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CHAPTER 1

Number fields and their rings of integers

1. Notation

• R and C are the reals and the complex numbers, Q are the rationals and
Z are the integers. Since we shall encounter “integers” in fields other than
Q in this course, we shall sometimes refer to Z as the rational integers.

• The degree of a finite field extension K ⊂ L is denoted [L : K]. Recall that
it is the dimension of L as a vector space over K. We also write “L/K”
for the extension.

• If L/K is a finite field extension, any a ∈ L defines a K-linear transfor-
mation of L denoted Ma (multiplication by a) by the rule

(1.1) Ma(x) = ax.

The norm NL/K(a) and the trace TrL/K(a) are by definition det(Ma)
and tr(Ma) respectively.

• A ring is usually commutative with 1, unless it is clear from the context
that it is noncommutative. Ideals will be often denoted by small gothic
letters a, b, c etc. If {ai} is a (usually finite) collection of elements of a
ring A, the ideal (ai) is the ideal generated by the ai, namely

∑
Aai. We

use this notation even if this is not a proper ideal, but the whole ring A.
• If A is a ring and I a (proper) ideal, the quotient ring is denoted by A/I.

If I and J are ideals IJ is the ideal consisting of all the sums of products
of an element from I by and element from J.

• If A is a commutative ring its multiplicative group of units (invertible
elements) is denoted by A×.

2. Introduction

Definition 2.1. A number field (sometimes called an algebraic number field)
K is a finite field extension of Q.

Number fields may be viewed abstractly, or as subfields of C. In the latter
case, we should be more appropriately speaking of a couple (K, ι), where ι is the
embedding into C, but traditionally ι is dropped from the notation.

Classical problems in number theory often “live” in such fields, and are best
understood in their context, even though the problem itself may be phrased entirely
within Q. We give two examples. Note that in both, in addition to the number field
K, certain subrings of it, similar to the subring Z ⊂ Q, play a prominent role.

2.1. Sum of two squares.

Theorem 2.1. (Fermat) A positive integer n is a sum of two squares if and
only if for every prime q ≡ 3mod4, ordq(n) is even.

3



4 1. NUMBER FIELDS AND THEIR RINGS OF INTEGERS

Proof. The reader should supply the details in the following guided exercise.
– The ring Z[i] = {x + iy; x, y ∈ Z} is a principal ideal domain (PID).

In fact, it is a Euclidean domain. (If you haven’t seen this example,
look it up in Amitsur’s Algebra.)

– Z[i]× = {±1,±i} .
– The rational integers which are sums of two squares are those of the

form zz̄ for z ∈ Z[i].
– Let p be a rational prime. The quotient ring

(2.1) Z[i]/(p) ' Z[X ]/(X2 + 1, p) ' Fp[X ]/(X2 + 1)

is a field if and only if p ≡ 3mod4. This is the main step, and to prove
it you should use the fact that the multiplicative group of Fp is cyclic.
Conclude that p remains prime in Z[i] if and only if p ≡ 3mod4.

– 2 = (1 + i)(1 − i) and 1 + i is prime in Z[i].
– If p ≡ 1mod4, then p = ππ̄ for a prime π of Z[i]. Hint: if p = πλ in

Z[i] where π is prime, then p2 = (ππ̄)
(
λλ̄
)

in Z.
– Any z ∈ Z[i] can be written as

(2.2) z = ε(1 + i)k
∏

πmi

i

∏
q

nj

j

where πiπ̄i = pi ≡ 1mod4, qj ≡ 3mod4 and ε ∈ {±1,±i} .

– For such a z, zz̄ = 2k
∏

pmi

i

∏
q
2nj

j .

For example, a prime is a sum of two squares if and only if it is 2 or 1mod4,
45 = 32 · 5 is a sum of two squares, but 35 = 7 · 5 isn’t. �

2.2. Kummer’s work on Fermat’s Last Theorem. Fermat’s Last Theo-
rem (FLT) asserts that for n ≥ 3, the equation xn + yn = zn has no solutions in
positive integers x, y, z.

Fermat himself proved it for n = 4, so the general question is reduced to n = p
an odd prime. In the middle of the 19th century Liouville noticed that the equation
may be rephrased as

(2.3) xp =

p−1∏

k=0

(z − ζky)

if ζ = e2πi/p is a primitive pth root of unity. The advantage of this reformulation is
that the problem becomes one of decomposing xp in the ring Z[ζ]. Kummer made
an important contribution when he proved that FLT holds for the exponent p if
Z[ζ] is a PID. In fact, he proved a stronger theorem. Call p regular if the following
condition holds:

Whenever I is an ideal of Z[ζ] and Ip is principal, then I is already principal.
Kummer’s theorem is that if p is regular, FLT holds for p. Clearly, if Z[ζ] is a

PID, then p is regular, but there are only finitely many p’s for which Z[ζ] is a PID
(the largest one is 19), while there seem to be infinitely many regular primes. Oddly
enough, although irregular primes are rare, it is not known that there are infinitely
many regular primes, but it is known that there are infinitely many irregular ones
(the first being 37). In any case, Kummer’s result proves FLT for all exponents less
than 37, and for many more.

A bit of history: Lamé made the mistake of assuming that unique factorization
holds in Z[ζ] (which is equivalent to Z[ζ] being a PID). He addressed the French
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Academy of Science in 1847, claiming to have proven FLT. Liouville noted the gap
in the proof immediately. Kummer tried to fix it by inventing “ideal numbers”, for
which unique factorization will hold. This is how the concept of an ideal in a ring
was born, and where it got its name. One of the main results we shall prove later
on, is that although unique factorization may fail in Z[ζ], ideals in this ring admit
unique factorization as products of prime ideals. Thus Kummer’s introduction of
ideals solved in some sense the unique factorization problem. But ideals are not as
nice as numbers, and although one can add and multiply them, they do not form
a ring. This is why Kummer could only exploit Liouville’s idea for regular primes.
This line of attack on FLT was the source of many more developments in number
theory and algebra, mostly in the second half of the 19th century. Eventually
Taylor and Wiles proved FLT in 1995, by completely different, and much more
sophisticated, means.

The lesson from the two examples discussed above is (a) that problems phrased
entirely in Z require studying subrings of number fields such as Q(i) and Q(ζ), and
(b) that unique factorization is an important issue in these rings.

3. The geometric embedding of a number field

3.1. The geometric embedding. Let K be a number field of degree n =
[K : Q]. We denote by Emb(K, C) the set of embeddings of K into the complex
numbers. There are n such embeddings. If K = Q(α) and the minimal polynomial
of α is f ∈ Q[X ] then f is separable, and if α = α1, . . . . , αn is the list of all its
roots in C, the distinct embeddings are obtained by sending α to the various αi. If
K is a normal extension of Q then the embeddings are automorphisms of K, and
under composition they make up the Galois group Gal(K/Q), but in what follows
we nowhere make this assumption.

An embedding σ is called real if σ(K) ⊂ R. It is called complex if it is not real.

The complex conjugate σ̄ of σ is the embedding defined by σ̄(x) = σ(x). Clearly σ
is real if and only if σ̄ = σ, so the complex embeddings come in pairs of complex
conjugate ones. It is customary to denote by r1(K) the number of real embeddings
of K, and by 2r2(K) the number of complex embeddings, so that r1 + 2r2 = n.

Exercise 3.1. Determine r1 and r2 for quadratic extensions of Q, and for
K = Q(3

√
2).

We shall identify C with R2 as usual by sending z to (Rez, Imz). Let σ1, . . . , σr1

be the real embeddings of K, and σr1+1, . . . , σr1+r2
, σr1+r2+1 = σ̄r1+1, . . . , σr1+2r2

=
σ̄r1+r2

its complex embeddings. Note that we made an arbitrary choice in ordering
the embeddings, and that from each pair of complex conjugate ones, we singled out
one which we denote by σ rather than σ̄. These choices will have little effect on
what follows, but it is important to keep them in mind. The map

(3.1) ϕ : K ↪→ Rr1 × Cr2 = Rn

given by ϕ(x) = (σ1(x), . . . , σr1+r2
(x)), is called the geometric embedding of K. It

is a Q-linear map whose image, as we shall soon see, is dense in Rn.

3.2. The discriminant of a basis.

Lemma 3.1. ω1, . . . , ωn is a basis of K over Q if and only if ϕ(ω1), . . . , ϕ(ωn)
is a basis of Rn over R.
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Proof. It is clear that a linear dependence between the ωj over Q gets trans-
lated into a linear dependence between the ϕ(ωj). Conversely, if ωi are independent
over Q we know that det(σi(ωj)) 6= 0 (Appendix, corollary to Artin’s theorem
on independence of characters). Denoting ωij = σi(ωj) we see that the matrix
B = (ωij) and the matrix A ∈ Mn(R) whose columns are the vectors ϕ(ωj) ∈ Rn

are very close to each other. If r2 = 0 they are the same. Otherwise, the only
difference is that certain pairs of lines l, l̄ in the first get replaced by Rel, Iml in
the second. It follows that det(B) = ±(2i)r2 det(A), hence det(A) is nonzero, as
we had to prove. �

Definition 3.1. The discriminant of the basis ω1, . . . , ωn is

(3.2) ∆(ω1, . . . , ωn) = det(σi(ωj))
2.

Exercise 3.2. (1) ∆ is well defined, independently of the ordering of the basis
or of the embeddings.

(2) ∆ is equal to

(3.3) {(2i)r2vol (Rn/ϕ(Zω1 + · · · + Zωn))}2
.

(3) The trace form B : K × K → Q is the bilinear form defined as

(3.4) B(x, y) = TrK/Q(xy).

Prove that ∆ = det(B(ωi, ωj)). In particular the discriminant is a rational number,
whose sign is (−1)r2 .

Exercise 3.3. If K = Q(α) where α is a solution of an irreducible equation
x2 + bx + c = 0, then ∆(1, α) = b2 − 4c.

Exercise 3.4. If K = Q(α) and α = α1, . . . , αn are the conjugates of α, then

(3.5) ∆(1, α, . . . , αn−1) = det(αj−1
i )2

is the square of a famous determinant (the Van der Monde determinant). Evaluate
it.

3.3. Lattices.

Definition 3.2. A lattice in K is the additive subgroup spanned by a basis of
K over Q :

(3.6) Λ = Zω1 + · · · + Zωn.

A (geometric) lattice in Rn is the additive subgroup spanned by a basis of Rn over
R.

The lemma can be rephrased by saying that Λ is a lattice if and only if ϕ(Λ)
is a geometric lattice.

Exercise 3.5. A subgroup Λ of Rn is a lattice if and only if it is discrete and
cocompact.

Exercise 3.6. Is every subgroup of Rn which is isomorphic to Zn a lattice?

Lemma 3.2. A finitely generated additive subgroup of K is a lattice if and only
if it contains a basis.
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Proof. Suppose Λ is a finitely generated additive subgroup. Since it has no
torsion, it is isomorphic to some Zm. If m > n, it has m elements which are linearly
independent over Z, hence also over Q (by clearing denominators any Q-dependence
yields a Z-dependence). This is impossible, so m ≤ n. If Λ contains a basis, then
m = n. Let ω1, . . . , ωn be the basis of Λ over Z. Then it is also a basis of K over
Q, so Λ is a lattice. �

Corollary 3.3. The product of two lattices M and N in K defined as

(3.7) MN =
{∑

mini; mi ∈ M, ni ∈ N
}

is a lattice.

Proof. If ωi be a basis of M and ξj a basis of N, then ωiξj is a (clearly redun-
dant) set of generators for MN, so MN is finitely generated. It clearly contains a
basis, for example ω1ξj , 1 ≤ j ≤ n. �

Definition 3.3. We have seen in part (2) of Exercise 3.2 that ∆(ω1, . . . , ωn)
depends only on the lattice spanned by the ωi. We therefore call it also the discrim-
inant of the lattice and denote it by ∆(Λ).

Lemma 3.4. If Λ1 ⊂ Λ2 are two lattices then

(3.8) [Λ2 : Λ1]
2 = ∆(Λ1)/∆(Λ2).

Proof. This follows from Exercise 3.2, part (2). Alternatively, if ω1, . . . , ωn

is a basis for Λ2, and ω′
j =

∑
k cjkωk (cjk ∈ Z) is a basis for Λ1, then clearly

det(σiω
′
j) = det(cjk) det(σiωk) so

(3.9) ∆(ω′
1, . . . , ω

′
n) = det(cij)

2∆(ω1, . . . , ωn).

However, | det(cij)| = [Λ2 : Λ1] (see appendix). Note that the fact that ∆(Λ)
depends only on Λ and not on the basis is a special case of the proof of the lemma,
when Λ1 = Λ2 is the same lattice, but the bases may be different. �

Exercise 3.7. For any two lattices Λ1 and Λ2 in K there exists an integer m
such that

(3.10) mΛ1 ⊂ Λ2 ⊂ m−1Λ1.

3.4. Orders.

Definition 3.4. A lattice in K is an order if it is also a subring (closed under
multiplication, and contains 1).

For example, for any rational number a, Za is a lattice in Q, but the only order
is Z. More generally, a lattice as above is an order if and only if it contains 1, and
the rational numbers cl

ij in the expansion

(3.11) ωiωj =
∑

cl
ijωl

are integers.
Orders exist.

Lemma 3.5. If Λ is an order, ∆(Λ) ∈ Z.
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Proof. We use the description of the discriminant as det(B(ωi, ωj)). Now

(3.12) ωiωjωk =
∑

l

∑

m

cl
ijc

m
lkωm

so B(ωi, ωj) = TrQ/K(ωiωj) =
∑

k

∑
l c

l
ijc

k
lk . If Λ is an order, B(ωi, ωj) ∈ Z. �

Corollary 3.6. Any increasing sequence Λ1 ⊂ Λ2 ⊂ · · · of orders must
stabilize: there exists a k such that Λk = Λk+1 = · · ·.

Proof. We have shown that ∆(Λi+1) divides ∆(Λi) for each i. �

3.5. Maximal orders.

Theorem 3.7. There exists a unique maximal order in K.

Proof. We have seen that orders exist, and the last corollary shows that a
maximal order exists. It remains to show that it is unique. Suppose that Λ1 and Λ2

are orders, spanned by ωi and ηj respectively. Let Λ be the Z-span of ωiηj . Since
1 is a linear combination with integer coefficients of the ωi, Λ2 ⊂ Λ and similarly
Λ1 ⊂ Λ. Thus Λ is a finitely generated subgroup of K which contains a basis, so
it is a lattice. It is easy to see that ωiηjωi′ηj′ is an integral linear combination of
the ωlηk. It follows that Λ is an order. We have shown that any two orders are
contained in another order, and this implies that the maximal order is unique. �

We denote the maximal order of K by OK . Non-maximal orders are often
denoted by the letter O.

4. Algebraic integers

We have arrived at the notion of an order, and a maximal order, from the
geometric embedding of K. There is another, purely algebraic, way to arrive at
the same notion. Because of its importance, we present it in somewhat greater
generality.

4.1. Integral extensions.

Definition 4.1. Let A be a subring of a field Ω. An element α ∈ Ω is said to
be integral over A if it satisfies a monic polynomial with coefficients from A : if
there exists a relation of the form

(4.1) αm + a1α
m−1 + · · · + am = 0

where ai ∈ A.
A ring A ⊂ B ⊂ Ω is an integral extension of A if all its elements are integral

over A.
The ring A is said to be integrally closed in Ω if every element of Ω which is

integral over A is already in A.
A domain A is said to be integrally closed if it is integrally closed in its field

of fractions.

If A is a field this is the familiar notion of being “algebraic” over A.

Exercise 4.1. Let A be a unique factorization domain. Then A is integrally
closed.
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Hint : Let α = u/v be an element of the fraction field of A and assume that it
satisfies a monic equation as above with ai ∈ A. We may assume that u, v are in
A and are relatively prime. Multiply by vm to get that v divides um in A, hence
must be a unit, so α ∈ A.

It follows that the ring Z is integrally closed. Recall that a module M over a
ring A is finitely generated if there are finitely many α1, . . . , αm in M such that
M =

∑
Aαi.

Theorem 4.1. Let A be a subring of a field Ω, and α ∈ Ω. The following are
equivalent.

(a) α is integral over A.
(b) The ring generated by α over A, denoted A[α], is finitely generated as an

A-module.
(c) There exists a finitely generated A-module M ⊂ Ω such that αM ⊂ M.

Proof. Suppose (a) holds. Then 1, α, . . . , αm−1 span A[α] as an A-module
because αm is already a linear combination of them with coefficients from A. To
show that (b) implies (c) simply take M = A[α]. To show that (c) implies (a)
pick a system of generators ω1, . . . , ωm of M as an A module (it need not be a
minimal system of generators). Write αωi =

∑
aijωj where aij ∈ A (which need

not be unique). The matrix αI − (aij) annihilates the vector t(ω1, . . . , ωm), so it’s
determinant is 0. This gives the monic polynomial in A[X ] satisfied by α. �

Corollary 4.2. The sum, difference and product of two elements of Ω which
are integral over A is integral over A.

