

(ii) Let X*(0) denote the ordinary locus in X* (the locus parametrizing ordinary
abelian varieties, including the boundary 0). Then X*(0) is the pre-image of FI(Q,)
under TygT.

(iii) Let s; (where j runs over all the subsets of size n of {1,2,...,2n}) be the
standard coordinates on Fl obtained from the embedding in Gr(n,2n). Let Fl; be
the affinoid subdomain where |s;| > |sj/| for all j'. Then the pre-image V; of Fl;
under Ty is an affinoid perfectoid, say Spa(Rj,R;'). For all sufficiently large m



PERFECTOID SPACES AND GALOIS REPRESENTATIONS 45

it is the pre-image of an affinoid V;,, = Spa(ijL,R;:m) in the Siegel modular

variety of full level p™ at p and Rj'is the p-adic completion of lim_, R;‘m
(iv) The maps wyr satisfy the obvious compatability with respect to shrinking

the tame level.
(v) For any v € G(AI;) the map v, : Xjep — XJ_1p, salisfies Tpr 0 v = Ty
vi) Le 1 C e the tautological totally isotropic sub-bundle. en over
(vi) Let Wr, C O% be the tautological totally isotropi b-bundle. Th

the open set X C X™ there is a natural isomorphism

LieA ~ LieA" ~ wj:Wx
and therefore also a natural isomorphism

*
W~ THPWFE]

\%

where wr; = det(Wx)Y is the natural ample line bundle on Fl.

We make a comment on (ii). It means that the Hodge-Tate subspace Lie(A),) =~
H'(A,04) of HY(A,Qp) ®q, C comes from a Q,-rational subspace of HY(A,Q,)
via base-change if and only if A is ordinary. If A is ordinary and denfined over
a discretely valued field K then this Q,-rational subspace of H} (A, Q,) can be
readily described. In this case the Gal(K /K"")-module V,(A) has a filtration

0—Q,(1)" = V,(A) — Q, —0

(this is essentially equivalent to the definition of ordinariness) and it can be shown
that the Hodge-Tate filtration comes from the dual filtration on H (A, Q,). Nev-
ertheless, the existence of a morphism as in (ii) is bizarre, and can occur only with
large perfectoid spaces such as X*. For example, when n = 1, the flag variety is
P!, All of the ordinary locus gets contracted by myr to P'(Q,), and for an ordi-
nary elliptic curve equipped with a trivialization of its Tate module, the associated
point in P}(Q,) measures the location of the canonical p-divisible group (the part
in the kernel of reduction) vis-a-vis the trivialization. On the other hand the super-
singular locus in X* gets mapped under g1 onto the Drinfeld p-adic upper half
plane. Note that the cusps are “ordinary”.

Point (iii) is a by-product of the construction of X*. Points (iv) and (v) are
natural, and are needed to study the action of the Hecke operators away from the
bad primes and p. Point (vi) is clear from the modular interpretation of the map
wgr described above for C-points.

4.3. Completed cohomology versus p-adic automorphic forms.

Proposition. There are natural isomorphisms of almost Oc-modules

Hi(X}, Fy) @5, Oc/pOc ~ H' (X7, I* [pT ™).
Proof. Let K = KPK), be a fixed level. We have seen that for any local system £
of F,-vector spaces in the étale topology

Hi(X}k(,etvﬁ) ®F, Oc/pOc =~ Hi(X}k(,eta £®O)+()

(an almost isomorphism). This is extended in [CDM], Theorem 3.13, to con-
structible sheaves of FF,-vector spaces (not necessarily locally constant). Let j
be the open embedding of Xy in X} . Note that Z+/pZ+ = j(F,) ® O% (the
stalks of Z7 /pZT at the boundary vanish since a function from O} which van-
ishes at the boundary, is divisible by p in some open neighborhood of it) and that
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HY (X os1(Fp)) = H(Xk e, Fp). Take the limit over K, to get the proposition
with A, instead of X7, on the right hand side.
Now there is a short exact sequence

0—I%/pIt — 0% /p0% — OF /pOF — 0.

Etale and analytic cohomologies of O% /pO% agree: they both (almost) vanish on
affinoid subsets of X*(here we finally use the fact that this is a perfectoid), and the
rest is given by the Cech spectral sequence. The same holds true with Og/p(’)Jr,
hence also with Z% /pZ+. O

Corollary. The cohomology groups Hi(X, F,) vanish for i > d = dim X*.

