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Introduction

The goal of this course is to go over the proof of the following theorem, proved
by Andrew Wiles1 [W95] in 1995.

Theorem 1 (Modularity Theorem). Let E be a semistable elliptic curve de�ned
over Q. Then E is modular.

The terms �semistable� and �modular� will be de�ned in the �rst chapter, which
sets the background for the rest of the course. In that chapter we shall review certain
topics from the theory of elliptic curves, modular forms and Galois representations,
and will then give a rough overview of the proof.

As is well known, the theorem implies Fermat's Last Theorem. The reduction
of Fermat's Last Theorem to the Modularity Theorem is based on a construction
of Gerhard Frey and subsequent work of Barry Mazur, Jean-Pierre Serre and Ken
Ribet, that predated Wiles' theorem. For lack of time we shall not deal with this
spectacular application, and refer the reader to Ribet's original paper [Ri90], and
to the survey paper [St97].

The Modularity Theorem is known to hold today without the semistability as-
sumption: every elliptic curve over Q is modular. In this form it apparently origi-
nated as a conjecture in 1955 and became known as the Shimura-Taniyama-Weil2

conjecture. It later became clear that it is an instance of the much more general,
still conjectural, Langlands Correspondence.

The generalization of the Modularity Theorem to arbitrary elliptic curves over
Q resulted from a series of improvements on [W95, T-W95]. They started with
[Di96], in which the semistability of E was only needed at 3 and 5, and culminated
in the work of Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
[B-C-D-T], which appeared in 2001, completing the proof of the Shimura-Taniyama-
Weil conjecture.

Many more �modularity theorems�, of elliptic curves over totally real or CM
�elds, of K3 surfaces, and of abelian varieties of higher dimension, are known today.

In addition, much progress on related topics followed in the footsteps of Wiles'
work. Let us mention (i) Serre's Modularity Conjecture (proved by Khare and
Wintenberger in 2008), (ii) the Fontaine-Mazur Conjecture (proved in many cases
by Calegari, Dieulefait and Kisin), (iii) Sato-Tate's Conjecture (proved by Barnet-
Lamb, Clozel, Geraghty, Harris, Shepherd-Barron and Taylor in two papers from
2008 and 2011), and (iv) Artin's Conjecture on L-functions (of which many new
cases now follow from Serre's Conjecture or, independently, from Taylor's work).

I am not up-to-date on all these developments and do not feel quali�ed to survey
them. There are plenty of good introductions and expositions on the web.

1Wiles worked on his theorem in isolation for seven years, and announced his result at the
Newton Institute in Cambridge in 1993. A few months later, a gap was found in one of the
steps of the proof. With the help of Richard Taylor, Wiles changed the strategy dealing with the
problematic step, and closed the gap. Technically speaking, the use of �Flach Euler systems� was
replaced by a method known today as �Taylor-Wiles patching�. The Taylor-Wiles paper [T-W95]
appeared as a companion to the main paper by Wiles, and both were published as a special issue
of the Annals of Mathematics in 1995.

2There is some controversy about who should be credited with it. We included all three
mathematicians, in alphabetical order, and refrain from delving into this question.
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Our course will follow the survey paper [D-D-T], which in turn follows the original
proof, with a few simpli�cations on the commutative algebra side. There have been
several important new ideas introduced in subsequent work, by Fred Diamond,
Mark Kisin, Frank Calegari, David Geraghty and others. While the new approaches
are absolutely crucial for the generalizations mentioned above, I �nd the old paper
by Darmon, Diamond and Taylor still the best complete introduction to this circle
of ideas.

You may want to watch the talk �Thirty years of modularity� by Frank Calegari,
delivered at the ICM [Cal], for an overview of the activity in this area.

1. Background

1.1. Elliptic curves (week 1).

1.1.1. The Galois representations associated to elliptic curves. Let F be a number
�eld and E an elliptic curve over F. We denote by

ρE,` : Gal(F/F )→ GL2(F`)

the representation on E(F )[`] ' F2
` and by

ρ0
E,` : Gal(F/F )→ GL2(Z`)

the representation on T`E = lim←E(F )[`r] ' Z2
` .We let ρE,` be the representation

ρ0
E,`, followed by the inclusion of GL2(Z`) in GL2(Q`).
Both ρE,` and ρE,` are continuous and well-de�ned up to conjugation. Further-

more, they are unrami�ed outside Sbad(E) ∪ {v|`}, where Sbad(E) is the �nite set
of primes of F where E has bad reduction. Let v be a good prime, v - `, and
denote by σv ∈ Gal(F/F ) an (arithmetic) Frobenius at v. Then the characteristic
polynomial of ρE,`(σv) is

det(XI − ρE,`(σv)) = X2 − avX + qv = (X − αv)(X − α′v)

where qv = Nv, av ∈ Z, and is independent of `. That

det(ρE,`(σv)) = qv = ε`(σv),

where ε` is the `-adic cyclotomic character, follows from the existence of the Weil
pairing. Furthermore, αv, α′v are complex conjugate with |αv| = |α′v| =

√
qv. This

was conjectured by Emil Artin and proved by Helmut Hasse in 1933. It is often
given in terms of the Hasse bound |av| ≤ 2

√
qv.

If κv = OF /v is the residue �eld of the good prime v, and Ev is the reduction of
E modulo v, then

#Ev(κv) = 1− av + qv,

so the Hasse bound estimates the deviation of the number of κv-rational points on
the reduction from 1 + qv.

The representation ρE,` : Gal(F/F )→ GL2(Q`) is irreducible unless E has CM.
However, if F = Q it is always irreducible.

The representation ρE,`, in contrast, need not be irreducible or semisimple. We
denote by ρssE,` its semisimpli�cation. While ρ0

E,` mod ` = ρE,`, ρE,` does not
determine ρE,`, only ρ

ss
E,` (by the Brauer-Nesbitt theorem).
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1.1.2. Semistable elliptic curves. Let v ∈ Sbad. Let Ov be the ring of integers of Fv
and κv its residue �eld. Let E be the Néron model of E over Ov. Recall that this
is a smooth group scheme, whose generic �ber is E, having the following universal
property: for every smooth Ov-scheme S, any Sη = S ×Ov Fv-point of E extends
uniquely to an S-point of E . Let Ev be the special �ber of E and E0

v its connected
component. Then there is a short exact sequence of κv-group schemes

0→ E0
v → Ev → Φv → 0,

where Φv is �nite étale over κv. The Néron model is unique up to isomorphism.
The curve E also has a unique minimal regular model E over Ov, and the Néron

model can be identi�ed with the smooth locus of E .
E is said to have semistable (or multiplicative) reduction at v if E0

v is a twisted
form of Gm. In this case the special �ber of the minimal regular model Ev becomes,
over the quadratic extension κ′v of κv, a polygon of rational curves, intersecting at
κ′v-rational nodes. The group Φv becomes, over κ′v, a constant cyclic group.

We say that E has split multiplicative reduction at v if E0
v ' Gm already over

κv. In this case Φv is constant cyclic already over κv. Otherwise, E is said to have
nonsplit multiplicative reduction. In this case E0

v is isomorphic (as an algebraic
group over κv) to

ker(Nr : Resκ′v/κvGm → Gm)

and the non-trivial element of Gal(κ′v/κv) acts on Φv via x 7→ x−1.
If E is not semistable at v then E0

v ' Ga and E is said to have additive reduction
at v. In this case the structure of the Néron model can be complicated, especially
if the residue characteristic of v is 2 or 3.
E is called semistable if every v ∈ Sbad is a prime of multiplicative reduction. The

semistable reduction theorem implies that every elliptic curve E becomes semistable
over a �nite extension of F.

Example 2. Let p > 2. Then over Zp, the curve y2 = x3 − x has good reduction,
and y2 = x3 + x2 + p has (split) multiplicative reduction. The curves y2 = x3 − px
and y2 = x3 + px2 + p4 both have additive reduction (since their minimal regular
model has a cusp in the special �ber) but the �rst has potentially good reduction
(over Qp(p1/4) it can be written as (p−3/4y)2 = (p−1/2x)3 − (p−1/2x), so becomes
isomorphic to y2 = x3−x), while the second has potentially multiplicative reduction
(over Qp(p1/2) it can be written as (p−3/2y)2 = (p−1x)3 + (p−1x)2 + p). Note that
y2 = x3 − px has complex multiplication by Z[i]. CM elliptic curves always have
potentially good reduction.

1.1.3. Tate's uniformization and the local Galois representation at a place with
multiplicative reduction. Let v be a prime of multiplicative reduction for E. Let
X = Hom(E0

v,κv
,Gm,κv ). Then X is an in�nite cyclic group (isomorphic to Z). In

the split case, Gal(κv/κv) acts on X trivially. In the non-split case, it acts via
inversion.

Laying the foundations to rigid analytic geometry, Tate found, in the multiplica-
tive case, a uniformization of E, as a rigid analytic space over Fv, by the torus
Hom(X,Ganm ). The kernel of the uniformization

Hom(X,Ganm )� Ean
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is the subgroup Hom(X, qZE), where qE ∈ F×v , |qE |v < 1 is the Tate period. It is
uniquely determined by E and satis�es

ordFv (qE) = −ordFv (jE).

Moreover, the relation between the Tate period and the j-invariant jE is given by
a universal power series

jE = q−1
E +

∞∑
n=0

cnq
n
E

with cn ∈ Z. This power series is nothing but the classical, complex, q-expansion
of j(z), viewed p-adically. Thanks to |qE |v < 1, it converges p-adically. Note that
|jE |v > 1.

The relation between Tate's uniformization and the Néron model can also be
made explicit in the multiplicative case. It turns out that over κ′v the group of
connected components Φv is cyclic of order ordFv (qE). Note that this order is
divisible by ` if and only if ordFv (qE) ≡ 0 mod `.

Tate's uniformization has the following consequence regarding the local `-adic
and mod-` representations at v.

Proposition 3. Let E have multiplicative reduction at v. Let ηv be the quadratic
unrami�ed character of the decomposition group Gv = Gal(F v/Fv). Then:

(i) If E has split multiplicative reduction

ρE,`|Gv '
(
ε` ∗

1

)
,

while if E has non-split multiplicative reduction

ρE,`|Gv '
(
ε` ∗

1

)
⊗ ηv.

These representations are always rami�ed (i.e. their restriction to Iv is non-trivial).
(ii) If ` 6= p (the characteristic of v), ρE,`|Gv (the representation of Gv on

E(F v)[`]) always has an unrami�ed rank-1 subspace, the quotient by which is also
unrami�ed, and is unrami�ed altogether if and only if ordFv (qE) ≡ 0 mod `.

(iii) Similarly, if ` = p, ρE,p|Gv has a rank-1 subspace associated with a height
1 �nite �at group scheme (explicitly, with µp or an unrami�ed twist of µp), with
a quotient of the same type (and even unrami�ed). The representation ρE,p|Gv is
��at� (see below) if and only if ordFv (qE) ≡ 0 mod p, if and only if the class in
Ext1Gp(1, εp) represented by the ∗ is �peu rami�é� in Serre's terminology.

Remark 4. Assume, for simplicity, that E has split multiplicative reduction at v.
The splitting �eld of ρE,`|Gv (i.e. the �xed �eld of H = ker(ρE,`|Gv ) ⊂ Gv) is

Fv(µ`, q
1/`
E ). It is obtained from Fv in two steps: First, adjoining `-th roots of unity

one gets Fv(µ`) which is unrami�ed if ` 6= p and tamely rami�ed if ` = p. Then,
adjoining the `-th roots of qE one gets a Kummer extension of Fv(µ`). Unless qE
happens to be an `-th power in Fv(µ`), this is a cyclic extension of degree `.

If ` 6= p, Fv(µ`, q
1/`
E ) is rami�ed over Fv(µ`) if ordv(qE) is not divisible by `, and

is unrami�ed otherwise. When rami�ed, it is tamely rami�ed, because its degree
` 6= p.

If ` = p and ordv(qE) is not divisible by p, then Fv(µp, q
1/p
E )/Fv(µp) is evidently

rami�ed, and �très rami�é� in Serre's terminology. If ` = p and ordv(qE) is divisible
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by p then Fv(µp, q
1/p
E )/Fv(µp) is �peu rami�é� (obtained by extracting the pth root

of a unit). It may even happen to be unrami�ed. In both the peu/très rami�é
cases, if Fv(µp, q

1/p
E )/Fv(µp) is rami�ed, it is now wildly rami�ed, simply because

its degree is p.

We make another remark concerning elliptic curves with non-integral j-invariant.