Proof. Let α and β be integral over A. Then M = A[α] and N = A[β] are
finitely generated A modules, hence so is MN, because it is generated by all the
products of a generator of M with a generaor of N. But this A-module is invariant
under multiplication by α + β and αβ, so by criterion (c) of the theorem, we are
done. �

Corollary 4.3. The set of all elements of Ω which are integral over A is a
ring. It is called the integral closure of A in Ω.

Proposition 4.4. If B = A[α1, . . . , αn] is finitely generated as a ring over A,
and the αi are integral over A, then B is a finite A-module.

Proof. By induction on n. The case n = 1 is criterion (b) of the theorem.
Suppose we have proved that A′ = A[α1, . . . , αn−1] is a finite A-module, so that
A′ =

∑r
i=1 Aωi. Since αn is clearly integral over A′, B = A′[αn] =

∑s
j=1 A′ηj . It is

now clear that B =
∑r

i=1

∑s
j=1 Aωiηj . �

Proposition 4.5. Suppose B is integral over A and α is integral over B. Then
α is integral over A.

Proof. Let b1, . . . , br be the coefficients of a monic polynomial of α over B.
Since they are in B, they are integral over A, so by the previous proposition,
A′ = A[b1, . . . , br] is a finite A-module. Since α is integral over A′, A′[α] is a finite
A′ module, hence also a finite A module. By criterion (c) of the theorem, α is
integral over A. �

Corollary 4.6. The integral closure of A in Ω is integrally closed.
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Corollary 4.7. If A is integrally closed, and α is integral over A, then already
the monic minimal polynomial of α has coefficients from A.

Proof. Let K ⊂ Ω be the field of fractions of A, in which A is integrally closed.
All the conjugates of α over A are also integral over A, hence so are the coefficients
of the minimal polynomial, which are sums of products of these conjugates. But
these coefficents lie in K, so by our assumption, they belong to A. �

Proposition 4.8. Let K be the field of fractions of A. If α is algebraic over
K, then for some a ∈ A, aα is integral over A.

Proof. Clearing denominators, α satisfies a (non-monic, perhaps) polynomial
over A, say

(4.2) a0α
m + · · · + am = 0.

Multiplying by am
0 we see that a0α satisfies a monic polynomial with coefficients

from A. �

4.2. Algebraic integers. We now specialize the algebraic results of the pre-
vious section to subrings of number fields. Let A be an order in a number field
K. Then A is a finitely generated Z-module, and since it is closed under multipli-
cation, all its elements are integral over Z. Thus the elements of OK are integral
over Z. Conversely, let α be integral over Z. Let ω1, . . . , ωn be a basis of K over Q.
Multiplying by a rational integer we may assume that the ωi are integral over Z.
Consider A = Z[α, ω1, . . . , ωn]. Since α and the ωi are integral over Z, by a previous
claim, A is a finite Z-module. Since it contains a basis of K, it is a lattice, and
since it is a ring, it is an order. Thus α ∈ OK .

We have shown that the maximal order of K is simply the ring of all elements
of K which are integral over Z. It is called the ring of algebraic integers of K. If
K ⊂ L are two number fields then OL is simply the integral closure of OK in L.

Exercise 4.2. Let K = Q(
√

D) be a quadratic extension of Q where D is a
(positive or negative) square-free integer different from 0 or 1. Let

ωD =
√

D if D ≡ 2, 3mod4

ωD =
1 +

√
D

2
if D ≡ 1mod4(4.3)

Prove that OK = Z + ZωD and compute ∆(1, ωD).

4.3. Dedekind domains. Unlike Z, the rings OK need not be PID’s or
UFD’s. We next study their basic properties.

Proposition 4.9. Let L/K be a finite extension of number fields. Then NL/K

and TrL/K map OL into OK . The norm maps an ideal a into a ∩ OK .

Proof. Embed L in a number field M which is Galois over K. There are
[L : K] different embeddings of L into M over K, which we denote EmbK(L, M). If
α ∈ OL then the conjugates σ(α) of α, for σ ∈ EmbK(L, M), are in OM (because
they are in M and they are algebraic integers). Their sum is TrL/K(α) and their
product is NL/K(α) (see Appendix), and these are therefore in OM ∩ K = OK .

Suppose now that α ∈ a. The product of the conjugates σ(α) for σ 6= id. is
equal to NL/K(α)α−1, and is therefore in OM ∩L = OL. It follows that NL/K(α) ∈
a ∩OK . �
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Exercise 4.3. Similarly, prove that all the coefficients of the characteristic
polynomial of α ∈ OL are in OK .

Theorem 4.10. The ring OK satisfies: (i) it is a Noetherian domain (ii) it is
integrally closed (iii) every nonzero prime ideal of OK is maximal.

Proof. Of the three listed property, the first two have already been proved.
Since an ideal of OK is a lattice, and any lattice has a finite index in OK , which
is a positive integer, any ascending chain of ideals becomes stationary, proving (i),
and (ii) follows from the fact that OK is the integral closure of Z in K. To prove
(iii) let p be a nonzero prime ideal of OK . If a is a nonzero element of p, then
α = NK/Q(a) is a nonzero element of p ∩ Z. Since p ∩ Z is a prime ideal of Z, it
must contain a rational prime p and so OK/p is a vector space over Z/pZ. It is also
finitely generated as a vector space, because OK is a finite Z-module. It is therefore
a finite domain. However, every finite domain is a field, hence p is maximal. �

Remark 4.1. A close examination of the last step in the proof shows that we
did not have to use the fact that OK/p is finite. Instead we could use the following
lemma.

Lemma 4.11. Let k be a field and R a finite k-algebra which is a domain. Then
R is a field.

Proof. The only problem is to show that every nonzero element of R is in-
vertible. Let a be such an element, and consider as before the linear transformation
Ma : x 7→ ax of R over k. By the Cayley Hamilton theorem a satisfies some polyno-
mial from k[X ], namely char.(Ma). Let f ∈ k[X ] be a polynomial of minimal degree
satisfied by a. Since R has no zero divisors, the constant term of f is nonzero, so
we may assume that it is −1. Moving the constant term to the other side of the
equation f(a) = 0 we find an expression ag(a) = 1, hence a is invertible. �

Definition 4.2. A Dedekind domain is a domain A staisfying (i) A is Noe-
therian (ii) A is integrally closed (iii) every nonzero prime of A is maximal.

Exercise 4.4. Every PID is a Dedekind domain.

The converse is not true, but as we shall see soon, Dedekind domains are pre-
cisely those rings which are “locally” PID’s. For that we have to develop somewhat
the local-to-global dictionary, which is fundamental in algebraic number theory and,
more generally, in commutative algebra and algebraic geometry.

Exercise 4.5. In each of the examples below determine if it is a Dedekind
domain.

(i) C[X, Y ] (ii) The ring of all algebraic integers in Q̄ (iii) C[X, Y ]/(Y 2 −X3)

(iv) Z[
√
−5] (v) Z[

√
5].

Hint: for example (iii), show that the ring is a domain and let x and y be the
classes of X and Y. Prove that y/x is an element of the field of fractions which is
integral over the ring, but does not lie in it.

Exercise 4.6. Z[
√
−5] is a Dedekind domain, but not a PID. Hint: 6 = 2 · 3 =

(1 +
√
−5)(1 −

√
−5).
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4.4. Minkowski’s lemma. This is a simple but useful lemma in geometry.
A subset of Rn is called symmetric if together with x it contains −x. It is called
midpoint convex if with x and y it contains also (x+y)/2. Convex sets are midpoint
convex.

Lemma 4.12. If U ⊂ Rn is measurable, symmetric and midpoint convex, and
if Λ is a lattice in Rn, such that

(4.4) 2nvol(Rn/Λ) < vol(U),

then U contains a nonzero point of Λ.

Proof. Assume that U ∩ Λ = {0} . Let ω1, . . . , ωn be a basis for Λ, and Π =
{
∑

tiωi; 0 ≤ ti < 1} the fundamental parallelopiped defined by {ωi}. The subsets
Wλ = ( 1

2U − λ) ∩ Π, (λ ∈ Λ) are disjoint, because if u/2 − λ = v/2 − µ (u, v ∈ U
and λ, µ ∈ Λ) then λ − µ ∈ U by our assumptions on U, hence λ = µ. Since they
are also measurable

(4.5) vol(
1

2
U) =

∑

λ∈Λ

vol(Wλ) ≤ vol(Π) = vol(Rn/Λ).

The first equality follows from the fact that Wλ + λ = 1
2U ∩ (Π + λ) make up a

disjoint covering of 1
2U. This contradiction proves that U must contain a nonzero

point from Λ. �

4.5. The discriminant and Hermite’s theorem.

Definition 4.3. The discriminant dK of a number field K is the discriminant
∆(ω1, . . . , ωn) of a basis of OK over Z. It is a well-defined integer, whose sign is
(−1)r2(K).

Theorem 4.13. There are only finitely many number fields K with a bounded
degree and discriminant.

We shall see later that when [K : Q] → ∞, |dK | → ∞ too. This will prove

Theorem 4.14. (Hermite) There are only finitely many number fields with a
bounded discriminant.

Proof. Let M be a positive real number . Consider the rectangle

(4.6) U =

{
x ∈ Rn; |xi| ≤

1

2
for i ≤ n − 1 and |xn| ≤ 2n−1M

}

which is convex, symmetric, and whose volume is 2nM. Let K be any number field
of degree n with

√
|dK | < M, and choose a geometric embedding ϕ of K in Rn as

above. Then

(4.7) vol(Rn/ϕ(OK)) = 2−r2(K)
√
|dK | < M,

so by Minkowski’s lemma there will be a non-zero α ∈ OK with ϕ(α) ∈ U . For any

embedding σ of K in C other than τ = σr1+r2
or τ̄ we have |σ(α)| ≤

√
2/2 (even

≤ 1/2 if σ is real). Since the norm of α is a non-zero rational integer, we must
have |τ(α)| > 1. Moreover if τ is a complex embedding, |Re(τ(α))| ≤ 1/2, so τ(α)
is not real. We claim that [Q(α) : Q] = n, hence K = Q(α). In fact, if α generates
a proper subfield of K, then for some σ 6= τ we must have σ(α) = τ(α) because
τ(α), like α, would have less than n conjugates. But we have just seen that this is
impossible for σ 6= τ, τ̄ and also for σ = τ̄ .
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We conclude that any K of degree n and
√
|dK | < M is generated by an

algebraic integer α such that ϕ(α) ∈ U. The (monic) minimal polynomial fα of
α will have Z coefficients which are symmetric functions of the n conjugates of α.
Since these conjugates are bounded (in terms of n and M), so will be the coefficents
of fα. We conclude that there are only finitely many possibilities for fα, hence for
α, hence for K. �

5. Ideal theory in Dedekind domains

5.1. Unique factorization of ideals. As indicated in the introduction the
concept of an ideal in a ring grew out of Kummer’s attempt to replace unique
factorization in rings of algebraic integers by unique factorization between “ideal
numbers”. The modern set-theoretic definition of an ideal as an additive subgroup
closed under multiplication by ring elements is due to Dedekind, who also showed
that in the rings named after him unique factorization of ideals indeed holds.

Theorem 5.1. Let R be a Dedekind domain. Then every ideal I can be written
as a product of prime ideals

(5.1) I = P1 . . . Pr

and this decomposition is unique up to a permutation of the factors.

Example 5.1. Let R be a PID. The prime ideals are precisely those of the
form P = (π) where π is an irreducible element. Two ideals (a) and (b) are equal
if and only if a = εb for some unit ε, and of course (a)(b) = (ab). Taken together
we recover unique factorization in PID’s.

Exercise 5.1. This example shows how Dedekind’s theorem remedies the lack
of unique factorization in the ring Z[

√
−5], which is a Dedekind domain, but not a

PID. We have seen before that

(5.2) 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5)

in this ring, and that 2, 3 or 1±
√
−5 are all irreducible elements. The point is

that they do not generate prime ideals. Let P = (2, 1 +
√
−5) = (2, 1 −

√
−5). Let

Q = (3, 1 +
√
−5) and Q̄ = (3, 1 −

√
−5). Show that these are all primes and that

(5.3) (2) = P 2, (3) = QQ̄, (1 +
√
−5) = PQ and (1 −

√
−5) = PQ̄.

Hint: If I = (ai) and J = (bj) then IJ = (aibj).

The proof of Dedekind’s theorem relies on several lemmas.

Lemma 5.2. Let R be a noetherian domain. Then every ideal I of R contains
a product of prime ideals.

Proof. If not, let I be an ideal which is maximal among all the ideals which
do not contain products of primes. Such an ideal can be found by the noetherianity
assumption. Since I is certainly not prime itself, there are a and b not in I, whose
product ab ∈ I. But then I + (a) and I + (b) contain products of primes, hence so
does their product, which is contained in I. This is a contradiction. �

Let K be the field of fractions of R. For any subset I of K we write

(5.4) I ′ = {x ∈ K|xI ⊂ R} .

Note that it is an R-submodule of K. In general, it need not be contained in R. Of
course, the smaller I is, the larger I ′.
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Lemma 5.3. Let R be Dedekind. If P is a prime ideal, then P ′ is not contained
in R.

Proof. Let a ∈ P. By the previous lemma P ⊃ (a) ⊃ P1 . . . Pr a product of
primes, and we may assume that their number r is minimal. Since P is prime,
it must contain one of the Pi and we may assume P ⊃ P1. Since P1 is maximal,
P = P1. Now (a) + P2 . . . Pr, by the minimality of r, so there exists b ∈ P2 . . . Pr

not in (a). But (a) ⊃ Pb, so ba−1 is in P ′ but not in R. �

Lemma 5.4. Let R be Dedekind. If P is a prime ideal, P ′P = R.

Proof. P ′P is easily seen to be an ideal of R containing P (since P ′ contains
1). By the maximality of P, if it is not R itself, it is equal to P. But then, for every
x ∈ P ′, xP ⊂ P, and since P is a finitely generated R module, this means that x is
integral over R. Since R is integrally closed, x ∈ R. This means that P ′ is contained
in R, contradicting the last lemma. �

Proof. (of theorem). Existence of decomposition: Suppose, by way of contra-
diction, that I is maximal amongst all the ideals not equal to a product of primes.
Let P be a maximal ideal containing I. Multiplying by P ′ we have

(5.5) I ⊂ P ′I ⊂ R.

Now P ′I is an ideal of R and it is strictly larger than I, otherwise all the elements
of P ′ multiply I into itself, and are therefore integral over R, hence in R. By
maximality of I, P ′I is already a product of primes. Multiplying by P we see that
I is a product of primes as well.

Uniqueness : If P1 . . . Pr = Q1 . . .Qs and all the Pi and the Qj are prime, then
P1 must contain one of the Qj , say Q1, hence they must be equal P1 = Q1 = P (say).
Multiplying by P ′ we arrive at a shorter expression and we continue inductively. �

5.2. Fractional ideals. Let R be a Dedekind domain and K its field of frac-
tions.

Definition 5.1. A fractional ideal of R is a finitely generated R submodule of
K.

A fractional ideal contained in R is simply an ideal, and one does not have
to say then that it is finitely generated, as this is guaranteed by noetherianity.
However, K itself is not a fractional ideal in general.

Let us examine some easy properties of fractional ideals. Fractional ideals can
be multiplied, where

(5.6) IJ =
{∑

aibi| ai ∈ I, bi ∈ J
}

.

This product is associative and commutative. If a ∈ K, Ra = (a) is a fractional
ideal, called principal. If I is a fractional ideal, then for some a ∈ R, aI is an
ordinary ideal in R. Simply take a as the product of the denominators of a finite
set of generators of I . An R-submodule of a fractional ideal is also a fractional
ideal, since R is noetherian. If I is a nonzero fractional ideal so is I ′. Indeed, it is
an R-submodule of K, and if a ∈ I, I ′ ⊂ (a)′ = (a−1), so by the last remark, I ′ is
a fractional ideal.
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Theorem 5.5. Let R be a Dedekind domain, and K its field of fractions. The
non-zero fractional ideals of R form a group I under multiplication. The unit is
R. The inverse of I is I ′. The group I is a free abelian group on the set of primes
as generators. The principal ideals form a subgroup P .

