
PERFECTOID SPACES AND GALOIS REPRESENTATIONS

EHUD DE SHALIT

Abstract. These are notes for a seminar conducted with David Kazhdan on
Scholze's work. See the bibilography for references. The notes will be updated
periodically, as the seminar progresses.

Standard notation.

• A- the adele ring of Q, A = R× Af
• S - a �nite set of primes containing ∞ and the �nite prime p
• GS - the Galois group of the maximal extension of Q which is unrami�ed
outside S

• Frl - the conjugacy class in GS of a geometric Frobenius at a prime l /∈ S
• G = Sp2n/Z, M = GLn/Z
• AH - a maximal torus in the center of a connected split reductive group

H, AH = AH(R)0

• T = TG, resp. TM - the unrami�ed Hecke algebra outside S of G, resp. M
• K = K∞Kf where K∞ = SO(n), Kf = KSK

S ⊂ M(Af ) compact open
and similarly for other groups such as G

• XK = XG
K - the locally symmetric space G(Q)\G(A)/AGK, similarly XM

K

etc.
• S, SGM - the Satake transform, partial Satake transform (depending on
circumstances)

1. Introduction [1 week]

1.1. Galois representations.

1.1.1. Geometric Galois representations.

De�nition. A geometric Galois representation is a continuous representation

ρ : GQ → GLn(Qp)
satisfying:

(i) ρ is unrami�ed outside a �nite set S of (�nite or in�nite) primes of Q. The
smallest such S is denoted Bad(ρ).

(ii) ρ is de Rham - a technical condition on ρ|GQp
, to be discussed later.

Remark. (a) Such a ρ is equivalent to a representation ρ : GQ → GLn(E) where
E is a �nite extension of Qp. Prove this as an exercise. Show �rst that it does not
simply follow from the compactness of GQ. Indeed, show that there exist compact

subgroups of GLn(Qp) that can not be conjugated into any GLn(E). Observe, that
if we knew that GQ,S were topologically �nitely generated, the claim would follow
easily. This however, is not known to be true (and according to Neukirch, maybe
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not expected to be true). On the other hand, it is known that GF,S(p) (the Galois
group of the maximal pro-p extension of F unrami�ed outside S) is topologically
�nitely generated for any number �eld F. Prove the claim as follows. Let R be the
ring of integers in Qp. Prove that the R-span of the image of ρ is bounded, and
in fact �nitely generated as an R-module, hence that ρ can be conjugated to lie in
GLn(R). Using compactness show that the image in GLn(Fp) is �nite. Using the
fact that GF,S(p) is �nitely generated, prove the claim.

(b) Since GQ is compact, we may even assume that the image of ρ is contained
in GLn(OE), hence we may reduce to get a representation into GLn(κE). Di�erent
integral models may result, in general, in non-equivalent representations over the
residuel �eld.

(c) There are only countably many geometric Galois representations. This relies
on the notion of being �de Rham�.

(d) If n = 1, a Galois character into O×E is de Rham if and only if, for a suitable

embedding of Q in both C and Qp, ρ comes from a Hecke character of type A0

(i.e. whose in�nity type is z 7→ zk for some integer k) via Weil's recipe of attaching
Galois characters to such Hecke characters.

Example. Let X/Q be a proper and smooth variety. Then (V, ρ) = Hi
et(XQ,Qp)

is geometric. This is a deep theorem of Tsuji (1999, Inv. Math.). Of course,
point (i), more precisely, being unrami�ed at every prime not equal to p where X
has good reduction, is old, and due to Grothendieck. Tsuji's contribution was to
verify point (ii), that such an X is de Rham. Kisin generalized it to non-proper
varieties. Important related work was done by Fontaine and Messing, Faltings and
Kato-Hyodo.

The Fontaine-Mazur conjecture is a partial converse when n = 2. It states that
any 2-dimensional geometric ρ which is odd (in the sense that det ρ(c) = −1 where
c is complex conjugation) �comes from geometry�. In fact, it predicts that the
associated geometric object is amodular form for a congruence subgroup of SL2(Z).
The precise way in which a modular form may be regarded as a geometric object
involves the notion of motives. However, to point at a modular form as the source
for the representation ρ is much more than to say that ρ �comes from geometry�.
Thus the Fontaine-Mazur conjecture encompasses all of the modularity results of
Taylor-Wiles. Thanks to work of Kisin, Khare and Wintenberger, this conjecture
is essentially proven today.

1.1.2. The L-function. Let (ρ, V ) be as in the example. Let Frl be a geometric
Frobenius at l. Then Deligne's proof of the Weil conjectures implies that for a good
prime l 6= p

Pl,ρ(X) = det(1− ρ(Frl)X) ∈ Z[X] ⊂ Qp[X]

and is independent of p. It furthermore implies that for S the set of �nite primes
where X has bad reduction

LS(ρ, s) =
∏
l/∈S

Pl,ρ(l
−s)−1

converges absolutely and uniformly on compact sets in the half-plane Re(s) > 1+ i
2 .

Neither independence of p, nor convergence of the L-series are known for a general
geometric Galois representation ρ.
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1.1.3. A remark on torsion in the cohomology. Recall that

Hi
et(XQ,Qp) := Hi

et(XQ,Zp)⊗ ZQ

and that

Hi
et(XQ,Zp) := lim

←
Hi
et(XQ,Z/p

kZ)

may contain a lot of torsion classes. These classes give rise to Galois representations
over rings like Z/pkZ but both the classes and the associated representations get
lost when we tensor by Q, and do not show up in the L function.

1.1.4. Pseudo-representations and Chenevier's theory of determinants. The notion
of a pseudorepresentation was introduced by Wiles in his work on the Main Con-
jecture of Iwasawa theory, and developed further by Taylor. It is a technical notion
which is needed when one attempts to construct representations by p-adic interpo-
lation. In [Chen] Chenevier generalized it to work over arbitrary p-adic base rings,
and gave an elegant treatment of the subject. Roughly speaking a pseudorepre-
sentation of a group G with values in a ring A is a function from G to A that
�looks like a character of a representation�. Chenevier introduced the notion of a
�d-dimensional determinant� which is something that �looks like the characteristic
polynomial of d-dimensional representation�. [This subsection will be completed if
I need this part in the seminar ].

1.2. The locally symmetric spaces associated with GLn/Q and their coho-

mologies.

1.2.1. The space XK . Fix n ≥ 1, a prime p, and a �nite set S of (�nite or in�nite)
primes, containing p and ∞. Let GS be the Galois group of the maximal extension
of Q which is unrami�ed outside S.

Consider the group scheme M = GLn/Z. Let K
0
∞ = SO(n) and let Kf ⊂M(Af )

be a small enough compact, open subgroup (e.g. the full congruence group of level
≥ 3). We assume that

Kf = KSK
S

where KS ⊂
∏
l∈SM(Zl) is open and KS =

∏
l/∈SM(Zl). Let K = K0

∞Kf , and

XK = M(Q) \M(A)/R×+K = M(Q) \ [M(R)/R×+K0
∞ ×M(Af )/Kf ].

This is the locally symmetric space of level Kf associated with M. It is a �nite
union of real manifolds of the form Γ \ Hn where1 Hn = SLn(R)/SO(n) and Γ is
conjugate in SLn(R) to a congruence subgroup of SLn(Z).

If n = 1 then XK is a �nite group, which is identi�ed, by class �eld theory, with
the Galois group of a �nite abelian extension of Q.

If n = 2 there is a natural complex structure on XK induced from the identi�ca-
tion of H2 with the usual upper half plane. In this case XK is the complex points
of a (disconnected, in general, and open) modular curve.

If n ≥ 3 XK is only a real manifold. If K ′ ⊂ K then XK′ → XK is a �nite
unrami�ed cover of degree [K : K ′].

1The map A 7→ A ·tA identi�es Hn with the space of positive de�nite symmetric real matrices
of determinant 1, hence its real dimension is n(n+ 1)/2− 1.
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Fact. For any i, n, the (singular) cohomology groups Hi(XK ,Z) are �nitely gen-
erated. This follows from work of Borel and Harish-Chandra who constructed fun-
damental domains of �nite type for these locally symmetric space (following earlier
work of Siegel). See A. Borel: Introduction aux groupes arithmetiques. It also
follows from the Borel-Serre compacti�cation of XK into a manifold with corners,
which we discuss later.]

We shall consider singular cohomology groups with coe�cients in an abelian
(additive) group R, such as Fp. Recall the relation between these groups and the
homology (with Z-coe�cients). For any topological space X there is an exact
sequence

0→ Ext(Hi−1(X), R)→ Hi(X,R)→ Hom(Hi(X), R)→ 0.

Later on we shall have to consider similar locally symmetric spaces attached to
other reductive groups. To stress the dependence on M we shall denote then XK

by XM
K . In fact, this is the reason for our unusual choice of the letter M to denote

GLn. The letter G is reserved for a larger group (when the ground �eld is Q as in
these notes, it will be Sp2n, if the ground �eld were quadratic imaginary, it would
be an appropriate unitary group). The group M will show up as the Levi factor
of a parabolic subgroup of G and this will have consequences for XM

K , as it will
�appear� in the boundary of a similar locally symmetric space for G. This set-up
is important for all that follows.

1.2.2. The Hecke algebra. We work with Zp coe�cients throughout. For every
prime l /∈ S (in particular l 6= p) the local Hecke algebra at l is

Tl = H(M(Ql),M(Zl)) = Zp[M(Zl) \M(Ql)/M(Zl)].

Its elements are compactly supported, M(Zl)-bi-invariant, Zp-valued functions on
M(Ql). The product is convolution, where the Haar distribution is normalized so
that it gives M(Zl) the measure 1. Thus

φ ∗ ψ(g) =

ˆ
M(Ql)

φ(gh−1)ψ(h)dh.

The theorem on elementary divisors says that each double coset in M(Zl) \
M(Ql)/M(Zl) is represented by a unique matrix of the form

diag[le1 , le2 , . . . , len ]

with integers e1 ≥ e2 ≥ · · · ≥ en. This gives the structure of Tl as a module. The
ring structure is commutative and is given, over Zp[

√
l], by the following theorem

(note that l may or may not be a square in Zp so we may need to enlarge the ground
ring, but a more subtle point, often overlooked, is that in either case, the Satake
isomorphism depends on the choice of a square root of l).

Theorem. (Satake isomorphism) There is an isomorphism

S : Zp[
√
l]⊗Zp Tl ' Zp[

√
l][X±1

1 , . . . , X±1
n ]Sn .

The ring on the right is the ring of symmetric Laurent polynomials.

Recall the construction of S. Let A be the torus of diagonal matrices in M(Ql)
and A0 its intersection with M(Zl). Then

ordl : A→ Λ = Zd
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is surjective, has A0 for its kernel, and the ring H(A,A0) (de�ned in the same way
as the Hecke algebra for GLn) is identi�ed with Zp[Λ] = Zp[X±1

1 , . . . , X±1
n ]. Indeed,

if we denote by ch(λ) the characteristic function of ord−1
l (λ) then ch(λ) ∗ ch(λ′) =

ch(λ+ λ′) and the ch(λ) make up a basis for H(A,A0). Now

S : Zp[
√
l]⊗Zp H(M(Ql),M(Zl))→ Zp[

√
l]⊗Zp H(A,A0)

is de�ned by

Sφ(a) = δ(a)1/2

ˆ
U

φ(au)du.

Here U is the unipotent radical of the standard Borel subgroup AU of upper tri-
angular matrices in M(Ql) and du is normalized to give U(Zl) the measure 1. The
unimodular character δ is given by

δ(diag[a1, . . . , an]) = |an−1
1 an−3

2 · · · a1−n
n |l.

The theorem asserts that S is an isomorphism onto the invariants of the Weyl group
on Zp[

√
l]⊗Zp H(A,A0).

Let Tl,i ∈ Tl (1 ≤ i ≤ n) be equal to l−i(n−i)/2 times the characteristic function
of the double coset of the matrix

l
l

. . .

1
1


where there are i l's and n − i 1′s on the diagonal. Then one computes that Tl,i
gets mapped under the Satake isomorphism to the i-th elementary symmetric poly-
nomial. We shall identify Tl,i with S(Tl,i) when necessary. Note that Tl,n is the
characteristic function of lM(Zl), that it is invertible (its inverse being the char-
acteristic function of l−1M(Zl)) and corresponds, under the Satake isomorphism,
to X1X2 . . . Xn. Every symmetric Laurent polynomial may be multiplied by a high
enough power of this element to make it a symmetric polynomial. Thus the Hecke
algebra is generated over Zp[

√
l] by Tl,i (1 ≤ i ≤ n) and T−1

l,n .

Let Pl(X) ∈ Zp[
√
l]⊗Zp Tl[X] be given by

Pl(X) =

n∑
i=0

(−1)ili(n−1)/2Tl,iX
i =

n∏
i=0

(1− l(n−1)/2XiX).

This is the Hecke polynomial at the prime l.
The global (prime to S) Hecke algebra is

T = ⊗′l/∈STl.

By the restricted tensor product we mean the direct limit of the �nite tensor prod-
ucts, where we use the unit elements in the rings to embed one �nite tensor product
in a larger one. The involution g 7→ g−1 induces an involution φ 7→ φ̇ on Tl, namely
φ̇(g) = φ(g−1). Since Ṫl,i = T−1

l,n Tl,n−i under the Satake isomorphism this involu-
tion carries over to the involution of the symmetric Laurent polynomials induced
by Xi 7→ X−1

i .
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Remark. (on normalizations). Scholze writes i(n+1)/2 instead of i(n−1)/2 for the
power of l preceeding Tl,i. My expression agrees with [Rec]. Of course, changing X

to lX transforms one into the other. When n = 2 one usually writes Tl for
√
lTl,1

and 〈l〉 for Tl,2. The Hecke polynomial becomes then 1− TlX + l 〈l〉X2.
Another common normalization is to consider instead of Pl(X) the polynomial

Pl(l
−(n−1)/2X) =

n∑
i=0

(−1)iTl,iX
i.

While the �rst normalization agrees with a functional equation relating s to n− s
the second agrees with s 7→ 1− s. The �rst normalization is generally preferred by
number theorists, and the second by representation theorists.

1.2.3. The action of the Hecke algebra on the cohomology of XK . Write X =
M(Q) \M(A)/R×+ so that XK = X/K. Let g ∈ M(Ql). Then the map kgK 7→
k(K ∩ gKg−1) (k ∈ K) is a bijection

KgK/K ' g−1KgK/K ' g−1Kg/(g−1Kg ∩K) ' K/(K ∩ gKg−1)

so the degree of prK : XK∩gKg−1 → XK is [KgK/K]. Consider also the maps
prgKg−1 : XK∩gKg−1 → XgKg−1 and Rg : XgKg−1 ' XK given by x(gKg−1) 7→
(xg)K. Let

Tg = Rg ◦ (prgKg−1)∗ ◦ (prK)∗ : XK 99K XK

be the correspondence whose degree is [KgK/K].
If we let the double coset KlgKl act as Tg and extend linearly to Tl this de�nes

a right action of Tl (taken now with Z-coe�cients) as a ring of correspondences
on XK . By �right action� we mean that the convolution product KlgKl ·KlhKl in
Tl corresponds to Th ◦ Tg. Now quite generally, any correspondence T : X 99K Y
between two manifolds induces, by pull-back, a homomorphism on the singular
cohomology

T ∗ : Hi(Y,Zp)→ Hi(X,Zp)
and (T ◦R)∗ = R∗◦T ∗, so if we let the double coset KlgKl act as T

∗
g on Hi(XK ,Zp)

we get a left action of the ring Tl on Hi(XK ,Zp). These actions, for various l /∈ S,
commute, so can be combined to give an action of the global Hecke algebra T.
In particular, we denote the operator T ∗l,j |Hi(XK ,Zp) still by Tl,j and call it the

jth Hecke operator at l (on Hi(XK ,Zp)).
In the same way we get actions of T on the �nite-dimensional vector spaces

Hi(XK ,Qp) and Hi(XK ,Fp).

Remark. On correspondences. Let X and Y be as above, two smooth oriented
manifolds of dimension d. A correspondence between them is a d-dimensional closed
submanifold Z ⊂ X × Y such that both projections pX : Z → X and pY : Z → Y
are �nice�. If X and Y are complex algebraic varieties and Z is a closed algebraic
subvariety of the product, then by �nice� we mean �nite and �at (but possibly
rami�ed). For smooth real manifolds one may develop a similar notion, but we
shall not do it, as all our correspondences will eventually be given by explicit group
theoretic formulae obtained by decomposing double cosets to a �nite union of one-
sided cosets. In any case, we should at least require �nice� to be �proper�. This
su�ces to de�ne a map

[Z]XY = (pY )∗ ◦ p∗X : Hi(X,R)→ Hi(Y,R)
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between singular cohomology, and a similar map interchanging the roles of X and
Y . Here R is any ring of coe�cients. Note that pY is proper so the push-forward
on cohomology is de�ned. One way to see it is to use the version of Poincaré duality
for (arbitrary topological) manifolds asserting that Hi(X) is naturally isomorphic
to the Borel-Moore homology HBM

d−i (X). The latter is de�ned as singular homology,
when one replaces �nite chains by locally �nite chains (chains whose intersection
with every compact subset is �nite). Borel-Moore homology is not functorial in
X, but for locally compact spaces it is covariant with respect to proper maps. If
we use R coe�cients we can use instead the duality between Hi(X) and Hd−i

c (X)
and the fact that compactly supported cohomology is contravariant with respect
to proper maps. However, we are speci�cally interested in torsion classes, so this
is not enough! In our example we take X = XK ,Y = XgKg−1 (which is isomorphic
to X under Rg) and Z = XK∩gKg−1 .

1.3. The main theorem and some corollaries.

1.3.1. Galois representations attached to eigen-classes in Hi(XK ,Fp). Let XK , p

and S be as before. By a system of Hecke eigenvalues occuring in Hi(XK ,Fp) we
mean a homomorphism ψ : T→ Fp so that Hi(XK ,Fp)[ψ] 6= 0.

Theorem 1. [Tors, Corollary V.4.3] Let ψ be a system of Hecke eigenvalues oc-
curing in Hi(XK ,Fp). Then there exists a unique continuous semisimple represen-
tation

σψ : GS → GLn(Fp)
such that for any l /∈ S, if we denote by Frl ∈ GS any geometric Frobenius at l,

det(1−X · σψ(Frl)) = ψ(Pl(X)).

Remark. (i) Uniqueness is obvious since the Frl are dense in GS and their char-
acteristic polynomials determine their traces, hence the character of σψ. But a
semi-simple representation is determined by its character. Note that σψ factors
through a �nite quotient of GS .