Remark 5. Suppose |jE |v > 1. Then over a quadratic extension L/Fv the elliptic
curve E acquires split multiplicative reduction. If L/Fv is unrami�ed, then E
already has multiplicative (possibly non-split) reduction over Fv. However, if L has
to be taken rami�ed, E has additive, potentially multiplicative, reduction at v. On
the other hand, when |jE | ≤ 1, E has either good or additive potentially good
reduction at v.

1.1.4. The L-function of E/F . The v-th Euler factor of the L-function of E/F
is the evaluation at X = q−sv of det(1 − σvX|(V`E)Iv ) (` 6= p = char(v)). In
other words, we consider the maximal unrami�ed quotient of the rational `-adic
Tate module of E, the (arithmetic) Frobenius σv ∈ Gv/Iv, and the �characteristic
polynomial� det(1−σvX|(V`E)Iv ). This polynomial, of degree ≤ 2, is independent
of ` and has Z-coe�cients, so we can view it over C and substitute X = q−sv . By
the discussion in the previous sections, it comes out to be:

• 1− avq−sv + q1−2s
v if v is good

• 1− q−sv if E has split multiplicative reduction at v
• 1 + q−sv if E has non-split multiplicative reduction at v
• 1 if E has additive reduction at v.

Denoting the inverse of the Euler factor at v by Lv(E, s) we get, as a result of
Hasse's bound, that

L(E, s) =
∏
v

Lv(E, s)

converges absolutely in Re(s) > 3/2.

1.1.5. The Hasse-Weil conjecture. In general, it is expected, but not known, that
L(E, s) admits an analytic continuation to all s, and satis�es a functional equation
w.r.t. s 7→ 2 − s. This is called the Hasse-Weil conjecture, and without further
resriction on F it is known only if E has complex multiplication.

As a result of Wiles' modularity theorem and its generalization, the Hasse-Weil
conjecture is known for any E when F = Q. It is also known today (2023) whenever
F is real quadratic or totally real cubic, and in many more cases when F is totally
real or CM.

Weil's Converse Theorem [We67] said that if L(E, s) and su�ciently many qua-
dratic twists of it satis�ed the expected analytic continuation and functional equa-
tion, then E was in fact modular. In the early days, this was the strongest evidence
in support of the Shimura-Taniyama-Weil conjecture, because the good analytic
properties of L-series such as L(E, s) or its quadratic twists, were widely believed
to be true.

1.1.6. The conductor of E. Let F = Q for simplicity and consider a prime p ∈
Sbad(E). The exponent of the conductor of E at p is an integer fp(E/Q) ≥ 1 that
measures how much the `-adic representation ρE,` (for ` 6= p) is rami�ed at p.
While the general de�nition of the (Artin) conductor of a representation is subtle,
and involves the higher rami�cation groups at p, for elliptic curves we have:
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• fp(E/Q) = 1 if and only if E has multiplicative reduction at p (in which
case the `-adic representation is tamely rami�ed)

• fp(E/Q) ≥ 2 if and only if E has additive reduction at p, and in this case
fp(E/Q) = 2 if p 6= 2, 3.

The integer

NE =
∏

p∈Sbad(E)

pfp(E/Q)

is called the conductor of E/Q. It follows from our discussion that E is semistable
if and only if its conductor is square-free.

1.2. Modular forms (week 2).

1.2.1. Galois representations attached to Hecke eigenforms. Let f ∈ Sk(N,χ). This
means that χ : (Z/NZ)× → C× is a Dirichlet character, and f : H → C is a cusp
form of weight k, level Γ1(N) and nebentypus χ.

Assume that f is a normalized eigenform of all the Hecke operators. This means
that for every n ≥ 1, Tnf = an · f and if

f(z) =

∞∑
n=1

an(f)qn,

q = e2πiz, then a1(f) = 1. It is then known that an = an(f). It is also known that
E = Q(an(f)) is a �nite extension of Q, and the an(f) ∈ OE . Let ` be a rational
prime, and λ a prime of E lying above `. Let Eλ be the completion of E at λ.

Theorem 6 (Eichler, Shimura, Deligne, Deligne-Serre). There exists a unique-
up-to-conjugation Galois representation ρf,λ : GQ → GL2(Eλ) which is unrami�ed
outside the primes dividing N`, such that for every prime p - N`, if σp is a Frobenius
automorphism at p, then

det(XI − ρf,λ(σp)) = X2 − ap(f)X + χ(p)pk−1.

Remark 7. (i) Note that while ρf,λ depended on the choice of λ, the characteristic
polynomial of ρf,λ(σp) did not. This is similar to what we saw for the `-adic Galois
representation associated with an elliptic curve.

(ii) If k = 2, χ = 1 and E = Q, so the an(f) ∈ Z and λ = `, we recover character-
istic polynomials of the very same shape as those associated with an elliptic curve.
This is not a coincidence. In fact, it is not di�cult to see from the construction of
ρf,λ that in this case ρf,λ is a ρE,` for some elliptic curve E de�ned over Q, with
good reduction at any prime p - N . If f is a newform of level N (an assumption
that we can always make since we are interested only in the Hecke eigenvalues away
from N), then the conductor NE of the elliptic curve E associated to f is equal
to N , to which one refers sometimes as the analytic conductor of E. The equality
N = NE between the analytic and the arithmetic conductors is due to Carayol.

The modularity theorem is a converse to this statement: If E is an elliptic curve
over Q, then ρE,` = ρf,` for a rational Hecke-eigenform f of weight 2 and level
Γ0(N).

(iii) The theorem follows from the work of Eichler and Shimura when k = 2
[Sh58], was extended by Deligne to all k ≥ 2 [De71] and �nally, by Deligne and
Serre [De-Se74] to weight k = 1.
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In weight 2, the construction of ρf,λ can be summarized as follows. Without loss
of generality, assume that f is a newform of weight N . A construction of Shimura
associates to f an abelian variety Af of dimension [E : Q], which is a quotient of
the Jacobian J1(N) of the modular curve X1(N). Via the canonical isomorphisms

S2(Γ1(N)) ' H0(X1(N),Ω1) ' H0(J1(N),Ω1) ' T ∗J1(N)|0,
the cotangent space to Af at 0 is identi�ed with the subspace of S2(Γ1(N)) '
T ∗J1(N)|0 spanned by {fσ|σ ∈ Emb(E,C)}. The abelian variety Af has endomor-
phisms by the subring O = Z[an(f)] ⊂ E. Its rational Tate module

V`(Af ) = E ⊗O lim
←
Af (Q)[`r]

is free of rank 2 over E` = Q` ⊗Q E. Projecting to Eλ we get the desired repre-
sentation ρf,λ. It is easily seen to be unrami�ed outside N`. Let σp be a Frobenius
automorphism at p. The key relation, that for p - N` we have

Tr(ρf,λ(σp)) = ap(f),

results from the Eichler-Shimura congruence relation

Tp ≡ Πp + Sp ◦Πt
p

in the ring of correspondences on X1(N)/Fp . Here Πp is the relative Frobenius of
the curve, Tp the �p-th Hecke operator�, i.e. the Hecke operator associated with

the matrix
(
p

1

)
, and Sp the �p-th diamond operator�, the Hecke operator

associated with the matrix
(
p

p

)
. It should be remarked that the origin of

this fundamental relation can be traced back to Kronecker's congruence relation

Φp(X, j) ≡ (Xp − j)(X − jp) mod p.

Here Φp(X, j), Kronecker's polynomial, is a primitive polynomial in Z[X, j], which,
viewd as a polynomial in C(j)[X], gives the monic irreducible polynomial of the
function j(pz) over the �eld C(j(z)).

The construction of the representations ρf,λ for weight k ≥ 2, which brought
with it the proof of Ramanujan's conjecture, was one of the earliest successes of
étale cohomology. The extension to k = 1, by Deligne and Serre, was one of the
earliest instances of the method of p-adic deformations of Galois representations.

1.2.2. Modular elliptic curves. Let E be an elliptic curve over Q and NE its con-
ductor.

De�nition 8. E is said to be modular if there exists an integer N ≥ 1, and a
rational3 normalized Hecke eigenform f ∈ S2(N, 1) such that for some prime `,
ρE,` ' ρf,`.

Tate's isogeny conjecture, proved by Serre for elliptic curves with at least one
prime of bad multiplicative reduction, and by Faltings in general, implies that two
elliptic curves E and E′ over Q are isogenous over Q if and only if ρE,` ' ρE′,`.
This has the following consequence.

Proposition 9. For an elliptic curve E over Q, the following are equivalent:
(1) E is modular.

3Meaning an(f) ∈ Q.
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(2) There exists an integer N ≥ 1, and a rational normalized Hecke eigenform
f ∈ S2(N, 1) such that for any prime `, ρE,` ' ρf,`.

(3) E is a quotient of J0(N).
(4) There is a non-zero homomorphism E → J0(N).
(5) There is a non-constant morphism X0(N)→ E.

Since the conductor of an elliptic curve is an isogeny-invariant, if the f guaranteed
by the de�nition is new of level N, then N = NE .

Since a semisimple 2-dimensional continuous `-adic representation is uniquely
determined by the traces of its values on a dense set of Galois automorphisms,
and since, by �ebotarev's Theorem, the Frobenii of unrami�ed primes are dense,
Condition (2) is equivalent to

Tr(ρE,`(σp)) = ap(f)

for all p - N`.
Condition (5) is sometimes replaced by the apparently weaker condition that

there exists a non-constant holomorphic map X0(N)(C) → E(C). That this im-
plies (5) follows from the fact that if E is modular, so is every quadratic twist of
E. Indeed, let D be a fundamental discriminant and ε =

(
D
·
)
the Legendre symbol

modulo D. Then, if f =
∑∞
n=1 anq

n is a weight 2, rational normalized eigenform
of level N, so is fε =

∑∞
n=1 ε(n)anq

n, of level ND2. It should be rather surpris-
ing, to anybody encountering the conjecture for the �rst time, that a condition
on the existence of a map between Riemann surfaces has implications to Galois
representations.

Conjecture 10 (Shimura-Taniyama-Weil). Every elliptic curve over Q is modular.

As was explained in the introduction, [T-W95, W95] proved it for semistable
curves, and the proof was completed in [B-C-D-T].

1.3. An overview of the proof of Wiles' Modularity Theorem (week 3).
Let E be a semistable elliptic curve de�ned over Q. Wiles' starting point is that for
` = 3 the residual representation ρE,` is modular, in the sense that there exists a
normalized cuspidal eigenform f (of weight 2 and some level Γ1(N)) and a prime λ|`
of Q(an(f)), with ρf,λ ' ρE,` over F

alg
` . This step relies on the fact that GL2(F3)

is solvable (indeed, PGL2(F3) ' S4). By base-change theorems of Langlands and
Tunnell, con�rming the Artin conjecture in this case, it follows that one can �nd
f of weight 1 with ρf,λ ' ρE,`. A lemma on congruences between modular forms
(the Deligne-Serre Lemma) allows to shift to weight 2.

Assume now that for some prime ` ≥ 3 we know (a) that the global residual
representation ρ = ρE,` is irreducible (b) that ρ is modular in the above sense.
Note that since ρ is odd (a) implies that it is in fact absolutely irreducible. Let
κ be a �nite �eld over which we realize ρ, and k = κalg its algebraic closure. Let
W = W (k) be the Witt vectors over k. Following Mazur, one would like to construct
a universal deformation ring R = R(ρ) for ρ. This should be a complete local
noetherian W -algebra with residue �eld R/mR = k, equipped with a �universal�
Galois representation

ρuniv : G = Gal(Q/Q)→ GL2(R)

such that for any lifting (�deformation�) ρ : G → GL2(A) of ρ to a complete local
noetherian ring A with residue �eld k, there exists a unique homomorphism R→ A
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�bringing ρuniv to ρ�, and commuting with the identi�cations of both reduction
with ρ. For example, there should be such a specialization yielding ρE,`.

Now, without further restrictions on the deformations, such an R need not be
noetherian, or would be way too large. One would like to impose as many re-
strictions on the deformations as possible, cutting the size of R, but at the same
time accomodating ρE,` as a possible deformation. For example, the deformations
should factor through GS , the Galois group of the maximal extension of Q which is
unrami�ed outside S, where S is a �nite set of primes containing the primes of bad
reduction of E and the prime `. Their determinant should be the (W -valued) cyclo-
tomic character. And they should satisfy �local conditions� on their restrictions to
the decomposition groups Gp at the primes p ∈ S where they are allowed to ramify.
At the primes in Sbad(E) these local conditions should be tailored according to
the type of bad reduction E has, and here the semistability assumption becomes
essential. The most di�cult analysis of the local conditions is at the prime p = `,
where one has to analyze ��at� deformations and invoke some results from p-adic
Hodge theory, such as Fontaine-La�aille theory. We emphasize that it is important,
for technical reasons explained later, to allow S to be larger than Sbad(E) ∪ {`}.