Proof. Everything is clear except that the inverse of I is I ′. By definition
II ′ ⊂ R. Suppose I is an ideal of R, and let I = P1 . . . Pr be its decomposition into
a product of prime ideals. We see that I ′ ⊃ P ′

1 . . . P ′
r so II ′ ⊃ R by the lemma

which said that PP ′ = R. If I is an arbitrary fractional ideal, write I = aJ with
a ∈ K and J an ideal of R. Then it is easy to see that I ′ = a−1J ′, and the result
for I follows from the result for J . �

Corollary 5.6. Every fractional ideal has a unique decomposition as

(5.7) P m1

1 . . . P mr
r

where the mi are integers and the Pi are distinct prime ideals, and where P−m =
(P ′)m if m > 0. Such a fractional ideal is an ideal of R if and only if all the mi are
non-negative.

Exercise 5.2. Find the expression for I + J and I ∩ J in terms of the prime
decomposition of I and J. Develop a theory of g.c.d and l.c.m. for fractional ideals.

5.3. The ideal class group.

Definition 5.2. The ideal class group of R (or of K if the reference to R
is clear; note that the same field can be the field of fractions of many Dedekind
domains) is the group

(5.8) Cl(R) = I/P .

The class group measures how far R is from being a PID. Note that I is a
free abelian group of infinite rank, in general. The group P also has a pretty easy
description. Since (a) = (b) if and only if ab−1 is a unit of R (this is proved for
fractional ideals precisely as it is proved for ideals), the map K× → P sending a to
(a) induces an isomorphism

(5.9) P ' K×/R×.

This is however of little help in computing P , and even more mysterious is the
way P sits inside I. The class group Cl(R) is the most important invariant of R.
For rings of integers in number fields it will turn out to be finite, but for general
Dedekind domains it may be infinite.

6. The local-global principle

There is another description of Dedekind domains that has a geometric flavor
and simplifies many of the proofs. To understand it we must recall the notion of
localization.

6.1. Localizations (more algebra). Let R be a domain, and K its field of
fractions. Let S be a multiplicative set of R (a set closed under multiplication) not
containing 0. Common examples of such an S are {fn; n ∈ N} - the powers of a
given element f, or R − P, the complement of a prime ideal.

The localization of R at S, denoted S−1R is the subring

(6.1) {r/s; r ∈ R, s ∈ S}
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of K. When S = R−P, P a prime ideal, it is common to denote S−1R by RP . For
example, Z(p) is the ring of all rational numbers whose denominator is prime to p.

The following facts are easy, and the reader should check them for himself (they
are usually taught in Musgei Yesod in Algebra).

• If I is an ideal in R, then S−1I is an ideal in S−1R, if I does not intersect
R, or is the whole ring S−1R otherwise.

• If J is an ideal of S−1R, then I = R ∩ J is an ideal of R and J = S−1I.
• The two constructions described above establish a bijection between the

prime ideals of R not intersecting S, and the prime ideals of S−1R. In
the case of RP , the prime ideals of RP are in one-to-one correspondence
with the prime ideals of R contained in P.

• RP has a unique maximal ideal: PRP .

A ring R is called local if it has a unique maximal ideal M. Equivalently, it is
local if there exists an ideal M such that R× = R − M.

Any domain R can be reconstructed from its localizations at prime ideals (inside
K). It is even enough to consider localizations at maximal ideals only.

Lemma 6.1. Let R be a domain. Then R =
⋂

M maximal
RM .

Proof. Let x be an element of K lying in the intersection of all the prime
ideal localizations of R. Let

(6.2) D(x) = {d ∈ R; dx ∈ R} .

This D(x) is clearly an ideal of R (called the ideal of denominators of x, for obvious
reasons). If it is not the whole ring R, it is contained in a maximal ideal M. But by
assumption x = r/s for r ∈ R and s /∈ M, so s ∈ D(x). It follows that D(x) = R,
and 1 ∈ D(x), so x ∈ R. �

This lemma is the basis for many arguments.

Exercise 6.1. Immitate the proof of the lemma to show that for any ideal I,
I =

⋂
M maximal

IRM .

6.2. Valued fields and DVR’s (review).

Definition 6.1. Let K be a field. A (non-archemidean) valuation v on K is
a map v : K× → R satisfying

(i) v(xy) = v(x) + v(y)
(ii) v(x + y) ≥ min {v(x), v(y)} .

One sometimes writes v(0) = ∞. The value group of the valuation is v(K×).
It is a subgroup of R. If the value group is discrete, v is called a discrete valuation.
In such a case we may scale v so that v(K×) = Z. We say that v is normalized. If
v is a normalized discrete valuation, an element π such that v(π) = 1 is called a
uniformizer or a prime.

Suppose v is a discrete valuation. The set Rv = {x; v(x) ≥ 0} is a subring
of K called the valuation ring of v. The set Pv = {x; v(x) > 0} is called the
valuation ideal. It is a principal ideal generated by any uniformizer. Since Rv −Pv

are precisely the units of Rv, one concludes easily that Rv is a local PID. Its only
nonzero ideals are the positive powers of Pv , and the only nonzero prime ideal is
Pv. The field κv = Rv/Pv is called the residue field of v.
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A local PID is called a discrete valuation ring (DVR). It is always of the form
described above (exercise: let R be a DVR and define a valuation on its field of
fractions so that R becomes Rv.)

Let (K, v) be a valued field (a field with a valuation). Let e > 1 be any constant,
and define a norm and a metric on K by

(6.3) |x| = e−v(x), d(x, y) = |x − y| .
This defines a topology on K. Two valuations are called equivalent if they induce

the same topology.

Example 6.1. (i) Let p be a prime of Q and define v(x) = ordp(x).
(ii) On C(t) let v(f) = ordω(f), where ω ∈ C, or v(f) = − deg(f) (“the

valuation placed at ∞”).

6.3. Dedekind rings and DVR’s. Let R be a Dedekind domain and K its
field of fractions. For each nonzero prime P of K let vP (x) denote the power of P
in the prime ideal factorization of the fractional ideal (x). One easily checks that
this is a valuation on K, and that its valuation ring is RP , the localization of R at
P , which is therefore a DVR.

Theorem 6.2. All the localizations RP of a Dedekind domain at nonzero
primes are DVR’s. Conversely, if R is a noetherian domain all of whose local-
izations are DVR’s, then R is a Dedekind domain.

Proof. We have just seen the first direction. For the converse, recall that R
is the intersection of all the RP , where P is maximal. If P is a nonmaximal prime
of R, let M be a maximal prime containing it, and look in RM . Then PRM is a
nonmaximal prime in the DVR RM , so must be 0. We conclude that P = 0. This
proves that every nonzero prime of R is maximal.

To get that R is integrally closed, recall that R =
⋂

RP . Each RP is integrally
closed (being a PID) and the intersection of any number of integrally closed rings
is again integrally closed. �

6.4. Dedekind rings with finitely many primes. A Dedekind ring with
only one prime is a DVR, hence a PID. We shall now see that a Dedekind ring with
finitely many primes ( a semilocal Dedekind ring) is also a PID.

Theorem 6.3. Let R be a Dedekind domain, P1, . . . , Pr prime ideals and ei

non-negative integers. Then there exists an α ∈ R with vPi
(α) = ei for each i.

Proof. For each i choose αi ∈ P ei

i −P ei+1
i . By the Chinese remainder theorem,

since the P ei+1
i are co-prime, there is an α ∈ R such that α ≡ αimodP ei+1

i . Clearly
vPi

(α) = ei. �

Corollary 6.4. A Dedekind domain with only finitely many primes is a PID.

Proof. Let P1, . . . , Pr be the nonzero primes of R. Every ideal is of the form
I = P e1

1 . . . P er
r . Choose an α as in the theorem. Comparing valuations, we see that

α generates I . �

Exercise 6.2. Prove that every ideal in a Dedekind domain is generated by
two elements.
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Semilocal Dedekind domains are obtained in the following way. Consider a
rational prime p and S = Z − pZ. Let OK,(p) = S−1OK be the localization of OK

in S. Then OK,(p) is semilocal. Indeed, by the general theory of localizations we
have to show that there are only finitely many primes of OK containing p, because
any prime of OK contains a rational prime, and any rational prime other than p
is in S so becomes invertible. But for every a ∈ OK there are only finitely many
primes containing it, namely those in the prime ideal decomposition of (a).

6.5. The absolute norm of an ideal. Let a be a fractional ideal of the
ring of integers OK in a number field K. Let ω1, . . . , ωn be a Z-basis of OK and∑

j aijωj (where the aij ∈ Q, 1 ≤ i ≤ n) a Z-basis of a. We define the absolute
norm Na of a to be

(6.4) Na = | det(aij)|.
In other words, the norm is the determinant of the matrix transforming a basis of
OK to a basis of a. The norm is well defined, because the matrix (aij) is well-defined
up to a matrix from GLn(Z). Here are its main properties.

• If a is an integral ideal, Na ∈ Z and Na = [OK : a].
This is clear since the matrix (aij) is integral. The relation to the

index is well-known (see Proposition x.xx in the appendix).
• If p is a prime ideal, Np is the number of elements in the residue field

κ(p) = OK/p, so it is a power of the characteristic p.
• If β ∈ K× then N(βa) = |NK/Qβ|Na.

If A is the transition matrix from a basis of OK to a basis of a, and B the
matrix describing multiplication by β in the given basis of a, then BA transforms
a basis of OK to a basis of βa. By definition NK/Qβ = det B, so

(6.5) N(βa) = det(BA) = det B det A = |NK/Qβ|Na

follows. The next property needs some attention.

Proposition 6.5. The norm is multiplicative: N(ab) = NaNb.

Proof. If one of the ideals is principle, then this is essentially the last property.
The problem is how to overcome the difficulties introduced by the fact that OK

need not be a PID. The solution is to localize and use the local-global principle.
Multiplying by an integer we may assume that both a and b are integral ideals. We
have to show

(6.6) [OK : ab] = [OK : a][OK : b],

or, equivalently

(6.7) [OK : b] = [a : ab].

If Λ ⊃ Λ′ are any two lattices and p is a prime we denote by [Λ : Λ′]p the p-
part of the index [Λ : Λ′]. It is clearly enough to show that for each p separately,
[OK : b]p = [a : ab]p. Denote by Λ(p) the localization of Λ at p, namely the free Z(p)

module generated by Λ. If ω1, . . . , ωn is a basis of Λ over Z then it is also a basis
of Λ(p) over the DVR Z(p). We now forget the fact that Λ(p) came from Λ. A Z(p)

lattice M in K is any Z(p) module spanned by a basis of K. If M and M ′ are two
such Z(p)-lattices then we may consider a matrix A in GLn(Q) that transforms a
basis if M to a basis of M ′. It is well-defined up to multiplication (on both sides)
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by matrices from GLn(Z(p)). In particular, its determinant is well-defined not up
to ±1 this time, but up to a p-adic unit in Q. It follows that the p-index

(6.8) [M : M ′]p = pvalp(det A)

is well defined. The notation is not ambiguous because if M = Λ(p) and M ′ = Λ′
(p)

then their p-index is the p-part of [Λ : Λ′]. One last obvious remark is that the
process of localization at p respects products: (ab)(p) = a(p)b(p). Putting together
all these remarks, we have to show that

(6.9) [OK,(p) : b(p)]p = [a(p) : a(p)b(p)]p.

The advantage now is that OK,(p) is semilocal, hence a PID, so a(p) = αOK,(p)

and the identity becomes easy: If we use the bases ωi and ω′
i for OK,(p) and b(p)

respectively, then we may use the bases αωi and αω′
i for a(p) and a(p)b(p) and the

matrix transforming the bases is the same on both sides of the equation. �

6.6. Zariski topology on SpecOK (optional).

7. Nonmaximal orders (optional)





CHAPTER 2

Ideal class group and Units

1. Minkowski’s bound

1.1. Minkowski’s theorem. Let K be a number field of degree n with r1

real embeddings and r2 complex ones. Let

(1.1) N : Rn = Rr1 × Cr2 → R

be the map

(1.2) N(x1, . . . , xr1
, z1, . . . , zr2

) =
∏

xi

∏
zj z̄j .

If ϕ : K → Rn is a geometric embedding, then N(ϕα) = NK/Q(α). We simply write
it as Nα, the norm of α. Note that if α is in OK and nonzero then |Nα| ≥ 1.

Theorem 1.1. Let K be a number field and Λ a lattice in K. Then there exists
an α ∈ Λ such that

(1.3) |Nα| ≤
(

4

π

)r2 n!

nn

√
|∆(Λ).

Proof. Let U be a compact, convex, symmetric set in Rn. Suppose |N(x)| ≤ 1
for every x ∈ U. Let t > 0 be such that

(1.4) tnvol(U) = vol(tU) > 2nvol(Rn/ϕ(Λ)) = 2n2−r2

√
|∆(Λ).

By Minkowski’s lemma there exists an 0 6= α ∈ Λ such that ϕ(α) ∈ tU, and hence
|Nα| ≤ tn. Since U is compact, the intersection of tU with Λ is finite, and we may
assume that t satisfies the equality

(1.5) tnvol(U) = 2n2−r2

√
|∆(Λ)| .

We conclude that there exists an α ∈ Λ with

(1.6) |Nα| ≤ 2r1+r2

√
|∆(Λ)|vol(U)−1.

It is clear now that the larger we make U (subject to the restriction |N(x)| ≤ 1
for x ∈ U), the better our estimate will be. To obtain Minkowski’s bound, one
needs a clever choice of U. Let

(1.7) U =

{
(xi, zj) ∈ Rr1 × Cr2 ;

1

n

(∑
|xi| + 2

∑
|zj |
)
≤ 1

}
.

Clearly U is compact symmetric and convex. The assertion that |N(x)| ≤ 1 for
x ∈ U follows directly from the inequality between the geometric and the arithmetic
mean. We leave it as an exercise in calculus to check that

(1.8) vol(U) =
2r1−r2πr2nn

n!
.

(Hint: start with the case r2 = 0, then use induction on r2.) Inserting this into the
formula obtained above we get the theorem. �

21
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1.2. Applications to the ring of integers.

Corollary 1.2. (Minkowski’s discriminant theorem). The discriminant of K
satisfies

(1.9) |dK | ≥
(π

4

)2r2 n2n

(n!)2
.

Proof. Take Λ = OK in the theorem and observe that we must have |Nα| ≥
1. �

Corollary 1.3. The only number field with |dK | = 1 is Q. As n → ∞ we
must have dK → ∞.

Proof. The function

(1.10) f(n) =
(π

4

)n nn

n!

is monotone increasing to infinity as

(1.11)
f(n + 1)

f(n)
=
(π

4

)(
1 +

1

n

)n

≥ 2π

4
> 1.

�

As we observed before Hermite’s theorem follows from this and from the fact
that there is only a finite number of number fields with a bounded discriminant
and degree.

2. Finiteness of the class number

2.1. Orders associated to lattices. If Λ is any lattice in K we define

(2.1) O(Λ) = {x ∈ K; xΛ ⊂ Λ} .

This is an order in K. In fact, it is a subring containing 1. For every x ∈ K, some
multiple Nx ∈ O(Λ) so O(Λ) contains a basis. By one of the characterizations of
integrality, O(Λ) ⊂ OK . These facts are enough to show that O(Λ) is an order. We
call it the order associated to Λ, or say that Λ belongs to O(Λ). Lattices belonging to
the maximal order OK are just fractional ideals of K. However, for a non-maximal
order O, an ideal in O need not necessarily belong to O. It may belong to a larger
order.

Let O be an order in K. Two lattices belonging to O, Λ and Λ′, ar called
equivalent, if there exists an α ∈ K such that Λ′ = αΛ. If O is the maximal order,
then the equivalence classes of lattices belonging to it form the class group.

2.2. Finiteness of the class number.

Theorem 2.1. Let O be an order. In any class of lattices belonging to O there
exists a lattice Λ ⊃ O with

(2.2) [Λ : O] ≤
(

4

π

)r2 n!

nn

√
|∆(O)|.
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Proof. Let M be a lattice belonging to O and contained in it. Find an element
α ∈ M with

(2.3) |Nα| ≤
(

4

π

)r2 n!

nn

√
|∆(M)| = [O : M ]

(
4

π

)r2 n!

nn

√
|∆(O)|.

If x ∈ O then xα ∈ M so x = α−1xα ∈ α−1M. It follows that O ⊂ α−1M. Moreover

(2.4) [α−1M : O][O : M ] = [α−1M : M ] = |Nα|
becasue the determinant of the integral matrix representing multiplication by α
with respect to a basis of M is Nα. Setting Λ = α−1M we get the theorem. �

Recall that the norm of an integral ideal c, denoted Nc, is the index [OK : c].
For a prime ideal p this is the number of elements in the field κ(p) = OK/p so it is
a power of the characteristic p. In general

Corollary 2.2. In any class C ∈ ClK there exists an integral ideal c whose
norm satisfies

(2.5) Nc ≤
(

4

π

)r2 n!

nn

√
|dK |.