(ii) When n = 1 XK is the �nite group Q× \ A×/R×+K, the Hecke operator Tl
(l /∈ S) is the coset lK, its action is the action of l by (right) multiplication, only
i = 0 counts, H0(XK ,Fp) is the space of functions from XK to Fp, Pl(X) = 1−X
and the theorem asserts the existence of a Galois character satisfying

σψ(Frl) = ψ(l).

The theorem captures class �eld theory (over Q). Already here we see that it
was necessary to include ∞ in S, because in K0

∞ we included only the connected
component of the identity.

(iii) When n = 2, XK = YK(C) where YK is an open (i.e. without the cusps),
disconnected (in general) modular curve de�ned over Q. Let i = 1 (this is the only
interesting index). We then have a canonical isomorphism

H1(XK ,Fp) ' H1
et(YK/Q,Fp)

and the group on the right hand side carries a natural action of GS . One has to
distinguish two cases: (a) ψ is �Eisenstein�, i.e. it occurs in the cokernel of the
injective map

H1(XK ,Fp) ↪→ H1(XK ,Fp)
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where XK is the compacti�ed modular curve. This case is easy, since one can
analyze directly the action of the Hecke algebra on the cusps. One can construct
σψ �by hand�. It is reducible, the sum of two one-dimensional characters. (b)
Suppose that the system of Hecke eigenvalues comes from the cohomology of the
complete modular curve, i.e. H1(XK ,Fp)[ψ] 6= 0. The theorem asserts the existence
of a 2-dimensional semisimple representation σψ such that

det(X − σψ(Frl)) = X2 − ψ(Tl)X + lψ(〈l〉)

for every l /∈ S. This follows from the Eichler-Shimura congruence relation. It is
classicaly proved for cohomology (and Galois representations) with Qp-coe�cients,
and the corresponding characteristic 0 Galois representation comes out to be irre-
ducible and odd. But curves do not have torsion in their cohomology, so the result
as stated follows from it. Let us also remark that cases (a) and (b) are not mutually
exclusive when one deals with Fp-coe�cients, as there could be congruences modulo
p between Eisenstein series and cusp forms.

1.3.2. Working with Z/pmZ coe�cients. One would like to state a similar theorem
for Z/pmZ coe�cients. There are two technical di�culties. The �rst is that Scholze
does not quite construct, in this generality, a representation, but only a pseudorep-
resentation, or more precisely, a �determinant� in the sense of Chenevier. The other
di�culty is that the relation between the corresponding �determinant of Frobenius�
and �Hecke polynomial� only holds modulo a certain defect. Luckily, this defect is
independent of m (and in a certain sense, independent of K too).

Theorem 2. [Tors, Theorem V.4.1] There exists an integer N depending only on
n, such that for any K as above, and any indices i ≥ 0, m ≥ 1, if we let T(K, i,m) be
the image of the Hecke algebra T in the endomorphism algebra of Hi(XK ,Z/pmZ),
then there is an ideal I ⊂ T(K, i,m) with IN = 0 and an n-dimensional determinant
D of GS over the ring T(K, i,m)/I, which satis�es the relation

D(1−X · Frl) = Pl(X) mod I

for every l /∈ S.

1.3.3. Working with a local system Mξ/p
mMξ as coe�cients. With a little extra

e�ort, it is possible to extend Theorems 1 and 2 to include certain local systems as
coe�cients. See [Tors, V].

1.3.4. An application to the Langlands correspondence for GLnover Q. Fix an iso-
morphism of C with Qp. Let π be a cuspidal automorphic representation of GLn(A).
We assume that π∞ is regular L-algebraic [spell out what this means, and note that
by results of Clozel, this means that a certain Tate twist of π is cohomological ]. As-
sume also that πl is unrami�ed if l /∈ S, and let ψ : T→ Qp be the hecke character
(�system of Hecke eigenvalues�) attached to π.

Theorem 3. Under the above assumptions, there exists a unique continuous semisim-
ple representation σπ : GS → GLn(Qp) such that for any l /∈ S

det(1−X · σπ(Frl)) = ψ(Pl(X)).

This theorem is the main theorem of [HLTT], and was proved there by more
traditional methods. For self-dual π it has been known long before [Cloz].
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Remark. Venkatesh and Bergeron [V-B] have shown that the torsion in the coho-
mology of Γ\G(R)/K0

∞ grows exponentially with the covolume of Γ, while the Betti
numbers only grow linearly. Thus Theorem 1 and 2 are signi�cantly stronger than
Theorem 3 and can not be reduced to it. There are many torison Galois representa-
tions attached to torsion cohomology classes that do not come from characteristic
0 representations by reduction modulo pm.

2. A survey of the proof of Theorem 1 [3 weeks]

2.1. Galois representations attached to Siegel modular forms.

2.1.1. Preliminaries on the symplectic group and its symmetric space. If one is
to attach Galois representations to cohomology classes on XK , algebraic geometry
should show up somewhere. The key idea is due to Clozel. The space XK �appears�
in a Hecke-compatible way in the boundary of a certain compacti�cation of a similar
space associated with Sp2n. But the locally symmetric spaces of Sp2n, the Siegel
modular varieties, are algebraic. This is still a long way from attaching Galois
representations to Hecke eigenforms on Siegel modular varieties, let alone to torsion
classes in the cohomology of these varieties, but at least is a good starting point.

Let G = Sp2n/Z be the group scheme of all 2n× 2n matrices g satisfying

tg · J · g = J

where

J =

(
0 I
−I 0

)
is the matrix of the standard symplectic form 〈u, v〉 = tuJv. The subgroup P
consisting of all matrices

{g =

(
A B
0 tA−1

)
|A−1B is symmetric}

is a maximal parabolic subgroup whose Levi factor is the group M = GLn, the
projection from P to M being g 7→ A. We regard M both as a quotient and a
subgroup. Thus

P = MU

is a semi-direct product, and the unipotent radical U in our case, is commutative,

and isomorphic to Gn(n+1)/2
a .

Let G∞ = G(R). Identify Cn with R2n via

(z1, . . . , zn) 7→ (Re(z1), . . . , Re(zn), Im(z1), . . . , Im(zn))

and let (z, w) =
∑
zkwk be the standard hermitian inner product on Cn. Then

multiplicatoin by i corresponds to −J and

(z, w) = 〈z, iw〉+ i 〈z, w〉 .
The group K∞ = U(n) is therefore embedded in G∞ (check that it is equal to the
intersection of G∞ with SO(2n)). It is a maximal compact subgroup. Observe that

KP
∞ = K∞ ∩ P∞

is the subgrop of all matrices in P∞ where A = tA−1 and B = 0, hence is the
standard KM

∞ = O(n) inside GLn(R). Since, by the Iwasawa decomposition,

G∞ = P∞K∞,
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we get for the symmetric spaces

H = G∞/K∞ = P∞/K
P
∞.

Recall that this is the Siegel space of all the complex symmetric matrices Z = X+iY
with Y > 0 (positive de�nite). Indeed, G∞ acts transitively on H by(

A B
C D

)
: Z 7→ (AZ +B)(CZ +D)−1

and if Z0 = iI then its stabilizer is K∞. When we restrict to P∞ we get the action

Z = X + iY 7→ AZ tA+B tA = (AX tA+B tA) + i(AY tA).

Now mod out also by the left action of the unipotent radical U∞ of P∞, i.e. project
H to M∞/K

M
∞ where M∞ = U∞ \ P∞ and KP

∞ ' KM
∞ under the projection. Since

the action of U∞ on H amounts to adding an arbitrary symmetric matrix to the real
part of Z, the quotient is the cone of positive de�nite symmetric matrices. When
we further divide by positive homotheties (R×+) we get the symmetric space of GLn

H = M∞/R×+KM
∞ = SLn(R)/SO(n).

The standard split (non compact) torus T is the set of matrices of the form
diag[a1, . . . , an, a

−1
1 , . . . , a−1

n ]. In our standard U(n) we have a maximal compact
torus Tc consisting (under the identi�cation of Cn with R2n) of all the maps
(z1, . . . , zn) 7→ (ζ1z1, . . . , ζnzn) where |ζi| = 1.

The Weyl group of G (W = NG(T)/T) is the group Sn n (Z/2Z)n of signed
permutations. If we decompose Q2n into a direct sum of n hyperbolic planes Hk =
〈ek, en+k〉 in the standard way, the group Sn permutes the planes and the kth copy
of Z/2Z has the e�ect ek 7→ en+k, en+k 7→ −ek in Hk (modulo the action of the
standard torus).

2.1.2. The symplectic Hecke algebra. Let l be a prime. The local (spherical) Hecke
algebra is

Tl = Zp[G(Zl) \G(Ql)/G(Zl)] = H(Gl,Kl).

As in the case of GLn it is commutative and we have the Satake isomorphism

Tl[
√
l] ' Zp[

√
l][X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n

whose image consists of all the symmetric Laurent polynomials which are symmetric
also under Xi 7→ X−1

i for each i. The formula for the Satake isomorphism and the
proof of the isomorphism is the same as in the case of GLn. The only thing that
changes is that the Weyl group is now larger. An excellent survey of the Satake
isomorphism is [Sat].

2.1.3. The local unrami�ed transfer from Sp2n to GL2n+1 and the Hecke polyno-
mial. [This subsection and in particular the next one are about things where my
understanding is limited. It is also where Scholze's work still depends on work in
progress of Arthur, on the stabilization of the twisted trace formula. Surprisingly
here, the situation is better if one replaces the ground �eld by a quadratic imaginary
�eld, because then there are unconditional results of Shin which allow one to get the
desired representations of U(n, n), the group which replaces Sp2n.]

Recall some de�nitions and conjectures from the theory of automorphic represen-
tations, specialized to our context. LetG be a split reductive group. Fix an integral
model G/Z and assume that it has good reduction if l /∈ S. Thus Kl = G(Zl) is a
hyperspecial maximal compact subgroup of Gl = G(Ql).
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The Langlands dual Ĝ of G is a complex reductive group.
Let π be a discrete automorphic representation of G(A), i.e. a closed subspace

π ⊂ L2(G(Q) \G(A))χ

where χ is a unitary character of the center of G(A), which is (topologically) irre-
ducible under right translation by G(A). Then

π = ⊗̂πv
(a completed tensor product) where v runs over the primes of Q, and πl (for a �nite
prime l) is a smooth irreducible representation of Gl. Assume that for l /∈ S it is

unrami�ed (also called spherical) i.e. πKl

l is non-zero. Then the commutativity of
the spherical Hecke algebra Tl (this time we take it with Z-coe�cients) implies that

πKl

l is one-dimensional, so Tl acts on this line via a homomorphism ψl : Tl → C
called the Hecke character of πl. Now, the Satake isomorphism is an isomorphism
of C⊗ Tl with

C[X∗(T)]W

where T is a maximal torus of G, and W its Weyl group. If T̂ is a maximal torus
in Ĝ then X∗(T) = X∗(T̂ ) and a homomorphism

C[X∗(T̂ )]W → C

is the same as a point of T̂ /W , i.e. a semisimple conjugacy class in Ĝ (every

semi-simple element of Ĝ can be conjugated to lie in T̂ and two elements of T̂ are
conjugate in Ĝ if and only if they are conjugate in NĜ(T̂ ), i.e. if and only if they lie
in the same orbit of W ). Thus via the Satake isomorphism, giving ψl is the same

as giving a semisimple conjugacy class s(πl) in Ĝ. This conjugacy class is called
the Langlands parameter of π at the unrami�ed prime l. It determines πl uniquely.

Let H be another split reductive group de�ned over Q, and let η : Ĝ→ Ĥ be a
homomorphism. We then have the following easy local lemma.

Lemma. Let G and H be as above (in particular, we assume that they are split).
Let TGl and THl be the spherical Hecke algebras w.r.t. hyperspecial maximal compact
subgroups at l (with complex coe�cients). Let η : Ĝ → Ĥ be a homomorphism of
the Langlands dual groups (as algebraic groups over C). Then there exists a unique
homomorphism

η∗ : THl → TGl ,
such that for any Hecke character ψGl : TGl → C, if we let s(ψGl ) ∈ Ĝ be the
corresponding parameter, and ψHl = ψGl ◦ η∗, then η(s(ψGl )) = s(ψHl ).

Proof. The homomorphism η carries semisimple conjugacy classes in Ĝ to semisim-
ple conjugacy classes in Ĥ, hence induces a map T̂G/WG → T̂H/WH , which is a
morphism of a�ne algebraic varieties. By the above discussion and the de�nition of
the dual group, this map comes from an algebra homomorphism C[X∗(TH)]WH →
C[X∗(TG)]WG . Invoking the Satake isomorphisms gives η∗. �

We remark that when the groups are not split, the lemma remains true if we
replace the Langlands dual by the notion of the L-group, which is a semi-direct
product of the dual group with the �nite Galois group of a splitting �eld. However,
for our purposes, split groups su�ce. The following is Langlands' functoriality
conjecture.
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Conjecture. For every automorphic representation π of G(A) there exists an au-
tomorphic representation Π of H(A) satisfying the following. Let l be an unrami�ed
prime for both groups (meaning that integral models have been �xed and the cor-
responding groups of Zl points are maximal compact hyperspecial). Then if πl is
unrami�ed, so is Πl, and η(s(πl)) = s(Πl).

We emphasize that in general Π need not be unique, except when H = GLh,
in which case �strong multiplicity one� implies that knowing Πl for all but �nitely
many l determines Π.

Let us return to our setting. The Langlands dual of Sp2n is SO(2n + 1)(C).
Consider the standard embedding η of SO(2n+ 1)(C) in GL2n+1(C). According to
the conjecture, to any automorphic representation π of Sp2n(A) there should corre-
spond an automorphic representation Π of GL2n+1(A) such that, if πl is unrami�ed,
Πl is also unrami�ed, and the Langlands parameter of πl (a semi-simple conjugacy
class in SO(2n+ 1)(C)) gets mapped under η to the Langlands parameter of Πl (a
semisimple conjugacy class in GL2n+1(C)).

The local unrami�ed transfer πl 7→ Πl is determined by the embedding η, and
is dual, by the Lemma, to a homomorphism of the spherical Hecke algebras in the
opposite direction. In our case, η determines a homomorphism

η∗ : Zp[
√
l][Y ±1

1 , . . . , Y ±1
2n+1]S2n+1 → Zp[

√
l][X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n = Tl[

√
l].

A little group theory (involving the de�nition of the Langlands dual) shows that
this is the homomorphism taking {Y1, . . . , Y2n+1} to {X1, X

−1
1 , . . . , Xn, X

−1
n , 1}

(since the homomorphism ought to be de�ned only on symmetric Laurent poly-
nomials, any permutation of these sets will yield the same map). Note that if

φ ∈ Zp[
√
l][Y ±1

1 , . . . , Y ±1
2n+1]S2n+1 then the image of φ and the image of φ̇ in Tl[

√
l]

coincide. This means that Πl ' Π∨l (is self-dual). This can be also seen from the
fact that any representation into an orthogonal group is self-dual.

Using this, we can de�ne the Hecke operator Tl,i (1 ≤ i ≤ 2n + 1) to be the

image of the ith elementary symmetric polynomial in the Yj in Tl[
√
l] . In fact, it

belongs to Tl. We can now de�ne the Hecke polynomial to be

P̃l(X) =

2n+1∑
i=0

(−1)iTl,iX
i ∈ Tl[X].

2.1.4. The global endoscopic transfer. The Langlands functoriality conjecture is in
fact known in our case, for certain π's, as a result of deep (ongoing) work of Arthur
on the twisted trace formula. For reasons unclear to me, it is called the theory of
endoscopic transfer.
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Let k > n. Then there exists a unique discrete series representation πk of G∞
with minimal K∞-type detk and in�nitesimal character2

(k − 1, k − 2, . . . , k − n) ∈ X∗(T).

Let XK be the Siegel modular variety of level Kf = KSK
S (notation as usual,

K = K∞Kf ) which is small enough (e.g. principal level subgroup of level ≥ 3). It
is a smooth quasi-projective variety de�ned over Q. Let X∗K be the minimal (Baily-
Borel) compacti�cation of XK , which is a normal projective variety. Let A be the
universal (principally polarized) abelian variety over XK and ω = det(e∗Ω1

A/XK
)

(where e : XK → A is the zero section) the Hodge bundle. Then ω is an ample line
bundle and in fact

X∗K = Proj(⊕∞k=0H
0(XK , ω

k)).

Thus H0(XK , ω
k) = H0(X∗K , ω

k) (n > 2, by the Koecher principle) is the space of
holomorphic modular forms of weight k on XK . If we let I be the ideal sheaf of
X∗K \XK then H0(X∗K , ω

k ⊗ I) is the space of cusp forms of weight k.
The Hecke algebra T = ⊗′l/∈STl acts on H

0(X∗K , ω
k⊗I) by the same recipe used

to de�ne its action on singular cohomology groups of the locally symmetric spaces
for GLn, see section 1.2.3.

Recall that k > n. If f is a Hecke newform in H0(X∗K/C, ω
k ⊗ I) and we denote

by

f : T = ⊗′l/∈STl → C

also the corresponding system of Hecke eigenvalues, then there exists a cuspidal
automorphic representation π = πf of G(A) associated to f , unrami�ed outside S,
whose associated Hecke character at every l /∈ S is fl. The archimedean component
π∞ of π is the above-mentioned πk.

Theorem. (Arthur) Let π be a cuspidal automorphic representation with π∞ = πk.
Assume that π is unrami�ed outside S. Then there exist integers satisfying

n1r1 + · · ·+ nmrm = 2n+ 1

and self-dual cuspidal automorphic representations Πi of GLni(A) such that for all
l /∈ S all the Πi,l are unrami�ed, and the Langlands parameters satisfy

η(s(πl)) =

m⊕
i=1

(s(Πi,l)l
(ri−1)/2 ⊕ s(Πi,l)l

(ri−3)/2 ⊕ · · · ⊕ s(Πi,l)l
(1−ri)/2).

Furthermore, for each i, a certain twist of Πi,∞ by an integral power of | · | is regular
L-algebraic.

2Recall that if π∞ is an irreducible admissible representation of a connected reductive Lie group
G∞ and K∞ is a maximal (connected) compact subgroup then the subspace of K∞-�nite vectors
forms a (g,K∞)-module and the center Z(g) of the universal enveloping algebra U(g) acts on it
via a character χ, called the in�nitesimal character of the representation. The Harish-Chandra
isomorphism allows us to index the central characters χλ by weights λ ∈ h∗ where h is a Cartan
subalgebra. The characters χλ and χµ are equal if and only if λ + δ and µ + δ are in the same
orbit of the Weyl group, where δ is half the sum of the positive roots. One often abuses language
and refers to λ itself (rather than χλ) as the in�nitesimal character. Recall also that π∞ is called
regular L-algebraic if its in�nitesimal character is the in�nitesimal character of an algebraic (�nite
dimensional) representation of g.
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2.1.5. The Galois representation attached to Siegel modular forms. In [Cloz], Clozel
proved the following theorem. Fix an isomorphism of Qp with C.