The assumption that ρ was modular yields a certain (complete, local, noetherian)
quotient T = T(ρ) of R, which captures all the deformations of ρ, subject to the set
of local conditions, which are �modular�. (We have suppressed in the notation, both
of R and of T, the set of local conditions, which we shall denote for brevity L.) This
T is a completed Hecke algebra localized at a maximal ideal m; it is generated over
W by �Hecke operators� {Tp, Sp| (p,N) = 1}, for an integer N which is divisible
only by the primes in S and can be calculated from the set of local conditions L. It
is obtained by gluing together Hecke algebras acting on weight 2, level N , cuspidal
eigenforms g, for which ρg,λ ' ρ. Among these g lies our original eigenform f .
Thanks to the irreducibility of ρ, T is �non-Eisenstein�, which implies that it is
�nite and �at over W . Moreover, it has been known for some time (by Mazur
and Tilouine), that the singularities of T are mild: it tends to be a Gorenstein
ring, and in good cases even a local complete intersection (which, for �nite �at W -
algebras, is stronger than Gorenstein). Furthermore, not only the Hecke algebras
glue. By a lemma of Carayol, the representations ρg,λ also glue to give a big Galois
representation

ρm : GS → GL2(T)

lifting ρ.
Since ρm is of type L, we get a surjective homomorphism

R� T

of �nite �at W -algebras, bringing ρuniv to ρm. Our original ρE,` is obtained (when
we extend scalars from Z` to W ) by specializing ρuniv via a homomorphism π :
R→W , while the specializations that factor through the homomorphism to T are,
by construction, the modular ones. We �only� need to show that R = T.

Deformation rings are in general pretty elusive. Remember that both R and T
depended on the set of primes S and the set of local conditions L at each p ∈ S.
One of Wiles' key observations was that while R is di�cult to control, when S
is enriched by a carefully selected �nite set of auxiliary primes q (the �Taylor-
Wiles primes�), and the local conditions at these q are appropriately formulated,
R becomes gradually �smoother� and more manageable. This is done in a way
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that does not increase the number of generators of R as a W -algebra, yet increases
its �depth�, giving more and more room for the diamond operators (the Hecke
operators Sq) at the auxiliary prime q. Since these operators appear also in T, one
is eventually lead to a proof of a theorem of the type R∞ ' T∞, not for R and T
themselves, but for suitable large limits of them (when we keep changing S and L).
Then one descends back to the desired equality R = T.

This method, called the �Taylor-Wiles patching�, requires (a) comparing the size
of R and T (b) controlling, for either R or T, the way they change when we change
S and L. Here enter into the picture tools from Galois cohomology, p-adic Hodge
theory and commutative algebra.

One important invariant of a complete noetherian local W -algebra R is its re-
duced cotangent space

mR/(`,m
2
R).

For the universal deformation ring R = Runiv this is identi�ed with the k-dual of
the Galois cohomology group

H1
L(GS , Ad(ρ))

(take Ad0(ρ) if the determinant is �xed), where the subscript L refers to the fact
that we only look at cohomology classes satisfying various local conditions. This is
a generalized �Selmer group� and its study occupies a great deal of the proof.

Wiles attaches two invariants ΦA and ηA to a complete local noetherian ring A
like R or T, which is equipped in addition with a homomorphism πA : A→W, like
the homomorphism yielding ρE,` (when A = R). Let pA = ker(πA), a prime ideal
⊂ mA. The �rst invariant is the cotangent space �at the point Spec(W )→ Spec(A)�,

ΦA = pA/p
2
A,

which for A = Runiv is again dual to some Selmer group. The second is

ηA = πA(AnnApA).

(Following [D-D-T], we shall give some examples of complete local noetherian A's
where these two invariants can be calculated easily, to get some feeling for them.)
Certain inequalities between the lengths of these invariants and delicate commu-
tative algebra relating them to the singularity of A, give a numerical criterion for
R∞ ' T∞, which Taylor and Wiles are able to verify (the �rst numerical criterion).
This commutative algebra has seen, since the publication of [T-W95], various im-
provements. In particular, Rubin has given a version that does not require a passge
to the in�nite limit R∞ ' T∞, but works �at a �nite level� with a suitable large,
but �xed, set of auxilary primes. We might follow Rubin's proof at this stage.

The proof of R = T breaks into two cases: at �rst, one starts (prior to introduc-
ing the auxiliary Taylor-Wiles primes q) with deformations ρ that are minimally
rami�ed. Roughly speaking, ρ involves as little rami�cation as is forced on us by
ρ. The Taylor-Wiles patching method works best in this set-up, thanks to some
numerical coincidences for which I have no a-priori explanation. They just come
out of the Galois cohomology computations and may be regarded as a case of good
luck (or Divine Providence, depending on one's belief). Getting around these nu-
merical coincidences was, to my understanding, one of the major stumbling blocks
in proving higher cases of modularity. The generalization to a non-minimal de-
formation problem (needed to treat cases where there is a prime p where ρE,` is
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rami�ed although ρE,` is unrami�ed), requires a separate set of tools, and a second
numerical criterion.

Finally, the whole approach via deformation theory stipulates that ρE,3, known to
be modular thanks to Langlands-Tunnell, is irreducible. When this is not the case,
an ingenious trick (the 3-5 trick) replaces ρE,3 by ρE,5. Fortunately, for semistable
elliptic curves over Q, either ρE,3 or ρE,5 must be irreducible.

2. Deformation theory and Galois cohomology

This section develops background in Galois representations needed in the proof
of the Modularity Theorem. The ultimate goal is to understand the geometry
of a certain universal deformation ring R of a residual representation ρ : GS =
Gal(QS/Q) → GL2(κ), where κ is a �nite �eld. The prototypical example is, of
course, ρ = ρE,`. Here S is a �nite set of primes containing ∞ and ` = char(κ),
and QS is the maximal extension of Q which is unrami�ed outside S. Following
Wiles, we shall study deformations subject to various local conditions at the primes
in S, the most subtle ones at the prime ` = char(κ). In addition, it is convenient
(although not really necessary) to �x the determinant of all the deformations to
be equal to the cyclotomic character ε`, assuming of course that det(ρ) = ε`. The
exact local conditions and the corresponding universal deformation rings will be
discussed later.

Besides Mazur's theory of deformations of Galois representations we shall need
several deep results from Galois cohomology of number �elds. Galois cohomology
enters the picture when we try to quantify how R, or rather, its cotangent space,
change when we change the local conditions, or enlarge the set S. We therefore
start by assembling a quite impressive toolkit from Galois cohomology.

Deformation rings are di�cult to analyze. One of Wiles' insights was that the
set of local conditions L has a �dual� set of local conditions L∗. While it is di�cult
to analyze the deformations subject to each of these sets of conditions separately,
it is possible to say something about their �ratio�, and this turns out to be enough,
thanks to a careful choice of the set of auxiliary primes by which we enlarge S.4

Modular forms, Hecke algebras or geometry will not show up in this section or
the next one. The discussion will be purely algebraic, relying on the arithmetic of
number �elds, and on Class Field Theory. General good references are the papers
[Co, Maz, Wa].

2.1. Galois cohomology of number �elds (week 3, continued).

2.1.1. Generalities. References are [Mi, N-S-W]. We consider a pro�nite group G
and a discrete G-module M. Cohomology groups are based on continuous cocycles,
so

Hi(G,M) = lim
→
Hi(G/N,MN )

where the limit is over open normal subgroup N in G.

4The reader may compare the use of L and L∗ to the way the Riemann-Roch formula is applied
in algebraic geometry. There, the dimension `(D) of a linear system |D| is di�cult to determine,
but the di�erence `(D)− `(D∗) where D∗ = K −D is easy to compute by an Euler characteristic
formula. When `(D∗) = 0, this yields a precise formula for `(D). Although this analogy is only
illustrative, here too, the relation between the L-Selmer group and the L∗-Selmer group results
from an Euler characteristic formula in Galois cohomology.
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For a �nite group G we let Ĥi(G,M) be Tate's cohomology group. For i > 0
they agree with Hi(G,M), but

Ĥ0(G,M) = MG/NGM

where NG =
∑
σ∈G σ. Note that this only makes sense if G is �nite.

Besides the usual tools (long exact sequence, cup product etc.) we shall make
use of the In�ation-Restriction exact sequence. It is the exact sequence of low terms
in the Hochschild-Serre spectral sequence, and runs as follows. Let H be a closed
normal subgroup of G, and M a G-module. Then there is a 5-term exact sequence

0→ H1(G/H,MH)
Inf→ H1(G,M)

Res→ H1(H,M)G/H →

→ H2(G/H,MH)
Inf→ H2(G,M).

Example 11. If Ip is the inertia subgroup of a decomposition group Gp then

H1(Gp/Ip,M
Ip) = ker(H1(Gp,M)→ H1(Ip,M)).

Since Gp/Ip is procyclic, generated by the Frobenius σp, for any module X we have
H1(Gp/Ip, X) = X/(σp − 1)X. We call

(2.1) H1(Gp/Ip,M
Ip) = M Ip/(σp − 1)M Ip

the unrami�ed classes in H1(Gp,M).

Corollary 12. Let M be �nite. Then

#H1(Gp/Ip,M
Ip) = #H0(Gp,M).

Proof. This follows from the exact sequence

0→MGp →M Ip
σp−1→ M Ip →M Ip/(σp − 1)M Ip → 0

and (2.1). �

2.1.2. Local Tate duality. Let Gp = Gal(Qp/Qp) and µ ⊂ Q×p the group of roots of
unity. If M is a �nite Gp-module we let

M∗ = Hom(M,µ)

with the Galois action σ(h)(x) = σ(h(σ−1(x)) (h ∈ M∗, x ∈ M). For any �nite
abelian group A we let

A∨ = Hom(A,Q/Z)

be its Pontryagin dual.

Theorem 13. Let M be a �nite Gp-module.
(i) The groups Hi(Gp,M) are �nite and vanish for i ≥ 3 (the cohomological

dimension of Gp is 2).
(ii) For i = 0, 1, 2 cup product induces a non-degenerate pairing

Hi(Gp,M)×H2−i(Gp,M
∗)→ H2(Gp, µ) = Br(Qp) = Q/Z.

Therefore
Hi(Gp,M)∨ ' H2−i(Gp,M

∗).
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(iii) If (p,#M) = 1 then H1(Gp/Ip,M
Ip) and H1(Gp/Ip,M

∗Ip) are exact anni-
hilators of each other under the pairing H1(Gp,M)×H1(Gp,M

∗)→ Q/Z. In this
case therefore

H1(Gp/Ip,M
Ip)∨ ' ker(H1(Ip,M

∗)Gp/Ip → H2(Gp/Ip,M
∗Ip)).

The in�nite prime deserves special attention, and calls for Tate's cohomology.

Proposition 14. Let M be a GR = {1, c} module of �nite cardinality. Then
#Ĥi(GR,M) are �nite. For i = 0, 1, 2 cup product induces a non-degenerate pairing

Ĥi(GR,M)× Ĥ2−i(GR,M
∗)→ Ĥ2(GR, µ) = Br(R) =

1

2
Z/Z.

Note that these cohomology groups all vanish if M has no 2-part.

2.1.3. Local Euler characteristic. Let M be a �nite Gp-module. Then

#H1(Gp,M)

#H0(Gp,M)#H2(Gp,M)
= pvp(#M).

Taken together, Tate's local duality and the local Euler characteristic reduce the
computation of #Hi(Gp,M) for all i to the computation of #H0(Gp,M) and
#H0(Gp,M

∗), which are much easier to calculate in most cases.

2.1.4. Global Poitou-Tate duality and the 9-term exact sequence. Let M be a �nite
GQ-module. We turn to the cohomology of GS = Gal(QS/Q) where S is a �nite set
of primes, containing ∞, the primes ramifying in M and the primes dividing #M.
We may therefore regard M and M∗ as GS-modules. Note that since S contains
also the primes dividing #M = n, M∗ = Hom(M,µn) is also unrami�ed outside
S.

The classes of H1(GQ,M) which are unrami�ed outside S are, by de�nition, the
classes in

H1(GS ,M) = ker(H1(GQ,M)→
∏
p/∈S

H1(Ip,M)).