Proof. Let a ∈ C−1 be an ideal in the inverse class of C, containing R, and
satisfying

(2.6) [a : OK ] ≤
(

4

π

)r2 n!

nn

√
|dK |.

Then c = a−1 is an integral ideal in C and [OK : c] = [a : OK ]. �

Theorem 2.3. The class group of a number field K is finite.

Proof. Since Nc = [OK : c], we only have to show that there are only finitely
many ideals in OK with a bounded index. This is clear because an ideal is in
particular an additive subgroup, and OK ' Zn as an additive subgroup, so it has
only finitely many subgroups of bounded index. �

2.3. Examples. Minkowski’s bound is a pretty effective tool in determining
the class number, as well as representatives of the various classes and the full
structure of the class group. Let us give two examples.

Example 1. K = Q(
√
−5). Here dK = −20, n = 2, r2 = 1. Minkowski’s

bound is

(2.7)

(
4

π

)r2 n!

nn

√
|dK | =

4

2π

√
20 = 2. 8471

Every class in ClK therefore contains an ideal of norm ≤ 2. If a =
∏

pi then
Na =

∏
Npi and it follows that the only possible ideals of norm ≤ 2 are OK and

p2 = (2, 1 +
√
−5), the unique prime factor of (2) = p2

2. Since we have shown that
OK is not a PID, p2 is not principal, and the class group is Z/2Z.

Example 2. K = Q(
√
−23). Here dK = −23, n = 2, r2 = 1, so Minkowski’s

bound is 2
π

√
23 = 3. 0531 and we have to consider all the ideals of norm ≤ 3. These

are the ideals dividing 2 and 3. Let

(2.8) p2 =

(
2,

1 +
√
−23

2

)
, p3 =

(
3,

1 +
√
−23

2

)
.
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One finds that (2) = p2p
′
2 and (3) = p3p

′
3 where the ′ denotes complex conjugation.

Computing norms we find that Np2 = 2 and Np3 = 3 hence they are prime, and
so are p′2 and p′3. Since the equation 8 = x2 + 23y2 has no solutions in integers,
p2 is non-principal. Since likewise 12 = x2 + 23y2 has no solutions, p3 is non-

principal. Since p2p3 =
(

1+
√
−23

2

)
, [p′2] = [p2]

−1 = [p3] and likewise [p′3] = [p2].

It follows that every ideal class is represented by one of the three ideals (1), p2 or
p3. Since we already saw that p2 and p3 are not principal we only have to check

whether they represent the same class or not. Now p2
2 =

(
1 +

√
−23, −3+

√
−23

2

)
. If

it were principal, it would be of the form p2
2 =

(
x+

√
−23y
2

)
and computing norms,

16 = x2 + 23y2, so x = 4 and y = 0, but clearly p2
2 6= (2). This shows that the class

group must be Z/3Z, and that we must have [p3] = [p2
2].

3. Dirichlet’s unit theorem

3.1. The logarithmic embedding. To study the group of units O×
K one uses

the map

(3.1) λ : O×
K → Rr1+r2

defined by

(3.2) λ(u) = (ei log |σi(u)|)1≤i≤r1+r2

where ei = 1 for a real embedding, and ei = 2 for a complex embedding.

Proposition 3.1. (i) The map λ is a homomorphism.
(ii) ker(λ) = µK is the group of roots of unity in K. It is finite and cyclic.

(iii) Im(λ) is discrete and contained in the hyperplane H defined by
∑r1+r2

i=1 xi =
0.

Lemma 3.2. An element u ∈ OK is a unit if and only if NK/Q(u) = ±1.

Proof. If uv = 1 for v ∈ OK then N(u)N(v) = 1 but N(u) and N(v) are in
Z. Conversely, if N(u) = ±1 then u−1 is an algebraic integer, because up to a sign
it is a product of conjugates of u, so it belongs to OK . �

Proof. (of the proposition). The map λ is clearly a group homomorphism.
Its kernel µK is therefore a subgroup of O×

K . If ϕ is the geometric embedding of
OK in Rn then ϕ(µK) is bounded because all the coordinates are bounded by 1. It
follows from the discreteness of ϕ(OK) that µK is finite. But every finite subgroup
of a field is a cyclic group of roots of unity. Conversely, if ζ is a root of unity, then
λ(ζ) = 0 because Rr1+r2 has no torsion. The fact that Im(λ) is contained in the
hyperplane as indicated follows at once from the lemma. It remains to show that
Im(λ) is discrete. Let M > 0 and consider the box B defined by |xi| ≤ M. If
λ(u) ∈ B then

(3.3) |σi(u)| ≤ eM/ei

so ϕ(u) also lies in a bounded domain, and there are only finitely many such u. �

A discrete subgroup of a real vector space H of dimension r = r1 + r2 − 1 is
isomorphic to Zt for some t ≤ r. It is of rank r if and only if it is also cocompact,
and it is then a lattice in H .
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3.2. Dirichlet’s unit theorem.

Theorem 3.3. The image of λ is a lattice in H. Consequently

(3.4) O×
K ' µK × Zr

where r = r1 + r2 − 1.

Proof. We shall find u1, . . . , ur1+r2
such that if λ(ui) = (xi,1, . . . , xi,r1+r2

)
then xi,j < 0 for j 6= i and (necessarily) xi,i > 0. Note that this means that ui

is small in all the r1 + r2 embeddings except σi and large in σi. We claim that r
of the vectors λ(ui) must then be linearly independent. Indeed, suppose the rank
of the matrix (xi,j) was less than r. Then a linear dependence between the first r
columns

(3.5)

r∑

j=1

cjxi,j = 0

(1 ≤ i ≤ r1 + r2) must exist. Assume that |cj | ≤ cj0 for all j. Looking at the i = j0

row, xj0,j0 = −
∑

j 6=j0
xj0 ,j ≥ −

∑
j 6=j0 ,j≤r xj0,j so

cj0xj0,j0 ≥ −cj0

∑

j 6=j0,j≤r

xj0 ,j(3.6)

≥ −
∑

j 6=j0,j≤r

cjxj0 ,j

with a strict inequality unless all the cj are equal to each other (and xj0 ,r+1 = 0).
But this contradicts the equation

∑r
j=1 cjxi,j = 0 for i = r1 + r2 because all the

entries have the same sign.
It is therefore enough to find a unit which is small in all the embeddings except

one, say the first one (hence necessarily large in the first one). Let ε > 0 be small,
M a fixed positive number, and consider the rectangle

(3.7) [−Mε1−n, Mε1−n] × [−ε, ε]n−1 ⊂ Rn

whose volume is 2nM. If M is large enough (depending on n and dK) this rectangle
will contain non-zero points from OK , by Minkowski’s lemma. These points will
have norm which is a rational integer bounded in terms of M. Shrinking ε we get
infinitely many such points αi ∈ OK , with first coordinate of ϕ(αi) tending to ∞
and all the others tending to 0. Since their norms are all integers bounded by a fixed
number, passing to a subsequence we may assume that Nαi are all equal. Consider
now the ideal factorization of (αi). There are only finitely many integral ideals of
OK of a given norm, so there are only finitely many possible ideal factorizations.
Passing again to a subsequence we may assume that the ideals (αi) are all equal.
This means that αjα

−1
i is a unit for all i < j. But if j is large enough we can make

the first coordinate of αjα
−1
i arbitrarily large and all the others arbitrarily small,

as desired. �

3.3. The regulator. Just like
√
|dK | was (up to a factor of 2r2) the volume

of the fundamental parallelopiped of the lattice ϕ(OK) in Rn, we get another in-
variant, called the regulator RK of K, by considering the volume of a fundamental
parallelopiped for the lattice λ(O×

K) in H ⊂ Rr1+r2 .
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Definition 3.1. Let u1, . . . , ur be r units in OK such that λ(ui) are linearly
independent (equivalently, such that the group generated by them is of finite index
in O×

K). Such a set is called a fundamental set of units. Define their regulator,
Reg(u1, . . . , ur) by

(3.8) Reg(u1, . . . , ur) = |det(ej log |σj(ui)|)1≤i,j≤r | .
The regulator of OK , denoted RK , is the regulator of a basis over Z for O×

K modulo
µK .

We chose to ignore the last column in the r× (r+1) matrix whose rows are the
λ(ui), but since the sum of the columns is 0 (the logarithmic embedding falls inside
the hyperplane H) we could have omitted any other column without affecting the
result.

Note that if u1, . . . , ur is a fundamental set of units then

Reg(u1, . . . , ur)/RK = [O×
K : µK 〈u1, . . . , ur〉].

Exercise 3.1. Let O be any order in K. Prove that its units, O×, make up a
group of finte index in O×

K .

4. Class groups and units in quadratic fields

4.1. Quadratic fields. The simplest examples to consider, besides Q, are the
quadratic number fields K, those for which n = [K : Q] = 2. Such a K is either
real (r1 = 2, r2 = 0) or imaginary (r1 = 0, r2 = 1). They are important not only
as examples of the general theory but also for the study of binary quadratic forms
over Q. We have seen that if we write

(4.1) K = Q(
√

D)

where D is a square free integer, then

(4.2) OK = Z + ZωD

where ωD =
√

D if D ≡ 2, 3mod4 and ωD = (1 +
√

D)/2 if D ≡ 1mod4.

Exercise 4.1. Show that every order in K is of the form

(4.3) O = Z + ZfωD

for a unique f = 1, 2, 3, . . .

The class groups of quadratic imaginary fields are the subject of much research,
begun by Gauss in the context of definite binary quadratic forms. When D < 0
and |D| → ∞ then also hK → ∞. Gauss found the quadratic imaginary fields with
hK = 1 (i.e. such that OK is a PID). There are nine such fields, the last one with
dK = −163. It was an open problem for over a century whether these are all, and it
was finally settled by Heegner that there is no tenth quadratic imaginary field with
hK = 1. Heegner got the credit for his proof only late, not before Stark re-proved
it, apparently without seeing Heegner’s older work, which was written in German.

Class groups of real quadratic fields are connected with the classification of
indefinite binary quadratic forms, and it is still a major open problem if there are
infinitely many real quadratic fields of class number one.

The story of units is much easier. If K is imaginary, then there are only finitely
many units, namely the roots of unity, and it is easy to see that they are ±1, except
if K = Q(i) where there are 4, or K = Q(ρ), ρ2 + ρ + 1 = 1, where there are 6.
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Exercise 4.2. Prove this! Hint: consider the equation NK/Q(x + yωD) = 1
and find all its solutions in x, y ∈ Z.

If K is real quadratic then Dirichlet’s unit theorem says that

(4.4) O×
K = {±1} 〈ε〉 ,

where ε is uniquely determined if we insist that it is > 1. This ε is called the
fundamental unit of K. If D ≡ 2, 3mod4 then ε is the smallest number x+

√
Dy > 1

solving

(4.5) x2 − Dy2 = ±1.

The equation x2−Dy2 = 1 is known as Pell’s equation. Note that if there is an ε of
norm -1, a fundamental solution to Pell’s equation (a smallest solution > 1) is the
square of a fundamental unit, but if all units have norm +1, then it is a fundamental
unit. In any case, the theory tells us that all solutions to Pell’s equation are gotten
from a fundamental solution by raising to some integral power, and adding a sign.

If D ≡ 1mod4 (square free and positive) then still the solutions to x2 −Dy2 =

±1 give us all the units in the order Z[
√

D], but there may be more units in OK ,
namely the solutions of NK/Q(x + yωD) = ±1, which is the equation

(4.6) x2 + xy +

(
1 − D

4

)
y2 = ±1.

Exercise 4.3. Prove that if D ≡ 3mod8 then all the units in K have norm 1.

Here are some examples. The fundamental unit of Q(
√

2) is 1 +
√

2. The

fundamental unit of Q(
√

19) is 170 + 39
√

19, whose norm is 1 (see the previous

exercise) and the fundamental unit of Z[
√

61] is

(4.7) 1766319049 + 226153980
√

61.

This solution to Pell’s equation with D = 61 was obtained by Fermat, who never re-
vealed his method. Today we know, thanks to Lagrange, a relatively easy algorithm
to obtain the fundamental solution using continued fractions.

4.2. Pell’s equation and continued fractions.

5. Binary quadratic forms (optional)





CHAPTER 3

Extensions of number fields and Hilbert’s theory

of ramification

1. The decomposition of primes

1.1. The degree formula. Let L/K be a finite extension of number fields
and p a prime of OK . The ideal pOL need not be prime, but it decomposes as

(1.1) pOL = Pe1

1 . . . Peg
g .

The primes Pi are the primes dividing (or sitting above, or containing) p. Each
prime P of OL divides a unique prime of OK , namely P ∩ OK = p, so by going
over all the primes of K and decomposing them in L, we list all the primes of L.
This is particular useful when K = Q.

The residue field κ(P) = OL/P is a finite extension of κ(p) = OK/p (because
OL is a finite OK module) and the relative degree

(1.2) f(P/p) = [κ(P) : κ(p)]

is called the inertial degree of P over p. The exponent e in which P appears in the
decomposition of p is called the ramification degree of P over p, and it is denoted
by e(P/p). When K = Q, we denote these by f(P) and e(p) and call them the
absolute residual degree or ramification degree.

Theorem 1.1. Let p decompose as above. With the obvious notation,

(1.3)

g∑

i=1

eifi = [L : K].

Proof. We give the proof when K = Q and p = (p), and then show how to
modify it in the relative case. From the Chinese Remainder Theorem we know that

(1.4) OL/pOL '
∏

OL/Pei

i .

The idea is to compare dimensions over Fp. Since OL is a free Z-module of rank n,
the dimension on the left is n. The dimension of OL/Pi is fi by definition. The
proof will be complete if we show that Pm/Pm+1 is a 1-dimensional vector space
over OL/P. Indeed, if so, then dimFp

Pm
i /Pm+1

i = fi and looking at the filtration

(1.5) OL/Pei

i ⊃ Pi/Pei

i ⊃ · · · ⊃ Pei−1
i /Pei

i ⊃ 0

by subspaces, we see that

(1.6) dimFp
OL/Pei

i =

ei−1∑

m=0

Pm
i /Pm+1

i = eifi.

29
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Let a ∈ Pm − Pm+1. Then

(1.7) (a) + Pm+1 = gcd((a), Pm+1) = Pm.

it follows that Pm/Pm+1 is generated as an OL module by a single element a, as
was to be shown. �

The same proof works in the relative case, except that we cannot use the
fact that OL is free over OK , because OK need not be a PID. However, we are
allowed to localize at p (namely, at the multiplicative set S = OK − p) because the
decomposition of p in OL is the same as the decomposition of pOK,p in OL,p. Now
OK,p is a DVR, and any torsion-free finitely generated module over it is free, so we
can argue as before.

Theorem 1.2. Suppose K = Q(α) for an algebraic integer α and f is the monic
irreducible polynomial. If p does not divide d−1

K ∆(1, α, . . . , αn−1), f̄ = fmodp ∈
Fp[X ] and

(1.8) f̄ =
∏

hei

i

is its prime decomposition, deg(hi) = fi, then

(1.9) (p) =
∏

pei

i

and the inertial degree of pi is fi.

Proof. Assume first that OK = Z[α], so dK = ∆(1, α, . . . , αn−1). On the one
hand

(1.10) OK/pOK '
∏

OK/p
e′

i

i .

On the other hand

(1.11) OK/pOK ' Z[X ]/(f, p) ' Fp[X ]/(f̄) '
∏

Fp[X ]/(hi)
ei .

Both decompositions are as direct sums of rings that can not be further decomposed
as direct sums (because they are local - a local ring is not a product of two subrings).
Such decompositions are unique up to ordering, because they correspond 1:1 to
decompositions

(1.12) 1 =
∑

εi

of 1 as a sum of mutually orthogonal minimal idempotents (ε2
i = εi, εiεj = 0 if

i 6= j, and εi is not the sum of two mutually orthogonal idempotents). [Given a
decomposition R =

∏
Ri let εi be the unit of Ri. Given a decomposition 1 =

∑
εi

let Ri = Rεi.] It is an easy exercise to show that such a decomposition of 1 is
unique. It follows that we must have the same number of factors and we may
assume

(1.13) OK/p
e′

i

i ' Fp[X ]/(hi)
ei .

This is a local Artinian ring and ei = e′i because it is intrinsically characterized as
the first power of the maximal ideal that vanishes. Finally [κ(pi) : Fp] = deg(hi)
because comparing the residue fields of the two isomorphic local rings

(1.14) κ(pi) ' Fp[X ]/(hi).

The general case follows by localization at (p) because if p does not divide the
index [OK : Z[α]] and we localize at (p) the two Z(p)-modules become equal. �
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1.2. The meaning of ramification. We have seen that p gives a discrete
valuation vp on K. Likewise, if P|p it gives a discrete valuation vP on L. From the
very definition of these valuations it is clear that for a ∈ K

(1.15) vP(a) = e(P/p)vp(a).