Theorem. Let Π be a self-dual cuspidal automorphic representation of GLn(A)
such that Π| · |k/2 is regular L-algebraic for some integer k. Then there exists a
unique continuous self-dual semisimple Galois representation

σΠ : GQ → GLn(Qp)
with the following property. For every �nite prime l such that Πl is unrami�ed, σΠ

is unrami�ed at l and
σΠ(Frl)

ss = s(Πl).

Combining this with the last theorem on the existence of endoscopic transfer,
and our de�nition of the local Hecke polynomials P̃l, one gets the following.

Theorem 4. [Tors, V.1.7] Let k > n and let f : T → Qp be a system of Hecke
eigenvalues occuring in H0(X∗

K/Qp
, ωk ⊗ I) (i.e. factoring through the image of T

in the endomorphism ring of this space). Then there exists a unique continuous
semisimple representation

σf : GS → GL2n+1(Qp)
which is self-dual, and such that for any l /∈ S

det(1−X · σf (Frl)) = f(P̃l(X)).

Proof. Let π be the cuspidal automorphic representation attached to f. As we have
noticed, it is unrami�ed outside S and π∞ = πk. Assume for simplicity that in
Arthur's theorem there is only one (self-dual, cuspidal, regular L-algebraic) Π so
that s(πl) maps under η to s(Πl). Let σf be the Galois representation attached by
Clozel to Π. Since the Langlands parameters of π and Π at l match, by the very
de�nition of P̃l(X), its specialization under f gives the characteristic polynomial of
Frobenius. �

Remark. If n = 2 then Sp2 = SL2 and f corresponds to a Hecke eigenform in the
classical sense. By the Eichler-Shimura congruence relation, there is a 2-dimensional
representation ρf attached to f. The representation σf is nevertheless 3-dimensional
and self-dual. One most surely has the relation

σf = Hom0(ρf , ρf )

(the trace-zero endomorphisms of ρf ).

2.2. The cohomology of the boundary. In this section we relate the locally
symmetric spaces of Sp2n and GLn and their singular cohomologies. Since we have
to use both groups, we shall use the notation XG

K and XM
K for these spaces. We

shall also agree that if we write just XK , we mean XG
K . Naturally, the open compact

level subgroups K should be compatible. We spell out these compatabilities. Recall
that M was the Levi quotient of a maximal parabolic subgroup P of G. Thus
Kf = KSK

S is open compact in G(Af ) as usual, K∞ = U(n), K = K∞Kf and

XK = G(Q) \G(A)/K.

Let KP = K ∩ P(A). This is a compact open subgroup of P (warning: Pl is not
reductive and its unipotent radical does not have a maximal compact subgroup!).
Let KM be the image of KP under the projection of P(A) toM(A). It is again open
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and compact, and for l /∈ S equal to the maximal compact Ml = GLn(Zl). Recall
that M also sits as a subgroup in P. In the following, we shall make the assumption
that KM

f coincides with KP
f ∩M(Af ). This can be arranged by shrinking K if

necessary.

2.2.1. Borel-Serre compacti�cation. A manifold with corners is an m-dimensional
topological manifold with boundary (X, ∂X) endowed with a di�erentiable struc-
ture and a strati�cation of the boundary ∂X by relatively open r-dimensional sub-
manifolds ∂Xr (0 ≤ r ≤ m − 1), such that if x ∈ ∂Xr then x has a neighborhood
which is di�eomorphic to Br × [0, 1)m−r, where Br is the r-ball and where x is
mapped to (0, 0, . . . , 0).

In this subsection we let G be a connected reductive algebraic group de�ned over
Q, K ⊂ G(R) = G a maximal compact subgroup, and Γ ⊂ G(Q) an arithmetic
group. Let D = G/KAG be the corresponding symmetric space and X = Γ\D the
locally symmetric space. Here AG is the connected component of the identity of
the real points of the maximal Q-split torus in the center of G. If G is semisimple
it is trivial. If G = GLn then AG = R×+. We assume that Γ is small enough, so
that X is a real manifold.

The Borel-Serre compacti�cation XBS is a certain topological compacti�cation
of X which has the structure of a manifold with corners. For example, if X is a
modular curve, then XBS is obtained by gluing to X a circle at each cusp. Note
that X ↪→ XBS is a homotopy equivalence. Here is a brief sketch of the general
construction (following [Gor]).

We �rst describe a space DBS endowed with a certain �Satake topology� which
is obtained from D by adding to it a boundary component eP for every rational
parabolic subgroup P. The action of G(Q) on D will extend to it. We then let

XBS = Γ \DBS

and endow it with the quotient topology.
Let P be a rational parabolic subgroup of G and LP its Levi quotient. Then

LP is a reductive group over Q. Let AP be the maximal Q-split torus in the center
of LP . For example, if LP is GLn1 × · · · × GLnk

then AP = Gk
m. Let AP be

the connected component of the identity of AP (R). By the Iwasawa decomposition
G = PK the group P acts transitively on D. Let KP = K ∩ P. Then

D = P/KP .

De�ne a right action of AP onD by gKP ·a = gaKP . This is well-de�ned. The orbits
of AP in this action are totally geodesic submanifolds of D (manifolds containing,
together with any pair of points, also the geodesic between them). If P is a maximal
parabolic, they are ordinary geodesics. We let

eP = D/AP = P/KPAP .

Note that eP is �almost� a space like D, except that since P is not reductive, it
contains a unipotent part. De�ne DBS as a set to be the union of D and all the
eP (one for each rational parabolic subgroup P).

Given P, we have AP ' (0,∞)r for r > 0 and dim eP = d−r where d = dimD. If
P ⊂ Q then AQ ⊂ AP and eQ projects to eP . Fix P0, a minimal rational parabolic
(a rational Borel if G is quasi-split). We call Q a standard (rational) parabolic if it
contains P0. [We already see the structure of a �corner� with P0 corresponding to
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the origin, and the maximal standard parabolics corresponding to the walls]. Let
AP = (0,∞]r, let AP act on it on the left by the convention that t · ∞ =∞ and

D(P ) = D ×AP
AP ,

the quotient of the product D × AP by the equivalence relation (xt, a) ≡ (x, ta).
Endow it with the quotient topology. Denote the equivalence class of (x, a) by
[x, a]. Then D(P ) contains D as the set [x, (1, 1, . . . , 1)] and also eP as the set
[x, (∞, . . . ,∞)]. In fact, we easily see that

D(P ) = qP⊂QeQ
where we include Q = G in the union, in which case we put eG = D. It comes
with a natural di�erentiable structure of a corner. Note that while the set of Q's
containing a given P is �nite, the set of P contained in a given Q is countable.
Thus the same space eQ will belong to in�nitely many D(P ) (just as D = eG is
contained in every D(P )).

Theorem. (Borel-Serre) There exists a unique topology on DBS such that: (a)
each D(P ) is open and the induced topology on it is the given one (b) the action of
G(Q) extends continuously from D to DBS .

Here is a list of properties of XBS = Γ \DBS that will be useful to us.

• It is a space of �nite type (i.e. a �nite CW complex). This is clear from the
construction once we realize that there are only �nitely many Γ-conjugacy
classes of parabolics.

• The Hecke correspondences extend from X to XBS . This follows from the
fact that the action of G(Q) extends from D to DBS .

• The inclusion X ↪→ XBS is a homotopy equivalence. In fact, the �geodesic
�ow� used to construct XBS also supplies the homotopy.

Let ∂XBS = XBS \X be the boundary.

2.2.2. Some long exact sequences in cohomology. Let us return to the situation
where G = Sp2n, K = K∞Kf , Kf = KSK

S is small enough, and XK = XG
K as

before. Then applying the Borel-Serre compacti�cation to each connected compo-
nent of XK we get a manifold with corners XBS

K and the inclusion of XK in it is a

homotopy equivalence. Let the coe�cients be Fp and drop them from the notation.
The long exact sequence for cohomology with compact supports reads

· · · → Hi
c(XK)→ Hi(XBS

K )→ Hi(∂XBS
K )→ Hi+1

c (XK)→ · · ·

and Hi(XBS
K ) = Hi(XK) since XK and XBS

K are homotopically equivalent. Warn-
ing : cohomology with compact supports is not a homotopy invariant.

Let P be the maximal parabolic with Levi factor M = GLn that we have con-
sidered before. Let KP = K ∩P(A). Then

XP
K = P(Q) \P(A)/APK

P

(AP ' R×+ since P is maximal) is a �nite union of spaces Γ \P∞/KP
∞AP which we

denoted by eP , and which appear as open submanifolds of ∂XBS
K . Note that they

are open in the boundary because P is maximal, so in fact D(P ) = D∪eP (in other
words, they are the open walls of the corners). The open embedding

XP
K ↪→ ∂XBS

K
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induce natural maps

Hi
c(X

P
K)→ Hi(∂XBS

K )→ Hi(XP
K)

(the �rst since compactly supported cohomology is covariant for open embeddings,
and the second by contravariant functoriality of cohomology). The composition of
the two maps is the map of compactly supported cohomology to ordinary cohomol-
ogy.

2.2.3. Relating the locally symmetric spaces for P and M . Recall that KM was the
image of KP in M(A) and AM = AP by de�nition. Thus there is a projection prPM
from XP

K to

XM
K = M(Q) \M(A)/AMK

M ,

the locally symmetric space of GLn which appeared before, except that at the
archimedean place we have now KM

∞ = O(n) and not SO(n).

Lemma. [Tors, V.2.2] The map prPM is open and proper. Its �bers are (S1)n(n+1)/2.

As a result we get two maps

(prPM )∗ :Hi
c(X

M
K )→ Hi

c(X
P
K), (ιPM )∗ : Hi(XP

K)→ Hi(XM
K ),

the �rst by contravariance of compactly supported cohomology with respect to
proper maps, and the second by pull-back along the embedding

ιPM : XM
K ↪→ XP

K .

This embedding uses the fact that M sits also as a subgroup of P and our assump-
tion that KM

f coincides with KP
f ∩M(Af ). Note that at ∞ we have KM

∞ = KP
∞.

The map ιPM is a section of prPM , hence if we denote by

jP : Hi
c(X

P
K)→ Hi(XP

K)

the usual map of compactly supported cohomology into ordinary cohomology, and
similarly jM , then the composition

(ιPM )∗ ◦ jP ◦ (prPM )∗ = jM .

Let Hi
! (XM

K ) be the image of this last map. It is called the interior cohomology.
For example, when n = 2 and i = 1 bothH1

c andH
1 of the open modular curve have

dimension 2g + r− 1 where g is the genus of the complete curve and r the number
of cusps, while H1

! (also called there parabolic cohomology) is 2g-dimensional.
Combining the maps obtained here with the maps obtained in the previous sub-

section, we get maps

Hi
c(X

M
K )→ Hi(∂XBS

K )→ Hi(XM
K ).

These two maps de�ne a homomorphism of modules

End(Hi(∂XBS
K ))→ Hom(Hi

c(X
M
K ), Hi(XM

K ))

in the obvious way.
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2.2.4. Compatability with Hecke. In this subsection we check that the last homo-
morphism is compatible with the action of the Hecke algebras. This is necessary
later on for shifting Hecke eigensystems from the (singular) cohomology of XM

K to
the (singular) cohomology of XK , where we can hope to attach to them Galois
representations.

Consider the Hecke algebras Tl, TPl , TMl , of compactly supported, Zp-valued
functions on Gl, resp. Pl, resp. Ml which are bi-invariant under Kl, resp. KP

l ,
resp. KM

l . Restriction de�nes a map

Tl → TPl
and integration along the unipotent �bers (suitably multiplied by the unimodular
character of Pl) a map

TPl → TMl .
The composition of the two is a �partial� Satake transform. We use the word
�partial� because, had P been a Borel, and M the standard torus, we would have
obtained the Satake transform S discussed before. But P is a maximal parabolic.
We extend this map to the global Hecke algebras and denote it by

SGM : T = TG → TM .
The action of T on the cohomlogiy of XK extends to the cohomology of XBS

K

and to the cohomology of ∂XBS
K .We now have maps between the Hecke algebras of

G and M and also maps between cohomology groups related to these two groups
on which these algebras act. The following lemma says that they are compatible.

Lemma. [Tors, V.2.3] The following diagram commutes

T → End(Hi(∂XBS
K ))

SGM ↓ ↓
TM → Hom(Hi

c(X
M
K ), Hi(XM

K ))
.

We also have the following corollary.

Corollary. [Tors, V.2.4] Let T and TM be the images of the corresponding Hecke
algebras in End(Hi(∂XBS

K )) and in End(Hi
! (XM

K )). Then there is a commutative
diagram

T → T
SGM ↓ ↓
TM → TM

of Zp-algebras.

Proof. To deduce the corollary from the lemma one only needs to know that a
Hecke operator T ∈ TM induces the 0 map Hi

c(X
M
K ) → Hi(XM

K ) if and only of it
acts trivially on the interior cohomology, which should be obvious because Hecke
commutes with the map between compactly supported cohomology and ordinary
cohomology. �

2.2.5. Calculating the partial Satake transform. [To be completed. There is an
annoying issue of normalization, see my remark on normalizations of the Satake
isomorphisms and the Hecke polynomials earlier.] Recall that we have identi�ed

the local Hecke algebra for G = Sp2n(tensored with Zp[
√
l]) as

Tl[
√
l] ' Zp[

√
l][X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n
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while the local Hecke algebra for M = GLn (tensored with Zp[
√
l]) was identi�ed

as
TMl [
√
l] ' Zp[

√
l][X±1

1 , . . . , X±1
n ]Sn .

We have also de�ned a polynomial P̃l of degree 2n + 1 with coe�cients in Tl
and a polynomial Pl of degree n with coe�cients in TMl [

√
l]. These are the Hecke

polynomials at l /∈ S for G and M respectively. The net result is this.

Lemma. After possibly renormalizing the partial Satake transform (or, equiva-
lently, multiplying the Hecke operators which appear as the coe�cients of the Hecke
polynomials by appropriate powers of l) SGM carries P̃l(X) to

(1−X)Pl(X)Ṗl(X)

where Ṗ is obtained from P by the substitution Xi 7→ X−1
i .

2.3. End of the proof of Theorem 1.

2.3.1. Shifting Hecke eigensystems from XM
K to XK . Let ψM : TM → Fp be a

system of Hecke eigenvalues occuring in Hi
! (XM

K ,Fp) (i.e. factoring through TM ).
We ignore the slight di�erence between Hi, Hi

c and H
i
! (with which one has to deal

eventually). Recall that our goal is to attach to it a certain n-dimensional Galois
representation of GS over Fp. Using the last corollary we see that

ψ = ψM ◦ SGM : T→ Fp
factors through T, i.e. occurs in Hi(∂XBS

K ,Fp).
We now go back to the exact sequence

Hi(XK ,Fp)→ Hi(∂XBS
K ,Fp)→ Hi+1

c (XK ,Fp)

and �nd out that Hi(XK ,Fp)[ψ] 6= 0 or Hi+1
c (XK ,Fp)[ψ] 6= 0.

Now suppose we had the following analogue of Theorem 4, but with the singular
cohomology with compact supports Hi

c(XK ,Fp) replacing the coherent cohomology
(space of weight k cusp forms) H0(X∗

K/Qp
, ωk ⊗ I).

Theorem 5. [Tors, V.1.11] Let ψ : T → Fp be a system of Hecke eigenvalues
occuring in Hi

c(XK ,Fp) (i.e. factoring through the image of T in the endomorphism
ring of this space). Then there exists a unique continuous semisimple representation

σψ : GS → GL2n+1(Fp)
which is self-dual, and such that for any l /∈ S

det(1−X · σψ(Frl)) = ψ(P̃l(X)).

Using this theorem we would be able to attach to any system of Hecke eigenvalues
occuring in Hi

c(XK ,Fp) a Galois representation with the desired properties, and

by Poincaré duality, also to eigenvalues occuring in Hi(XK ,Fp). Thus to ψM we
will have attached a 2n+ 1-dimensional (self-dual) representation whose Frobenius

determinant at l is equal to the Hecke polynomials P̃l of Gl = Sp2n(Ql) for every
l /∈ S.

This is not the end of the story, because our Galois representation is 2n + 1-
dimensional (and self-dual) while we are looking for an n-dimensional representation
(which need not be self-dual). In the next subsection we brie�y explain how to
use the fact that ψ comes from ψM , a system of Hecke eigenvalues for GLn, to
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�nally construct an n-dimensional representation as in Theorem 1, whose Frobenius
determinants are equal to the Hecke polynomials of GLn. See part V.3 of [Tors],
called �divide and conquer�. Scholze uses a trick from [HLTT], of twisting ψM by
in�nitely many 1-dimensional Hecke characters. One also needs, of course, to relate
the Hecke polynomials for Sp2n and for GLn, but this comes from the calculation
of the partial Satake transform

SGM : T = TG → TM

which we have done above.
The bulk of Scholze's work is, however, in deducing Theorem 5 from Theorem

4. We are now in the realm of algebraic geometry (on Siegel modular varieties) but
Scholze has to introduce new kinds of spaces which only live at the limit, when we
add more and more level at p. This is where perfectoid spaces enter the picture.

Recall how how Galois representations are attached to eigenclasses in cohomol-
ogy in the classical case of modular curves (n = 2). First, since we are deal-
ing with curves, every torsion class comes by reduction modulo p from a class in
H1
et(XK/Q,Qp). But the latter is (as far as the Hecke action goes, if we forget Galois

action) nothing but singular cohomology tensored with Qp. Assume for the moment
that we have replaced XK by the complete modular curve. The di�erence between
the cohomologies of the two is easy to control. Then via the de-Rham isomorphism
and the Hodge decomposition, the singular cohomology (tensored with C) can be
replaced by

H0(XK/C,Ω)⊕H0(XK/C,Ω).

Finally, H0(XK/C,Ω) ' H0(XK/C, ω
2 ⊗ I) since Ω ' ω2 ⊗ I by the Kodaira-

Spencer isomorphism (or by a direct calculation of factors of automorphy on H,
and comparison between the analytic and the algebraic categories). All this is
either missing or far from tivial in higher dimensional cases, but most annoying is
the fact that torsion classes in general can not be lifted to characteristic 0.

2.3.2. Getting n-dimensional representations from 2n + 1-dimensional ones. As
promised, we have to explain how the fact that ψ comes from ψM allows us to
construct from the 2n + 1 dimensional representation provided by Theorm 5, an
n-dimensional representation as in Theorem 1.

Let Γ be a �nite group, F an algebraically closed �eld, ρ a d-dimensional semi-
simple representation of Γ over F and Pρ(g) = det(1 − Xρ(g)) the characteristic
polynomial of ρ(g). Suppose that there is an integer e < d and for every g ∈ Γ
polynomials Q(g) and Q′(g) of degrees e and d− e respectively, such that

Pρ(g) = Q(g)Q′(g).