Proof. By the theorem, it is enough to show that the cohomological dimension of
X, (the maximal dimension in which cohomology of torsion abelian sheaves may
not vanish) is at most d, but this is the contents (in the analytic topology!) of the
theorem of de Jong and van der Put mentioned above. a

4.4. Hecke algebras and conclusion of the proof. It is now possible to com-
plete the proof of the theorm. Consider the Hodge-Tate period map as a map of
Qp-adic spaces

T X — Fl w pN-1

where N = 2: ) , using the Pliicker embedding. The line bundle O(1) pulls back

to the tautological line bundle wx; and then to w. Let si,...,sy be the standard
sections of O(1) and U; C PN~1 the open affinoid where

551 < sl

for every j. If 0 # J C {1,...,N} let Uy = (;c; U;j and s; = [[c; 55 If Uy is
the reduction modulo p™ of U; and 5; the reduction of the corresponding section
of O(#J) then U; is the subscheme of PN~1 (over Z/p"Z) where 3, is invertible.

Let V; = mp1-(Us), which by (iii) of Theorem 9 is an affinoid perfectoid of the
form

V] = Spa(RJ, R}r)

Let ¢ : T — F, be a system of Hecke eigenvalues which occurs in H’(F,). Then
by the Proposition it occurs in H(X*,ZT /pZ*) (sheaf cohomology in the analytic
topology). Since the cohomology of Z+/pZ* over any affinoid (perfectoid) subdo-
main of X'* vanishes in positive degrees, we may compute the latter cohomology as
the homology of the Cech complex whose terms are the almost modules

H°(V;, T% [pI*) = {f € R}| flo = 0}/p{f € R}| flo = 0}".

As a consequence of (iv) and (v) of Theorem 9, the map mgyr commutes with
the Hecke operators away from p. It follows that the V; are stable by the Hecke
correspondences, and T acts on each of the terms in the Cech complex separately.
Thus if ¢ occurs in HY(X*,Z% /pZ+), it also occurs in some H°(V;,Z7 /pZ™).

For all K, sufficiently small, the V; are the pull-back via the projection to Xj;
of an affinoid subdomain Vi of X} and lim_, H°(V;x,w) is dense in H°(V;,w).
We can therefore approximate the sections s; on V; by

sgi) € H'Vik,w)
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so that
Sj — S(Z)
|—=1 < Ip|
RO

on V; for all j. Using these sections we get a formal model X3, (over Spf(Z,)) of
the rigid analytic space X}, and an open cover {2,k } ¥, by affine formal schemes.
(The relation between affinoid coverings of rigid analytic varieties and formal models
is classical'®, see [Tors|, Lemma II.1.1.) This formal model comes equipped with
an ample line bundle which we still denote w and a sheaf of ideals 7 that, on the
“generic fiber”, yield w and 7.

These objects are independent of the choice of the approximating sections sy)
used to approximate s;. The sections

sy) mod p

glue to give a section 5; of w mod p on X7, which is independent of any choice.
The open formal subscheme U k is the non-vanishing locus of 5; = [] 5;. These
sections are compatible with change of tame level at K and with the action of G(A’})
as in part (v) of Theorem 9. As a result, multiplication by 5; commutes with the
action of T and therefore preserves eigenvectors and systems of Hecke eigenvalues.
Scholze calls these sections “substitutes of the Hasse invariants”.

We remark that the integral structures which result from the formal models X7,
are very far from the familiar integral models of the Shimura varieties X} defined
in terms of the moduli problem, and are not related to them. By definition we have

HV, T /pZt) =lim H°(V; k, 2 /pI ") = lim H(V, k., T /pT )
— ’ —

and similarly for any J C {1,2,..., N}. Thus it is enough to assume that ¢ occurs
in some H°(U; i, T /pJ).
Now
H(Bx, T /pT) = lim HO (X, "D @ T [pT)

where the limit is with respect to the map of multiplication by 5;. As we have
noticed above, multiplication by §; commutes with the Hecke action. We may
therefore assume that 9 occurs in H%(X%,w" ® J/pJ) and that furthermore, k is
arbitrarily large. But for k large enough, by the ample-ness of w,

H' (X, w" 0 J)=0

hence H(X%,w* ® J/pJ) = HY (X%, w* ® J)/pH® (X%, w* ® J), ie. for a large
enough weight, every mod p modular form lifts to a characteristic 0 modular form.
But by comparison of formal, analytic and algebraic cohomologies

HY(Xf, " © J) @0, C = H* (X, w* @ T) = H (X}, " @ T)
s0 1 is the reduction modulo p of a Hecke eigensystem W occuring in H%( X, WwkRT).
QED.