Thus v = e(P/p)−1vP extends the valuation vp from K to L. Since the valuations
vp and vP are normalized, this means that the ramification degree e(P/p) is the
index of the value group [v(L×) : v(K×)].

The prime P is ramified in the extension L/K if e(P/p) > 1, and unramified if
it is not ramified. Being unramified is equivalent to the assertion that a uniformizer
at vp remains a uniformizer at vP.

We say that p is ramified in L if at least one of the primes P above it is ramified.

1.3. Ramification and the discriminant.

Theorem 1.3. Let K be a number field. A rational prime p ramifies in K if
and only if it divides dK . In particular, only finitely many primes ramify.

Proof. We use the ring structure on R = OK/pOK . Let Tr(r), for r ∈ R,
be the trace of the linear transformation (over Fp) “multiplication by r”. Thus
Tr(r) ∈ Fp and if r is nilpotent, Tr(r) = 0. Let ω̄1, . . . , ω̄n be a basis of R over Fp

and define its discriminant

(1.16) ∆(ω̄1, . . . , ω̄n) = det (Tr(ω̄iω̄j)) .

The discriminants of two different bases of R over Fp differ by the square of a
non-zero element in Fp. In particular, if the discriminant vanishes for one basis, it
always vanishes. If {ω̄i} is obtained by reduction modulo p of a basis {ωi} of OK

over Z, then clearly

(1.17) ∆(ω̄1, . . . , ω̄n) = ∆(ω1, . . . , ωn)modp.

Observe that p ramifies in K if and only if R has nilpotent elements. Suppose
first that p ramifies. Let ω̄1, . . . , ω̄n be a basis of R over Fp such that ω̄1 ∈ R is
nilpotent. Then ω̄1ω̄j are nilpotent and Tr(ω̄1ω̄j) = 0. A whole row in the matrix
whose determinant is ∆(ω̄1, . . . , ω̄n) then vanishes, so ∆(ω̄1, . . . , ω̄n) = 0. Now start
with any basis {ωi} of OK over Z. Reducing ∆(ω1, . . . , ωn) modulo p we must get
0, so p divides dK .

Conversely, if R has no nilpotents it is a product of fields κl = OK/pl and
we may choose a basis ω̄i of R which is the union of bases of the κl over Fp. An
easy computation shows then that Tr(ω̄iω̄j) = 0 unless ω̄i and ω̄j both lie in the
same field κl, and then this trace is Trκl/Fp

(ω̄iω̄j). From the non-degeneracy of
the trace pairing in the separable extensions κl/Fp (see Appendix) we deduce that
∆(ω̄1, . . . , ω̄n) 6= 0. Now this result remains valid for any basis ω̄i of R over Fp, not
necessarily of the type chosen above. In particular we may start with a basis of OK

over Z and reduce it modulo p. But then p does not divide dK . �

Corollary 1.4. Only finitely many primes ramify in K. In every number
field at least one prime ramifies.

The last assertion follows from dK > 1. In contrast, a relative extension L/K
can well be unramified: all the primes of K are unramified in L. We shall see
momentarily examples where K is a quadratic field.
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1.4. Multiplicativity in towers. Let K ⊂ L ⊂ M be number fields. Let
p ⊂ P ⊂ P be primes in the respective rings of integers.

Proposition 1.5. e(P/p) = e(P/P )e(P/p) and f(P/p) = f(P/P )f(P/p).

Proof. For f this follows from the multiplicativity in towers of field extension
degrees. For e this is clear if we simply extend the ideal p to M in two steps: first
to L and then from L to M. �

We can now give an example of an unramified field extension. Let F = Q(i)

and K = Q(
√

5). Then dF = −4 and dK = 5 so only 2 ramifies in F and only 5
ramifies in K. Consider M = KF and L = Q(

√
−5) which is the third quadratic

field contained in M. Note that dL = −20, so both 2 and 5 ramify in L. We claim
that M/L is everywhere unramified.

Lemma 1.6. The discriminant of M divides 4252.

Proof. Let ω1, ω2 be a basis over Z of OF and η1, η2 a basis over Z of OK .
Then ωiηj are four linearly independent elements of OM . Since traces are sums of
Galois conjugates,

(1.18) TrM/Q(ωiηjωi′ηj′ ) = TrF/Q(ωiωi′)TrK/Q(ηjηj′ )

and computing determinants we get that

(1.19) ∆(ωiηj) = d
[K:Q]
F d

[F :Q]
K = 4252.

However, dM divides this quantity. �

We conclude that any prime other than 2 or 5 is unramified in M, so a fortiori,
primes above it are unramified in M/L. Primes above 2 are unramified in K, so
their index of ramification in M is at most 2, but is also at least 2, since they
ramify in F, so it must be exactly 2. Similarly for primes above 5. Since these
primes ramify (with index 2) in L, the primes above them are unramified in M/L.

1.5. Different and the discriminant. Consider the set

(1.20) O′
K =

{
a ∈ K; TrK/Q(ab) ∈ Z for all b ∈ OK

}
.

This is clearly a fractional ideal of K : it is a sub-OK-module containing OK , and
since B(x, y) = Tr(xy) is a non-degenerate pairing on K (as a vector space over
Q), it is a lattice. Its inverse

(1.21) DK = (O′
K)−1

is an integral ideal called the different of K.
If ω1, . . . , ωn is a basis of OK and ω′

1, . . . , ω
′
n is the dual basis w.r.t. B, then it

spans O′
K . If we write

(1.22) ωi =
∑

mijω
′
j

then B(ωi, ωj) = mij and therefore dK = det(mij) = [O′
K : OK ] = [OK : DK ] =

NDK .
We have proven the following lemma.

Lemma 1.7. The different is an ideal of K whose norm is the discriminant.

We can now refine the theorem saying that p ramifies if and only if it divides
the discriminant to deal with primes of K. We shall state it without a proof.
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Proposition 1.8. A prime p is ramified in K if and only if it divides the
different DK .

2. Relative norm, different and discriminant

2.1. Relative norm. The relative norm of an ideal A of L is defined as follows.
First, if OK is a PID, choose bases ωi and ηi of OL and of A as free OK modules
of rank n and write

(2.1) ηi =
∑

aijωj

with aij ∈ K. The matrix (aij) is well-defined up to multiplication on both sides
by matrices from GLn(OK), corresponding to changing the bases. Its determinant
therefore gives a well-defined ideal in OK which we call the norm of A

(2.2) NL/KA = (det(aij)).

In general, localize at a prime p of K. Then OK,p is a PID and we apply the same
procedure to define NL/KAp (note that we localize OL too at the multiplicative
set OK − p, and then it becomes a free OK,p module of rank n). We then define
NL/KA as the unique ideal of K whose localization at p is NL/KAp, i.e.

(2.3) (NL/KA)p = NL/K(Ap)

for all p. (Recall that such an ideal is simply the intersection of all its localizations
inside L). The properties of the norm, which were proven for the absolute norm
in detail, hold for the relative norm as well, with the obvious modifications in the
proof, always using localization to be able to work over a PID. We claim that

(2.4) NL/KP = pf

where f = f(P/p). Note that this agrees with the absolute norm (given by the
number of elements in κ(P)) in case K = Q, p = (p). Indeed, localizing we may
assume that OK is a PID, so p = (π). Since

(2.5) OL/P ' (OK/p)f

as an OK module, we can choose the bases ωi and ηi so that

(2.6) ηi = πωi

for 1 ≤ i ≤ f and ηi = ωi for f < i ≤ n. Here we have used the theorem on
elementary divisors (structure of finitely generated modules over a PID). The claim
then becomes obvious.

Proposition 2.1. NL/KA is the fractional ideal of K generated by NL/K(a)
for all a ∈ A.

Proof. We may localize on the base, replacing OK by OK,p. The Dedekind
ring OL,p is then semi-local, hence a PID. But then Ap = (a) and the norm of a
principal ideal is, be definition, the ideal generated by the norm of its generator,
since we can take for bases ηi = aωi. �
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2.2. Relative discriminant and different. The discriminant of a K-basis
ωi of L is defined as before, as

(2.7) ∆(ω1, . . . , ωn) = det(TrL/K(ωiωj)).

If OK is a PID, let ωi be a basis of OL over OK , and define the discriminant
ideal dL/K as the ideal of K generated by the discriminant of a that basis. The
definition is independent of the basis. In fact, we can do better: we can define the
discriminant as an element of OK modulo (O×

K)2. In general use localization. The
proof of the following theorem is the same as in the absolute case.

Theorem 2.2. A prime ideal p of K is ramified in L if and only if it divides
dL/K .

We define the relative different DL/K as the inverse of the fractional ideal in L

(2.8)
{
a ∈ L; TrL/K(ab) ∈ OK for al b ∈ OL

}
.

As before, this is an integral ideal of L whose norm to K is dL/K . An ideal of L is
ramified in L/K if and only if it divides the different.

The different is easy to compute if OL = OK [α] (namely, it is free, and admits a
basis over OK consisting of powers of an algebraic integer α). More generally, given
any algebraic integer α of degree n we may compute the different except above the
primes ”supporting” the module OL/OK [α].

Theorem 2.3. Suppose p is a prime of K and OL,p = OK,p[α]. Let f be the
monic irreducible polynomial of α. Then

(2.9) DL/K,p = (f ′(α))OL,p.

Proof. Let

(2.10)
f(X)

X − α
=

n−1∑

i=0

biX
i.

We show that the dual basis of 1, α, . . . , αn−1 w.r.t. the trace pairing is bi

f ′(α) . We

have to show

(2.11) TrL/K(
biα

j

f ′(α)
) = δij .

Multiplying by X i and summing we have to show

(2.12) TrL/K

(
f(X)αj

(X − α)f ′(α)

)
= Xj

(0 ≤ j ≤ n − 1). However, both sides of the equation are polynomials of degree
≤ n − 1 having n distinct roots (all the conjugates of α), so they must coincide.

It follows that the inverse of DL/K,p (the dual of OL,p) is spanned over OK,p

by bi

f ′(α) . Solving successively for the bi we get that the OK,p-span of the bi is the

same as the OK,p-span of the αi, and is therefore OL,p. The theorem follows. �
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3. Galois extensions

3.1. The decomposition group. Assume from now on that L/K is Galois
with Gal(L/K) = G. Let σ ∈ G. Since σ induces an automorphism of OL, it carries
any prime P to a prime σ(P), and σ(P)∩OK = σ(P∩OK) = P∩OK , so σ induces
a permutation of the primes dividing any given p of K.

Lemma 3.1. G acts transitively on the primes dividing a given prime p.

Proof. Let P be a prime dividing p and assume that Q is another prime
dividing p which is not in the G-orbit of P. By the Chinese Remainder Theorem
we may choose a ∈ OL such that a ≡ 1modσ(P) for every σ ∈ G, but a ≡ 0modQ.
The norm of a is then in Q ∩ OK = p, but we also have

(3.1) σ−1(a) ≡ 1modP

for all σ, so NL/K(a) ≡ 1modP. This is a contradiction. �

Definition 3.1. The decomposition group GP of P is its stabilizer in G.

Proposition 3.2. (i) Gτ(P) = τGPτ−1 (ii) all the primes above p have the
same e and f, and their number is g = n

ef (iii) the order of GP is ef.

Proof. G acts on the prime factors of p transitively. Looking at its action on
the decomposition of pOL we get part (ii), noting also that conjugate primes should
have the same f since σ induces and isomorphism of κ(P) onto κ(σ(P)). Part (i)
is clear, and part (iii) follows from the fact that the order of the orbit should be
the index of the stabilizer. �

We caution that different P above the same p will have conjugate decomposition
groups, but they need not be equal. However, if GP is normal for any reason, for
example, if G is abelian, then all the decomposition groups are equal, so they
depend only on p.

Definition 3.2. The decomposition field of P is the fixed field of GP. We
denote it by ZP.

Proposition 3.3. (i) ZP is an extension of degree g of K, and [L : ZP] = ef.
(ii) Gal(L/ZP) = GP.
(iii) Let PZ = ZP ∩P be the prime of ZP below P. Then P is the only prime

above PZ in L, and

(3.2) e(PZ/p) = f(PZ/p) = 1.

Proof. Parts (i) and (ii) are clear from Galois theory. For part (iii) note that
for every σ ∈ GP, σ(P) = P by definition, and GP acts transitively on the primes
above PZ . It follows that

(3.3) e(P/PZ)f(P/PZ) = [L : ZP] = e(P/p)f(P/p).

By the multiplicativity of e and f in towers, we must have equalities

(3.4) e(P/PZ) = e(P/p)

and similarly for f. The same multiplicativity in towers now proves the last state-
ment. �
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3.2. The inertia group and Frobenius. Let us focus now on GP. Every
σ ∈ GP induces an automorphism σ̄ ∈ Gal(κ(P)/κ(p)). The map σ 7→ σ̄ is a group
homomorphism. Its kernel, the elements of the decomposition group inducing the
identity on OLmodP, is called the inertia group IP.

Recal that Gal(κ(P)/κ(p)) = Gal(Fqf /Fq) is cyclic of degree f, with a canonical
generator

(3.5) Frq : x 7→ xq .

Here q = Np.

Lemma 3.4. The homomorphism σ 7→ σ̄ is surjective.

Proposition 3.5. We may assume that K = ZP and G = GP. Let α ∈ OL be
such that ᾱ, its image in κ(P), generates the residue field extension. Let f be the
monic minimal polynomial of α, and f̄ its reduction modulo p. The minimal poly-
nomial of ᾱ is then a factor of f̄ , so its roots are of the form β̄ for some conjugates
β of α. But G acts transitively on the roots, so for any τ ∈ Gal(κ(P)/κ(p)) there
is a σ ∈ G with

(3.6) σ̄(ᾱ) = τ(ᾱ).

But then σ̄ = τ, as ᾱ generates κ(P).

Corollary 3.6. (i) The inertia group is trivial if and only if P is unramified,
and in general |IP| = e.

(ii) GP/IP = Gal(κ(P)/κ(p)) is cyclic of order f, and has a canonical gener-
ator mapping to Frq .

We call this generator the Frobenius of P, and denote it (L/K, P) or

(3.7)

(
L/K

P

)
.

It is a class modulo IP, but if P is unramified it is an element of G, which generates
GP.

If σ ∈ G is any element, it induces an isomorphism of κ(P) onto κ(σP), hence
by conjugation an isomorphism of GP onto GσP. It is not difficult to check that
conjugation by σ takes IP to IσP and that

(3.8)

(
L/K

σP

)
= σ

(
L/K

P

)
σ−1.

In the special case where G is abelian the Frobenius class (or automorphism, if p

is unramified) does not depend on P but only on p, and we denote it (only then!)
(L/K, p).

Definition 3.3. Let TP be the fixed field of IP. It is called the inertia subfield
of P.

Proposition 3.7. (i) TP is a normal extension of degree f of ZP.
(ii) Gal(L/TP) = IP and Gal(TP/ZP) = GP/IP.
(iii) Let PT = P∩TP. Then PZ is unramified in TP and PT is totally ramified

in L.

Proof. Parts (i) and (ii) follow from Galois theory, since IP is a normal sub-
group of order e. Consider IP. It acts trivially on κ(P) but it should also map onto
Gal(κ(P)/κ(PT )), so it follows that PT is totally ramified in L/TP. �
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3.3. Decomposition in non-Galois extensions. Let L/K be an arbitrary
finite extension of number fields, and embed it in a Galois extension M/K. Let

(3.9) G = Gal(M/K), H = Gal(M/L).

Let P be a prime of M, P = P ∩ L and p = P ∩ K.

Proposition 3.8. The association σ 7→ Pσ = σP ∩ L is a bijection between
the primes of L dividing p and the set of double cosets H\G/GP.

Proof. If P ′ is a prime lying above p in L choose a prime P′ dividing it in
M, and let σ ∈ G carry P to σP = P′. Then P ′ = Pσ , so all primes above p are of
this form. If Pσ = Pτ then by the transitivity of H in its action on the primes of
M above this prime, there exists a γ ∈ H such that γσP = τP. This means that
τ = γσδ for some δ ∈ GP or that the double cosets of σ and τ coincide. �

The decomposition (resp. inertia) subgroup of P in M/L is the intersection of
H with the corresponding groups in M/K. This is immediate from the definition.
If H is normal, then the decomposition (inertia) subgroup of P in L/K is the
homomorphic image of the same group in M/K.

Recall that P is unramified in L/K if e(P/p) = 1 and is split if e(P/p) =
f(P/p) = 1. The prime p is called unramified (resp. totally split) if all primes
above it are unramified (resp. split). In Galois extensions being unramified is
equivalent to the fact that the corresponding inertia group is trivial, and being
split is equivalent to the (stronger) fact that the decomposition group is trivial. If
these hold for one P above a given p, then by the transitivity of the Galois action,
they hold for all of them.