When is it true that ρ = σ ⊕ σ′ with Pσ = Q and Pσ′ = Q′ ? If this is so, let
χ be an arbitrary character of Z, and consider the representation σ ⊗ χ of the
group Γ × Z whose characteristic polynomial at (g, n) is Q(g)(χ(n)X). Similarly
consider the representation σ′ ⊗ χ−1 whose characteristic polynomial at (g, n) is
Q′(g)(χ−1(n)X). Then

Pρ,χ(g, n) = Q(g)(χ(n)X)Q′(g)(χ−1(n)X)

is the characteristic polynomial of the representation (σ⊗χ)⊕ (σ′⊗χ−1) of Γ×Z.
The following proposition says that this is also a su�cient condition.
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Proposition. [Tors V.3.8] Suppose that for every χ : Z → F× there is a rep-
resentation of Γ × Z whose characteristic polynomial is given by Pρ,χ(g, n). Then
ρ = σ ⊕ σ′ with Pσ = Q and Pσ′ = Q′.

Recall that ψM is a system of eigenvalues of TM occuring in Hi
! (XM

K ,Fp). Let
l0 be an auxiliary prime not in S and S0 = S ∪ {l0}. Let

χ : Q× \ A× → F×p
be any character rami�ed only at l0 and use the same symbol to denote the associ-
ated Galois character (a character factoring through Gal(Q(µl∞0 )/Q)). For l /∈ S0

de�ne
Pl,χ(X) = Pl(χ(Frl)

−1X), Ṗl,χ(X) = Ṗl(χ(Frl)X)

(polynomials with coe�cients in TM ) and P̃l,χ(X) = (1−X)Pl,χ(X)Ṗl,χ(X). Note

that the roots of ψM (Pl,χ) are the reciprocals of the roots of ψM (Ṗl,χ).
After shrinking Kl0 , one can easily check3 that there is a system of Hecke eigen-

values4 ψMχ : TM → Fp occuring in Hi
! (XM

K ,Fp), such that for every l /∈ S0

ψMχ (Pl) = ψM (Pl,χ), ψMχ (Ṗl) = ψM (Ṗl,χ).

It follows that if we let ψχ = ψMχ ◦ SGM : T→ Fp then

ψχ(P̃l) = ψM (P̃l,χ).

Apply Theorem 5 to this ψχ, which as before, occurs in the cohomology of a Siegel
modular variety (with the shrunken K). We get a Galois representation

σψ,χ : GS0
→ GL2n+1(Fp)

which is self-dual, and such that for any l /∈ S0

det(1−X · σψ,χ(Frl)) = ψχ(P̃l(X)) = (1−X)ψM (Pl,χ)ψM (Ṗl,χ).

The (1−X) term allows us to split o� from σψ,χ a copy of the trivial representation.
Let Γ be the �nite quotient of GS through which σψ factored. Then (with our �xed
choice of l0) for all the χ factoring through the unique Zl0 extension of Q, σψ,χ
factors through Γ × Zl0 and we are essentially in the situation of the proposition,
except that Z is replaced by Zl0 . A little algebra allows us to deduce, as before, the
existence of an n-dimensional direct summand of σψ whose associated characteristic
polynomial at Frl is ψ

M (Pl), as predicted by Theorem 1.

2.4. Scholze's main theorem and where the problem is. Granted Theorem
4, it is clear that to deduce Theorem 5, it is enough to prove the following theorem.

Theorem 6. [Tors I.5 and IV.3.1] Let XK be the Siegel modular variety of some
level K as before and ψ : T→ Fp a system of eigenvalues occuring in Hi

c(XK ,Fp).
Then there exists a K ′ ⊂ K obtained by shrinking Kp and an integer k > n, such
that ψ is the reduction modulo p of a system of eigenvalues Ψ which occurs in
H0(X ∗

K′/Zp
, ωk ⊗ I). Here X ∗

K′/Zp
is an integral model of X∗

K′/Qp
.

3Use the cup product

(prK
′

K )∗Hi(XM
K )⊗H0(XM

K′ )→Hi(XM
K′ )

4There is a slight abuse of notation here, as we must now take the Hecke algebra prime to S0

and not only S
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Indeed, to the system of eigenvalues Ψ occuring in H0(X ∗
K′/Zp

, ωk ⊗ I) we can

attach, by Theorem 4, a representation into GL2n+1(Zp) whose Frobenius determi-

nant at l /∈ S is Ψ(P̃l(X)). The Frobenius determinant at l of the reduction modulo

p of the same representation is ψ(P̃l(X)), as required.
Here are three di�culties that one faces when trying to prove theorem 6:

• We are given a topological eigenclass, and we are asked to construct a
geometric object: a modular form with the same eigenvalues, namely, a
section of a line bundle. This requires to compare between topological and
analytic (or even better, coherent algebraic) cohomologies. The prototype
of this is the de Rham theorem on a complex projective variety, which is
a comparison theorem between singular cohomology with coe�cients in C
and analytic or (equivalently, by GAGA) algebraic de Rham cohomology
(hyper-cohomology of the complex of algebraic di�erential forms). p-adic
comparison theorems between p-adic étale cohomology and de Rham (co-
herent) cohomology do exist, but they require that we enlarge the coe�-
cients to very large rings (Fontaine's rings B?) whose construction stimu-
lated Scholze's notion of a perfectoid ring.

• A further twist is that the topological class with which we start lives in
characteristic p and need not lift to characteristic 0, where the geometric
object is eventually constructed. It turns out that if we add level structure
at p (shrink Kp) we can lift it modulo pm and the more level structure at p
we add, the larger we can make m, but to lift it to characteristic 0 we need
�to go to the limit� over Kp.

• Finally, we must relate an ith cohomology class to a global section. For
this Cech cohomology is useful (and perhaps inevitable). In any reasonable
cohomology theory, if U = {Uj} is a covering of a space X and F is a sheaf,
then one has the spectral sequence

Ȟi(U ,Hj(F))⇒ Hi+j(X,F).

Here Hj is the presheaf U 7→Hj(U,−). For this to be useful, we want the
Uj to be such that for any �nite set of indices J = {j0, . . . , jk}, if we denote
by UJ the corresponding intersection of the Uji , then UJ is F-acyclic. That
every cover has a re�nement by such a cover is usually called the �Poincaré
lemma�. However, in our case we can not use any reasonable algebro-
geometric topology (étale, or even rigid-étale) to reduce the computation
of Hi

c(XK ,Fp) to Cech cohomology, because the Poincaré lemma does not

hold in these topologies: there need not exist a cover, for which the Fp-
cohomology of its members vanishes. The picture that one should have in
mind is the unit circle. Its universal covering space is the real line. In
the classical topology we can cover it by contractible open intervals. But
in the étale topology, every �nite cover will be again the circle, and only
in the limit will the fundamental group disappear. One might think that
introducing the topological space

lim
←
S1

where the limit is, say, with respect to the maps z 7→ zp, will solve the
problem. But this space (called the �solenoid�) is not a manifold. A new
type of space appears at the limit.
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Scholze's ingenius idea is that all three problems are resolved by introducing a new
class of spaces, the perfectoid spaces, which show up (often, but not exclusively)
as limits of towers of �ordinary� rigid analytic spaces. In particular, for Shimura
varieties such as XK this is achieved by shrinking Kp.

3. Perfectoid spaces [5 weeks]

3.1. Perfectoid �elds.

3.1.1. De�nition. Throughout this chapter we �x a prime p. A non-archimedean
�eld is a �eld K equipped with a non-archimedean norm |·| : K× → R×.We denote
by K0 or by OK the valuation ring and by K00 or by mK its maximal ideal. The
residue �eld is K0/K00 and we assume it is of characteristic p. Do not confuse the
residue �eld with K0/pK0, a ring which may have many nilpotents, unless K is
absolutely unrami�ed.

De�nition. A perfectoid �eld is a complete non-archimedean �eld K of residue
characteristic p such that (i) the value group |K×| ⊂ R× is non-discrete (ii) the
map Φ : x 7→ xp is surjective on K0/pK0.

Note that if the characteristic of K is p, the second condition simply means that
Φ is bijective, i.e. K is perfect.

3.1.2. Examples.
• Cp, the completion of a �xed algebraic closure of Qp.
• The completion of Qp(µp∞)

• The completion of Qp(p1/p∞)

• The completion of Fp((t))(t1/p
∞

)
• Qp is not perfectoid ((i) does not hold)

• The completion of Qp(p1/l∞) is not perfectoid if l 6= p ((ii) does not hold)

3.1.3. Tilting. Given a perfectoid �eld K we de�ne another �eld K[ by setting

OK[ = lim
←Φ

(OK/pOK)

where the transition maps are the Frobenius morphism Φ. This is easily seen to
be an integral domain in characteristic p, and we let K[ be its fraction �eld. If
char.K = p this is just K. Assume from now on that char.K = 0. If

x = (x0, x1, x2, . . .) ∈ OK[

and we let x̃n ∈ OK be any lift of xn then (n ≥ 0)

x(n) = lim x̃p
m

n+m

is independent of the lift, (x(n+1))p = x(n) and this (extended to the fraction �eld)
identi�es K[ (multiplicatively) as the set of vectors (x(n)) with entries from K
satisfying (x(n+1))p = x(n). The addition can then be de�ned

(x(n)) + (y(n)) = (z(n))

with z(n) = limm(x(n+m) +y(n+m))p
m

. Write x# = x(0). If we de�ne a norm on K[

by
|x| = |x#|

then it is easily checked that K[ becomes a perfectoid �eld in characteristic p,
called the tilt of K, with valuation ring OK[ . The map x 7→ x# is multiplicative
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and (by de�nition) norm preserving. It is in general not surjective, e.g. in the
second example above, K does not contain all the p-power roots of p. Note that
there does not exist a map �x 7→ x[� in the opposite direction, namely from K to
K[.

For example, if K is the completion of Qp(p1/p∞) and we let

t = (p, p1/p, p1/p2

, . . .) ∈ OK[

then K[ becomes the completion of Fp((t))(t1/p
∞

).

Remark. It is extremely interesting to study, for a given perfectoid �eld L in char-
acteristic p, the �moduli space� of all the perfectoid �elds K in characteristic 0
yielding L as their tilt. This leads to the Fargues-Fontaine �curve� [FF].

In the sequel we �x any element 0 6= π ∈ K with |p| ≤ |π| < 1. Then, as in the
above example, there exists an element π[ ∈ K[ with |π[| = |π|, and then

OK/πOK ' OK[/π[OK[ , OK/mK ' OK[/mK[ .

For the �rst isomorphism note that π[OK[ is the kernel of the surjective homo-
morphism OK[ 3 x 7→ x0modπ ∈ OK/πOK . The isomorphism between the residue
�elds follows at once.

Fontaine and Wintenberger [FW] proved the following important theorem, which
allows one to reduce many questions about local �elds in characteristic 0 to local
�elds in characteristic p.

Theorem. Let K be a perfectoid �eld. Every �nite extension of K is again a
perfectoid �eld. Tilting induces a natural equivalence between the category of �nite
extensions of K and the category of �nite extensions of K[ (although one concerns
�elds in characteristic 0 and the other �elds in characteristic p). In particular,
there is a canonical isomorphism between the absolute Galois groups of K and of
K[.

For more on this theme see [Del]. For two applications of these ideas, to explicit
reciprocity laws, and to Néron models of tori, see [dS1] and [dS2].

3.2. Almost mathematics.

3.2.1. The category of almost modules. Faltings' notion of �almost mathematics�,
expounded in the book of Gabber and Romero [Ga-Ra], is a systematic approach
that explains the argument behind the theorem of Fontaine and Wintenberger.
Observe �rst that if K is a perfectoid �eld, then m2

K = mK because the valuation
is non-discrete. Call an OK-module almost zero if it is annihilated by mK . (More
generally, the almost-zero elements in M are M [mK ].) The almost-zero modules
make up a full subcategory C of the category OK-mod. Call a morphism between
two OK-modules an almost isomorphism if its kernel and cokernel are almost zero.
Then thanks to m2

K = mK an extension of almost-zero modules is almost zero, and
the composition of two almost isomorphisms is again an almost isomorphism. Thus
the category C is a thick Serre subcategory (closed under sub-objects, quotients
and extensions) and we may localize by it (i.e. by the multiplicative set of almost
isomorphisms) and form the category

OaK-mod= OK-mod/C
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which we call the category of almost OK-modules. Recall that its objects are
the same as those of OK-mod, although we denote a module M by Ma when
considered in this new category. The morphisms, however, are such that all almost-
isomorphisms are inverted. As a result, two distinct morphisms between M and
N in the category of modules, may become the same morphism between Ma and
Na in the almost category, and it does not make sense to talk about the image of
an element of M under a morphism from Ma to Na. Note that OK/mK is almost
isomorphic to 0, but OK/pOK is not. We follow the excellent exposition [AM] by
Bhatt.

In general, computing in localized categories is a nuisance. In our case it is easy,
because the functorM →Ma has right and left adjoints. In fact, forM ∈ OK-mod,
let

M∗ = HomOK
(mK ,M), M! = mK ⊗OK

M.

Then
HomOK

(M!, N) = HomOa
K

(Ma, Na) = HomOK
(M,N∗).

The map from HomOK
(M!, N) to HomOa

K
(Ma, Na) associates to φ the equivalence

class of φ ◦ (x ⊗ 1) where x : OK → mK is the inverse of the almost isomorphism
mK → OK . One proves that this map is bijective and respects the OK-module
structure. That HomOK

(M!, N) = HomOK
(M,N∗) is standard.

Exercise. (a) (OK)∗ = (mK)∗ = OK , (OK/mK)∗ = {0}. (b) (OK)! = (mK)! =
mK , (OK/mK)! = {0}. (c) For any N, HomOK

(OK/mK , N) = N [mK ] is the mod-
ule of almost-zero elements in N, but HomOa

K
((OK/mK)a, Na) = 0.

Note that (M!)
a and Ma are canonically isomorphic (in the almost-category)

and similarly (M∗)
a and Ma, but M and M! or M and M∗ are in general not

isomorphic (in the usual category of modules). Thus going from the almost world
to the usual world and back does not change anything, but not vice versa.

The module N∗ is called the module of almost-elements in N. Note that it is
equal to HomOa

K
(OaK , Na) and that it does not contain any almost-zero elements

except 0. There is a canonical map of N to N∗ whose kernel is N [mK ] and one has
(N∗)∗ = N∗. Here is another example.

Exercise. (a) Assume that K is as in the third example above. The module
(OK/pOK)∗ contains �elements� of the form

x =

∞∑
n=1

p1−1/pnxn

where xn ∈ OK/pOK are arbitrary, but only �nite sums (i.e. sums where all but
�nitely many xn vanish) are inOK/pOK . What we mean by x is the homomorphism
mK → OK/pOK sending a to ax. Notice that ax makes sense because axn vanishes
for almost all n. (b) (OK/mKp)∗ = (OK/pOK)∗.

The category OaK-mod is an abelian tensor category (tensor product is inherited
from the one between usual modules) and has internal hom's5. These are the almost
homomorphisms

alHom(Ma, Na) := HomOa
K

(Ma, Na)a.

5An object Hom(B,C) ∈ A in an abelian tensor category A is called the internal hom of B to
C if it represents the contravariant functor A AbelianGroups sending A to HomA(A⊗B,C).
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We emphasize that although objects of the almost-category are sets, since mor-
phisms are not set-maps, kernels of morphisms are de�ned only up to unique iso-
morphisms, so the kernel of φ : Ma → Na may not be identi�ed with any submodule
of M. However, the module of almost elements ker(φ)∗ is an ordinary submodule
of M∗.

Exercise. Exactness properties: (a) M  M! is an exact functor on OK-mod
(b) N  N∗ is left exact, but in general not right-exact (hint: use the previous
exercise) (c) the functor M  Ma is an exact functor from OK-mod to OaK-mod
(since it has both right and left adjoints).

Since tensor products are de�ned and satisfy the usual rules, it is possible to
de�ne OaK-algebras (�almost OK-algebras�) by the standard diagrams in the cat-
egory of almost-modules. If A is an �almost OK-algebra� then A∗ is an ordinary
OK-algebra. Since A = (A∗)

a every �almost OK-algebra� comes via localization
from an ordinary OK-algebra.

3.2.2. Almost commutative algebra. Let R be an OK-algebra and M an R-module.
We callMa (almost) �at over Ra if the functor X → X⊗RM is exact in the almost
category. This is equivalent to the standard Tor groups TorRi (M,−) being almost
zero for i > 0. Flatness over OaK is particularly simple: Ma is �at over OaK if and
only if M∗ is �at over OK .

We call Ma almost �nitely presented if for any ε ∈ m there exists a �nitely
presented R-module Mε and a map fε : Mε → M whose kernel and cokernel are
killed by ε. It is uniformly almost f.p. if there is an integer n such that all the Mε

are generated by n elements. For example, mK is almost �nitely presented, but not
�nitely presented in the ordinary sense.

An A-algebra B is called unrami�ed (in the almost category, or almost unrami-
�ed) if there exists an almost element e ∈ (B ⊗A B)∗ satisfying

• e2 = e
• µ(e) = 1
• ker(µ) · e = 0

where µ : B ⊗A B → B is the multiplication map. (Note that in standard com-
mutative algebra, if B is of �nite type over A, then the existence of e ∈ B ⊗A B
satisfying the three properties is an equivalent condition for B/A being unrami�ed.
Geometrically, ifX = SpecA and Y = SpecB it means that the diagonal embedding
of Y in Y ×X Y is an open immersion. We call e therefore a diagonal idempotent.
See [Mi], Proposition I.3.5). It is (almost) étale if it is (almost) �at and (almost)
unrami�ed and �nite étale if it is in addition almost �nitely presented.

There are several competing de�nitions for these notions in the almost category.
It turns out that the given ones work the best.

Example. Let p > 2 and consider the �elds

Kn = Qp(un)

where u0 = p and upn = un−1. Let K∞ be their union and K its completion, a
perfectoid �eld. Now consider L0 = Qp(v0) where v2

0 = u0 = p and Ln = L0Kn,
L = L0K. It is easily seen that Ln and L are quadratic extensions of Kn and
K respectively. Now L/K is unrami�ed, of course, and this is re�ected by the
isomorphism

L⊗K L ' L⊕ L, x⊗ y → (xy, xy).
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The idempotent e corresponding to (1, 0) under this isomorphism is the unique
element of L ⊗K L satisfying the above equations. If v ∈ L is any element with
v̄ = −v and if u = v2 ∈ K we can take

e =
v ⊗ v

2u
+

1⊗ 1

2
.