The equality follows from H1(Gal(Q/QS),M) = Hom(Gal(Q/QS),M) and simi-
larly, for p /∈ S,H1(Ip,M) = Hom(Ip,M). Since the group generated inGal(Q/QS)

by Ip for all p /∈ S is dense, a homomorphism from Gal(Q/QS) to M, all of whose
restrtictions to Ip for p /∈ S vanish, is 0.

Lemma 15. The group H1(GS ,M) is �nite.

Proof. Let K be a �nite Galois extension of Q contained in QS such that GK �xes
M. In�ation-restriction gives an exact sequence

0→ H1(Gal(K/Q),M)→ H1(GS ,M)→ Hom(Gal(QS/K),M).

By Class Field Theory, or by Hermite-Minkowski, the last group is �nite. The �rst
group is clearly �nite. It follows that so is the group in the middle. �

Consider the localization map

αi : Hi(GS ,M)→ Ĥi(GR,M)×
∏
p∈Sf

Hi(Gp,M).
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Using the same map for M∗ in degree 2 − i and then dualizing we get, by Tate's
local duality, the map

βi = βi,M = α∨2−i,M∗ : Ĥi(GR,M)×
∏
p∈Sf

Hi(Gp,M)→ H2−i(GS ,M
∗)∨.

Proposition 16. α0 is injective, β2 is surjective, and for i = 0, 1, 2 we have
Im(αi) = ker(βi).

There is also a global duality resulting from Global Class Field Theory that we
proceed to describe. For any Q ⊂ K ⊂ QS , [K : Q] <∞ let

IK,S =
∏
v∈SK

K×v , CK,S = IK,S/O×K,S

(OK,S is the ring of S-integers in K). Let O×S , IS and CS denote the direct limits
over K ⊂ QS . We then have a short exact sequence of continuous GS-modules

(2.2) 0→ O×S → IS → CS → 0.

We remark that CK,S is not the Gal(QS/K)-invariants of CS , as is the case (by
Hilbert's theorem 90) for the classical, unrestricted, sequence obtained by taking
the direct limit of 0 → K× → IK → CK → 0. Galois cohomology of S-units can
be tricky.

For any �nite GS-module M such that S contains the primes p dividing #M,
M∗ = Hom(M,O×S ). Consider the short exact sequence gotten from (2.2) by
Hom(M,−) and apply cohomology. We get an exact sequence

H0(GS , Hom(M,CS))→ H1(GS ,M
∗)

α1→
∏
v∈S

H1(Gv,M
∗)

(where we identi�ed H1(GS , Hom(M, IS)) with
∏
v∈S H

1(Gv,M
∗), in which there

is only one decomposition group for each v ∈ S, by Shapiro's lemma).
For i = 1, 2 de�ne Øi(GS ,M) = ker(αi). For example, for i = 1 these are the

cohomology classes that are unrami�ed outside S and trivial at S. From the long
exact sequence associated with (2.2) we obtain a surjection

H0(GS , Hom(M,CS))�Ø1(GS ,M
∗),

whose kernel is the image of

H0(GS , Hom(M, IS)) '
∏
v∈S

H0(Gv,M
∗)

in H0(GS , Hom(M,CS)), again by Shapiro's lemma.
By de�nition, we also have an injection

Ø
2(GS ,M) ↪→ H2(GS ,M)

and a pairing

H0(GS , Hom(M,CS)) × H2(GS ,M)
∪→ H2(GS , CS) ' 1

#GS
Z/Z ⊂ Q/Z.

� � ↗
Ø

1(GS ,M
∗) × Ø

2(GS ,M)

(Here #GS is a pro�nite number and the last isomorphism is by the theory of class
formations in CFT). By the compatibility between the local and global pairings,
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the image of H0(GS , Hom(M, IS)) '
∏
v∈S H

0(Gv,M
∗) in H0(GS , Hom(M,CS))

annihilatesØ2(GS ,M) so the above pairing induces a pairing

(2.3) Ø
1(GS ,M

∗)×Ø2(GS ,M)→ Q/Z.

Theorem 17 (Poitou-Tate duality). The pairing (2.3) is a perfect pairing between
�nite abelian groups.

This is the hardest part of all the duality theorems. Combining Proposition 16
and Theorem 17 we get the following.

Corollary 18 (9-term exact sequence). Let S be a �nite set of primes, and M a
�nite GS-module. Assume that S contains the primes dividing #M and ∞. Then
there is an exact sequence

0→ H0(GS ,M)
α0→
∏
v∈S

Ĥ0(Gv,M)
β0→ H2(GS ,M

∗)∨ →

→ H1(GS ,M)
α1→
∏
v∈S

H1(Gv,M)
β1→ H1(GS ,M

∗)∨ →

→ H2(GS ,M)
α2→
∏
v∈S

H2(Gv,M)
β2→ H0(GS ,M

∗)∨ → 0.

Here the unmarked arrows between the lines are obtained from the identi�cations

coker(βi) ' ker(α2−i)
∨

and the perfect pairings of Theorem 17.

Proof. Exactness at the middle of each row of the diagram follows from Proposition
16. Exactness at the �rst and last terms is elementary. Exactness at the 3rd, 4th,
6th and 7th terms follows from Theorem 17. �

2.1.5. The global Euler characteristic formula.

Theorem 19. LetM be a �nite GS-module and assume that S contains the in�nite
prime and all the primes dividing #M. Then

χ(GS ,M) =
#H0(GS ,M)#H2(GS ,M)

#H1(GS ,M)
=

#H0(GR,M)

#M
.

The proof of both the local and global Euler characteristic formulae go via reduc-
tion ot the case ofM = µp. For this one uses Artin's theorem on induced characters.
The case of µp is treated by Kummer theory and Class Field Theory. For full details
see the references cited above.

2.2. Deformation theory (week 4).

2.2.1. Generalities on deformations. Let G be a pro�nite group. We shall need
some �niteness assumption on G. The simplest one is to assume that G is topolog-
ically �nitely generated. Unfortunately, this is not known for GS = Gal(QS/Q),
our main example. Shafarevich conjectured this was the case many years ago, but
not all the experts agree, so this shouldn't be stated even as a conjecture. Mazur
uses the weaker assumption of `-�niteness: For every open H ⊂ G

dimHom(H,F`) <∞.
Equivalenly, the maximal pro-` quotient of H is topologically �nitely generated.
This is known to hold for GS by Class Field Theory. It is possible to develop
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deformation theory without this assumption on G, but the deformation rings won't
be noetherian in general, and since in our applications the assumption holds, we
impose it.

Let E be a �nite extension of Q`, O its ring of integers, λ its maximal ideal and
k = O/λ.

Let CO be the category of local complete noetherian O-algebras R with residue
�eld

R/mR = k.

Morphisms in CO are local homomorphisms of O-algebras. Every member of CO is
of the form

R = O[[X1, . . . , Xn]]/(f1, . . . , fm)

where fi ∈ (λ,X1, . . . , Xn). If E′ is a �nite extension of E and O′ is its ring of
integers, then R 7→ O′⊗OR is a functor from CO to CO′ (k may change to k′). If R
happens to be �nite and �at over O, then possibly after such a base change, it will
admit a section π : R � O. A ring R ∈ CO will be called a coe�cient ring, and a
pair (R, π) as above a pointed coe�cient ring.

De�nition 20. Let ρ : G→ GLd(k) be a continuous representation. A lifting (or
a framed deformation) of ρ to R ∈ CO is a continuous homomorphism

ρ : G→ GLd(R)

whose reduction modulo mR is ρ. Two liftings ρ1 and ρ2 are strictly equivalent if
there exists a T ∈ GLd(R), T ≡ I mod mR, such that ρ2(σ) = Tρ1(σ)T−1. A
deformation is a strict equivalence class of framed deformations.

Example 21. Suppose ρ = ρf,λ is the residual representation associated to some
cuspidal Hecke newform f ∈ Sk(Γ1(N), χ) and a prime λ of a �nite extension
F ⊃ Q(an(f)). Here k = OF /λ, E = Fλ and O = OF,λ. Suppose g ∈ Sk(Γ1(N), χ)
is another cuspidal Hecke newform in the same space and F ⊃ Q(an(g)) as well.
Suppose the q-expansions of f and g are congruent modulo λ. Then, written in an
appropriate basis, ρg,λ : GS → GL2(O) is a deformation of ρ.

We de�ne the framed and unframed deformation functors as follows.

De�nition 22. The framed deformation functor

D�ρ : CO  Sets

is the (covariant) functor associating to R ∈ CO the set of framed deformations
of ρ to R. The deformation functor is the functor Dρ associating to R the set of
deformations of ρ to R.

We remark that D�ρ is continuous, in the sense D�ρ (R) = lim←D�ρ (R/mnR), so
D�ρ is determined by its restriction to the full subcategory ArO of CO of Artinian
objects. The same holds for Dρ.

Recall that a (covariant) functor F from CO to Sets is representable if there exists
an object Runiv ∈ CO and a natural equivalence of functors

F(−) ' HomCO (Runiv,−).

The element ρuniv ∈ F(Runiv) corresponding to the identity morphism of Runiv

is called then the universal object (in our case, universal framed deformation or
universal deformation). It is characterized by the property that for every A ∈ CO
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and for any ρ ∈ F(A) there exists a unique homomorphism Runiv → A �bringing
ρuniv to ρ�.

If F is representable, then the pair (Runiv, ρuniv) representing it is unique up to
a unique isomorphism.

2.2.2. Representability of the deformation functors.

Theorem 23. Suppose that G satis�es the condition of `-�niteness. Then D�ρ is
representable.

Proof. (Easy) Let H = ker(ρ) and N / H the closed normal subgroup such that
H/N is the maximal pro-` quotient of H (N is the intersection of all the closed
normal subgroups U such that H/U is pro-`; since H is pro�nite, we may even let U
run over open normal subgroups with this property). The closed group N is normal
in G as well, and G/N is topologically �nitely generated, because H/N is t.f.g., and
G/H is �nite. Let γ1, . . . , γg ∈ G/N be topological generators. LetW = W (k) ⊂ O
and let [ρ(γi)] ∈ GLd(W ) be Teichmüller lifts of ρ(γi) (lift every entry). Note that
if ρ ∈ D�ρ (R) then N ⊂ ker(ρ), because ρ(H) ⊂ ker(GLd(R) → GLd(k)), which is

pro-`. Thus ρ factors through G/N . We may therefore de�ne elements x(i)
α,β ∈ mR

by
ρ(γi) = [ρ(γi)](Id + (x

(i)
α,β)).

Let X(i)
α,β be commuting variables. Let Fg be the free pro�nite group on the

symbols {γi}gi=1 and de�ne

r : Fg → GLd(O[[X
(i)
α,β ]])

by the above formula, with the gd2 variables X(i)
α,β replacing the x(i)

α,β . Let Ñ / Fg

be the kernel of the canonical surjection Fg � G/N , so that Fg/Ñ = G/N . Let I
be the ideal of O[[X

(i)
α,β ]] generated by the entries of r(σ)− Id for all σ ∈ Ñ .

It is easy to see that Runiv = O[[X
(i)
α,β ]]/I and ρuniv = image of r, are the

universal objects representing D�ρ . Indeed, as we have seen, any ρ ∈ D
�

ρ (R) factors

through Fg/Ñ = G/N, and there are unique x(i)
α,β ∈ mR such that

ρ(γi) = [ρ(γi)](Id + (x
(i)
α,β)).

It follows that ρ is obtained from ρuniv by the unique specialization Runiv → R

taking X(i)
α,β to x(i)

α,β . �

The representability of Dρ is more challenging. There are several ways to prove
the following theorem.

Theorem 24. Assume, in addition, that Endk[G](ρ) = k (e.g. that ρ is absolutely
irreducible). Then Dρ is representable.

(i) Kisin proves the theorem by observing that under the given assumptions, the
formal group P̂GLd acts freely on the functor D�ρ and the quotient is Dρ. He then
applies some results from SGA to deduce the theorem.

(ii) Faltings gave a direct proof in the spirit of the proof of the representability of
the framed deformations functor. The problem now is the ambiguity in the model
of ρ, since it is only de�ned up to strict equivalence. To overcome it, Faltings proved
that any deformation [ρ] of ρ has a unique representative ρ : G → GLd(R) which
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is �well-placed� in the sense that the vector vρ = (ρ(γi) − [ρ(γi)])
g
i=1 lies in V (R)

for a certain �xed O-submodule V ⊂Mg
d,O. See Theorem 2.28 and Lemma 2.29 in

[D-D-T] for details.
(iii) The original approach of Mazur and Ramakrishna [Ra, Maz] was to verify

the four conditions given by Schlessinger for representability. We explain these
conditions below. Let k[ε] be the ring of dual numbers over k.