Proposition 3.9. The prime P is unramified (resp. split) in L/K if and only
if IP (resp. GP) is contained in H.

Proof. If IP is contained in H then the inertia subgroup for M/K or M/L
is the same, hence the inertia degree in these two extensions are the same, so the
inertia degree in L/K is 1. Conversely, if the inertia degrees in M/L and M/K are
the same, then we must have IP ⊂ H. The proof for ”split” is the same, except
that we argue on GP instead of IP. �

Corollary 3.10. Let L1 and L2 be two extensions of K, and L = L1L2 their
compositum (inside C). Then a prime p of K is unramified (resp. totally split) in
L if and only if it is unramified (resp. totally split) in both Li.

Corollary 3.11. Let L/K be an arbitrary finite extension and F an arbitrary
extension of K. Then if a prime P is unramified (resp. split) in L/K, every prime
above it in FL is unramified (resp. split) in FL/F .

Proof. The proof of the two corollaries is similar. We prove the second and
leave the first as an exercise to the reader. Embed L and F in a Galois extension
M/K and let G = Gal(M/K). Let PLF be a prime of LF above P and PM a prime
of M above PLF . Since P is unramified, I(PM ) ⊂ Gal(M/L). The inertia group
of PM in the Galois extension M/F is I(PM ) ∩ Gal(M/F ) which is therefore
contained in Gal(M/LF ). It follows that PLF is unramified. The proof for the
”split” condition is the same, replacing the inertia group by the decomposition
group. �
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The group IP can be further analyzed and has a filtration measuring how bad
the ramification is. This is the subject of Hilbert’s “higher ramification theory”,
into which we shall not enter. It is best studied in the framework of local fields.



CHAPTER 4

Cyclotomic fields

1. The ring of integers

1.1. The cyclotomic polynomial. Let ζ = ζm = exp(2πi/m). The field
K = Q(ζm) is called the mth cyclotomic field. It is a Galois extension of Q, since
it is the splitting field of Xm − 1.

Let G = Gal(Q(ζm)/Q). Define the cyclotomic character χ : G → (Z/mZ)×

by

(1.1) σ(ζ) = ζχ(σ).

It is clear that this equation determines χ(σ) as an integer modulo m, since σ(ζ)
is also an mth root of unity. It is multiplicative χ(στ) = χ(σ)χ(τ), so it is a
group homomorphism into the multiplicative group of the invertible residue classes
modulo m.

The cyclotomic polynomial

(1.2) Φm(X) =
∏

(k,m)=1

(X − ζk)

is invariant under G (which permutes its roots, the primitive roots of unity of order
m). Its coefficients are therefore rational. Since they are also algebraic integers,
they are in Z. Clearly deg(Φm) = ϕ(m).

Theorem 1.1. (i) The cyclotomic polynomial is irreducible.
(ii) [K : Q] = ϕ(m) and χ : G → (Z/mZ)× is an isomorphism.

Proof. Part (ii) is a direct consequence of (i) and standard Galois theory. We
shall prove (i) only for m = p (prime). The proof for m = pa (a prime power) is
very similar, and is left to the reader. The proof for an m which is divisible by
more than one prime is by induction on the number of prime divisors. If m = m′pa

where p does not divide m′, then we shall see that p does not ramify in Q(ζm′) but
is ramified completely in Q(ζpa), so its index of ramification in K is [Q(ζpa) : Q],
hence [K : Q(ζm′)] is at least [Q(ζpa) : Q]. Since we may assume, by induction, that
[Q(ζm′) : Q] = ϕ(m′), and since ϕ(m) = ϕ(m′)ϕ(pa), we get [Q(ζm) : Q] ≥ ϕ(m),
hence an equality.

For m = p the cyclotomic polynomial is (Xp − 1)/(X − 1). Substituting X =
1 + Y we get Φp(1 + Y ) = Y p−1 + · · ·+ p ≡ Y p−1modp so Φp(1 + Y ) is irreducible
by Eisenstein’s criterion, hence Φp(X) is also irreducible. �

From now on we assume that m = pis an odd prime.

39
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1.2. Cyclotomic units.

Lemma 1.2. If 1 ≤ i , j ≤ p − 1 then u = (1 − ζ i)/(1 − ζj) is a unit in Z[ζ].

Proof. It is enough to show that it belongs to Z[ζ], because then by symmetry
u−1 also lies there, hence u is a unit in that ring. Write i ≡ jkmodp. Then

(1.3) u =
1 − ζjk

1 − ζj
= 1 + ζj + · · · + (ζj)k−1 ∈ Z[ζ].

�

Corollary 1.3. We have (p) = (1 − ζ)p−1 in OK and p = (1 − ζ) is prime.

Proof. We have

(1.4) p = Φp(1) =

p−1∏

i=1

(1 − ζi),

but by the lemma there is an equality of ideals (1−ζ) = (1−ζ i) for all i not divisible
by p. Comparing the decomposition (p) = (P1P2 . . . Pg)

e, p − 1 = [K : Q] = efg
with the one just obtained we see that there is only one prime above p, that it is
principal and generated by 1 − ζ, and that p is totally ramified. �

1.3. The discriminant. The elements 1, ζ, ζ2, . . . , ζp−2 make up a basis of
K over Q. Its discriminant is given by the van-der-Monde

∆(1, ζ, . . . , ζp−2) =
(
det(ζij)0≤i≤p−2,1≤j≤p−1

)2
(1.5)

=
∏

1≤i<j≤p−1

(ζi − ζj)2

= (−1)(p−1)(p−2)/2
∏

1≤i6=j≤p−1

(ζi − ζj)

= (−1)(p−1)/2
∏

i6=0

∏

l6=0,−i

ζi(1 − ζl)

= (−1)(p−1)/2
∏

i6=0

(
ζi(p−2)p/(1 − ζ−i)

)

= (−1)(p−1)/2pp−1/
∏

i6=0

(1 − ζ−i)

= (−1)(p−1)/2pp−2.

where we have used the formula above for Φp(1).

Corollary 1.4. The index [OK : Z[ζ]] is not divisible by any prime different
than p.

Proof. The square of this index is the ratio ∆(1, ζ, . . . , ζp−2)/∆(OK), which
is a power of p by the above. �
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1.4. The integers.

Proposition 1.5. We have OK = Z[ζ].
The discriminant is dK = (−1)(p−1)/2pp−2. The prime p is the only ramified

prime in K, and it is totally ramified.

Proof. Since no prime other than p can divide the index [OK : Z[ζ]], it is
enough to prove that this index is not divisible by p. For this we may localize at
(p) (w.r.t. Z − pZ), and show OK,(p) = Z(p)[ζ]. Let π = 1− ζ, the generator of the

ideal p. For any l the Z-span of 1, ζ, . . . , ζ l is the same as the Z-span of 1, π, . . . , πl.
In particular Z(p)[ζ] = Z(p)[π], and 1, π, . . . , πp−2 is a basis of K. Let α ∈ OK and
write it as

(1.6) α = a0 + a1π + · · · + ap−2π
p−2.

Let v = vp be the normalized discrete valuation of K associated with p. Since
(p) = pp−1, if a ∈ Q then

(1.7) v(a) = (p − 1)ordp(a) ≡ 0mod(p − 1).

It follows that if we denote ordp(ai) = ki ∈ Z then

(1.8) v(aiπ
i) = i + (p − 1)ki.

These numbers are all distinct, since they are even distinct modulo p − 1. For a
non-archemidean valuation, if v(x) 6= v(y) then v(x + y) = min (v(x), v(y)) . By
induction, the same holds for a sum of more than two elements, and we find out
that

(1.9) 0 ≤ v(α) = min (i + (p − 1)ki) .

Every i + (p − 1)ki ≥ 0, and since i ≤ p − 2, we must have ki ≥ 0, that is the
ai ∈ Z(p) as we had to show.

The assertion about the discriminant now follows from the computation of
∆(1, ζ, . . . , ζp−2), and since every ramified prime must divide the discriminant,
primes different from p are unramified. �

2. The decomposition of primes

2.1. The decomposition group of a prime l. Let l be a rational prime
different from p. Since l is unramified in K = Q(ζp), we know that

(2.1) (l) = l1 . . . lg

in OK and G acts transitively on the li. Let f = f(li/l), so that fg = p − 1,
and denote by Gl the decomposition group of any of the li. Since G is abelian, Gl

depends only on l and not on li. The same may be said about the Frobenius at l,

(2.2) σl = (K/Q, li)

which is characterized by

(2.3) σl(x) ≡ xlmodli

for any of the li (any x ∈ OK). This in particular holds for ζ, so we get

(2.4) ζχ(σl) ≡ ζlmodli.

However, if i 6= j then (ζi − ζj) = p is relatively prime to l, and we get that
χ(σl) = l. Since χ is an isomorphism from G to (Z/pZ)×, the order of σl is the
(multiplicative) order of lmodp. We have obtained the following theorem.
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Theorem 2.1. Let l be a prime different than p. Then under the identification
of G with (Z/pZ)×, σl maps to l and the order of Gl is the minimal f such that
lf ≡ 1modp.

Example 2.1. Let p = 7, so that G is cyclic of order 6. It has four subgroups,
{1} , H2 = {±1} , H3 = {1, 2, 4} and G. Their fixed fields are, respectively, K,
Q(cos(2π/7)), Q(

√
−7) and Q (proving this is a good exercise in Galois theory -

that the unique quadratic field inside K must be Q(
√
−7) follows from the fact that

the only prime ramifying in it is 7). If l ≡ 1mod7, then l splits completely (f = 1,
g = 7). If l ≡ 2, 4mod7 then its decomposition group is H3, its decomposition field
is Q(

√
−7) and l = l1l2 in K, and so on. Note that whether there exists a prime

l whose Frobenius σl is a given σ becomes a question whether there are primes in
arbitrary arithmetic progressions 7n+a, (a, 7) = 1. This is in fact a famous theorem
of Dirichlet.

Corollary 2.2. The way l decomposes (namely f and g) is determined by the
congruence class of l modulo p.

All of the above remains true in any cyclotomic extension, with some rather
obvious modifications. The Kronecker-Weber theorem says that any abelian exten-
sion of Q is contained in some cyclotomic field, and appropriately formulated, the
results remain valid in any abelian extension K/Q. Class field theory extends these
results to abelian extension L/K where the ground field K may be arbitrary, but
the proofs are much more difficult.

2.2. Quadratic reciprocity. As an application of the discussion above, we
shall prove Gauss’ famous law of quadratic reciprocity. We first need to find out
which quadratic field lies inside K.

Lemma 2.3. The unique quadratic subfield of K is F = Q(
√

p∗) where p∗ =
(−1)(p−1)/2p.

Proof. Since K is a cyclic extension of degree p−1, it has a unique quadratic
subextension, the fixed field of the unique subgroup of index 2 in G. The only
prime ramifying in it is p. It follows that the discriminant of F must be divisible
only by p, and since a discriminant of a quadratic field is either 0 or 1 modulo 4,
the sign is forced upon us as in the lemma. �

Alternatively, let
(

a
p

)
be Legendre’s symbol, which is 1 if amodp is a square in

(Z/pZ)×, -1 if amodp is a non-square in the same group, and 0 if p|a. Consider the
Gauss sum

(2.5) τ =

p−1∑

a=1

(
a

p

)
ζa ∈ K.

It is not difficult to show that

(2.6) τ2 = p∗,

hence Q(
√

p∗) ⊂ K.
Let l be another odd prime. On the one hand, we know that l splits in F (into

the product of two primes of inertial degree 1) if and only if its decomposition group
Gl ⊂ G fixes F, and this happens if and only if its generator σl fixes F. But the σ′s
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fixing F are precisely the squares in G, so l splits in F if and only if l is a square
modulo p, namely (l/p) = 1.

On the other hand, OF,(l) = Z(l)[
√

p∗] so by a theorem proved some time ago, l

splits in F if and only if X2−p∗ splits mod l. However, this is the case if and only if
(p∗/l) = 1. Now it is easy to see that (−1/l) = (−1)(l−1)/2 (−1 is a quadratic residue
mod l precisely when l ≡ 1mod4) and that Legendre’s symbol is multiplicative in
the numerator.

Theorem 2.4. (Gauss’ law of quadratic reciprocity)

(2.7)

(
l

p

)
= (−1)(p−1)(l−1)/2

(p

l

)
.

Proof. We have seen that (l/p) = (p∗/l) where p∗ = (−1)(p−1)/2p. By the
multiplicativity

(2.8)

(
p∗

l

)
=

(
(−1)

l

)(p−1)/2 (p

l

)
= (−1)(p−1)(l−1)/2

(p

l

)
.

�





CHAPTER 5

Zeta and L functions

There are many results in algebraic number theory for which the only known
proof is analytical. Zeta and L functions play an important role, and the introduc-
tion of complex analysis is indispensible. We shall examine the simplest results of
this kind. Our ultimate goal is to prove Dirichlet’s theorem on primes in arithmetic
progressions. It was the motivation for Dirichlet himself to introduce the series and
L functions that bear his name in the first half of the 19th century.

1. The Riemann zeta function

1.1. The Euler product. The Riemann Zeta function is defined for s ∈ C,
Re(s) > 1, by the convergent series

(1.1) ζ(s) =

∞∑

n=1

1

ns
.

By unique factorization in Z we have the Euler product formula

(1.2) ζ(s) =
∏

p∈P

(
1 +

1

ps
+

1

p2s
+ . . .

)
=
∏

p∈P

(
1 − 1

ps

)−1

.

Here P is the set of primes. One can prove that P is infinite from here, becuase
otherwise the product would be finite, and ζ(s) would have a finite limit as s → 1
from the right, contradicting the divergence of the harmonic series. The factor(
1 − 1

ps

)−1

is called the Euler factor at p (of ζ(s)). Incidentally, the Euler product

formula shows that ζ(s) 6= 0 for Re(s) > 1.

1.2. The Gamma function. The Gamma function is defined for Re(s) > 0
by the convergent integral

(1.3) Γ(s) =

∫ ∞

0

e−tts
dt

t
.

Note that dt/t is invariant under the change of variables t 7→ ct, c > 0. Integration
by parts yields

(1.4) Γ(s + 1) = sΓ(s).

This wonderful formula has two immediate consequences. First, for a positive
integer n, Γ(n + 1) = n!, because it is easy to see that Γ(1) = 1. Second, we may
use the formula to meromorphically continue Γ(s) to the whole complex plane. It
will have then simple poles at s = 0,−1,−2, ... and will be holomorphic elsewhere.
Indeed, if it has already been defined on Re(s) > m, extend it to Re(s) > m − 1
by setting Γ(s) = Γ(s + 1)/s. This does not lead to a contradiction in Re(s) > m,

45
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and by the very construction extends the relation Γ(s + 1) = sΓ(s) to the larger
domain Re(s) > m − 1.

The Gamma function has many remarkable properties. The function

(1.5) π−s/2Γ(s/2)

is sometimes called “the Euler factor at infinity”, because when we multiply ζ(s)
by it we get an even nicer function. Let

(1.6) Z(s) = π−s/2Γ(
s

2
)ζ(s).

Theorem 1.1. Z(s) has a meromorphic continuation to the whole complex
plane, with simple poles at s = 0, 1, and no other poles. It satisfies the functional
equation

(1.7) Z(s) = Z(1 − s).

1.3. Poisson summation formula. The proof which we shall give to the
theorem relies on some Fourier analysis. Let S be the class of Schwartz functions
on R. These are the smooth (complex valued) functions f such that |x|nf (m)(x) → 0
as |x| → ∞ for any m, n ≥ 0. The Fourier transform is a bijective map from S to
itself defined by

(1.8) f̂(y) =

∫ ∞

−∞
f(x)e2πixydx.

We recall its well-known properties. For the moment denote f̂ also by Ff

• If f ∈ S then Ff ∈ S too and FFf(x) = f(−x).
• Let Mf(x) = 2πixf(x) and Df(x) = f ′(x). Then

(1.9) FMf = DFf, FDf = −MFf.

• If g(x) = f(x + a) then ĝ(y) = e−2πiay f̂(y).

Let f ∈ S. The function F (x) =
∑

m∈Z f(x + m) is smooth an 1-periodic. It
has therefore a convergent Fourier expansion

(1.10) F (x) =
∑

n∈Z

ane2πinx.

Compute

(1.11) an =

∫ 1

0

F (x)e−2πinxdx =

∫ ∞

−∞
f(x)e−2πinxdx = f̂(−n).