Now, suppose we want to do the same with the rings of integers. Then OLn =
OKn

[vn] with v2
n = un. To see this it is enough to note that for appropriate integers

i, j the element vi0u
j
n is a 2pn root of p. Thus choosing vn for v shows that we can

make the denominator in the �rst term in e very close to a unit, although, strictly
speaking, it will never be a unit, and we will not be able to take e ∈ (OL⊗OK

OL).
However, the argument shows that e ∈ (OL ⊗OK

OL)∗ so OL is almost unrami�ed
over OK . This idea, that the rami�cation is swallowed in the tower, is due to Tate.

The same type of argument shows that although OL is not a �nite OK-module6,
it is almost �nitely presented. In fact, it is uniformly almost �nitely presented in
the sense that all the Mε can be taken of the same rank (here, 2). Flatness is easy,
so altogether this shows that the extension is �nite étale in the almost category
although it is neither �nite nor étale in the usual sense.

We remark that Ω1
OL/OK

= 0 (and is not only almost zero). Indeed, at a �nite

level v2
n = un yields 2vndvn = 0, and this in itself only shows that the di�erent

at a �nite level is (2vn) which becomes smaller and smaller. However, assuming

vpn+1 = vn yields pvp−1
n+1dvn+1 = dvn so dvn = 0 in the n+ 1 step already, hence in

the limit. Since OL =
⋃
OK [vn], the module of Kähler di�erentials vanishes at the

limit.

Here is another example.

Example. Let K be a perfectoid �eld of characteristic p and 0 6= t ∈ mK . Let A
be a �at OK algebra, integrally closed in the generic �ber A′ = A[t−1]. Let B′ be
a �nite étale A′-algebra and B the integral closure of A in B′. Then if A is perfect
(Φ : A→ A is surjective), Ba is almost �nite étale over Aa.

Proof. Let e ∈ B′ ⊗A′ B′ be the diagonal idempotent. Then for some N ≥ 0
tNe ∈ B ⊗A B. If A is perfect then A′ hence B′ hence B are all perfect. Since
e1/p = e we have tN/p

n

e ∈ B ⊗A B for all n and hence e is an almost element of
B ⊗A B. This shows that B is almost unrami�ed over A. Note how the fact that
A was perfect is used in the proof.

Let tr be the trace map from B′ to A′. Since B is integral over A, and A is

integrally closed, it maps B to A. Now let ε ∈ mK and consider εe =
∑N
i=1 xi⊗yi ∈

B ⊗A B. The endomorphism of B

b 7→ tr ⊗ 1 ((b⊗ 1)e)

is multiplication by ε. But it factors as B → AN → B where the two maps are

b 7→ (tr(bxi)), (ai) 7→
∑

aiyi.

Thus for any ε the module εB is �nitely generated over A, which means that B
is almost �nitely generated. With a little more e�ort one can prove that B is �at
and almost �nitely presented over A (see [Perf, Prop. 4.10]). Since we have already
seen that it is almost unrami�ed, B is almost �nite étale over A. �

6Since OL is integral over OK this means that OL is not even of �nite type as an OK -algebra.
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3.2.3. Deforming almost �nite étale algebras over nilpotent thickenings. The most
important property of �nite étale maps is that they lift uniquely over nilpotent
thickenings. The same holds in the almost category. As before, �x a non-zero
π ∈ mK which divides p.

Theorem. [Perf, Thm 4.17][Ga-Ra, Thm 5.3.27] Let A be an OK-algebra and
assume that in the category of OaK-modules A is �at over OaK and π-adically com-
plete: A ' lim←(A/πnA). Then the functor B 7→ B ⊗A A/π is an equivalence of
categories

Afét ' (A/π)fét

between the corresponding categories of almost �nite étale algebras. Any B ∈ Afét
is again �at over OaK and π-adically complete.

The theorem of Fontaine and Wintenberger is now a consequence of the following
string of equivalences between categories

Kfét ' (OaK)fét ' (OaK/π)fét ' (OaK[/π
[)fét ' (OaK[)fét ' K

[
fét.

The equivalence in the middle is tautological as OaK/π = Oa
K[/π

[, and being almost
�nite étale over this ring is the same whether we view it as an OaK-algebra or Oa

K[ -
algebra. The two equivalences on both sides of it follow from the theorem.

Finally, the outermost equivalences are properties of perfectoid �elds and will
be discussed in the next section, in the more general setting of perfectoid algebras.
One has to show, as we have seen explicitly in one example, that for any �nite
separable �eld extension L/K, the corresponding extension OL/OK is almost �nite
étale. If K is of characteristic p, this is the case A = K of the second example
above, as OL is the integral closure of OK in L. In general, the proof is similar.

3.3. Perfectoid algebras.

3.3.1. De�nition.

De�nition. Let K be a perfectoid �eld. A perfectoid K-algebra is a commutative
Banach K-algebra R such that the subring R0 of power-bounded elements is a
bounded subring, and such the Frobenius Φ : x 7→ xp is surjective on R0/pR0.
Morphisms between perfectoid rings are continuous morphisms.

The condition on R0 is made to ensure that the topology induced by the basis
at 0 consisting of all multiples of R0 by scalars from K, coincides with the metric
topology induced by the Banach norm. Recall that the norm on a Banach algebra
(unlike a valued �eld) is only assumed to be sub-multiplicative. In particular,
this condition implies that perfectoid algebras are reduced, i.e. contain no non-
zero nilpotents. One can thus replace the given Banach norm by the spectral
Banach norm ||.||R, whose unit ball is precisely R0, obtaining an isomorphic (albeit
not necessarily isometric) Banach algebra. A perfectoid K-algebra R embeds in
a perfectoid �eld if and only if its spectral norm is multiplicative (and not only
sub-multiplicative).

Note that we consider perfectoid K-algebras only up to isomorphism, and not
up to isometry. In other words, we care about the ensuing Banach topology, but
we allow to change the Banach norm to an equivalent one.
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3.3.2. Examples.

• The basic example is R = K
〈
T 1/p∞

〉
. This is, by de�nition, K ⊗OK

OK
〈
T 1/p∞

〉
where OK

〈
T 1/p∞

〉
is the p-adic completion of OK [T 1/p∞ ] =⋃

OK [T 1/pm ]. Geometrically, we should think of this as the inverse limit of
the closed unit disc under raising to power p map. We can give the same
example in several variables. Here the norm is actually multiplicative and
R0 = OK

〈
T 1/p∞

〉
.

• [Perf, Prop. 5.23] Let R be a perfectoid K-algebra and S an R-algebra
which is �nite étale over R. Then: (a) S is naturally equipped with a Banach
topology which makes it into a perfectoid K-algebra, (b) The ring of power
bounded elements S0 is almost �nite étale over R0. This generalizes what
we have seen for R = K and S = L a �nite �eld extension.

3.3.3. Tilting. Let R be a perfectoid K-algebra. Fontaine's construction

R[0 = lim←−Φ(R0/pR0)

de�nes an OK[ -algebra and

R[ = R[0 ⊗O
K[
K[

is identi�ed, as usual, multiplicatively, with lim←−ΦR, i.e. with sequences

x = (x(0), x(1), . . .)

of elements of R with x(i+1)p = x(i). We let x# = x(0). Then x 7→ x# is a mul-
tiplicative homomorphism from R[ back to R. We call R[ the tilt of R. It is a
perfectoid K[-algebra with subring of power-bounded elements R[0. Note that Φ is
bijective on R[0. In fact it is bijective on S0 (hence also on S) for any perfectoid
K[-algebra S because S0 = S0/pS0, Φ is surjective by assumption, and injective
since perfectoid algebras are reduced.

Theorem. [Perf, Thm 5.2] The functor R  R[ is an equivalence between the
category K-Perf of perfectoid K-algebras and the similar category of perfectoid K[-
algebras. Under tilting, R[ is a perfectoid �eld if and only if R is a perfectoid
�eld.

This theorem generalizes the theorem of Fontaine and Wintenberger from �elds
to the relative set-up. In fact, more is true. Scholze de�nes what he means by a
perfectoid OaK-algebra (in the category of almost algebras). This is a π-adically
complete, �at OaK-algebra A for which

Φ : A/π1/pA ' A/πA.

Here by π1/p we mean any element of K with |π1/p| = |π|1/p (π itself need not be
a pth power). Scholze then shows that a perfectoid K-algebra, which is an object
�over the generic �ber of OK�, has a canonical extension to a perfectoid OaK-algebra,
and the latter is canonically and uniquely determined by its reduction modulo π.
Moreover, any perfectoid OaK/π-algebra (i.e. a perfectoid OaK-algebra killed by π)
has a unique deformation to a perfectoid OaK-algebra. Thus, there are equivalences
of categories

K-Perf ∼= OaK-Perf ∼= (OaK/π)-Perf
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of perfectoid algebras in the correspodning categories of algebras (or almost alge-
bras), and similarly between these three categories and the three tilted categories
over K[, with the element π[ replacing π.

In these equivalences of categories, the �rst (extension from the generic �ber in
the almost-world) is relatively easy, and only uses �almost mathematics�: To go from
R ∈ K-Perf to A ∈ OaK-Perf take A = R0a. To go from A to R take R = A∗[π

−1]
and put on it the Banach structure in which A∗ is the unit ball. In showing that
these two maps are inverse to each other one has to use the fact that for R0, the
ring of power bounded elements in R, (R0a)∗ = R0 (not true for a general A).

On the other hand, the second equivalence (uniquely deforming a perfectoid
OaK/π-algebra to a perfectoid OaK-algebra) is more subtle. We have already en-
countered this equivalence for almost-�nite-étale algebras. In general, it is done via
the theory of the cotangent complex of Quillen, as generalized by Illusie. See [Perf,
Theorem 5.10].

We make a few general remarks on deformations. If f : A → B is a map
of commutative rings then there is a complex LB/A in the derived category of

B-modules (in non-positive degrees) D≤0(B-mod) which controls the deformation
theory of f. We give two simple-minded examples. If f is smooth then

LB/A = Ω1
B/A[0].

If B = A/I and I is generated by a regular sequence of elements (f then corre-
sponding to a nice closed embedding) then

LB/A = (I/I2)[−1]

is the conormal bundle (in degree -1). In both these examples it is known that
deformation theory is related to LB/A. Let X = SpecA, Y = SpecB and globalize,
leaving the a�ne case, so that f corresponds now to a map f : Y → X. In the �rst
case the obstruction to lifting f : Y � X to a square-zero thickening X̃ of X lies in
H2(Y, TY/X) (Kodaira-Spencer), and if the obstruction vanishes the isomorphism

classes of these liftings become a torsor under H1(Y, TY/X). In the second case, the

obstruction of extending f : Y � X to a square zero thickening Ỹ of Y lies in
H1(Y,NY/X) and the isomorphism classes of extensions make up a torsor under

H0(Y,NY/X). Note that the shift by 1 in the degree of the cohomology re�ects

the shift by 1 in the degree in which Ω1
Y/X = T ∨Y/X or I/I2 = N∨Y/X are placed

in LY/X . In some cases, e.g. when in the �rst case X̃ = X ×k k[ε] (ε2 = 0, k a
�eld) the obstruction vanishes, as there is a trivial deformation. See [Luc]. What
we have to remember from all this is only the extreme case: when LY/X = 0, f
deforms uniquely.

For example, suppose that A = Fp and B is a perfect reduced A-algebra. Then
Φ : B ' B is an isomorphism so by functoriality dΦ : LB/A ' LB/A. But in
characteristic p we always have dΦ = 0, hence LB/A = 0 and B deforms uniquely
over nilpotent thickenings of A. For example, there exists a unique �at Z/pnZ-
algebra Wn(B) lifting B, explicitly given by the Witt vectors construction.

Gabber-Ramero and Scholze extended this to the perfectoid world. If A →
B is now a morphism of OaK-algebras, they show that there exists a complex
LB/A ∈ D(B-mod) with the expected properties, and show that if B is a perfectoid
OaK/πOaK-algebra then LB/(Oa

K/π) = 0. The proof of this relies on the fact that the

relative Frobenius is again an isomorphism between B/π1/pB and B. Furthermore
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the unique lifting of B to an OaK/πnOaK-algebra is again perfectoid. Going to the
limit over n gives the desired equivalence

OaK-Perf ∼= (OaK/π)-Perf.

Another way to prove the theorem �directly at the level of generic �bers�, avoiding
almost mathematics altogether, is to write down explicitly an inverse functor using
the map Θ of p-adic Hodge theory (see [CDM], p.6, or [Perf], Remark 5.19). This
invokes (not surprisingly) Witt vectors again and we do not give it here. However,
the extra information provided by the equivalence with the categories of perfectoid
almost-algebras is needed elsewhere.

3.3.4. �Almost purity� theorem. Note that the equivalence of categories

Kfét ' (OaK)fét ' (OaK/π)fét

that we have encountered in the Fontaine-Wintenberger theorem is �embedded� in
the equivalence between categories of pefectoid algebras, because every �nite étale
K-algebra is automoatically perfectoid (and similarly over OaK). The same holds
when we replace K by any R ∈ K-Perf (resp. OaK by R0a where R0 is the ring of
power-bounded elements in R).

Proposition. [Perf. Theorem 7.9 and Prop. 5.3, especially discussion following
it] Let R be a perfectoid K-algebra and S ∈ Rfét.Then S ∈ K-Perf (resp. S0a ∈
OaK-Perf, resp. S0a/π ∈ (OaK/π)-Perf), S0a is (almost) �nite étale over R0a and
this establishes an equivalence of categories

Rfét
∼= R0a

fét
∼= (R0a/π)fét.

3.4. Perfectoid spaces.

3.4.1. Perfectoid a�noid K-algebras. Let K be a perefectoid �eld as before and R
a perfectoid K-algebra. We think of R as the ring of �functions� on a certain space
(which is yet to be de�ned). Let R+ be an open and integrally closed (in R) subring
of R0. Note that R0 itself is open and integrally closed (easy exercise). In general
R+ must contain all topologically nilpotent elements (because it is integrally closed
and open), so mKR

0 ⊂ R+ ⊂ R0, R+ is almost isomorphic7 to R0, and for all
practical purposes one may asssume that the two are equal. One should think of
R+ as the subring of functions which are �everywhere bounded by 1 in absolute
value�.

De�nition. A perfectoid a�noid K-algebra is a pair (R,R+) where R is a perfec-
toid K-algebra and R+an open and integrally closed subring of R0.

As with perfectoid K-algebras, the categories of perfectoid a�noid K-algebras
and perfectoid a�noid K[-algebras are equivalent under tilting.

7Scholze does not even assume that R+ is an OK -algebra, although this actually holds in
almost every application. Here we implicitly assume it.
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3.4.2. Valuations. Let Γ be a totally ordered abelian group (example: Rd with the
lexicographic ordering). Write Γ multiplicatively.

De�nition. A valuation on a commutative ring R with value group Γ is a surjective
map | · | : R → Γ ∪ {0} such that |0| = 0, |1| = 1, |xy| = |x||y| and |x + y| ≤
max{|x|, |y|}. The kernel of the valuation is the set n of elements with |x| = 0. It
is a prime ideal and R/n is a domain. The valuation extends to a valuation of the
�eld of fractions F of R/n. Let

D = {x ∈ F ||x| ≤ 1}.

Then D is a valuation ring in F (for every x, x or x−1 lies in D). Let m be the
unique maximal ideal of D. Then p = m ∩ (R/n) is a prime ideal and (R/n)p ⊂ D
and is dominated by D. If R is a topological ring the valuation is called continuous
if for every γ ∈ Γ the set of x with |x| < γ is open. Two valuations are called
equivalent if |x| ≤ |y| holds in one if and only if |x|′ ≤ |y|′ holds in the other.

Note that we do not insist that Γ is of rank 1 (equivalently, embeddable in R).
A typical non-rank 1 valuation is obtained when Γ = Z2 with (n,m) < (n′,m′) if
n < n′ or n = n′ and m < m′. For R we take Zp[t]. We let v(f) = (−n,−m)
if n = ord0f and m = ordpan(f) where f =

∑∞
k=n ak(f)tk. In this case n = 0,

F = Qp(t), D is the collection of f for which |f(0)| ≤ 1, m the collection of f with
|f(0)| < 1 and p the maximal ideal (p, t) of R. Here Rp ⊂ D but the element t/p is
not in Rp. Note that m = pD so D is a local ring whose maximal ideal is principal,
but it is of Krull dimesnion 2, the ideal q of all f vanishing at 0 being a prime
ideal. Note also that D is non-noetherian, as q is not �nitely generated. In fact,
q = (t, t/p, t/p2, . . .) and this in�nite sequence of generators does not have a �nite
subsequence which generates it.

3.4.3. The adic spectrum of a perfectoid a�noid K-algebra. Let (R,R+) be a per-
fectoid a�noid K-algebra. Following Huber [Hu] we de�ne Spa(R,R+) (the adic
spectrum of (R,R+)) to be the set of equivalence classes of continuous valuations
on R for which |f | ≤ 1 for every f ∈ R+. If x ∈ Spa(R,R+) we usually denote x(f)
by |f(x)|. We can recover R+ as the set of f ∈ R for which |f(x)| ≤ 1 at every
x ∈ Spa(R,R+).

Remark. (a) This de�nition works also for R a (usual, not perfectoid) �nite type
a�noid algebra, i.e. a quotient R of the Tate algebraK 〈T1, . . . , Tn〉 by some (neces-
sarily closed and �nitely generated) ideal. In this case one considers in rigid analysis
the maximal spectrum Spm(R) consisting of maximal ideals m of R, with the asso-
ciated valuation being the unique extension of the valuation of K to a valuation of
R/m (a �nite �eld extension of K). It is then true that Spm(R) ⊂ Spa(R,R0), but
Spa(R,R0) contains �points� corresponding to non-maximal ideals in R. However,
rigid analytic geometry, or its variants de�ned by Berkovich and Huber, always
invoke noetherianity assumptions. Prefectoid rings are never noetherian. (b) The
Berkovich spectrum of R, denoted Sp(R), is the set of rank-1 continuous valuations
on R. A rank-1 continuous valuation automoatically satis�es |f(x)| ≤ 1 for every
f ∈ R0 (easy exercise) so Sp(R) is just the rank-1 valuations in Spa(R,R+) and is
independent of the choice of R+. (c) As sets we have therefore

Spm(R) ⊂ Sp(R) ⊂ Spa(R,R+)
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The topology that is induced on Sp(R) by the topology de�ned below on Spa(R,R+)
is the same as the topology de�ned by Berkovich on Sp(R). In the case of Spm(R)
this is a little more subtle, as the topology de�ned in rigid analysis on Spm(R) is
not an ordinary topology but a Grothendieck topology.

Let f1, . . . , fn, g ∈ R be such that R =
∑n
i=1Rfi. The set

U = U(f1, . . . , fn|g) = {x ∈ Spa(R,R+)||fi(x)| ≤ |g(x)|}

is called a rational subset of Spa(R,R+). It is clear that g does not vanish on it,
but one can actually prove more, that if π ∈ K and |π|K < 1 then for some N,
|π(x)|N ≤ |g(x)| on U . It is easily veri�ed that the rational sets form a basis for a
topology on Spa(R,R+), and that they are quasi-compact.