Suppose that F : CO → Sets is a covariant continuous functor. If F is repre-
sentable by R then:

(1) F(k) is a singleton, since HomCO (R, k) is a singleton.
(2) If A→ C and B → C are arrows in ArO then

F(A×C B) = HomCO (R,A×C B)

= HomCO (R,A)×HomCO (R,C) HomCO (R,B) = F(A)×F(C) F(B).

(3) dimF(k[ε]) < ∞. Here F(k[ε]) is given the structure of a k-vector space
by means of the maps F([+]) and F([α]), (α ∈ k) obtained by functoriality
from the ring homomorphisms

[+] : k[ε]×k k[ε]→ k[ε], (a+ bε, a+ cε) 7→ a+ (b+ c)ε

[α] : k[ε]→ k[ε], a+ bε 7→ a+ αbε.

The reason for dimk F(k[ε]) <∞ is that if F is representable by R then

F(k[ε]) = HomCO (R, k[ε]) = Homk(mR/(m
2
R, λ), k)

and dimk mR/(m
2
R, λ) <∞ since R is noetherian.

De�nition 25. The vector space F(k[ε]) is called the tangent space of F .

Theorem 26 (Grothendieck). Conversely, if F : CO → Sets is a continuous co-
variant functor satisfying (1)− (3), then F is representable.

In his thesis, Schlessinger replaced (2) by three special cases that are easier to
check. A homomorphism A → C in ArO is called small if it is surjective, and its
kernel is principal and annihilated by mA.

Theorem 27 (Schlessinger's criteria). Let F : CO → Sets be a continuous covariant
functor satisfying:

(1) F(k) is a singleton,
(2) Consider α : A→ C, β : B → C arrows of ArO and the set map

φ : F(A×C B)→ F(A)×F(C) F(B)

induced by functoriality. Suppose that
(a) If α is small, then φ is a surjection,
(b) If A = k[ε] and C = k then φ is bijective,
(c) If A = B and α = β is small, then φ is bijective,

(3) dimk F(k[ε]) <∞.
Then F is representable.

Mazur proved the representability of Dρ by verifying Schlessinger's criteria for
the deformation functor. See [Maz, Ra]. Perhaps the least trivial is point (3), which
follows from the cohomological interpretation of the tangent space Dρ(k[ε]). We
discuss it next.
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2.2.3. The tangent space of the deformation functor. Let Adρ = Md(k) with the
adjoint action of G, i.e.

Adρ(σ)X = ρ(σ)Xρ(σ)−1.

Let Ad0ρ be the subrepresentation of trace-0 matrices.
Suppose ρ : G→ GLd(k[ε]) lifts ρ and write

ρ(σ) = (1 + εc(σ)) · ρ(σ).

Then c : G→Md(k) is continuous and satis�es

c(στ) = Adρ(σ)(c(τ)) + c(σ) = σc(τ) + c(σ)

(the cocycle condition). Thus c ∈ Z1(G,Adρ). It can be checked that the k-vector
space structures of D�ρ (k[ε]) and Z1(G,Adρ) agree. Furtheremore, changing ρ by
strict equivalence gets translated to changing c by a coboundary. Conversly, given
c ∈ Z1(G,Adρ), the above formula gives a lift to k[ε]. We get the following result,
relating the tangent spaces of the deformation functors to Galois cohomology.

Proposition 28. There is a canonical isomorphism of vector spaces

D�ρ (k[ε]) ' Z1(G,Adρ), Dρ(k[ε]) ' H1(G,Adρ).

If R represents D�ρ then D�ρ (k[ε]) = HomCO (R, k[ε]) ' Homk(mR/(m
2
R, λ), k).

Similarly for Dρ, in case it is representable.

The second assertion follows from the fact that R = O + mR, O ∩ mR = λ,
and a local homomorphism R → k[ε] lifting the identity on k is determined by its
restriction to mR, which is a k-linear map of mR/(m2

R, λ) to k. Conversely, any such
k-linear map determines a local homomorphism R→ k[ε] lifting the identity on k.

If G is `-�nite (e.g. if G = GS in the arithmetic application we have in
mind) it can be shown easily, using the in�ation-restriction exact sequence, that
H1(G,Adρ) is �nite dimensional. The cohomological interpretation of the tangent
space Dρ(k[ε]) given by the proposition implies then condition (3) in Schlessinger's
theorem. Condition (1) is automatic, and the conditions (2)(a-c) are not di�cult
to verify.

2.2.4. Relation between the framed and non-framed deformation rings. Suppose
that Endk[G](ρ) = k. Let R be the universal deformation ring representing Dρ and
R� the universal framed deformation ring representing D�ρ . Let ρ

univ and ρ�,univ

be the universal deformation / framed deformation. The strict equivalence class of
ρ�,univ is an element of Dρ(R

�), so corresponds to a canonical homomorphism

ι : R→ R�

in CO. This homomorphism is formally smooth (e.g. R� could be a power series ring
in some number of variables over R, and this would indeed be the case if R = k and
in a few other cases). Recall that being formally smooth means, in our context, that
for any B ∈ CO and I an ideal of B with I2 = 0, a framed B/I-deformation whose
strict equivalence class lifts to B, lifts to B. This is clear because a lifting to B of
the strict equivalence class of the deformation is, by de�ntion, a strict equivalence
class of liftings.

Moreover, let
T ∈ ker(GLd(R

�)→ GLd(k)).
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Then Tρ�,univT−1 is another lifting of ρ to R�, so there should be a homomor-
phism, in fact an automorphism,

θT ∈ Aut(R�)

bringing ρ�,univ to Tρ�,univT−1. As these two representations are, by de�nition,
strictly equivalent, θT ◦ ι = ι. In fact R should be the subring of R� invariant by
all such θT [??].

On the other hand, any representative ρ of ρuniv (a strict equivalence class of
representations), is an R-valued lift of ρ, so determines a homomorphism

πρ : R� → R,

bringing ρ�,univ to ρ, and it is easily checked that πρ ◦ ι = idR. Thus the choice of
ρ allows us to regard R as an R�-algebra.

Exercise. Show that πρ ◦ θT = ππρ(T )ρπρ(T )−1 .

2.2.5. Generators and relations. Suppose that Endk[G](ρ) = k and R is the ring
that represents Dρ. It can be shown then, with the aid of Nakayama's lemma, and
the computation we did of the tangent space, that R has the following structure

R ' O[[X1, . . . , Xg]]/(f1, . . . , fr)

where g = dimkH
1(G,Adρ) and r = dimkH

2(G,Adρ). See the survey of obstruc-
tion theory in [Maz], 1.6 for the emergence ofH2, or consult, more generally, chapter
6, �Elementary Deformation Theory�, in [FGA].

This implies the following inequality for the Krull-dimension

dim(R) ≥ 1 + g − r.

Mazur raised the question whether, in the number �eld case, an equality always
holds here. Fernando Gouvêa stated it as a conjecture.

Conjecture 29. (Mazur-Gouvêa) Assume G = GS is the Galois group of the
maximal unrami�ed-outside-S extension of Q, where S is a �nite set that contains
∞, `. Assume that ρ is absolutely irreducible and let R be the universal deformation
ring of ρ. Then all the irreducible components of Spec(R) have the same Krull
dimension, and equality holds

dim(R) = 1 + h1 − h2

where hi = dimkH
i(GS , Adρ).

Already the case d = 1 of this conjecture, for a general totally real �eld F
replacing Q, is equivalent to Leopoldt's conjecture. The conjecture must therefore
be very hard. In fact, in 2013 Sprang found a counterexample to the conjecture, if
GS is replaced by an arbitrary pro�nite group satisfying the `-�niteness condition.
If Gouvêa's conjecture is true, it must be because of delicate arithmetic, and not a
pure algebra result.

If Gouvêa's conjecture holds, the universal deformation ring R is a local complete
intersection, because it is �cut� in the regular local ring O[[X1, . . . , Xh1 ]] by as many
elements as its codimension. One of Wiles' achievements was to prove that a certain
(restricted, see the next section) deformation ring is a local complete intersection.
He did it, however, in a roundabout way, and only as a consequence of identifying
R with a certain Hecke algebra.
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The deformation problem is called unobstructed, when h2 = 0. Gouvêa's con-
jecture is then clearly satis�ed, and the universal deformation space is formally
smooth: it is a power series in h1 variables over O.

2.3. Some examples.

2.3.1. d = 1. When d = 1 it is possible to obtain an explicit description of the
universal deformation ring. It depends then only on G and k and not on the
character ρ. More generally, for any d Mazur shows that Runiv depends, up to a
canonical isomorphism, only on the twisted-conjugacy class of ρ.

Let Γ be the pro-` completion of Gab = G/[G,G]. By assumption, it is a �nitely
generated Z`-module. Let

ρ0 : G→W (k)× ⊂ O×

be the Teichmüller lift of the character ρ. Let R = O[[Γ]] (the Iwasawa algebra)
and consider

ρ : G→ R× = GL1(R),

de�ned by ρ(g) = ρ0(g)[g], where [−] : G � Γ ⊂ O[[Γ]]× is the canonical homo-
morphism.

Proposition 30. (R, ρ) is the universal deformation ring of ρ.

2.3.2. Global representations. We turn to d = 2. Assume that ` > 2 and G =
GS where S = {∞, `}, the Galois group of the maximal extension of Q which is
unrami�ed outside ∞ and `. This is (when S is more general), by far the most
interesting case of the abstract theory. In this case, the global Euler characteristic
formula allows us to obtain bounds on dim(R) (similar bounds can be obtained if
G = GF,S for any number �eld F and a �nite set of places S of F ). Let

ρ : GS → GL2(F`)
be absolutely irreducible. The global Euler characteristic formula yields, quite
easily, the following.

Proposition 31. In this set-up, h1 − h2 = 3 if ρ is odd, and h1 − h2 = 1 if ρ is
even.

Nigel Boston and Mazur found examples where ρ is odd, h1 = 3, h2 = 0 and as
a result the deformation problem is unobstructed, and the universal deformation
ring is formally smooth.

Let ` be a prime of the form ` = 27 + 4a3, e.g. ` = 23, 31, 59, 283, 1399. Let K
be the cubic �eld Q(x) where x is a root of x3 + ax + 1 = 0. Its discriminant is
−`. Its Galois closure L is an S3-extension of Q. Let S = {∞, `}. Let ρ : GS �
Gal(L/Q) ↪→ GL2(F`).

Proposition 32. In this set-up, the universal deformation ring of ρ (with G = GS)
is isomorphic to Z`[[T1, T2, T3]].

2.3.3. Local representations. Let p be a prime that may or may not be equal to `
and G = Gp, the absolute Galois group of Qp. Let

ρ : Gp → GL2(F`)
be absolutely irreducible. Again, the local Euler characteristic formula gives an
easy control of h1 − h2. Since h0 = dimH0(Gp, Ad(ρ)) = 1 by Schur's lemma, we
get
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Lemma 33. h1 − h2 = 5 if ` = p and h1 − h2 = 1 if ` 6= p.

In his thesis, Ramakrishna [Ra] showed that if ` = p the local deformation
problem (d = 2, k = F`, G = G`) is in fact unobstructed.

Theorem 34. Let G = Gal(Q`/Q`), ` > 2. Let ρ : G → GL2(F`) be absolutely
irreducible. Then the universal deformation problem of ρ is unobstructed and

Runiv ' Z`[[T1, . . . , T5]].

To prove the theorem, Ramakrishna �rst �nds an explicit model for ρ using
Serre's second fundamental character on the tame inerta, and then shows that
H2(G,Ad(ρ)), which by local Tate duality is dual to H0(G,Ad(ρ)(1)), vanishes.

2.3.4. Relation between the local and global deformation problems. Let's put our-
selves, to be explicit, in the situation where G = GS , S contains `, and ρ : GS →
GL2(F`) is (absolutely) irreducible and odd. Let (RS , ρS) be the global universal
deformation ring. By the above, its relative Krull dimension (over Z`) is bounded
below by 3, and conjectured to be equal to 3. Assume that ρ|G` is still absolutely
irreducible and let (R`, ρ`) be its universal deformation ring. By Ramakrishna's
theorem, R` is a power series ring in 5 variables over Z`. Since ρS |G` is a defor-
mation of ρ|G` , we get a homomorphism R` → RS �bringing ρ` to ρS |G` �. This
corresponds to a morphism

Spec(RS)→ Spec(R`).