4.5. More on the perfectoid Siegel space and the Hodge-Tate map.

12Basically, to get from an adic affinoid V;x = Spa(R,RT) to a formal scheme, take
Vig =Spf(RT). The gluing is done along the formal schemes U,k which are open formal sub-
schemes of both U;x and U;. The resulting formal scheme is projective and the line bundle w
glues to become an ample line bundle on X.
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4.5.1. Set-up. In the remaining time we shall focus on the construction of X* and
the map myp for n = 1, i.e. in the classical case of modular curves. I shall
follow notes from lectures of Mark Kisin in MSRI in 2/14. The notation and the
assumptions are a little different than what was used till now.

Fix N > 3. Fix a generator of the Tate module of i, and identify Z,(1) with
Zy. For n.> 0 let X (p™) be the modular curve over Qv = Q(upoo)A parametrizing
elliptic curves A, a full level-N structure, and a full level-p™ structure for which the
Weil pairing becomes the standard symplectic pairing on (Z/p"Z)?. (Here we use
the identification of Z, (1) with Z,.) Let Xo(p™) be the modular curve with I'y(p™)
level structure, i.e. parametrizing elliptic curves, tame level structure, and a cyclic
subgroup of order p™. By X (p") or Xo(p"™) we mean the complete curve (including
the cusps). Write X = X(1).

Let (L,L™") be a complete non-archimedean extension of ngd and its ring of
integers. Define

X(p=)(L) = lim X (p")(L).

Thus outside the cusps, a point € X(p>)(L) “is” an elliptic curve A/, a full
level-N structure, and a symplectic isomorphism

T,A~172.
The Hodge-Tate exact sequence attached to x a canonical line
Lie(A)(1) = T,A®z, L ~ L?
hence a point of F(L) = P!(L). This is the map
77 - X(p™°) (L) — PY(L).

We want to construct a perfectoid space X’ over Q;ycz which is similar to lim, X (p™)*?
and a map of adic space g1 : X — P! which agree with the above inverse limit
and projection on L-points. At any finite level we have

X(pn)ad — X(pn)ord HX(pn)ss

where the ordinary part is a (disconnected) affinoid and the super-singular part
a rigid analytic space covering the open supersingular disks in X?¢. The cusps
belong (by definition) to X (p™)°"?. As these decompositions are compatible with
the inverse limit they define a similar decomposition of X (p). Similar notation
will be used for I'y-level structure.

The idea is to prove “perfectoid-ness” of X (p*>) on an open part first, then use
SLy(Qp)-action to show that it is all perfectoid.

4.5.2. The canonical subgroup. Let S be an F,-scheme and A/S an elliptic curve.
P

The Verschiebung isogeny Ver : A®) — A induces V* : wa/s — wff/)s > Wy s
hence a canonical section Ha(A/S) of wi?é called the Hasse invariant of A over S.
One knows that A/S is (fiber-wise) ordinary if and only if Ha(A/S) is invertible.
Now assume (e € [0,1)) that |p¢| € |L| where L = Q;yd and S is a scheme over
Lt /pL*. We say that Ha(A/S) divides p if there is a section 7 of w;g such that
Ha(A/S) -n = pc. This is a measure of “how supersingular” A is.

Let X (p™)[e] be the affinoid subdomain of X (p™)?? parametrizing elliptic curves
A for which Ha(A,) is divisible by p¢. Here A; is A mod p. When n = 0 this is
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a strict neighborhood of the ordinary locus, including an annulus in each supersin-
gular disk, and in general it is the inverse image of this affinoid in X (p™)2¢. Note
that X (p™)[0] = X (p™)°"?. Over this affinoid A is ordinary and A[p™] has, for ev-
ery m, a canonical subgroup scheme C,,, which is finite flat of rank p™, and whose
reduction modulo p is the kernel of Fr'™ : A; — Agp ") The next theorem tells us,
in a quantitative way, how the canonical subgroup “overconverges”. In part (i) we
work over a certain general base Spec(R). In part (ii) we work in neighborhoods of
Xord where X = X (1) (no p"-level yet) and these neighborhoods become smaller
and smaller with m. In part (iii) we show that if we introduce T'o(p"™)-level struc-
ture, these neighborhoods are mapped to certain open and closed components of
Xo(p™)[e] with a fized width e, and that the transition maps between them become
Frobenius modulo p*~¢.