Let (R,R+) be a perfectoid a�noidK-algebra and (R[, R[+) the tilted perfectoid
a�noid K[-algebra. For x ∈ Spa(R,R+) de�ne x[ ∈ Spa(R[, R[+) by setting

|f(x[)| = |f#(x)|

(note that this is compatible with the valuations on K and K[).

Theorem. This assignment de�nes a homeomorphism between Spa(R,R+) and
Spa(R[, R[+) mapping rational subsets to rational subsets.

This is far from obvious. As Scholze remarks in [ICM], it is not clear a-priori
that x[ is a valuation at all, because the map # is multiplicative but not additive,
so one should show that the strong triangle inequality persists. This is easy, but
even if we grant this, it is not clear that x 7→ x[ is injective, because the image of
# is not dense in general. What is crucial in proving the injectivity is a certain
approximation lemma, which roughly says that for every f ∈ R there is a g ∈ R[
such that |g#(x)| = |f(x)| except where both f and g# are small. See [Perf],
Lemma 6.5, and [ICM], Lemma 6.6.

The theorem is used in the proof that the structure sheaf OX constructed below
is indeed a sheaf.

3.4.4. The structure sheaf (OX ,O+
X) on X = Spa(R,R+). LetX be the topological

space that has just been de�ned. If U is a rational set of the shape given above, equip
R[g−1] = R[x]/(xg−1) with the norm for which the image of R+[f1g

−1, . . . , fng
−1]

is the unit ball, let

R
〈
f1g
−1, . . . , fng

−1
〉

be its completion (a Banach K-algebra) and R
〈
f1g
−1, . . . , fng

−1
〉+

the completion

of the integral closure of R+[f1g
−1, . . . , fng

−1]. Then the pair

(OX(U),O+
X(U)) = (R

〈
f1g
−1, . . . , fng

−1
〉
, R
〈
f1g
−1, . . . , fng

−1
〉+

)

turns out to be independent of the choices of the fi and g, i.e. depends only on the
set U and not on how this set was constructed. Moreover, restriction of valuations
de�nes a map

Spa((OX(U),O+
X(U))→ Spa(R,R+)

which is a homoeomorphism onto U , preserving rational subsets. The pair of rings
(OX(U),O+

X(U)) satis�es a universal property with respect to maps of Spa(S, S+)
into Spa(R,R+) factoring set-theoretically through U : any such map is obtained
from a unique map of (OX(U),O+

X(U)) to (S, S+) by pull-back of valuations.
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De�ne OX(W ), for any open subset W ⊂ X as the inverse limit of OX(U) over
the rational subsets U ⊂W and similarly for O+

X(W ).
One of the main theorems of Huber, in the case where R was a �nite type a�noid

K-algebra, was that this OX is a sheaf of K-algebras on X and that it satis�es
Cartan's theorem A and B. Huber relied strongly on noetherianity. However, in
the context of perfectoid a�noid K-algebras, Scholze managed to prove the same
using the perfectoid assumption as a substitute for noetherianity.

Theorem. [Perf, Theorem 6.3],[ICM, Theorem 6.8] (i) Let (R,R+) be a perfectoid
a�noid K-algebra. Then the presheaf OX just constructed is a sheaf of K-algebras
and O+

X is a sheaf of sub-OaK-algebras. (ii) These sheaves behave well with respect
to tilting, i.e. for every rational subset U the pair (OX(U),O+

X(U)) is a perfectoid
a�noid K-algebra which tilts to (OX[(U [),O+

X[(U
[)). (iii) For any i > 0 the

cohomology Hi(X,OX) = 0, while Hi(X,O+
X) is almost-zero (killed by mK).

We emphasize that the presheaf O+
X satis�es the sheaf axiom only in the almost-

category, i.e. the corresponding diagrams of OK-algebras are only almost exact.
This is the source of the �almostness� in part (iii). The topological space X with
the pair of sheaves (OX ,O+

X) is called a perfectoid a�noid space.
Scholze's strategy for proving the theorem is: (a) First prove part (ii), about

tilting, independently of (i) and (iii). (b) Prove the rest of the theorem in char-
acteristic p, in the special case where R is the completed perfection of a reduced
a�noid K-algebra S of topological �nite type (a nilpotent-free quotient of the Tate
algebra K 〈T1, . . . , Tn〉). I.e. take such an S, let S+ be an open and integrally
closed sub-OK-algebra of S (e.g. S0) and

R+ = lim←−n((lim−→ΦS
+)/πn), R = K ⊗OK

R+.

Perfectoid a�noid K-algebras (R,R+) of this type are called p-�nite. In this case
one deduces easily both the sheaf proprety and the vanishing of OX -cohomology
in positive degrees from the analogous theorems proven by Tate (Tate's acyclicity
theorem). Taking direct limit over Φ extends the vanishing of OX -cohomology
to an almost-vanishing of O+

X -cohomology. (c) Prove the theorem in the general
characteristic p case by writing an arbitrary perfectoid a�noid K-algebra (R,R+)
as the completed direct limit of p-�nite algebras as in step (b). (d) Deduce parts
(i) and (iii) in characteristic 0 from the characteristic p case using tilting and part
(ii).

As usual, one denotes by OX,x the stalk of the structure sheaf at x ∈ X. It is a
local ring whose maximal ideal consists of all the (germs of) functions in the kernel
of the valuation x, i.e. for which |f(x)| = 0. The residue �eld k(x) inherits the
valuation | · |x. For example (in the context of Huber adic spaces, the reader may
easily transport the example to the perfectoid world) if X = Spa(K 〈T 〉 ,OK 〈T 〉)
is the unit disc and x is a closed (type 1) K-rational point, k(x) = K. But if x is
the generic point (the Gauss norm on K 〈T 〉) its kernel is 0, and k(x) is the �eld of
fractions of K 〈T 〉 .

3.4.5. Perfectoid spaces in general. The �nal step in de�ning the category of perfec-
toid spaces is standard. A perfectoid space is a space that is glued from perfectoid
a�noid spaces. One works in a very general category V of locally ringed topological
spaces (X,OX) where OX is a sheaf of complete topological K-algebras, and where
we further equip the pair (X,OX) with continuous valuations f 7→ |f(x)| on the
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stalks OX,x for each x ∈ X. Morphisms in V are de�ned in the obvious way. Huber
de�nes the category Adic of adic spaces which is the full subcategory of V consisting
of objects which locally are of the form Spa(R,R+), where R is, quite generally, a
Tate K-algebra (a complete topological K-algebra whose topology is de�ned by a
basis for the topology of the form aR0, a ∈ K, R0 a �xed open subring). Perfectoid
rings (as well as a�noid K-algebras topologically of �nite type) are examples of
Tate K-algebras. A perfectoid space is an adic space that is locally isomorphic in
V to a perfectoid a�noid space.

One way in which perfectoid spaces are better than general adic spaces is that
they admit �ber products (the category of adic spaces does not admit �ber products
in general).

Proposition. [Perf, 6.18] Let X → Y and Z → Y be morphism of perfectoid
spaces over K. Then the �ber product X ×Y Z exists in the category Adic and is
again a perfectoid space.

3.4.6. An open problem. It is an open problem whether being a �prefectoid a�noid�
is a local property. More precisely, suppose R is a Tate K-algebra and R+ an open
integrally closed subring. Suppose the adic a�noid X = Spa(R,R+) is a perfec-
toid space, i.e. is covered by (�nitely many) perfectoid a�noids. Is R necessarily
perfectoid, i.e. is X itself a perfectoid a�noid?

3.4.7. Inverse limits. An (adic) a�noid K-algebra is a pair (R,R+) where R is a
Tate K-algebra (not necessarily topologically of �nite type) and R+ is an open,
integrally closed, subring. For any a�noid K-algebra one can de�ne the adic space
Spa(R,R+) (as an object in the category V) by the same procedure as before.
If (R,R+) is topologically of �nite type then we recover rigid analytic a�noids in
Huber's sense. If (R,R+) is a perfectoid a�noidK-algebra we recover the perfectoid
a�noid spaces de�ned above.

The category of a�noid K-algebras does not admit �ltered direct limits, hence
the category of adic a�noid spaces does not admit inverse limits.

Let (Xi) (i ≥ 1) be a tower of reduced adic spaces of �nite type over K (e.g. the
adic spaces associated to quasi-projective varieties over K) with �nite transition
maps Xi+1 → Xi. Let X be a perfectoid space and

fi : X → Xi

a compatible systems of maps of adic spaces (recall that X is also reduced).

De�nition. (i) If all are a�noids, Xi = Spa(Ri, R
+
i ) with Ri a Tate K-algebra of

topological �nite type, and X = Spa(R,R+) with R a perfectoid K-algebra, then
we say that X is a naive inverse limit of the Xi if R

+ is the π-adic completion of
lim−→R

+
i . (ii) In general, say that X is a naive inverse limit of the Xi and write

X ∼ lim←−Xi

if this holds locally on X.

In this case

• |X| ' lim←−|Xi| for the topological spaces
• if x ∈ |X| maps to (xi) then lim−→k(xi)→ k(x) (on residue �elds) has dense

image.

[One can show that there is a good category of �locally spectral adic spaces� such
that X becomes the true inverse limit of the Xi in this category.]
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3.4.8. Example: the perfectoid projective space. Scholze gives examples of perfectoid
toric varieties in Section 8 of [Perf]. Projective space is a sub-example. We do
here P1

K , the generalization to PnK being obvious. We �rst have to recall the adic
projective line over K, (P1

K)adic. This is obtained by gluing Spa(K 〈X〉 ,OK 〈X〉)
and Spa(K 〈Y 〉 ,OK 〈Y 〉) along Spa(K

〈
Z,Z−1

〉
,OK

〈
Z,Z−1

〉
) using X = Z, Y =

Z−1. Recall that points of the adic unit disk Spa(K 〈X〉 ,OK 〈X〉) come in 5 types:
(i) type-1 points are classical points correspodning to maximal ideals in K 〈X〉
whose residue �eld is a �nite extensionL of K. Here |f(x)| is just the p-adic absolute
value of the evaluation of f at a point x ∈ L. (ii), (iii) Points of these types map
f to supD |f | where D is a closed sub-disk of the unit disk. If D degenerates to
a point we recover type (i), if the radius of D is positive and belongs to |K| the
point is of type (ii), and if the radius does not belong to |K| it is of type (iii). The
case of D being the whole unit disk is called the Gauss point, and corresponds to
the Gauss norm. Points of type (iv) correspond to phantom disks, i.e. to in�nite
sequences of closed disks D1 ⊃ D2 ⊃ · · · with ∩Di = ∅ (examples occuring only
if K is not spherically complete). Points of type (i)-(iv) are all Berkovich points
(rank 1 valuations) and the topology on them is that of a tree, rooted in the Gauss
point, with bifurcations occuring at points of type (ii), �true ends� corresponding to
points of type (i), and points of type (iv) corresponding to �dead ends� of the tree.
Points of type (v) are rank 2 valuations and sit in�nitesimally close to points of
type (ii), at the root of every branch coming out of it. Note that when K = Cp for
example, there are in�nitely many branches at each bifurcation point of the tree.

The two pictures, for the two half-spaces of P1
K , are glued in the obvious way.

One obtains the standard tree with the action of PGL2(K).
Now to de�ne (P1

K)perf we need to �x a lifting of Frobenius, which is non-
canonical. The simplest choice in the case of P1

K is to take

ϕ(x : y) = (xp, yp).

Proposition. There exists a unique perfectoid space (P1
K)perf such that

(P1
K)perf ∼ lim←−ϕ(P1

K)adic.

Indeed, one simply glues Spa(K
〈
X1/p∞

〉
,OK

〈
X1/p∞

〉
) and the corresponding

other half-space Spa(K
〈
Y 1/p∞

〉
,OK

〈
Y 1/p∞

〉
) as before (XY = 1). It should be

stressed that in characteristic 0, the resulting space (P1
K)perf depends on the choice

of the lifting of Frobenius ϕ, although its tilt, which is (P1
K[)

perf , is unique. The
map

|(P1
K[)

ad| ' |(P1
K[)

perf | ' |(P1
K)perf | ' lim←−ϕ|(P

1
K)adic| → |(P1

K)adic|

is (x : y) 7→ (x# : y#). The �rst isomorphism stems from the fact that in charac-
teristic p the map ϕ is bijective, as a map of topological spaces.

3.5. The étale topology of a perfectoid space.

3.5.1. Étale morphisms.

De�nition. (i) Let (R,R+)→ (S, S+) be a morphism of (adic) a�noid K-algebras
(thus R and S are Tate K-algebras). It is called �nite étale if S is �nite étale over
R (in the usual sense), has the induced topology, and S+ is the integral closure of
R+ in S (but S+ can well be rami�ed over R+). (ii) A morphism f : X → Y of
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adic spaces over K is called �nite étale if there is a cover of Y by open adic a�noids
V ⊂ Y such that U = f−1(V ) is an adic a�noid, and the associated map

(OY (V ),O+
Y (V ))→ (OY (U),O+

Y (U))

is �nite étale. (iii) A morphism f : X → Y of adic spaces is called étale if for any
x ∈ X there are neighborhoods x ∈ U ′, y ∈ V , a �nite étale morphism fU : U → V
and an open embedding j : U ′ ⊂ U , such that

f |U ′ = fU ◦ j.

As we have noted before, if (R,R+) is a perfectoid a�noid K-algebra, then so is
(S, S+) and in this case S0a is (almost) �nite étale over R0a. Since R0and R+ are
almost isomorphic, the same holds for S+a over R+a. The �ber product of étale
morphisms between perfectoid spaces is again étale.

The étale site of a pefectoid space X is the category Xet of all Y → X which
are étale. Morphisms are X-morphisms Y → Y ′, and are necessarily étale (this is a
fundamental property of étale morphisms in any category). Coverings are families
of (étale) morphisms {fα : Yα → Y } (over X) for which |Y | =

⋃
fα(|Yα|). The

étale topos X∼et is the category of abelian sheaves on Xet. The following theorem is
an immediate consequence of all that has been said on tilting.

Theorem. Let X be a perfectoid space over K. Let X[ be the tilted perfectoid space
over K[. Then tilting induces an isomorphism of sites Xet ' X[

et.

If X → Y and Z → Y are morphisms between perfectoid spaces, and if the �rst
is étale (resp. �nite étale), then so is X ×Y Z → Z.

3.5.2. Vanishing of Hi(Xet,OX) for perfectoid a�noids X. The analogue of Tate's
acyclicity theorem holds in the étale topology as well (with a similar proof):

Proposition. Let X = Spa(R,R+) be a perfectoid a�noid space. Then

Hi(Xet,OX) = 0

for i > 0 and Hi(Xet,O+
X) is almost zero.

Here is an application of this proposition and tilting. Let Y be a perfectoid space
in characteristic p. Then one has the Artin-Schreier exact sequence of sheaves on
Yet,

0→ Fp → OY
Φ−1→ OY → 0.

It follows from the proposition that if Y is a perfectoid a�noid and i > 1, then
Hi(Yet,Fp) = 0 . So far we have not used the fact that Y was perfectoid. Now let

X be a perfectoid a�noid in characteristic 0 and Y = X[ its tilt. Since the étale
sites of X and Y are canonically isomorphic we get the following corollary.

Corollary. Let X be a perfectoid a�noid over K. Then

Hi(Xet,Fp) = 0

for every i > 1.

Another corollary of the proposition is that for any perfectoid space X and
any locally free sheaf L on Xet, H

i(Xet,L) coincides with Hi(X,L) (the latter
computed in the analytic topology), and that both vanish if X is a perfectoid
a�noid and i > 0. This is proved as for schemes, because the proposition reduces
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the computation of cohomology to Cech cohomology w.r.t. a covering by perfectoid
a�noid subdomains.
Caution: there does not seem to be a good notion of coherent sheaves for

perfectoid spaces. Perfectoid rings are not noetherian and localization is not �at,
and this makes many of the standard foundational results di�cult to prove. See
the work of Kedlaya and Liu on p-adic Hodge theory I (in Astérisque) and II (in
preparation).

To be able to apply étale cohomology of perfectoid spaces to the study of usual
(rigid) analytic varieties, we need the following proposition.

Proposition. [Perf, Corollary 7.18] Let {Xn} be an inverse system of (noetherian
rigid) analytic spaces, and suppose that X is a perfectoid space such that X ∼ lim←−Xn

in the sense described above. Let F be any sheaf of abelian groups on Xet and
similarly Fn a sheaf on Xn,et. Assume that the sheaves are compatible in the sense
that the pre-image of Fn on Xm,et for m ≥ n is Fm and likewise on Xet we get F .
Then for any i ≥ 0

Hi(X,F ) = lim
→
Hi(Xn, Fn).

3.5.3. The pro-étale topology of a rigid analytic space. Let X be a locally noether-
ian adic space. Recall that the site Xet is a certain category equipped with a
Grothendieck topology. The pro-category Pro-Xet is the category whose objects
are inverse systems U = (Ui)i∈I where I is a directed set, and whose morphisms
are

Mor(U, V ) = lim
j
co lim

i
MorXet(Ui, Vj).

Here lim is inverse limit and co lim is direct limit. We would like to think of U as
a new geometric object that lives in the limit, but there is a problem: the image
of an étale morphism is an open set, and these open sets may shrink inde�nitely,
so that in the limit we will be left with no image at all in X. We therefore de�ne
the category Xproet to be the full subcategory of Pro-Xet consisting of systems (Ui)
where the Ui → X are étale but the Ui → Uj are (surjective) �nite étale.

Next we turn this category into a site by singling out (for U and V as above) good
morphisms in Mor(U, V ) that are called pro-étale morphisms. First, a morphism
U → V is called étale (resp. �nite étale) if it is of the form

U = U0 ×V0 V → V

for a single étale (resp. �nite étale) morphism U0 → V0 in Xet. Then, using the fact
that the category Pro-Xet has co�ltered inverse limits (this amounts to combining
a directed system of directed systems Ii into a single directed system), we can
�repeat� the condition used to de�ne morphisms in Xproet and say that a morphism
U → V is pro-étale if it can be written as a co�ltered inverse system Ui → V (each
Ui = (Uij)j∈Ji itself an inverse system) where each Ui → V is étale and Ui → Uj is
�nite étale.

This de�nes the �admissible morphisms� of the Grothendieck topology. �Cover-
ings� of V = (Vj) are families of such morphisms U t → V that cover |V | = lim |Vj |
set theoretically.