Many questions arise: Is this morphism �nite over its image? Assuming the relative
dimensions are 3 and 5, what are the two conditions characterizing the image? How
does it change when we increase S?

2.4. Deformation conditions (week 5).

2.4.1. Abstract framed and non-framed deformation problems. We shall need to
study deformations restricted in certain ways (in the caseG = GS , by imposing local
conditions on their restrictions to the decomposition groups, or on the determinant,
conditions that must be met of course by ρ). The abstract way to deal with it is
this5.

A class D� of lifts of ρ to pairs (A, ρ) where A ∈ CO is called a deformation
problem if the following conditions hold:

• (k, ρ) ∈ D�.
• If (A, ρ) ∈ D� and φ : A→ B is a morphism in CO then (B,φ ◦ ρ) ∈ D�.
• If A → C and B → C are morphisms in CO and (A, ρA), (B, ρB) ∈ D�
map to the same ρC then (A×C B, ρA ×ρC ρB) ∈ D�.

• D� is closed under inverse limits.
• D� is closed under strict equivalence.
• If A ↪→ B is an injection in CO and (A, ρ) is such that (B, ρ) ∈ D�, then

(A, ρ) ∈ D�.

5There are several ways to introduce an abstract notion of a �restricted deformation problem�.
They need not be equivalent, but the deformation problems with which we shall eventually be
working comply with any of them. Instead of the approach of [D-D-T] we follow Patrick Allen's
lecture notes [All].
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In particular, the second axiom implies that D� ⊂ D�ρ is a sub-functor. The non-
framed deformation problem associated with D� is the functor of strict equivalence
classes in D�, and yields a subfunctor D ⊂ Dρ. It is well-de�ned since D� is closed
under strict equivalence.

Proposition 35. (i) Any representable sub-functor of D�ρ closed under strict equiv-
alences, is a framed deformation problem.

(iii) Conversely, any framed deformation problem is representable by a quotient
R�D of R�ρ .

(ii) If Endk[G](ρ) = k, then the non-framed deformation problem associated with
D is also representable, by a quotient RD of the universal deformation ring Rρ of
ρ.

We omit the easy proof. It follows from the axioms that D�(k[ε]) is a sub vector
space of D�ρ (k[ε]) = Z1(G,Adρ), which we denote by Z1

D(G,Adρ). Since D� is
closed under strict equivalence, it contains all the coboundaries, so

D(k[ε]) = H1
D(G,Adρ)

is its image in Dρ(k[ε]) = H1(G,Adρ). We call it the tangent space of the defor-
mation problem D.

Example 36. The �xed determinant condition. Assume that ` = char(k) does
not divide d. Fix a character ε : G → O× such that det(ρ) = ε. Let D� be the
collection of liftings (A, ρ) with determinant ε : G → O× → A×. Then D� and D
are deformation problems in the above sense and the tangent space to D is

H1
D(G,Adρ) = H1(G,Ad0ρ)

(recall that Ad0 ⊂ Ad is the subrepresentation of trace-0 matrices). This is easily
checked using the identity

det(I +Xε) = 1 + tr(X)ε,

that holds in GLd(k[ε]).

We now list certain types of deformations that show up in connection with mod-
ularity. In all of them d = 2, so

ρ : G→ GL2(k).

2.4.2. Ordinary deformations. In this example G = G` = Gal(Q`/Q`) and I = I`
is its inertia subgroup. Suppose that

ρ =

(
χ1 ∗

χ2

)
with χ1|I 6= 1 and χ2|I = 1. Note that if ε = det(ρ) then ε|I = χ1|I . Fix ε : G→ O×
lifting ε. For A ∈ CO, let D�(A) be the collection of all the lifts ρ : G → A which
are strictly equivalent, in GL2(A), to(

χ1 ∗
χ2

)
with χ1|I = ε|I and χ2|I = 1. (Note that det(ρ) is �xed only on I, but is allowed
to deform on G.) Then D is a deformation problem called an ordinary deformation
problem and is denoted by Dord. The role of the two characters along the diagonal
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may be switched (by dualizing, or by twisting by ε−1). We shall denote the tangent
space H1

Dord(G,Adρ) also by H1
ord(G,Adρ).

Showing that Dord is a deformation problem reduces, by Proposition 35(i), to
showing that D�ord is representable. It is easy to check that the functor DBor of
all lifts of ρ of the prescribed type which are upper-triangular is representable (but
not closed under strict equivalence). So is the functor L : CO  Sets sending A to

L(A) =

{(
1 0
z 1

)
| z ∈ mA

}
.

In fact, L is representable by O[[Z]]. Finally the map

L×DBor → D�ord, (u, ρ) 7→ uρu−1

is bijective when evaluated at any A ∈ CO (an isomorphism of functors).

2.4.3. Flat deformations. Again let G = G` be the decomposition group of `, and
M a �nite G`-module. We say that M is �at if there exists a �nite �at group
scheme G over Z` such that M is the Galois module associated to the generic �ber
of M .

Theorem 37 (Raynaud). [Ray] (i) (relying on the absolute index of rami�cation
being smaller than `− 1) The �generic �ber� functor

{finite flat gp schemes/Z`} {G`−modules}

is fully faithful, and the �at modules are just those in its essential image. This is
false without e < `− 1 :µ2 and Z/2Z are non-isomorphic �nite �at group schemes
over Z2, but have the same generic �ber. Same for µ` and Z/`Z over Z`[ζ`].

(ii) The class of �at G`-modules is closed under taking sub-objects, quotients
and �nite direct sums. This has two consequences: (a) The category of �nite �at
gp schemes over Z`, or, equivalently, of �at G`-modules, is abelian (if e ≥ `− 1 or
over an arbitrary base, this is false; it is only an exact category, in general). (b)We
may de�ne, unambiguously, a pro�nite (continuous) G`-module to be �at if and
only if every �nite quotient of it is �at, equivalently if and only if it is an inverse
limit of �nite �at modules.

(iii) If M and M ′ are isomorphic as I`-modules, then M is �at if and only if
M ′ is �at.

(iv) If M is a free Z`-module of �nite type, which is also a G`-module, then M
is �at if and only if it is isomorphic to the Tate module of an `-divisible group over
Z`.

Assume that ρ : G` → GL2(k) is �at. For any A ∈ CO we let D�flat(A) ⊂ D�ρ (A)

be the liftings of ρ for which the pro�nite G`-module A2 is �at. It turns out that
this is a �deformation problem�, and we denote as usual by Dflat the associated
non-framed deformation functor, and by H1

fl(G`, Adρ) its tangent space.
If ρ is �at, its shape can be made explicit (in the non-ordinary case, by means of

Serre's fundamental character of level 2, see below). However, unlike the previous
examples, it is hard to tell from the shape of a deformation ρ if it is �at or not. We
shall have to study �at deformations using tools from integral p-adic Hodge theory,
namely Fontaine-La�aille modules.
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2.4.4. Minimally rami�ed deformations. Take G = Gp to be a decomposition group
at a rational prime p 6= `, and I = Ip its inertia subgroup. We give two examples of
deformation problems that will be called minimal. In both ρ will be rami�ed, but
the rami�cation in ρ will be as small as possible, given what is forced on it by ρ.

(i) Type A: Suppose

1 6= ρ|I ⊂ N(k) =

{(
1 ∗

1

)}
.

Let D�min be the class of liftings (A, ρ) which are strictly equivalent to a represen-
tation with ρ|I ⊂ N(A).

(ii) Type B: Suppose

ρ =

(
χ1

χ2

)
with χ2|I = 1 and χ1|I 6= 1. Let χ1 be the Teichmüller lift of χ1. We let D�min
be the class of (A, ρ) which are strictly equivalent to representations of the same
diagonal shape, with χ1|I and χ2|I = 1 along the diagonal of ρ|I .

More generally, if we assume that ρ(I) has order prime to `, we may consider
a deformation problem Dmin by stipulating that ρ(I) → ρ(I) is an isomorphism.
[This is more general because it applies also to the case when ρ(I) is a non-split
Cartan subgroup of GL2(k).]

In the two examples above, as well as in Dord and Dflat, we may impose also
the condition that the determinant (on all of G, not only on I) is �xed.

2.4.5. A variant: Λ-deformations (with or without conditions). Let Λ ∈ CO and
let CΛ be the category CO/Λ. We can de�ne framed and non-framed deformation
problems as we did when Λ = O. One advantage is that now we may �x the
determinant to be a character ε : G → Λ×. For example, we may take Γ = Gab(`)

be the pro-` completion of the abelianization of G, Λ = O[[Γ]] and

ε(σ) = εcyc(σ) · [σ]

where εcyc is the cyclotomic character and [σ] the projection of σ to Γ ⊂ Λ×. The
universal deformation rings will now become Λ-algebras. The same can be done
�with conditions� as above.

3. The universal deformation ring RΣ

3.1. The residual representation.

3.1.1. Running assumptions. Let ` > 2 be an odd prime, E a �nite extension of
Q`, O its ring of integers, λ its maximal ideal, and k = O/λ.

Let ρ : GQ → GL2(k) be a continuous representation satisfying:

• ρ is odd an irreducible (Exercise: it is then absolutely irreducible).
• det ρ = ε is the mod -` cyclotomic character

ε : GQ � Gal(Q(ζ`)/Q) ' F×` ⊂ k
×.

• The restriction of ρ to a decomposition group G` is �at (2.4.3) or ordinary
(2.4.2). (It could well be both �at and ordinary.)
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• If p 6= ` and ρ is rami�ed at p, then it is of type A, i.e.

{1} 6= ρ|Ip ∼
(

1 ∗
1

)
(Exercise: (i) ρ|Gp is then also upper-triangular, with unrami�ed characters
along the diagonal, (ii) #ρ(Ip) = `.)

Example 38. (i) By Section 1.1, if A is a semistable elliptic curve over Q, and ρA,`
is irreducible, then ρA,` is such a ρ. If A has good reduction at `, then ρA,`|G` is �at
(and also ordinary if and only if the reduction is ordinary). If A has multiplicative
reduction at `, then ρA,`|G` is ordinary (and also �at if and only if ord`(qA) ≡ 0
mod `). By a theorem of Mazur, irreducibility holds if ` > 7.

(ii) If f ∈ S2(Γ0(N),C) is a newform of weight 2, square-free level N = Nf and
trivial nebentypus, and if λ is a prime of Q(an(f)) above `, then ρf,λ is such a
ρ, provided again it is irreducible. First, it is classical and easy that ρf,λ is odd,
unrami�ed outside the primes dividing N and `, and that its determinant is ε. In
fact, this holds already for ρf,λ and follows from its construction via the abelian
variety Af associated to f by Shimura.

That the restriction of ρf,λ to the decomposition groups at the primes dividing
N and ` is of the prescribed shape follows from the work of several people. In the
results quoted below we do not have to assume that N is square-free.

(a) If p 6= ` is such that p||N , Carayol proved, building on work of Langlands,
that

ρf,λ|Gp ∼
(
η−1ε ∗

0 η

)
where η is a quadratic unrami�ed character, and η(σp) = ap(f) = ±1. The point
is that the local factor πp of the automorphic representation π associated to f is
�special�. If N is square-free this holds for all p|N, and a-fortiori ρf,λ is �type A.�

(b) If ` - N then it is easy to see from the construction of ρf,λ that ρf,λ|G` is �at.
If, moreover, a`(f) is a λ-adic unit, then ρf,λ (and a-fortiori ρf,λ) is also ordinary
and

ρf,λ|G` ∼
(
χ−1ε ∗

0 χ

)
where χ is unrami�ed, and χ(σ`) is the unit root (in E = Q(an(f))λ) of

X2 − a`(f)X + ` = 0.

(c) Finally, if `||N then ρf,λ is ordinary and

ρf,λ|G` ∼
(
η−1ε ∗

0 η

)
where η is a quadratic unrami�ed character, and η(σ`) = a`(f) = ±1. This follows
from work of Deligne and Rapoport. For a proof see [Gr], Proposition 12.1.

De�nition. We say that ρ (or a deformation ρ) is semistable at ` if its restriction
to G` is ordinary or �at.

3.1.2. The restriction of ρ to Q(
√

(−1)(`−1)/2`). We shall need another technical
condition on ρ. Let L = Q(

√
(−1)(`−1)/2`). This is the unique quadratic sub�eld of

Q(ζ`). We impose the following condition:
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• (L) The restriction ρ|GL is absolutely irreducible. (Note that since L is
imaginary, oddness makes no sense over L, so irreducibility no longer implies
absolute irreducibility.)