Theorem 10. [Tors, Corollary III.2.6, Proposition III.2.8] Let € € [0,1/2) and
m > 1. Let R be a p-adically complete flat Z;’/Cl—algebm, and A/R an elliptic curve
for which Ha(Ay/Ry)?" divides p¢. Then:

(i) There exists a canonical finite flat subgroup scheme C,, C A[p™] of rank p™
such that C,, = ker(EFr™) modulo p'=¢. This subgroup scheme behaves functorially
in R and satisfies

C(R) = {s € Ap™](R)| s=0 mod pt=9/P"},

(ii) In particular, Cy exists in A[p| where A is the universal elliptic curve over
X[p~te] and A A/Cy induces a map

F:X[p~™e — X[p' ™€

for every m > 1 (thus A/Cy is “more supersingular” than A but in a controled
way). These affinoids have nice integral structures'® and when we reduce them
modulo p*~¢ the map F reduces to the relative Frobenius morphism of the scheme
X[p~™¢] mod p'~c.

(14i) The map

A (A, Cp) = (A)Crny Alp™]/Cr)

induces open embeddings X [p~"e] — Xo(p™)? whose image is an open and closed
subset

Xo(™)lela
of Xo(p™)[e]-

The affinoid Xo(p™)[e], is called the anti-canonical affinoid. If € = 0 it is the
unique component of Xg(p™)°"® where the cyclic subgroup scheme of rank p™
reduces to an étale group scheme, i.e. is disjoint from the kernel of reduction.
In general, the anticanonical affinoid can be described similarly, as the unique
component of Xo(p™)[e] where the cyclic subgroup scheme of rank p™ is “as far as
possible from canonical”.

L3 These integral structures arise from viewing the affinoid X[p~"¢| as the generic fiber of a
certain formal scheme X[p~™¢| which represents a certain natural functor, see [Tors, Definition
I11.2.12].
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4.5.3. The perfectoid-ness of the To(p™) tower. Using part (iii) of the last theorem
we get a commutative diagram

X[p—m—le] A'_}A(Lf’"“ Xo(pm+1)ad
LF !
xfpmd  THT x(pmyed
! !
xptd TEHY Xy

The images of the horizontal arrows are the tower of Xo(p™)[e], and one checks
easily that the induced transition maps in that tower are the natural maps between
level p™*1 to level p™. As modulo p'~¢ these masp are just the relative Frobenius
maps, we see that modulo p'~¢ the tower of rings of definition'* on the right looks
like lim_, of a fixed ring w.r.t. the map of raising to power p, hence is perfect. If
we take the completion of this direct limit we get an affinoid perfectoid Xy[e], such
that

Xolela ~ Tim Xo(p™) el

This is the first step in the construction of X.

4.5.4. From X[e], to X[e]. Consider now full level p™-structure and the map
(Aya: Ty, A~Z2) — (A, o™ (Zy ® (0)))

from X to Xp. Then setting Xe], to be the pre-image of Xy[e], we see that this is
also a perfectoid (note the € is unchanged because A is unchanged).
Next, let SLa(Zy,) act on the tower. It is easy to see that

Xe] = SLa(Zy,) - X[e]q.
We conclude that X[e] is perfectoid.
4.5.5. From X[e] to X. At this point it is essential to study myr and also to take
€ > 0 (till now we could work with € = 0, i.e. with the ordinary parts only).
Lemma. (i) n;;5(PY(Q,)) = X[0].

(ii) Assume € > 0. There exists an open rigid analytic space U C (P')?? contain-
ing P*(Q,) (actually a union of finitely many affinoid disks, how many depends on
€) such that

Tr(U) C Xle].
The following lemma is an easy exercise:

Lemma. Let P*(Q,) C U C (P')* be as above. Then SLy(Q,)-U = (P')2d.

Combining the two lemmas and using the SLy(Q,)-equivariance of wg we con-
clude that SLs(Q,) - X[e] = X and so X, like X[¢], is perfectoid.

MRecall that if X4 = Spa(R, RT) then R is called the ring of definition of X4,
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