It can be shown then that this is indeed a site, that pro-étale morphisms are
open and that the category Xproet has �nite projective limits. Finally cohomology
of abelian sheaves behaves well, in the sense that

Hi(U, ν∗F ) = co lim
n
Hi(Un, F )
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if F is a sheaf in Xet and ν : Xproet → Xet is the obvious projection.
It may happen that an object U = (Ui) in Xproet is represented by a perfectoid

space Z in the sense that Z ∼ limUi as we have encountered before. In this case
we shall say that �U is perfectoid�.

The key result is this.

Proposition. Every locally noetherian adic space (in particular every rigid analytic
space) is covered in the pro-étale topology by perfectoids.

Example. Consider X = Spa(K 〈T 〉 ,OK 〈T 〉), the a�noid unit disc, as before.
The family of coverings induced by T = T p

n

n is étale over the a�noid subdomain
|T | = 1, i.e. over U = Spa(K

〈
T±1

〉
,OK

〈
T±1

〉
), and in the limit become per-

fectoid. Embedding X as a small a�noid disk around 1 in U and restricting the
coverings to it does the same job for X (an observation of Colmez). The idea be-
hind this example works in all cases, and in higher dimensions as well, to prove the
proposition.

3.6. Cohomology of rigid analytic spaces.

3.6.1. The Main Theorem on comparison of étale cohomology and coherent coho-
mology. The main use of perfectoid spaces to the cohomology of rigid analytic
varieties is in proving the following theorem:

Theorem 7. [CDM, Theorem 3.3] [pHT, Theorem 5.1] Let X be a proper smooth
locally noetherian adic space over Cp. Let L be an étale local system of Fp-modules
on X. Then:

(i) Hi(Xet,L) is a �nite-dimensional Fp-vector space and vanishes for i >
2 dimX.

(ii) There exists an almost isomorphism of Oap-modules (here Op = OCp)

Hi(Xet,L)⊗Fp Op/pOp ' Hi(Xet,L ⊗O+
X)a.

Part (i) of the theorem holds for any proper smooth locally noetherian adic
space. It has been previously known (by Faltings) for the analyti�cation of smooth
projective (or maybe even proper) varieties, but there are many rigid analytic or
adic spaces which are not algebraizable. Finiteness of cohomology is false for non-
proper spaces, even for H1(Xet,Fp) when X is the closed unit disk, due to the
existence of many étale Artin-Schreier coverings. Part (ii) of the theorem establishes
the key relation between étale cohomology and coherent coohmology. It has a
version for Zp-local systens, but we shall need only local systems of Fp-vector spaces.

One of the applications of this theorem is a BdR-comparison theorem between
p-adic étale cohomology and de Rham cohomology of proper smooth varieties over
Qp. This has been done by Fontaine-Messing, Faltings, and other authors, but is
extended here to non-algebraizable situations. It should be considered a p-adic
analogue of the classical de Rham theorem. Other applications include (a) the
degeneration of the Hodge-to-de Rham spectral sequence for proper smooth rigid
analytic varieties, or more generally proper smooth locally noetherian adic spaces
de�ned over a discretely valued �eld.8 (b) a Hodge-Tate decomposition of p-adic
étale cohomology tensored with Cp, if X is de�ned over a discretely valued sub�eld
of Cp. See [pHT], Theorem 8.4.

8No analogue of the Kähler condition is neeed in the p-adic setup!
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Note that the theorem implies a remarkable behavior of the cohomology groups
Hi(Xet,O+

X). After inverting p in the coe�cients, these groups become the (an-
alytic) cohomologies of the structure sheaf Hi(Xet,OX) = Hi(X,OX), so vanish
for i > dimX (and if X is algebraizable, they coincide with the algebraic coher-
ent cohomology by GAGA). On the other hand, the cohomology groups of the
sheaf O+

X taken modulo p coincide with Hi(Xet,Fp) ⊗Fp Op/pOp. In the region

dimX < i ≤ 2 dimX the groups Hi(Xet,O+
X) are therefore torsion. From the

exact sequence

0→ O+
X

p→ O+
X → O

+
X/pO

+
X → 0

we get the exact sequence

0→ Hi(Xet,O+
X)/p→ Hi(Xet,O+

X/pO
+
X)→ Hi+1(Xet,O+

X)[p]→ 0.

The essence of the proof of the theorem is to �cover� X by perfectoid spaces,
and for these use (a) the result that Hi(Z,O+

Z ) is almost 0 if Z is a perfectoid
a�noid space (b) the Artin-Schreier exact sequence in characteristic p, or a variant
of it in characteristic 0. Strictly speaking, however, it is not possible to cover X by
perfectoids in the étale topology, but only in the pro-étale topology. This is where
the pro-étale site enters the game.

3.6.2. Proof of the main theorem (sketch). Step 1. First one proves a variant of
(i), that Hj(Xet,L⊗O+

X)a is almost �nitely generated over Op and is almost 0 for
j > 2 dimX. See [pHT], Lemma 5.8. One knows (by de-Jong and van-der-Put)
that the cohomological dimension of Xan (i.e. X with the analytic topology) is
n = dimX. On the other hand if V ⊂ X is a nice (see loc. cit. Lemma 5.6) smooth
a�noid adic space with an étale map V → Tn to the n-dimensional torus we can

take Ṽ = V ×Tn T̃n as a pro-étale a�noid perfectoid cover of V where T̃n is the
standard pro-étale perfectoid cover of the torus. We then have by �almost purity�

that Hi(Ṽ ,L ⊗ O+
V )a = 0 for i > 0. Since Ṽ /V is a Galois pro-étale cover with

pro�nite Galois group isomorphic to Znp , and since the cohomological dimension of

Znp is n (for continuous group cohomology), we get by the Leray spectral sequence9

that
Hi(Vet,L ⊗O+

X)a = Hi(Vproet,L ⊗O+
X)a = 0

for i > n. Shea�fying this means that if λ : Xet → Xan is the projection between
the two sites, Riλ(L⊗O+

X)a = 0 for i > n. Another application of a Leray spectral
sequence10 shows that this result, together with the fact that the cohomological
dimension of Xan is n, imply Hj(Xet,L ⊗ O+

X)a = 0 for j > 2n. The statement
about almost-�nite-generation is more di�cult, but uses similar ideas.
Step 2. A purely algebraic lemma on almost �nitely generated Op/pOp =

O[p/p[O[p-modules which can be lifted to a �p-divisible group� of almost-f.g. modules

overO[p/(p[)kO[p for all k, satisfying some functorial properties, allows one to deduce
that such modules are almost free [pHT Lemma 2.12]. Using tilting, Scholze proves
that this is indeed the case with the almost-�nitely generated module Hi(Xet,L⊗
O+
X)a. We therefore have

Hi(Xet,L ⊗O+
X)a ' (Op/pOp)r

9The functor of global sections on V is the composition of the functor of Galois invariants on

the functor of global sections on Ṽ , and this leads as usual to a spectral sequence.
10Here one uses that global sections of a sheaf F on Xet can be obtained as global sections of

the sheaf λ∗F on Xan.
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for some integer r. Apply now cohomology to the short exact sequence of sheaves
on Xet

0→ L → L⊗O+
X

Φ−1→ L⊗O+
X → 0

to get
Hi(Xet,L) ' Hi(Xet,L ⊗O+

X)Φ=1 ' Frp.
Note that Φ− 1 is surjective on Op/pOp (because Cp is algebraically closed). Ten-
soring back with Op/pOp gives the desired result.

4. From étale cohomology classes to modular forms [4 weeks]

4.1. Recall.

4.1.1. Recall of notation and what was left to prove. Recall that G denoted the
group Sp2n/Z and S a �nite set of rational primes which contained∞ and p. Recall
that K = K∞Kf ⊂ G(A) where K∞ = U(n) is the standard (connected) maximal
compact subgroup of G∞ = G(R).We furthermore assume thatKf = KSKS where
KS =

∏
l/∈SG(Zl), KS =

∏
l∈S Kl, each Kl is open compact in G(Zl) and KS is

�small enough� (e.g. of full tame level N ≥ 3). In the following we shall assume
that Kp is held �xed and Kp shrinks. For example, we may let it run over a the
sequence of principal level-pr subgroups, i.e. the kernels of G(Zp)→ G(Z/prZ).

With each K we have the Siegel modular variety XK �of level K” and its Satake-
Baily-Borel (normal, projective) compacti�cation X∗K . These are varieties de�ned
over Q, and in what follows we consider them always over the algebraically closed
perfectoid �eld C = Cp. The reader may �x an isomorphism C ' Cp and identify
Cp-valued modular forms with complex ones, but this is not necessary.

On X∗K there exists a canonical ample line bundle ω, which on the open variety
XK is the determinant of the relative cotangent bundle of the universal abelian
variety. Global sections of ωk for k ≥ 0 are nothing but C-valued Siegel modular
forms of scalar weight k. We let I be the ideal sheaf of ∂K = X∗K −XK .

We have introduced the local spherical Hecke algebras

Tl = Zp[Kl \Gl/Kl]

with coe�cients in Zp, for all l /∈ S. Then TS = ⊗′l/∈STl is their restricted tensor
product. It is a large commutative algebra that �acts on everything in sight�.

Our goal in this seminar has been reduced to proving the following theorem,
which was called Theorem 6 before.

Theorem. [Tors I.5 and IV.3.1] Let ψ : T→ Fp be a system of eigenvalues occuring
in Hi

c(XK ,Fp) (étale cohomology with compact supports) Then there exists a K ′ ⊂
K obtained by shrinking Kp, and an arbitrarily large integer k, such that ψ is the
reduction modulo p of a system of eigenvalues Ψ which occurs in H0(X∗K′ , ω

k ⊗I).

Part of the statement is that the system of eigenvalues Ψ is in OC . By �reduction
modulo p� we mean reduction modulo the maximal ideal of OC .

4.1.2. How theorem 7 is put to use. It is convenient to introduce the compactly
supported completed cohomology with coe�cients in Z/pnZ as

H̃i
c,Kp(Z/pnZ) = lim

→
Hi
c(XKpKp

,Z/pnZ)

where the direct limit is taken with respect to the transition maps when Kp shrinks.
The cohomology groups on the right are étale cohomology groups with compact
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supports of XKpKp over the algebraically closed �eld C = Cp, but if we identify C
with the complex numbers, can be identi�ed with the usual singular cohomology
groups with compact supports of the open Siegel variety. Here we use the fact that
if K ′ ⊂ K then the map XK′ → XK is �nite and �at, so compactly supported
cohomology is contravarient for such maps. [We shall only need the case n = 1, but
note in passing that if one takes now an inverse limit over n, one gets Emerton's
p-adic completed cohomology. It is important to take the limits in the right order:
�rst, with �xed �nite coe�cients, a direct limit over the level, then an inverse limit
over the coe�cients. It is the case that torsion classes at �nite levels build up to
give p-adic classes in the completed cohomology that survive after we tensor with
Qp. The resulting cohomology is signi�cantly richer than the direct limit of the
usual groups Hi

c(XKpKp
,Qp).]

The Hecke algebra T acts on each Hi
c(XKpKp ,Z/pnZ) and commutes with the

transition maps, so induces an action on the completed cohomology. Since the tame
level will be �xed throughout we abbreviate

H̃i
c(Fp) = H̃i

c,Kp(Fp).
We shall denote by XK and X ∗K the corresponding adic spaces over Spa(C,OC)

obtained by the analyti�cation of the open or closed Siegel modular variety. The
space

H0(X ∗K , ωk)

is the space of p-adic modular forms of weight k and level K = KpK
p, and by

GAGA is identi�ed with H0(X∗K , ω
k). The same is true for cusp forms, if we

consider sections of ωk ⊗ I. Our goal is thus to relate the Hecke eigensystems
appearing in spaces of p-adic modular forms and in completed étale cohomology.

Theorem 7 is a prototype of such a comparison theorem. It cannot be applied
directly, though, because �on the coherent side� it does not quite give the desired
spaces of modular forms (even modulo p). However, the idea behind the proof of
Theorem 7 was to use a perfectoid cover of our adic space X, work at the level
of the perfectoid cover, and descend to deduce results on the cohomology of X. It
turns out that in our case we have such an explicit perfectoid cover at hand !

4.2. The perfectoid Siegel modular variety and the Hodge-Tate map.

4.2.1. The Siegel varieties become perfectoid in the limit over Kp. Fix the tame
level Kp as before.

Theorem 8. There exists a prefctoid space X ∗ = X ∗Kp over C which is similar (in
the precise sense de�ned before) to the inverse limit of the Siegel spaces when Kp

shrinks, i.e.
X ∗Kp ∼ lim

←
X ∗KpKp

.

This perfectoid space is clearly unique. Its construction goes hand in hand with
the construction of a certain map of adic spaces

πHT : X ∗ → F l
where F l is the adic space associated with the Grassmanian of all maximal isotropic
subspaces in (C2n, 〈, 〉), i.e. the analytic space behind G/P where P is the standard
parabolic subgroup discussed earlier. This is the Hodge Tate period map. It exists
only at the in�nite (perfectoid) level: it does not come as a limit of morphisms of
algebraic varieties de�ned at the �nite levels.
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We shall not say much more about the proof of Theorem 8, except that it is done
in two steps. One �rst studies a certain piece X ∗(0)a of the ordinary locus X ∗(0) of
X ∗ (the so called anti-canonical ordinary locus) and a strict neighborhood X ∗(ε)a
of it where the Hasse invariant is not too small, or alternatively, where the abelian
variety has a canonical subgroup. One shows that this piece is perfectoid. In the
second step one uses the action of Gp on the tower to prove the perfectoid-ness of
the whole X ∗.

4.2.2. The Hodge Tate decomposition for abelian varieties. Let A be an abelian
variety over OC , i.e. an abelian variety over C with good reduction. The case
of bad reduction can be treated similarly, but requires the introduction of Néron
models, and we shall skip it. There are various ways to get the Hodge-Tate exact
sequence for A. We follow the original construction by Tate [pdiv].

For any p-torsion module M we let

Tp(M) = HomZp
(Qp/Zp,M) = lim

←
M [pn], Vp(M) = HomZp

(Qp,M) = Tp(M)⊗Q

be its integral (resp. rational) Tate modules. We write Tp(A) and Vp(A) for the
corresponding modules with M = A(C)[p∞].

Denote by At the dual abelian scheme overOC . Recall that Lie(At) = H1(A,OA)
canonically. Since A[pn]/OC

is the Cartier dual of the �nite group scheme At[pn]/OC
,

a point xn ∈ A[pn](OC) is a homomorphism of group schemes At[pn] → µpn over
OC . A point x ∈ Tp(A) is therefore a homomorphism of p-divisible groups At(p)→
µp∞. Passing to the Lie algebras over OC it yields a homomorphism from Lie(At)
to Lie(µp∞). But the latter is canonically OC . This gives a map

αA : Tp(A)⊗Zp
OC → Lie(At)∨.

Replacing A by At and dualizing we get

α∨At : Lie(A)→ Tp(A
t)∨ ⊗Zp OC ' Tp(A)(−1)⊗Zp OC

where the last step involves the (perfect) Weil pairing TpA× TpAt → Zp(1). Taken
together, and tensoring with Q, one obtains the Hodge-Tate sequence

0→ Lie(A/C)(1)→ Vp(A)⊗Qp C → Lie(At/C)∨ → 0

which, as Tate proved, is exact. Moreover, when A is de�ned over a discretely
valued sub�eld11 K of C this sequence is split-exact, as a sequence of Gal(K̄/K)-
modules. This follows from the fundamental theorems of Tate on the continuous
Galois cohomology of C(j). Dualizing again, Tate got in this case the (canonical)
Hodge-Tate decomposition

H1
et(A,Qp)⊗Qp

C ' H0(A,Ω1
A/K)⊗K C(−1)⊕H1(A,O)⊗K C.

Fontaine-Messing (in the good reduction case) and Faltings (in general) have gen-
eralized this to the étale cohomology of any proper smooth variety over K, in any
dimension. Finally, in [pHT], Scholze extended the Hodge-Tate decomposition to
any proper smooth rigid analytic space (not necessarily algebraizable).

Suppose now that A/C comes equipped with a polarization λ (as is the case for

the A's parametrized by the Siegel modular variety XK). Then H1
et(A,Qp)⊗Qp C

11I appologize for using the same letter for the compact group K and the discretely valued
�eld. No confusion should occur, as the �eld K will soon disappear and we shall return to work
over C.
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is equipped with a symplectic polarization pairing 〈, 〉λ⊗ 1 and one proves that the
subspace H1(A,OA) = Lie(At) ' Lie(A) is a maximal isotropic subspace.

Finally we note that if L is any complete sub�eld of C over which all the p-power
torsion A[p∞] is de�ned, then the Hodge-Tate exact sequence (but not its splitting)
is de�ned over L.

4.2.3. Another way to de�ne the Hodge-Tate exact sequence (after Fontaine). Sup-
pose again that A is de�ned over a discretely valued sub�eld K. One notes �rst
that the map

OK̄ ⊗Zp
µp∞ → Ω1

OK̄/OK

given by (a, ζ) 7→ adζζ is surjective with a kernel that is killed by some power of p

(depending on the absolute di�erent of K).
Consider now ω ∈ H0(A,Ω1

A/OK). If x ∈ A(OK̄) then x∗(ω) ∈ Ω1
OK̄/OK

. The

two pairings that we have described yield �rst an isomorphism

Vp(Ω
1
OK̄/OK

) ' C(1)

(Tate twist of C) and secondly a pairing

H0(A,Ω1
A/OK)× Vp(A)→ Vp(Ω

1
OK̄/OK

) ' C(1).

We get the Galois equivariant map

φA : H0(A,Ω1
A/K)⊗K C → Hom(Vp(A), C(1)) = H1

et(A,Qp)⊗Qp
C(1).

As before, it is possible to get the map from H1(A,O)⊗KC to H1
et(A,Qp)⊗Qp

C
from φA playing with duality and the dual abelian variety.

4.2.4. The Hodge-Tate period morphism. Consider now a C-valued point x ∈ |X ∗| =
lim← |X ∗KpKp

|. As we are taking an inverse limit over all the level subgroups at p,

such a point parametrizes a principally polarized abelian variety A over C, a tame
level structure away from p, and a full p∞-level structure, i.e. a trivialization of
Vp(A), or, by duality, a symplectic isomorphism

(H1
et(A,Qp)⊗Qp C, 〈, 〉λ ⊗ 1) ' (C2n, 〈, 〉J).

Here 〈, 〉λ is the Weil pairing in cohomology induced by the principal polarization
λ, and 〈, 〉J is the standard symplectic form given by the matrix J . This symplectic
isomorphism carries H1(A,O) ⊗K C to a certain maximal isotropic subspace of
C2n, hence de�nes a C-valued point πHT (x) of F l. We emphasize that to get it we
needed to work with full level structure. This de�nes the Hodge-Tate morphism
at the level of C-valued points. See [Tors, Lemma III.3.4]. Scholze proves the
following.