Now compare the two experessions that we obtained for F (0). We get:

Theorem 1.2. Let f ∈ S. Then

(1.12)
∑

n∈Z

f(n) =
∑

n∈Z

f̂(n).
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1.4. An important example. Let f(x) = e−πtx2

where t > 0 is a fixed
parameter. This function belongs to S, and it’s Fourier transform is

(1.13) f̂(y) =
1√
t
e−πy2/t.

Exercise 1.1. Prove this! You will have to use Cauchy’s theorem to shift the
line of integration from iy/t + R back to R, and you will also have to use the fact

that
∫∞
−∞ e−πx2

dx = 1. Alternatively, if you only want to use real analysis, separate
real and imaginary parts, and use integration by parts twice.

Let

(1.14) θ(t) =
∑

n∈Z

e−πtn2

.

This is Riemann’s theta function. The Poisson summation formula now gives

(1.15) θ(t) =
1√
t
θ(1/t).

Since θ(t)− 1 → 0 exponentially as t → ∞, this shows that θ(t)− 1√
t
→ 0 as t → 0.

1.5. Analytic continuation and functional equation. We are now ready
to prove the theorem. Consider, for Re(s) > 1

Z(s) = π−s/2Γ(
s

2
)

∞∑

n=1

1

ns

=
∑

n≥1

∫ ∞

0

e−t

(
t

πn2

)s/2
dt

t

=

∫ ∞

0

∑

n≥1

e−πtn2

ts/2 dt

t

=

∫ ∞

0

(
θ(t) − 1

2

)
ts/2 dt

t
.(1.16)

We now break the domain of integration to [1,∞), where we do not change anything,
and to (0, 1] where we use the functional equation of θ and then a change of variables
t 7→ 1/t:

Z(s) =

∫ 1

0

(
θ(1/t) −

√
t

2
√

t

)
ts/2 dt

t
+

∫ ∞

1

(
θ(t) − 1

2

)
ts/2 dt

t

=

∫ ∞

1

(
θ(t) − t−1/2

2

)
t(1−s)/2 dt

t
+

∫ ∞

1

(
θ(t) − 1

2

)
ts/2 dt

t

=

∫ ∞

1

(
1 − t−1/2

2

)
t(1−s)/2 dt

t
+

∫ ∞

1

(
θ(t) − 1

2

)(
ts/2 + t(1−s)/2

) dt

t
.(1.17)

In the last expression, valid for Re(s) > 1, the second integral makes sense for every

s since θ(t)−1
2 decays exponentially to 0 as t → ∞. It is moreover holomorphic in s

and invariant under s 7→ 1 − s. The first integral is evaluated directly; it is equal
to − 1

1−s − 1
s , and therefore contributes simple poles with residues 1 (at 1) and −1

(at 0), and is again invariant under s 7→ 1 − s. This proves the theorem.
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2. Dirichlet L functions

2.1. Dirichlet characters. Let m be an integer ≥ 1, and χ : (Z/mZ)× → C×

a character of order d. In other words, χ is a homomorphism of multiplicative
groups, and d is the minimal number such that χd = 1. The image of χ is the cyclic
group of dth roots of unity in C, and d must divide ϕ(m). We extend χ to a function
on Z by setting χ(n) = 0 if (n, m) 6= 1. Recalling the canonical identification

(2.1) ω : Gal(Q(ζm)/Q) = G ' (Z/mZ)×

via the cyclotomic character (σ(ζm) = ζ
ω(σ)
m ), we can associate to χ a character

χGal = χ ◦ ω on G, and vice versa. If we define Hχ = ker(χ) then G/Hχ ' Im(χ)
is cyclic of order d. By Galois theory the fixed field

(2.2) Kχ ⊂ Q(ζm)

of Hχ is a cyclic extension of Q of degree d, and χGal induces and isomorphism
between Gal(Kχ/Q) = G/Hχ and the group of dth roots of unity in C. For example,
if χ is quadratic, meaning χ2 = 1 (this is equivalent to χ being real, χ = χ̄), then
Kχ is a quadratic extension of Q.

2.2. Dirichlet L-functions L(χ, s). The Dirichlet L function of χ is the func-
tion

(2.3) L(χ, s) =

∞∑

n=1

χ(n)

ns
.

Like the Riemann Zeta function, it converges absolutely and uniformly on compact
subsets in Re(s) > 1. However, if χ is not trivial, Abel summation shows that
L(χ, s) converges, uniformly on compact subsets, in Re(s) > 0. Indeed

(2.4)
N+1∑

n=1

χ(n)

ns
=

N∑

n=1

(
n∑

m=1

χ(m)

)(
1

ns
− 1

(n + 1)s

)
+

(
N+1∑

m=1

χ(m)

)
1

(N + 1)s

Now the partial sums
∑M

1 χ(n) are bounded and

(2.5)
1

ns
− 1

(n + 1)s
=

s

(n + θ)s+1

for some 0 < θ < 1, so the first sum converges absolutely, and the remainder term
tends to 0.

Dirichlet L series have an Euler product similar to the zeta function:

(2.6) L(χ, s) =
∏

(p,m)=1

(
1 − χ(p)

ps

)−1

.

The proof is the same as for the zeta function, taking into account the multiplica-
tivity of χ.

Theorem 2.1. For non-trivial χ, L(χ, 1) 6= 0.

We shall prove this important theorem soon, but we first give its most famous
application.
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2.3. Primitive and non-primitive characters. We say that χ is primitive
of level m if there does not exists an m′ dividing m and a character χ′ : (Z/m′Z)× →
C× such that χ is the pull-back of χ′ via the canonical projection of Z/mZ to
Z/m′Z. Equivalently, χ does not have a period smaller than m when restricted to
integers relatively prime to m. If χ comes from χ′modm′ and also from χ′′modm′′

then it comes from a character modulo gcd(m′, m′′). This proves that there exists
a minimal m′|m and χ′modm′ such that χ comes from χ′. We call χ′ the primitive
character associated to χ, and m′ its conductor, and write

(2.7) χ′ = χprim.

This seems trivial, but one should post a small warning sign: when we extend χ
and χ′ to functions on Z, they will agree on integers prime to m, but will differ at
any n which is relatively prime to m′ but not to m. If there are new primes dividing
m which did not divide m′, there will be such integers.

Comparing the Euler products for χ and χ′ we see that

(2.8) L(χ, s) =
∏

p|m, p-m′

(
1− χ′(p)

ps

)
L(χ′, s).

Thus the primitive and the non-primitive L functions differ only by finitely many
Euler factors (and do not differ at all if m and m′ have the same prime factors). In
particular the question of vanishing at s = 1 is the same for both, because none of
these Euler factors vanishes at s = 1.

2.4. Dirichlet’s theorem on primes in arithmetic progressions.

Theorem 2.2. Let (a, m) = 1. Then there are infinitely many primes of the
form a + km.

Proof. Consider

(2.9) F (s) =
∑

χ

χ̄(a) log L(χ, s)

where the sum is over the ϕ(m) Dirichlet characters modulo m, and s > 1. The sum
is real, because together with χ there appears χ̄ and the corresponding terms are
complex conjugates. Also note that there are several branches of the logarithm that
one can consider, but the Euler product for L(χ, s) allows one to make a natural
choice as below.

As s → 1 from the right, the trivial character gives log L(1, s) which, up to the
logarithm of the Euler factors dividing m is just log ζ(s), hence tends to +∞. The
other terms tend to the finite limit χ̄(a) log L(χ, 1). It follows that lims→1+ F (s) =
∞.

On the other hand, use the Euler product to find that

(2.10) log L(χ, s) = −
∑

p

log

(
1 − χ(p)

ps

)
=
∑

p

∞∑

m=1

χ(pm)

mpms
=
∑

p

χ(p)

ps
+ O(1)

where O(1) denotes an expression which is bounded as s → 1 from the right. To
see this we estimate

(2.11)
1

2mp2m
+

1

(2m + 1)p2m+1
≤ 1

mp2m
,
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hence

(2.12)
∑

p

∞∑

m=2

1

mpm
≤
∑

p

∞∑

m=1

1

mp2m
= log

∏

p

(1 − 1

p2
)−1 = log(π2/6).

It follows that

(2.13) F (s) =
∑

p

(∑

χ

χ̄(a)χ(p)

)
1

ps
+ O(1).

Now the inner sum (over χ) is 0 if p 6= amodm, by the orthogonality relations for
characters. If p ≡ amodm it gives ϕ(m). We therefore get

(2.14) F (s) = ϕ(m)
∑

p≡amodm

1

ps
+ O(1).

The fact that F (s) is not O(1) imples that there are infinitely many p′s - not only
that, but sufficiently many to make the series in question diverge. �

Remark. Let A be a set of primes. The Dirichlet density of A is the limit (if
it exists)

(2.15) δ(A) = lim
s→1+

∑
p∈A p−s

∑
p p−s

.

The proof of the theorem shows that the primes congruent to amodm have Dirichlet
density 1/ϕ(m). In other words, each of the ϕ(m) residue classes has on the average
equally many primes.

There is a more naive notion of density, namely

(2.16) lim
x→∞

# {p ∈ A| p ≤ x}
# {p| p ≤ x} .

It can be shown that if the latter exists and is equal δ, then δ(A) exists too and is
equal to the naive density δ.

2.5. Non-vanishing of L(χ, 1). There are several proofs of this nowadays.
We shall follow Dirichlet, who gave an easy argument for χ which is non-quadratic
(χ 6= χ̄), and then a separate more complicated argument for quadratic non-
prinicpal χ.

Assume that χ 6= χ̄, but L(χ, 1) = 0. Then L(χ̄, 1) = 0 too and the product∏
χ L(χ, s) has a zero at s = 1, because ζ(s) contributes a simple pole, but at

least two other factors contribute zeros. Letting s → 1 from the right we see that∑
χ log L(χ, s) must tend to −∞. But we have computed this expression in the

proof and found it to be ϕ(m)
∑

p≡1modm p−s + O(1). This is a contradiction, so

there is at most one χ for which L(χ, 1) = 0.
Incidentally, this argument proves that among all Dirichlet characters, of all

conductors, there is at most one, quadratic or not, for which L(χ, 1) = 0 (why?).
This is very unlikely, because who would be the fortunate χ, had it existed??

Let now χ be quadratic, χ2 = 1. Then as we saw, Kχ is quadratic.

Lemma 2.3. Let (p, m) = 1. Then p is unramified in Kχ. It splits if and only
if χ(p) = 1.
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Proof. If p is ramified in Kχ then it must be ramified in Q(ζm), so must divide
m (we have not proved this for composite m, but only primes dividing m ramify in
Q(ζm)). Now p splits in Kχ if and only if its Frobenius σp lies in Gal(Q(ζm)/Kχ) =
kerχ, if and only if χGal(σp) = 1. But χGal(σp) = χ(ω(σp)) = χ(p). �

Consider

(2.17) ζm(s)L(χ, s) =
∏

χ(p)=1

(1 − p−s)−2
∏

χ(p)=−1

(1 − p−2s)−1.

The subscript m indicates that we have removed from the Riemann Zeta function
the Euler factors of p|m. The expression on the right is a Dirichlet series (a series
of the form

∑
ann−s) with non-negative coefficients (an ≥ 0) which converges for

Re(s) > 1, but definitely not in all Re(s) > 0, as a simple estimate at s = 1/2
shows: the terms (1−p−1/2)−2 > (1−p−1)−1, so we can compare the product with
the usual Euler product for ζ(s), which diverges for s = 1.

On the other hand, if we assume that L(χ, 1) = 0, then ζm(s)L(χ, s) is analytic
in Re(s) > 0, because L(χ, s) is analytic there and the only pole of ζm(s) in that
region is at s = 1. The following lemma gives us the desired contradiction, and
finishes the proof.

Lemma 2.4. Suppose F (s) =
∑

ann−s is a Dirichlet series with non-negative
coefficients which converges in some domain Re(s) > σ0. Suppose F (s) has an
analytic continuation to Re(s) > σ1. Then the series converges also for Re(s) > σ1.

Proof. Clearly we may assume that σ0 is minimal such that the series con-
verges for Re(s) > σ0 and that σ1 < σ0, otherwise there is nothing to prove. Let
α > σ0 and r > α − σ0 be such that F (s) is analytic in the open disc D(α, r).
Note that this disc contains points to the left of σ0 on the real axis. The Taylor
expansion of F (s) around α is

(2.18) F (s) =
∞∑

k=0

∞∑

n=1

an(log n)kn−α

k!
(α − s)k.

Picking a point s such that α − r < s < σ0 we get that the Taylor expansion
converges at s. However, this is a series with non-negative terms, so it must converge
after a re-arrangement of its terms. Rearranging we get

F (s) =

∞∑

n=1

an

( ∞∑

k=0

(log n)kn−α

k!
(α − s)k

)

=

∞∑

n=1

ann−s.(2.19)

This is a contradiction, as the Dirichlet series was asumed to diverge at s. �

2.6. Formula for L(χ, 1). Assume that χ is a primitive non-trivial character
modulo m, so that m > 1. By Fourier analysis on the finite group Z/mZ, any
complex function f on it can be written as

(2.20) f(a) =
∑

b

f̂(b)e2πiab/m
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where

(2.21) f̂(b) =
1

m

∑

a

f(a)e−2πiab/m.

Apply this with f = χ. If d = (b, m) > 1 let m′ = m/d and b′ = m/d. Since χ is
primitive, it does not come from a character modulo m′, so there exists a c such
that (c, m) = 1 and c ≡ 1modm′ but χ(c) 6= 1. Then

m−1∑

a=0

χ(a)e−2πiab/m

=

m−1∑

a=0

χ(a)e−2πiab′/m′

=

m−1∑

a=0

χ(a)e−2πiacb′/m′

= χ̄(c)

m−1∑

a=0

χ(ac)e−2πiacb′/m′

= χ̄(c)

m−1∑

a=0

χ(a)e−2πiab′/m′

,(2.22)

so the sum vanishes and f̂(b) = 0. On the other hand, if (b, m) = 1 we easily see
that

(2.23) χ̂(b) = χ̄(−b)τ(χ)/m

where the Gauss sum τ(χ) is defined by

(2.24) τ(χ) =
∑

amodm

χ(a)e2πia/m.

Substituting into the expression giving L(χ, 1) we get

L(χ, 1) =
τ(χ)

m

∑

bmodm

χ̄(−b)

∞∑

n=1

e2πibn/m

n

= −τ(χ)

m

∑

bmodm

χ̄(−b) log(1 − ζb)(2.25)

where ζ = e2πi/m. Note that ζb 6= 1 since if m|b then χ̄(b) = 0. The branch of
the logarithm is that branch which is analytic in the right half plane and satisfies
log(1) = 0.

From here on the discussion diverges according to whether χ(−1) = 1 (χ is even,
and as a Galois character factors through a real subfield of Q(ζ)) or χ(−1) = −1
(χ is odd).
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2.7. Odd χ. This corresponds to Kχ imaginary, χ(−1) = −1. Here we group
b with −b, so

L(χ, 1) =
1

2

τ(χ)

m

m−1∑

b=1

χ̄(b) log

(
1 − ζb

1 − ζ−b

)

=
1

2

τ(χ)

m

m−1∑

b=1

χ̄(b) log(−ζb)

=
πiτ(χ)

m2

m−1∑

b=1

χ̄(b)b.(2.26)

2.8. Even χ. This corresponds to Kχ real. Again we group b with −b, this
time getting

(2.27) L(χ, 1) = −τ(χ)

m

∑

bmodm

χ̄(b) log |1 − ζb|.

Suppose that χ is non-trivial, quadratic (χ(b) = χ̄(b) = ±1) and even. We then
define

(2.28) εχ =
∏

bmodm

(1 − ζb)χ(b) =
∏

bmodm

sin

(
πb

m

)χ(b)

.

Then εχ > 0 and

(2.29) L(χ, 1) = −τ(χ)

m
log εχ.

If σ ∈ Hχ then ω(σ) = a2 for some a so

σ(εχ) =
∏

bmodm

(1 − ζa2b)χ(b)

=
∏

bmodm

(1 − ζb)χ(ba−2)

=
∏

bmodm

(1 − ζb)χ(b) = εχ.(2.30)

It follows that εχ ∈ Kχ. In fact, it is a unit. This is because we can write

(2.31) εχ =
∏

bmodm

(
1 − ζb

1 − ζ

)χ(b)

and (1 − ζb)/(1 − ζ) is a unit.

3. Dedekind’s Zeta function

Let K be a number field, [K : Q] = n, r1 and r2 as before, the number of real
and pairs of complex embeddings, r = r1+r2−1 the unit rank. Let µK be the group
of roots of unity in K, w = |µK |, and let ε1, . . . , εr be a system of representatives
for O×

K/µK (a system of fundamental units). Let h = hK be the class number of
K, and R = RK its regulator. Let dK be the discriminant of K.
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3.1. Definition and basic properties. Recall that for every ideal a of OK

we denoted by Na = [OK : a] the absolute norm of a. Define

(3.1) ζK(s) =
∑ 1

Nas
,

the summations extending over all the integral ideals of K. By unique factorization
of ideals, we have the Euler product

(3.2) ζK(s) =
∏

p

(
1 − 1

Nps

)−1

.