Fortunately for us, assumption (L) follows from the other assumptions made on ρ,
provided we know that ρ is modular.

Proposition 39. Suppose ρ satis�es the running assumptions, and in addition is
modular. Then (L) holds.

Proof. Suppose (after possibly enlarging k) ρ|GL were reducible. If `|#ρ(GL) then
ρ|GL is not diagonalizable (even over the algebraic closure of k), so must have a
unique invariant line, on which GL acts via a character. Since GL / GQ, this
line must be GQ-stable too, contradicting the irreducibility of ρ. It follows that
` - #ρ(GL), and since [L : Q] = 2, ` - #ρ(GQ). By our running assumptions on
ρ|Gp , p 6= `, if ρ were rami�ed at p,we would have `|#ρ(Gp). Thus, ρ is unrami�ed
outside `. The prime-to-` conductor N(ρ) of ρ is therefore 1. Moreover, by the
same argument

ρ|I` ∼
(
ε

1

)
if ρ is ordinary at `, so must be �at at `, even if it is ordinary there. It now follows
from Diamond's strengthening of Ribet's theorem on lowering the level ([Di93],
Theorem 1.1) that ρ must be modular of weight 2 and level 1. But there are no
weight 2 cusp forms of level 1, a contradiction. �

3.1.3. Vanishing of H0(GQ, Ad
0ρ∗). LetW = Ad0ρ. The invariant pairing Tr(XY )

makes W a self-dual representation, so

W ∗ = Hom(W,µ`) 'W ⊗ µ` = W (1).

Lemma 40. We have H0(GQ, Ad
0ρ∗) = 0.

Proof. Let V be the underlying space of ρ. Since
∧
V ' µ`, V ∨ ' V (1), and

Adρ(1) = V ⊗ V ∨(1) ' V ∨ ⊗ V ∨.

Under this isomorphism W (1) = Ad0ρ(1) ' Sym2V ∨. We therefore have to prove
that there does not exist a non-zero symmetric GQ-invariant bilinear form on V .
Suppose

0 6= β(u, v) = tuBv

is such a bilinear form. If it were degenerate, its kernel would be an invariant
subspace of V , contradicting the irreducibility of ρ. Thus detB 6= 0. For σ ∈ GQ

β(u, v) = β(σu, σv) = tu tρ(σ)Bρ(σ)v,

so tρ(σ)Bρ(σ) = B, and in particular ε(σ)2 = det(ρ(σ))2 = 1. If ` > 3, this is a
contradiction. If ` = 3, we �nd that the image of ρ|GL lies in the group SO(2) (we
may assume that we are over the algebraic closure of k). But SO(2) is diagonalizable
(over the algebraic closure of k), contradicting the irreducibility of ρ|GL . �
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3.2. Global deformations of type Σ (Week 6). Let Σ be a �nite set of �nite
primes, which may be empty. We de�ne a global deformation problem DΣ by
stipulating that ρ ∈ D�Σ (A) if and only if the following conditions hold:

• det(ρ) = ε : GQ � Z×` ⊂ O× → A×.
• ρ|G` is semistable: either �at (i.e. for any Artinian quotient of A the image
of ρ|G` is the Galois module associated with the generic �ber of a �nite �at
group scheme over Z`) or ordinary, i.e.

ρ|G` ∼
(
χ−1ε ∗

0 χ

)
where χ : G` → A× is unrami�ed.

• If p 6= `, p /∈ Σ and ρ|Gp is unrami�ed, then ρ|Gp is unrami�ed as well.
• If p 6= `, p /∈ Σ and ρ|Gp is rami�ed, then ρ|Gp is �type A�, i.e.

ρ|Gp ∼
(
η−1ε ∗

0 η

)
with η unrami�ed (and, necessarily, ∗|Ip 6= 0).

• If ` /∈ Σ and ρ|G` is �at, then ρ|G` is �at. We only include ` in Σ if ρ
is ordinary and �at, but we want to consider deformations that might be
ordinary and not �at. In the other two cases, either ρ is non-ordinary,
in which case it is �at and any deformation must be �at, by the second
condition above, or it is non-�at, in which case it is ordinary and any
deformation must be ordinary.

Thus, if p or ` are not in Σ, the local deformation is �minimally rami�ed� in the
sense that it is of the same type as ρ. At primes in Σ we do not impose any condition,
except that at ` we retain the assumption that ρ|G` is either �at or ordinary, and
we always keep the condition on the determinant.

If Σ ⊂ Σ′, then clearly DΣ ⊂ DΣ′ . If Σ = ∅, we say that D�Σ is a minimal global
deformation problem.

Example 41. (i) If ρ = ρA,` for a semistable elliptic curve A/Q, then ρA,` is of
type Σ if Σ contains all the places of bad reduction of A (but it can be of type Σ
for a smaller set Σ).

(ii) If f is a weight 2, level N newform with trivial nebentypus, and λ a prime
above ` in Q(an(f)), and if N is square-free, then ρf,λ is such a deformation of
ρ = ρf,λ, with Σ the set of primes dividing N . Note that if p 6= ` (resp. `) divides
N then ρf,λ would be rami�ed (resp. non-�at but ordinary) there, although ρf,λ
might be non-rami�ed (resp. �at), so the deformation need not be minimal.

Proposition 42. (i) D�Σ is a framed �deformation problem�.
(ii) Let S be the set of prime consisting of ∞, `, the primes where ρ is rami�ed,

and the primes in Σ. Let G = GS . The associated non-framed deformation problem
is represented by a quotient ring RΣ of Runivρ,S , the universal deformation ring of
ρ : GS → GL2(k).

Proof. (i) Each of the local conditions is a �deformation problem�. These are pre-
cisely the examples discussed before. The axioms de�ning a �deformation problem�
are compatible with localization, so the global D�Σ is, technically speaking, also a
�deformation problem�.
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(ii) Let Rρ be the (global) universal deformation ring of ρ : GS → GL2(k)
(with determinant ε) and R�ρ the corresponding universal framed deformation ring
(both without the local conditions). As explained before, a choice of ρ in the strict
equivalence class ρuniv ∈ Dρ(Rρ) determines a homomorphism R�ρ → Rρ, bringing
the universal framed deformation to ρ.

For v ∈ S, let R�ρ,v be the corresponding universal framed deformation rings
for ρ|Gv . Since the restriction of the (global) universal framed deformation to the
decomposition group is a �local framed deformation�, the universal property of R�ρ,v
yields a homomorphism R�ρ,v → R�ρ . Let

R�loc =
∏

v∈S,R�ρ

R�ρ,v

(the �ber product of the local framed deformation rings over the global one). We
obtain a homomorphism

R�loc → R�ρ → Rρ,

(the second arrow depending on the choice of ρ).
When we introduce the local conditions, we have a surjective homomorphism

R�ρ,v � R�D,v for each v ∈ S, expressing the (local) universal framed deformation
ring with condition Dv as a quotient of the corresponding ring without any condi-
tions. Similarly, there is a surjective homomorphism R�ρ � R�D between the global
framed deformation rings, with and without conditions. Put together, these give a
homomorphism

R�loc � R�D,loc =
∏

v∈S,R�D

R�D,v.

It is now straightforward to check that

RΣ := R�D,loc ⊗R�loc Rρ

is a universal (non-framed) deformation ring �with conditions� DΣ. Indeed, to give a
homomorphism RΣ → A is to give a homomorphism Rρ → A, i.e. a specialization of
the strict equivalence class ρuniv, such that if we specialize the chosen representative
ρ and get, say, a framed deformation ρA, its restriction to every Gv (determined by
the map R�ρ,v → R�ρ → Rρ → A) satis�es condition Dv (i.e. factors through a map
R�D,v → A).

We remark that the need to work both with framed and non-framed deformation
rings resulted form the fact that locally, ρ|Gv need not be irreducible, so need not
have a universal non-framed deformation ring. When we quotient out the local
deformation rings by the ideals de�ning the conditions in Dv, we have to do it
with framed deformation rings. Globally, however, we wanted to get the universal
non-framed deformation ring RΣ. �

3.3. Tangent spaces of type Σ and the Greenberg-Wiles formula.

3.3.1. The global tangent space. Let S be a set of primes containing ∞, `, the primes
where ρ is rami�ed, and the primes in Σ. Let

tρ := Dρ(k[ε]) ' H1(GS , Ad
0ρ)

be the tangent space of the deformation problem with the only conditions being (i)
det = ε, (ii) unrami�ed outside S (i.e. factoring through GS).
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At each �nite v ∈ S let
Lv ⊂ H1(Gv, Ad

0ρ)

be the subspace Dv(k[ε]) where Dv is the local condition, as de�ned above. Note
that if v is a place di�erent from `, where ρ is unrami�ed, and not in Σ, then
Lv = H1(Gv/Iv, Ad

0ρ).
We let LΣ = {Lv| v ∈ Sf}. Although the notation stresses the role of Σ, this

collection depends also on the choice of S. We shall make these subspaces explicit
soon, but at the moment we treat them as a black box.

Proposition 43. The tangent space tΣ = DΣ(k[ε]) ⊂ Dρ(k[ε]) = tρ �of type Σ� is
identi�ed with the generalized Selmer group

H1
LΣ

(GS , Ad
0ρ) := ker

(
loc : H1(GS , Ad

0ρ)→
∏
v∈S

H1(Gv, Ad
0ρ)/Lv

)
.

Proof. Clear. Note that in the product it is harmless to include v =∞, as ` is odd,
so H1(GR, Ad

0ρ) = 0. If w /∈ S we may replace S by S ∪{w} without changing the
Selmer group, because Lw = H1(Gw/Iw, Ad

0ρ) means that a cohomology class in
H1
LΣ

(GS∪{w},−) is unrami�ed at w, so belongs to H1
LΣ

(GS ,−). However, if at the
same time we replace Σ by Σ ∪ {w}, the Selmer group grows, as the constraint of
being unrami�ed at w is dropped. �

3.3.2. The dual Selmer group. Let L⊥v be the annihilator of Lv under the perfect
pairing of abelian groups (local Tate duality)

H1(Gv, Ad
0ρ)×H1(Gv, Ad

0ρ(1))→ Q/Z.

Since the pairing

〈, 〉 : Ad0ρ×Ad0ρ(1) ' Ad0ρ×Ad0ρ∗ → µ

underlying it is a pairing of k-vector spaces (i.e. 〈αx, y〉 = 〈x, αy〉 for α ∈ k), and
Lv is a k-vector space, so is L⊥v . We let L∗Σ = {L⊥v | v ∈ Sf}.

We emphasize that the collection L∗Σ need not be associated with any deforma-
tion type. It is called the system of local conditions dual to LΣ. The dual Selmer
group is

H1
L∗Σ

(GS , Ad
0ρ(1)) := ker

(
loc : H1(GS , Ad

0ρ(1))→
∏
v∈S

H1(Gv, Ad
0ρ(1))/L⊥v

)
.

3.3.3. The Greenberg-Wiles formula. For the moment, let us be more general. Let
M be a �nite GQ-module (such as Ad0ρ) and

L = {Lv}
a family of subgroups Lv ⊂ H1(Gv,M) (v runs over all the places of Q, including
∞) such that for all but �nitely many v, Lv = H1(Gv/Iv,M

Iv ). The generalized
Selmer group is

H1
L(GQ,M) =

{
x ∈ H1(GQ,M)| ∀v resv(x) ∈ Lv

}
.

The dual set of local conditions L∗ is de�ned by letting L∗v = L⊥v ⊂ H1(Gv,M
∗)

under the duality between H1(Gv,M) and H1(Gv,M
∗) (local Tate duality). Note

that if v is �nite, Lv = H1(Gv/Iv,M
Iv ) and v does not divide #M , also L∗v =

H1(Gv/Iv,M
∗Iv ).
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The main result of Wiles concerning these Selmer groups is the following theorem,
inspired by earlier work of Ralph Greenberg.

Theorem 44 (Greenberg-Wiles formula). Both H1
L(GQ,M) and H1

L∗(GQ,M
∗) are

�nite and

(3.1)
#H1

L(GQ,M)

#H1
L∗(GQ,M∗)

=
#H0(GQ,M)

#H0(GQ,M∗)
·
∏
v

#Lv
#H0(Gv,M)

.

Since we have seen in Corollary 12 that for a �nite place v

#H0(Gv,M) = #H1(Gv/Iv,M
Iv ),

all but �nitely many terms in the in�nite product are 1. We emphasize that the
product ranges over all the v, including v =∞.