Theorem 9. [Tors, III.3.18 and IV.1.1] (i) There is a unique Gp-equivariant map
of adic spaces over Qp, πHT : X ∗ → F l which realizes the above map on C-valued
points.

(ii) Let X ∗(0) denote the ordinary locus in X ∗ (the locus parametrizing ordinary
abelian varieties, including the boundary ∂). Then X ∗(0) is the pre-image of F l(Qp)
under πHT .

(iii) Let sj (where j runs over all the subsets of size n of {1, 2, . . . , 2n}) be the
standard coordinates on F l obtained from the embedding in Gr(n, 2n). Let F lj be
the a�noid subdomain where |sj | ≥ |sj′ | for all j′. Then the pre-image Vj of F lj
under πHT is an a�noid perfectoid, say Spa(Rj , R

+
j ). For all su�ciently large m
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it is the pre-image of an a�noid Vj,m = Spa(Rj,m, R
+
j,m) in the Siegel modular

variety of full level pm at p and R+
j is the p-adic completion of lim→R+

j,m.

(iv) The maps πHT satisfy the obvious compatability with respect to shrinking
the tame level.

(v) For any γ ∈ G(Apf ) the map γ∗ : X ∗Kp → X ∗γ−1Kpγ satis�es πHT ◦ γ∗ = πHT .

(vi) Let WFl ⊂ O2n
Fl be the tautological totally isotropic sub-bundle. Then over

the open set X ⊂ X ∗ there is a natural isomorphism

LieA ' LieAt ' π∗HTWFl
and therefore also a natural isomorphism

ω ' π∗HTωFl
where ωFl = det(WFl)

∨ is the natural ample line bundle on F l.

We make a comment on (ii). It means that the Hodge-Tate subspace Lie(At/C) '
H1(A,OA) of H1

et(A,Qp)⊗Qp C comes from a Qp-rational subspace of H1
et(A,Qp)

via base-change if and only if A is ordinary. If A is ordinary and den�ned over
a discretely valued �eld K then this Qp-rational subspace of H1

et(A,Qp) can be
readily described. In this case the Gal(K̄/Knr)-module Vp(A) has a �ltration

0→ Qp(1)n → Vp(A)→ Qnp → 0

(this is essentially equivalent to the de�nition of ordinariness) and it can be shown
that the Hodge-Tate �ltration comes from the dual �ltration on H1

et(A,Qp). Nev-
ertheless, the existence of a morphism as in (ii) is bizarre, and can occur only with
large perfectoid spaces such as X ∗. For example, when n = 1, the �ag variety is
P1. All of the ordinary locus gets contracted by πHT to P1(Qp), and for an ordi-
nary elliptic curve equipped with a trivialization of its Tate module, the associated
point in P1(Qp) measures the location of the canonical p-divisible group (the part
in the kernel of reduction) vis-a-vis the trivialization. On the other hand the super-
singular locus in X ∗ gets mapped under πHT onto the Drinfeld p-adic upper half
plane. Note that the cusps are �ordinary�.

Point (iii) is a by-product of the construction of X ∗. Points (iv) and (v) are
natural, and are needed to study the action of the Hecke operators away from the
bad primes and p. Point (vi) is clear from the modular interpretation of the map
πHT described above for C-points.

4.3. Completed cohomology versus p-adic automorphic forms.

Proposition. There are natural isomorphisms of almost OC-modules

H̃i
c(X ∗et,Fp)⊗Fp

OC/pOC ' Hi(X ∗an, I+/pI+).

Proof. Let K = KpKp be a �xed level. We have seen that for any local system L
of Fp-vector spaces in the étale topology

Hi(X∗K,et,L)⊗Fp
OC/pOC ' Hi(X∗K,et,L⊗O

+
X)

(an almost isomorphism). This is extended in [CDM], Theorem 3.13, to con-
structible sheaves of Fp-vector spaces (not necessarily locally constant). Let j
be the open embedding of XK in X∗K . Note that I+/pI+ = j!(Fp) ⊗ O+

X (the

stalks of I+/pI+ at the boundary vanish since a function from O+
X which van-

ishes at the boundary, is divisible by p in some open neighborhood of it) and that
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Hi(X∗K,et, j!(Fp)) = Hi
c(XK,et,Fp). Take the limit over Kp, to get the proposition

with X ∗et instead of X ∗an on the right hand side.
Now there is a short exact sequence

0→ I+/pI+ → O+
X /pO

+
X → O

+
∂ /pO

+
∂ → 0.

Etale and analytic cohomologies of O+
X /pO

+
X agree: they both (almost) vanish on

a�noid subsets of X ∗(here we �nally use the fact that this is a perfectoid), and the
rest is given by the Cech spectral sequence. The same holds true with O+

∂ /pO
+
∂ ,

hence also with I+/pI+. �

Corollary. The cohomology groups H̃i
c(X ∗et,Fp) vanish for i > d = dimX ∗.

Proof. By the theorem, it is enough to show that the cohomological dimension of
X ∗an (the maximal dimension in which cohomology of torsion abelian sheaves may
not vanish) is at most d, but this is the contents (in the analytic topology!) of the
theorem of de Jong and van der Put mentioned above. �

4.4. Hecke algebras and conclusion of the proof. It is now possible to com-
plete the proof of the theorm. Consider the Hodge-Tate period map as a map of
Qp-adic spaces

πHT : X ∗ → F l ↪→ PN−1

where N =

(
2n
n

)
, using the Plücker embedding. The line bundle O(1) pulls back

to the tautological line bundle ωFl and then to ω. Let s1, . . . , sN be the standard
sections of O(1) and Ui ⊂ PN−1 the open a�noid where

|sj | ≤ |si|

for every j. If ∅ 6= J ⊂ {1, . . . , N} let UJ =
⋂
j∈J Uj and sJ =

∏
j∈J sj . If ŪJ is

the reduction modulo pn of UJ and s̄J the reduction of the corresponding section
of O(#J) then ŪJ is the subscheme of PN−1 (over Z/pnZ) where s̄J is invertible.

Let VJ = π−1
HT (UJ), which by (iii) of Theorem 9 is an a�noid perfectoid of the

form

VJ = Spa(RJ , R
+
J ).

Let ψ : T→ F̄p be a system of Hecke eigenvalues which occurs in H̃i
c(F̄p). Then

by the Proposition it occurs in Hi(X ∗, I+/pI+) (sheaf cohomology in the analytic
topology). Since the cohomology of I+/pI+ over any a�noid (perfectoid) subdo-
main of X ∗ vanishes in positive degrees, we may compute the latter cohomology as
the homology of the Cech complex whose terms are the almost modules

H0(VJ , I+/pI+) = {f ∈ R+
J | f |∂ = 0}a/p{f ∈ R+

J | f |∂ = 0}a.

As a consequence of (iv) and (v) of Theorem 9, the map πHT commutes with
the Hecke operators away from p. It follows that the VJ are stable by the Hecke
correspondences, and T acts on each of the terms in the Cech complex separately.
Thus if ψ occurs in Hi(X ∗, I+/pI+), it also occurs in some H0(VJ , I+/pI+).

For all Kp su�ciently small, the Vi are the pull-back via the projection to X∗K
of an a�noid subdomain ViK of X∗K and lim→H0(ViK , ω) is dense in H0(Vi, ω).
We can therefore approximate the sections sj on Vi by

s
(i)
j ∈ H

0(ViK , ω)
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so that

|
sj − s(i)

j

s
(i)
i

| ≤ |p|

on Vi for all j. Using these sections we get a formal model X∗K (over Spf(Zp)) of
the rigid analytic space X ∗K , and an open cover {ViK}Ni=1 by a�ne formal schemes.
(The relation between a�noid coverings of rigid analytic varieties and formal models
is classical12, see [Tors], Lemma II.1.1.) This formal model comes equipped with
an ample line bundle which we still denote ω and a sheaf of ideals J that, on the
�generic �ber�, yield ω and I.

These objects are independent of the choice of the approximating sections s
(i)
j

used to approximate sj . The sections

s
(i)
j mod p

glue to give a section s̄j of ω mod p on X∗K , which is independent of any choice.
The open formal subscheme VJ,K is the non-vanishing locus of s̄J =

∏
s̄j . These

sections are compatible with change of tame level atK and with the action of G(Apf )

as in part (v) of Theorem 9. As a result, multiplication by s̄J commutes with the
action of T and therefore preserves eigenvectors and systems of Hecke eigenvalues.
Scholze calls these sections �substitutes of the Hasse invariants�.

We remark that the integral structures which result from the formal models X∗K
are very far from the familiar integral models of the Shimura varieties X∗K de�ned
in terms of the moduli problem, and are not related to them. By de�nition we have

H0(Vi, I+/pI+) = lim
→
H0(Vi,K , I+/pI+) = lim

→
H0(Vi,K ,J /pJ )

and similarly for any J ⊂ {1, 2, . . . , N}. Thus it is enough to assume that ψ occurs
in some H0(VJ,K ,J /pJ ).

Now

H0(VJ,K ,J /pJ ) = lim
→
H0(X∗K , ω

k#(J) ⊗ J /pJ )

where the limit is with respect to the map of multiplication by s̄J . As we have
noticed above, multiplication by s̄J commutes with the Hecke action. We may
therefore assume that ψ occurs in H0(X∗K , ω

k ⊗J /pJ ) and that furthermore, k is
arbitrarily large. But for k large enough, by the ample-ness of ω,

H1(X∗K , ω
k ⊗ J ) = 0

hence H0(X∗K , ω
k ⊗ J /pJ ) = H0(X∗K , ω

k ⊗ J )/pH0(X∗K , ω
k ⊗ J ), i.e. for a large

enough weight, every mod p modular form lifts to a characteristic 0 modular form.
But by comparison of formal, analytic and algebraic cohomologies

H0(X∗K , ω
k ⊗ J )⊗OC

C = H0(X ∗K , ωk ⊗ I) = H0(X∗K , ω
k ⊗ I)

so ψ is the reduction modulo p of a Hecke eigensystem Ψ occuring inH0(X∗K , ω
k⊗I).

QED.

4.5. More on the perfectoid Siegel space and the Hodge-Tate map.

12Basically, to get from an adic a�noid ViK = Spa(R,R+) to a formal scheme, take
ViK =Spf(R+). The gluing is done along the formal schemes Vij,K which are open formal sub-
schemes of both ViK and VjK . The resulting formal scheme is projective and the line bundle ω

glues to become an ample line bundle on X.
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4.5.1. Set-up. In the remaining time we shall focus on the construction of X ∗ and
the map πHT for n = 1, i.e. in the classical case of modular curves. I shall
follow notes from lectures of Mark Kisin in MSRI in 2/14. The notation and the
assumptions are a little di�erent than what was used till now.

Fix N ≥ 3. Fix a generator of the Tate module of µp∞ and identify Zp(1) with

Zp. For n ≥ 0 let X(pn) be the modular curve over Qcyclp = Q(µp∞)� parametrizing
elliptic curves A, a full level-N structure, and a full level-pn structure for which the
Weil pairing becomes the standard symplectic pairing on (Z/pnZ)2. (Here we use
the identi�cation of Zp(1) with Zp.) Let X0(pn) be the modular curve with Γ0(pn)
level structure, i.e. parametrizing elliptic curves, tame level structure, and a cyclic
subgroup of order pn. By X(pn) or X0(pn) we mean the complete curve (including
the cusps). Write X = X(1).

Let (L,L+) be a complete non-archimedean extension of Qcyclp and its ring of
integers. De�ne

X(p∞)(L) = lim
←
X(pn)(L).

Thus outside the cusps, a point x ∈ X(p∞)(L) �is� an elliptic curve A/L, a full
level-N structure, and a symplectic isomorphism

TpA ' Z2
p.

The Hodge-Tate exact sequence attached to x a canonical line

Lie(A)(1) ↪→ TpA⊗Zp L ' L2

hence a point of F(L) = P1(L). This is the map

πHT : X(p∞)(L)→ P1(L).

We want to construct a perfectoid space X overQcyclp which is similar to lim←X(pn)ad

and a map of adic space πHT : X → P1 which agree with the above inverse limit
and projection on L-points. At any �nite level we have

X(pn)ad = X(pn)ord qX(pn)ss

where the ordinary part is a (disconnected) a�noid and the super-singular part
a rigid analytic space covering the open supersingular disks in Xad. The cusps
belong (by de�nition) to X(pn)ord. As these decompositions are compatible with
the inverse limit they de�ne a similar decomposition of X(p∞). Similar notation
will be used for Γ0-level structure.

The idea is to prove �perfectoid-ness� of X(p∞) on an open part �rst, then use
SL2(Qp)-action to show that it is all perfectoid.

4.5.2. The canonical subgroup. Let S be an Fp-scheme and A/S an elliptic curve.

The Verschiebung isogeny V er : A(p) → A induces V ∗ : ωA/S → ω
(p)
A/S ' ωpA/S

hence a canonical section Ha(A/S) of ωp−1
A/S called the Hasse invariant of A over S.

One knows that A/S is (�ber-wise) ordinary if and only if Ha(A/S) is invertible.
Now assume (ε ∈ [0, 1)) that |pε| ∈ |L| where L = Qcyclp and S is a scheme over

L+/pL+. We say that Ha(A/S) divides pε if there is a section η of ω1−p
A/S such that

Ha(A/S) · η = pε. This is a measure of �how supersingular� A is.
Let X(pn)[ε] be the a�noid subdomain of X(pn)ad parametrizing elliptic curves

A for which Ha(A1) is divisible by pε. Here A1 is A mod p. When n = 0 this is
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a strict neighborhood of the ordinary locus, including an annulus in each supersin-
gular disk, and in general it is the inverse image of this a�noid in X(pn)ad. Note
that X(pn)[0] = X(pn)ord. Over this a�noid A is ordinary and A[pm] has, for ev-
ery m, a canonical subgroup scheme Cm which is �nite �at of rank pm, and whose

reduction modulo p is the kernel of Frm : A1 → A
(pm)
1 . The next theorem tells us,

in a quantitative way, how the canonical subgroup �overconverges�. In part (i) we
work over a certain general base Spec(R). In part (ii) we work in neighborhoods of
Xord where X = X(1) (no pn-level yet) and these neighborhoods become smaller
and smaller with m. In part (iii) we show that if we introduce Γ0(pm)-level struc-
ture, these neighborhoods are mapped to certain open and closed components of
X0(pm)[ε] with a �xed width ε, and that the transition maps between them become
Frobenius modulo p1−ε.

Theorem 10. [Tors, Corollary III.2.6, Proposition III.2.8] Let ε ∈ [0, 1/2) and
m ≥ 1. Let R be a p-adically complete �at Zcyclp -algebra, and A/R an elliptic curve
for which Ha(A1/R1)p

m

divides pε.Then:
(i) There exists a canonical �nite �at subgroup scheme Cm ⊂ A[pm] of rank pm

such that Cm ≡ ker(Frm) modulo p1−ε. This subgroup scheme behaves functorially
in R and satis�es

Cm(R) = {s ∈ A[pm](R)| s ≡ 0 mod p(1−ε)/pm}.

(ii) In particular, C1 exists in A[p] where A is the universal elliptic curve over
X[p−1ε] and A 7→ A/C1 induces a map

F̃ : X[p−mε]→ X[p1−mε]

for every m ≥ 1 (thus A/C1 is �more supersingular� than A but in a controled
way). These a�noids have nice integral structures13 and when we reduce them
modulo p1−ε the map F̃ reduces to the relative Frobenius morphism of the scheme
X[p−mε] mod p1−ε.

(iii) The map

A 7→ (A,Cm) 7→ (A/Cm, A[pm]/Cm)

induces open embeddings X[p−mε] ↪→ X0(pm)ad whose image is an open and closed
subset

X0(pm)[ε]a

of X0(pm)[ε].

The a�noid X0(pm)[ε]a is called the anti-canonical a�noid. If ε = 0 it is the
unique component of X0(pm)ord where the cyclic subgroup scheme of rank pm

reduces to an étale group scheme, i.e. is disjoint from the kernel of reduction.
In general, the anticanonical a�noid can be described similarly, as the unique
component of X0(pm)[ε] where the cyclic subgroup scheme of rank pm is �as far as
possible from canonical�.

13These integral structures arise from viewing the a�noid X[p−mε] as the generic �ber of a
certain formal scheme X[p−mε] which represents a certain natural functor, see [Tors, De�nition
III.2.12].



PERFECTOID SPACES AND GALOIS REPRESENTATIONS 50

4.5.3. The perfectoid-ness of the Γ0(pm) tower. Using part (iii) of the last theorem
we get a commutative diagram

X[p−m−1ε]
A7→A/Cm+1

↪→ X0(pm+1)ad

↓ F̃ ↓

X[p−mε]
A7→A/Cm

↪→ X0(pm)ad

↓ ↓

X[p−1ε]
A 7→A/C1

↪→ X0(p)ad

The images of the horizontal arrows are the tower of X0(pm)[ε]a and one checks
easily that the induced transition maps in that tower are the natural maps between
level pm+1 to level pm. As modulo p1−ε these masp are just the relative Frobenius
maps, we see that modulo p1−ε the tower of rings of de�nition14 on the right looks
like lim→ of a �xed ring w.r.t. the map of raising to power p, hence is perfect. If
we take the completion of this direct limit we get an a�noid perfectoid X0[ε]a such
that

X0[ε]a ∼ lim
←
X0(pm)[ε]a.

This is the �rst step in the construction of X .

4.5.4. From X0[ε]a to X [ε]. Consider now full level p∞-structure and the map

(A,α : TpA ' Z2
p) 7→ (A,α−1(Zp ⊕ (0)))

from X to X0. Then setting X [ε]a to be the pre-image of X0[ε]a we see that this is
also a perfectoid (note the ε is unchanged because A is unchanged).

Next, let SL2(Zp) act on the tower. It is easy to see that

X [ε] = SL2(Zp) · X [ε]a.

We conclude that X [ε] is perfectoid.

4.5.5. From X [ε] to X . At this point it is essential to study πHT and also to take
ε > 0 (till now we could work with ε = 0, i.e. with the ordinary parts only).

Lemma. (i) π−1
HT (P1(Qp)) = X [0].

(ii) Assume ε > 0. There exists an open rigid analytic space U ⊂ (P1)ad contain-
ing P1(Qp) (actually a union of �nitely many a�noid disks, how many depends on
ε) such that

π−1
HT (U) ⊂ X [ε].

The following lemma is an easy exercise:

Lemma. Let P1(Qp) ⊂ U ⊂ (P1)ad be as above. Then SL2(Qp) · U = (P1)ad.

Combining the two lemmas and using the SL2(Qp)-equivariance of πHT we con-
clude that SL2(Qp) · X [ε] = X and so X , like X [ε], is perfectoid.

14Recall that if Xad = Spa(R,R+) then R+ is called the ring of de�nition of Xad.
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