This also proves convergence for Re(s) > 1, absolutely and uniformly on compact
sets, because we can write, for s > 1 real

(3.3) ζK(s) =
∏

p

∏

p|p

(
1 − 1

Nps

)−1

≤
∏

p

(
1 − 1

ps

)−n

= ζQ(s)n.

Define

(3.4) ZK(s) = |dK |s/2
(
π−s/2Γ(s/2)

)r1 (
(2π)−sΓ(s)

)r2

ζK(s).

Theorem 3.1. The completed Zeta function ZK(s) extends meromorphically
to all s ∈ C, has simple poles at s = 0 and s = 1 and nowhere else, and satisfies
the functional equation

(3.5) ZK(s) = ZK(1 − s).

The residue at s = 1 is

(3.6) ρK =
2r1hKRK

wK

and at s = 0 the residue is −ρ.

Corollary 3.2. The Zeta function ζK(s) has a simple pole at s = 1 with
residue

(3.7)
2r1+r2πr2hKRK√

|dK |wK

.

Thus all the fundamental invariants of K show up in this marvelous formula.
Note that the theorem generalizes what we have already seen for the Riemann Zeta
function. Hecke’s proof from the 1930’s uses several-variable versions of Poisson
summation and the Riemann theta function. Except for the complications arising
from the class number and the units, the underlying ideas are very similar to the
ones used by Riemann almost a century earlier. You can read the proof in any
standard book on alegbaric number theory.

4. The class number formula for quadratic fields

4.1. The relation between ζK and Dirichlet’s L functions. Let K be a
quadratic field.

Lemma 4.1. We have

(4.1) ζK(s) = ζ(s)L(χ, s)

where χ is the quadratic character associated to K.
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Proof. In terms of the Legendre symbol, K ⊂ Q(ζm) with m = |dK | and

(4.2) χ(a) =

(
dK

a

)
.

We have seen in the course of the proof of the non-vanishing of L(χ, 1) that the
product of the Euler factors at p of the right hand side is (1 − p−s)−2 if χ(p) = 1
and (1 − p−2s)−1 if χ(p) = −1. If p|dK then it is (1 − p−s)−1. In each of the three
cases this is also the product of the Euler factors in ζK at primes of K dividing p.
This proves the desired equality. �

Remark 4.1. A similar relation exists between L-functions of characters of
Gal(K/Q) and ζK for any abelian number field K. The Kronecker-Weber theorem
asserts that K ⊂ Q(ζm) for some m. The minimal m with this property is called
the conductor of K. Let

(4.3) HK ⊂ Gal(Q(ζm)/Q) ' (Z/mZ)×

be the subgroup fixing K elementwise. The characters of Gal(K/Q) can be identified
with Dirichlet characters mod m which are trivial on HK . To each such character we
attach the corresponding primitive Dirichlet character mod m′ (for an appropriate

m′|m) and we denote the resulting collection of Dirichlet characters simply by ĜK .
We then have

(4.4) ζK(s) =
∏

dGK

L(χ, s).

4.2. The class number formula for quadratic imaginary fields. Let K
be quadratic imaginary and χ, as before, the non-trivial character of Gal(K/Q),
viewed as a Dirichlet character mod m = |dK |. We have found

(4.5) L(χ, 1) =
πiτ(χ)

m2

m∑

b=1

χ(b)b

(note that χ = χ̄). On the other hand, from the lemma we get

(4.6) ress=1ζK(s) = L(χ, 1).

Comparing, we find a formula for hK :

(4.7) hK =
w

2

iτ(χ)√
|dK |

1

|dK |

|dK |∑

b=1

χ(b)b.

One can show that |τ(χ)| =
√
|dK |. (Exercise: prove it when dK is prime!) This

implies

Theorem 4.2. (analytic class number formula)

(4.8) hK =
wK

2

1

|dK |

∣∣∣∣∣∣

|dK |∑

b=1

χ(b)b

∣∣∣∣∣∣
.
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4.3. Analytic class number formula for real quadratic fields. Assume
now K is real quadratic. This time

(4.9) L(χ, 1) = −τ(χ)

m
log(εχ)

where εχ is the circular unit defined before. Comparing with ress=1ζK(s) we get

(4.10)
−τ(χ)

|dK | log(εχ) =
hK log(εK)√

|dK |
where εK is the fundamental unit. We have shown the following.

Theorem 4.3. (analytic class number formula, real quadratic case).

(4.11) hK =

∣∣∣∣
log εχ

log εK

∣∣∣∣ .

In other words, [O×
K : 〈±εχ〉] = hK . The inability to seperate hK from log(εK) =

RK is the main obstacle in studying class numbers of real quadratic fields.



CHAPTER 6

Appendix

1. Some facts on abelian groups

1.1. Indices.

Proposition 1.1. Let Λ ⊂ Zn be the lattice spanned by the column vectors
t(c1j , . . . , cnj) of the matrix C = (cij). Then

(1.1) [Zn : Λ] = | det(C)|.

Proof. This proposition is usually proved as a corollary of the Theorem on
Elementary Divisors. The latter asserts that there exists a basis ε1, . . . , εn of Zn over
Z (not necessarily the standard basis), and uniquely determined natural numbers
d1, . . . , dn satisfying di+1|di (called the elementary divisors of Λ ⊂ Zn), such that
d1ε1, . . . , dnεn is a basis of Λ. The index [Zn : Λ] is then clearly d1 · · ·dn. (Moreover,
the elementary divisors give us the structure of Zn/Λ as a product of cyclic groups.)
On the other hand if P is the matrix changing the basis ε1, . . . , εn of Zn to the
standard basis, and Q is the matrix changing the basis of Λ which is given by
the columns of C to d1ε1, . . . , dnεn, then in terms of matrices the Theorem on
Elementary Divisors says

(1.2) D = QCP

where D is the diagonal matrix with the di on the diagonal. Both P and Q are
unimodular matrices (integral matrices with determinant ±1), so we see that d1 ·
· · dn = det(D) = ± det(C).

Let us give another proof that does not use the Elementary Divisors Theorem.
Define a function g on Mn(Q) as follows. To define g(C) consider the columns
of C, and let Λ(C) be the abelian subgroup generated by them: all their Z-linear
combinations. Multiplying by some natural number N we may assume that C is
integer-valued, so that N · Λ(C) ⊂ Zn. We then set

(1.3) g(C) = ±[Zn : N · Λ(C)]/Nn.

Here we use the convention that the index is 0 if N · Λ(C) is not of finite index.
The ± sign is the sign of det(C). It is clear that g(C) is independent of N, because
[Zn : NM · Λ] = Mn[Zn : N · Λ].

We now check that (i) g gets the value 1 on the identity matrix.
(ii) g changes sign if we permute two columns of C.
(iii) g(C ′) = g(C) if C ′ is obtained from C by adding the jth column to the ith

column for i 6= j.
(iv) g(C ′) = Ng(C) if C ′ is obtained from C by multiplying a certain column

by an integer N.
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All these assertions are very easy to check straight from the definitions. How-
ever, it is known that the only function satisfying them is det(C) (this is how we
compute determinants by Gauss’ elementary substitutions.) �

2. Complements from Galois theory

2.1. Artin’s theorem on linear independence of characters.

Theorem 2.1. Let K and L be any two fields, and χ1, . . . , χm : K× → L×

distinct mutiplicative homomorphisms (characters). Let ci ∈ L. Then if

(2.1) c1χ1(x) + · · · + cmχm(x) = 0

holds for all x ∈ K, x 6= 0, all ci = 0.

Proof. Assume such linear dependencies between characters exist, and pick a
shortest one (smallest m). Clearly all the ci are then nonzero. Let a ∈ K× be such
that χ1(a) 6= χ2(a). Sustituting ax for x and using the multiplicativity of the χi we
get the relation

(2.2) c1χ1(a)χ1 + · · · + cmχm(a)χm = 0.

Multiplying the original relation by χ1(a) and subtracting from this second one we
get

(2.3) c2(χ2(a) − χ1(a))χ2 + · · · + cm(χm(a) − χ1(a))χm = 0

which is a shorter non-trivial relation. This contradiction proves the theorem. �

Corollary 2.2. Let K/F be a separable extension of degree n, and let σ1, . . . , σn

be n distinct embeddings of K in another extension L/F, which are the identity on
F . Let ω1, . . . , ωn be a basis of K over F. Then

(2.4) det(σi(ωj)) 6= 0.

Proof. If not, there is a linear dependence between the rows of the matrix

(2.5)

n∑

i=1

ciσi(ωj) = 0.

Since the σi are F -linear, and the ωj form a basis of K over F, it follows that∑
ciσi = 0 identically on K. This contradicts Artin’s theorem. �

2.2. Norm and Trace. Let L/K be a finite separable field extension and
embed it in a Galois extension M/K. Let Γ = EmbK(L, M) be the set of n = [L : K]
embeddings of L into M over K.

Proposition 2.3. If a ∈ L, then NL/K(a) =
∏

σ∈Γ σ(a) and TrL/K(a) =∑
σ∈Γ σ(a).

Proof. Let M ⊗K L be the tensor product of the two fields over K. Recall
that if L =

∑n
i=1 Kωi (a direct sum) then as a vector space

(2.6) M ⊗K L =

n∑

i=1

Mωi
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(a direct sum) and the product structure is defined by using the product in M
between the coefficients and the formulas ωiωj =

∑n
k=1 ck

ijωk (ck
ij ∈ K). Each

embedding σ : L ↪→ M extends M -linearly to an M -algebra homomorphism

(2.7) σ : M ⊗K L → M, σ(

n∑

i=1

miωi) =

n∑

i=1i

miσ(ωi).

Taken together we get an M -algebra homomorphism

(2.8) ι : M ⊗K L → MΓ ' Mn

where MΓ is the ring of maps from Γ to M, with pointwise addition and multipli-
cation. Both M ⊗K L and MΓ are n-dimensional over M, and the matrix of this
map with repsect to {ωj} as a basis of M ⊗K L and the standard basis of MΓ, is
(σi(ωj)) where we have written Γ = {σ1, . . . , σn} . Artin’s theorem on independence
of characters shows that it is nonsingular, hence ι is an isomorphism.

Let now a ∈ L and consider the map “multiplication by a”. Via the isomorphism
ι it coresponds to the map which sends (xσ)σ∈Γ to (σ(a)xσ)σ∈Γ, and is therefore
represented by the diagonal matrix with σi(a), 1 ≤ i ≤ n, on the diagonal. Taking
the determinant and the trace of this linear transformation, the proposition follows.

�

Exercise 2.1. Prove that NL/K(ab) = NL/K(a)NL/K(b) and TrL/K(a + b) =
TrL/K(a) + TrL/K(b).

Exercise 2.2. Let K/F be a finite extension too. Prove that NL/F = NK/F ◦
NL/K and TrL/F = TrK/F ◦ TrL/K (you may assume L/F is separable to use the
proposition above, but the result holds without this assumption).

Exercise 2.3. Find the generalization of the above proposition to non-separable
extensions.

2.3. The trace form. Let L/K be a finite extension of fields, and define

(2.9) B(x, y) = TrL/K(xy).

This is a symmetric K-bilinear form on L.

Exercise 2.4. Prove that B is non-degenerate if and only if L/K is separable.

Exercise 2.5. Let O(L/K, B) be the group of all linear transformations of L
over K that preserve B. Prove that if L/K is Galois, it admits a representation
into O(L/K, B).





CHAPTER 7

Review Problems

1) Let p be a rational prime. Prove that the equation 4p = x2 + 27y2 has
a unique solution (x, y) ∈ Z2, x > 0, y > 0 if p ≡ 1mod3, and no solution if

p ≡ 2mod3. (Hint : Prove that Z[ω], ω = −1+
√
−3

2 , is a unique factorization domain.)

2) Let p be a prime, a ∈ Z, and assume that a is not a pth power in Z. Let
θp = a. Prove that [Q(θ) : Q] = p, that primes l not dividing pa are unramified in
Q(θ), and that primes l|a for which ordl(a) is not divisible by p are fully ramified
in Q(θ).

3) (i) Let K be an algebraic number field of degree n, ωi ∈ OK (1 ≤ i ≤ n)
and suppose that the discriminant ∆(ω1, . . . , ωn) is square-free. Prove that the ωi

are a basis for OK over Z.
(ii) Let α be a solution of α3−α−1 = 0. Let K = Q(α). Show that ∆(1, α, α2) =

−23 and conclude that OK = Z[α].
(iii) Find the prime factorization in K of the primes 2, 5 and 23.

4) Let K be an algebraic number field of degree n, α ∈ OK a generator of K,
and suppose that the minimal polynomial of α is Eisenstein with respect to the
prime p. Prove

(i) p does not divide [OK : Z[α]].
(ii) p is fully ramified in K.

Hint for (i): Suppose that p−1
∑n−1

i=0 ciα
i (ci ∈ Z) is integral, but not all ci are

divisible by p. Multiply by a suitable power of α to get an integral element of such
a form with p|ci for i < n − 1, p not dividing cn−1. Conclude that p−1cn−1α

n−1 is
integral. Take the norm to Q to get a contradiction.

An alternative hint for (i): Let v be a valuation on K extending the p-
adic valuation on Q, normalized by ν(p) = 1. Prove that ν(α) = 1/n, and that

ν(
∑n−1

i=0 ciα
i) = inf

{
i
n + ν(ci)

}
(ci ∈ Q).

5) Let K and F be two number fields and assume that their discriminants are
relatively prime.

(i) Let L be the normal closure of K. Prove that dL is divisible only by the
primes dividing dK , hence is still relatively prime to dF .

(ii) Prove that [LF : Q] = [L : Q][F : Q].
(iii) Prove that [KF : Q] = [K : Q][F : Q].
Why was it necessary to pass from K to L and back to K?

6) Show that every ideal in a Dedekind domain is generated by two elements.

7) Let K be an algebraic number field of discriminant dK .
(i) Prove that the normal closure of K contains

√
dK .
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(ii) Obtain from (i) a formula for the quadratic subfield of Q(ζp), where ζp =

e2πi/p.

8) Show that the class number of Q(
√
−19) is 1.

9) Show that the class number of Q(
√

10) is 2, and find representatives of the
class group.

10) Let D be a square free positive integer, D ≡ 5mod12. Prove that (3) = pp′

splits in K = Q(
√
−D) and that if D > 3n then the order of the class of p in

ClK is at least n. Conclude that the class number of quadratic imaginary fields is
unbounded.

11) Let p1, . . . , pn be distinct primes congruent to 1mod4 and m =
∏

pi. Which
primes ramify in K = Q(

√
−m)? Use that to show that the class number hK is

divisible by 2n−1.

12) Let F be a totally real field (all the embeddings of F are real) and d ∈ F
a totally negative element (σ(d) < 0 for every embedding σ of F in R). Let

K = F (
√

d).
(i) Show that the ranks of the unit groups of F and K are equal.
(iii) Let µK be the group of roots of unity in K. Prove that [O×

K : µKO×
F ] = 1

or 2. (Hint: consider the map sending a unit u to u/ū and prove that its image
consists of roots of unity.)

13) Let S = {P1, . . . , Ps} be a finite set of primes in K. An S-unit is u ∈ K×

such that the fractional ideal (u) = P e1

1 . . . P es
s for some ei ∈ Z. Show (i) the S-units

form a multiplicative group O×
K,S . (ii) The ei define a homomorphism from O×

K,S to

Zs whose kernel is O×
K . (iii) The group O×

K,S is a finitely generated abelian group

whose rank is r1(K) + r2(K) + s − 1.

14) Let ζ = e2πi/7 and K = Q(ζ). Consider triples of integers (a, b, c) such that
a + b + c = 0 and let

(0.10) εa,b,c = (ζ − 1)a(ζ2 − 1)b(ζ4 − 1)c.

(i) Show that these elements form a group C of units in K (it is called the
group of circular units).

(ii) Show that U is of finite index in O×
K . (Hint : let σ ∈ Gal(K/Q) be defined by

σ(ζ) = ζ2. What are σ(εa,b,c) and σ2(εa,b,c)? Consider the logarithmic embedding

(0.11) λ(ε) = (log |ε|, log |σ(ε)|, log |σ2(ε)|)
into {(x1, x2, x3); x1 + x2 + x3 = 0} and prove that U spans a lattice there.)

15) Let K be a Galois extension of Q whose Galois group is S3 (the symmetric
group on 3 letters). What are all the possible factorizations in K of an unramified
prime p? In each case, what are the decomposition fields of the various primes above
p?