Given the set of local conditions L we take S to be any �nite set of places con-
taining ∞, the primes dividing #M, and the places where Lv 6= H1(Gv/Iv,M

Iv ).
The same S will work then for L∗.

Anticipating the application to the proof of the Modularity Theorem we remark
that, enlarging the set S by a carefully selected set of auxilary primes q, and taking
the least restrictive Lq = H1(Gq,M) for the new q's, Wiles manages to guar-
antee that H1

L∗(GQ,M
∗) = 0. His formula gives him then a precise control over

#H1
L(GQ,M).

Corollary 45. Suppose L′ is obtained from L by replacing H1(Gq/Iq,M
Iq ) by

H1(Gq,M) for some prime q - #M. Then

#H1
L′(GQ,M)

#H1
L(GQ,M)

=
#H1

L′∗(GQ,M
∗)

#H1
L∗(GQ,M∗)

·#H0(Gq,M
∗) ≤ #H0(Gq,M

∗),

with equality if H1
L∗(GQ,M

∗) = 0 already.

Proof. (of Corollary) When we change L to L′, the RHS of the expression in the
theorem changes by

#H1(Gq,M)

#H1(Gq/Iq,M Iq )
=

#H1(Gq,M)

#H0(Gq,M)
= #H2(Gq,M) = #H0(Gq,M

∗)

by the local Euler characteristic formula (and the fact that q - #M) and by Tate's
local duality.

Proof (of Theorem): We shall show how to derive the theorem from the Poitou-
Tate 9-term exact sequence. We have already noted the �niteness of H1(GS ,M)
in Lemma 15. The group H1

L(GQ,M) is a subgroup of it, hence clearly �nite, and
similarly H1

L∗(GQ,M
∗) is �nite.

By de�nition, we have an exact sequence of �nite abelian groups

0→ H1
L∗(GQ,M

∗)→ H1(GS ,M
∗)→

∏
v∈S

H1(Gv,M
∗)

L⊥v
.

Dualizing, we get an exact sequence

0← H1
L∗(GQ,M

∗)∨ ← H1(GS ,M
∗)∨ ←

∏
v∈S

Lv.

Splicing it into the 9-term exact sequence we get

0→ H0(GS ,M)
α0→
∏
v∈S

Ĥ0(Gv,M)
β0→ H2(GS ,M

∗)∨ →
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→ H1
L(GQ,M)

α1→
∏
v∈S

Lv
β1→ H1(GS ,M

∗)∨ → H1
L∗(GQ,M

∗)∨ → 0.

The theorem follows from this, from the global Euler characteristic formula, and
from the fact that

#M = #M∗ = #(1 + c)M ·#H0(GR,M
∗)

which we leave as an easy exercise. (In the applications our M will have an odd
order, in which case the last equality boils down to the obvious #M = #(M+) ·
#(M−).) �

3.4. Computation of local terms at p 6= `. We want to calculate the local terms
appearing on the RHS of (3.1). That the local terms are computable, is in principle
not surprising. After all, local cohomologies are easier than the global ones, and
Tate's duality and the local Euler characteristic often reduce their computation
to that of H0's. That they come out to be what they are, and eventually lead to
surprisingly pleasant results for the orders of the global Selmer groups, is a �numer-
ical coincidence�, or sheer good luck. In fact, in the generalizations to modularity
theorems for higher �elds, in the work of Calegari and Geraghty, this is not the
case any more, and the same Galois cohomology computations had to be radically
upgraded.

Let W = Ad0ρ.

• If v =∞ then L∞ = 0 (because ` > 2) and dimH0(G∞,W ) = 1.
• Claim: If p 6= ` is �nite and p /∈ Σ then #Lp = #H0(Gp,W ) because
Lp = H1(Gp/Ip,W

Ip).

This is clear if ρ is unrami�ed at p. Let us show that the same formula remains valid
if ρ is rami�ed, in which case it is �type A�. Informally, saying that �a deformation
ρ : Gp → GL2(k[ε]) is as little rami�ed as is forced upon it by ρ� means that
while ρ is rami�ed, the extension class (of k by W ) de�ning ρ is unrami�ed (i.e.
is a push-out of an unrami�ed extension of k by W Ip). Speci�cally, let V be the
underlying space of ρ and V1 ⊂ V the Ip-invariant line. In a basis consisting of a
vector from V1 and a vector projecting non-trivially to V/V1,

ρ(σ) =

(
εη−1(σ) β(σ)

0 η(σ)

)
with ε and η unrami�ed. Then

W1 = {w ∈W |w(V1) = 0, w(V ) ⊂ V1} = W Ip

is 1-dimensional and is equal to the Ip-invariants of W . In the above basis,

W1 =

{(
0 b
0 0

)}
⊂
{(

a b
c −a

)}
= W.

Since any �type A� deformation to k[ε] is represented by a 1-cocycle in W whose
restriction to Ip has values in W1 (and vice versa) we get that Lp = H1

Dp(Gp,W )

consists of the classes whose restriction to Ip is in the image of H1(Ip,W1), namely

H1
Dp(Gp,W ) = ker(H1(Gp,W )

r→ H1(Ip,W/W1)).

Here r is the map �restrict to Ip and project modulo W Ip �. The key point is that

H1(Ip,W )→ H1(Ip,W/W1)
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is injective, as follows from the long exact sequence of Ip-cohomology attached to

0→W1 →W →W/W1 → 0.

(Here the fact that both H1(Ip,W1) = Hom(Ip,W1) and H0(Ip,W/W1) are 1-
dimensional plays a role.) Therefore ker(r) is the same as

ker(H1(Gp,W )
r′→ H1(Ip,W )) = H1(Gp/Ip,W

Ip),

as had to be proved.
• If p 6= ` is �nite and p ∈ Σ then Dp is non-restricted (except for the
condition on the determinant), Lp = H1(Gp,W ), so

#Lp
#H0(Gp,W )

=
#H1(Gp,W )

#H0(Gp,W )
= #H2(Gp,W ) = #H0(Gp,W (1))

by the local Euler characteristic formula and local Tate duality.

3.5. Computation of local terms at ` (Week 7).

3.5.1. Flat, ordinary and semistable representations. Let us generalize a little and
consider ρ : G` → GL2(R) where R is a �nite local ring of cardinality a power of `.
We let Mρ be the underlying module, free of rank 2 over R.

Recall that in general, a �nite G`-module M is called �at if there exists a �nite
�at group scheme G over SpecZ` such that M ' G (Q`) as a G`-module. Equiv-
alently, since �nite �at group schemes in characteristic 0, being étale, are nothing
else but �nite Galois modules, M may be identi�ed with the generic �ber Gη of G
and the condition then becomes that it extends to a �nite �at group scheme over
SpecZ`. Thanks to the fact that e(Q`) = 1 < `− 1 Raynaud's theorem guarantees
that G is unique up to a unique isomorphism. We also note that when this notion
is applied to Mρ, the O-module structure on Mρ is an extra structure, but because
of the full-faithfullness in Raynaud's theorem, this O-structure extends uniquely to
G .

Likewise, we say that M is ordinary if it admits a G`-stable �ltration

0 ⊂M1 ⊂M

such that I` (inertia) acts trivially on M/M1, and via the cyclotomic character ε
on M1. If M is ordinary, so is M∗ = Hom(M,µ). Note that the de�nition so far
does not exclude the possibility that M1 = M or 0.

Exercise: (i) If M is ordinary, M1 is uniquely determined as

M1 = {x ∈M | ∀τ ∈ I` ρ(τ)x = ε(τ)x}.

(ii) It is enough to stipulate that the �ltration is I`-stable, since it is then also
G`-stable. (iii) If M ' M ′ as I`-modules, then M is ordinary if and only if M ′ is.
(iv) If M admits an O-structure, M1 is an O-submodule.

We say that ρ is �at or ordinary if Mρ is, and in addition det ρ|I` = ε. In the
ordinary case this implies that M1 is free of rank 1 over R. By what we have seen
in the exercise above, and previously in the �at case, being �at or ordinary depends
only on ρ|I` . These notions are also stable under the operations of sub-objects,
quotients and �nite direct sums.
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We say that ρ is semistable if it is �at or ordinary. It may be then (a) �at and
ordinary, (b) �at non-ordinary, or (c) ordinary non-�at. The `-torsion of elliptic
curves already give examples of all three possibilities.

We recall two classical constructions from the theory of local �elds.
(a) Fundamental characters. Recall that the tame inertia group T` is a

quotient of I`, and has for any r ≥ 1 a unique cyclic quotient isomorphic to F×`r . It
is the quotient by the kernel of the r-th fundamental character

εr : I` � F×`r , εr(σ) = σ(
`r−1
√
`)/

`r−1
√
`.

(When r = 1 this is the cyclotomic character.) The characters εir, 0 ≤ i < `r−1 are
the `r − 1 distinct characters of this quotient, with values in F×`r . The Galois group
of the unrami�ed extension of Q` acts on these characters via σ(χ)(τ) = χ(σ̃τ σ̃−1),
and the Frobenius σ` sends εr to ε`r.

(b) Kummer Theory. Let R be a �nite ring of cardinality a power of `.
Suppose ρ : G` → GL2(R) is ordinary and

0→ R(1)→Mρ → R→ 0

is the corresponding �ltration of ρ|I` . This gives a class

cρ ∈ H1(I`, R(1)).

On the other hand (this is Kummer Theory), the exact sequence

0→ µ`n → Q×l
`n→ Q×l → 0,

together with Hilbert's Theorem 90, gives an isomorphism H1(I`, µ`n) ' K×/K×`n

where K = Qnr` . Following it by the valuation ord` : K×/K×`
n → Z/`nZ and

taking `n = #R we get a map

v : H1(I`, R(1))→ R.

Parts (a)-(c) of the following Lemma follow from standard facts on �nite �at
group schemes over Z`. For example, (b) follows from the existence of the connected-
étale exact sequence. Part (d) follows from the theory of Fontaine-La�aille modules,
explained below.

Lemma 46. (a) (Shape of residual �at representations) Let ρ : G` → GL2(k) be a
�at representation over k such that det(ρ)|I` = ε. Then either ρ is ordinary or

ρ|I` ⊗k k ' ε2 ⊕ ε`2
(isomorphism over the algebraic closure of k).

(b) (When is ��at� also �ordinary�?) If R ∈ CO, ρ : G` → GL2(R) is �at and
ρ = ρ mod mR is ordinary, then ρ is ordinary.

(c) (When is �ordinary� also ��at�?) If ρ : G` → GL2(R) is ordinary, then ρ is
also �at if and only if v(cρ) = 0. (Note that the notion of �atness only refers to the
structure of Mρ as a Z`[G`]-module, so we may assume that R = Z/`nZ). Serre
called in this case ρ �peu rami�é�, and �très rami�é� otherwise.

(d) (When does Mρ �at imply ρ �at?) Let ρ : G` → GL2(R) and suppose Mρ is
�at. Then either det(ρ)|I` = ε or ρ|I` = ε or ρ|I` = 1. In particular if ρ is �at (i.e.,
satis�es also the condition on the determinant restricted to inertia), so is ρ.
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3.5.2. In�nitesimal deformations. Let R = O/λn, and suppose that

ρ : G` → GL2(R)

is semistable (i.e. �at or ordinary and det ρ|I` = ε). Recall that H1(G`, Adρ) clas-
si�ed the in�nitesimal deformations in the category of pro�nite O/λn[G`]-modules,
i.e. deformations to ρ′ : G` → GL2(R[ε]). We remark that there are other defor-
mations, e.g. to ρ′ : G` → GL2(O/λn+1) that are not classi�ed by H1(G`, Adρ).
In particular, when n = 1, we are talking only about �equicharacteristic deforma-
tions�. Recall also that H1(G`, Ad

0ρ) classi�ed only the deformations with �xed
determinant.

Although we shall use the language of Galois cohomology, and not extensions,
the reader may note that

H1(G`, Adρ) ' Ext1(Mρ,Mρ),

the extensions taken in the category of O/λn[G`]-modules. This can be seen either
by using the interpretation of both H1 and Ext1 as appropriate derived functors,
or directly, by associating to a free rank-2 O/λn[ε]-module M̃ with a G`-action the
extension

0→M → M̃ →M → 0

with M = εM̃ ' M̃/εM̃.
We now de�ne subspaces of H1(G`, Adρ) that will turn out to be the (reduced)

tangent spaces to the local deformation problems �with local conditions� as dis-
cussed above.

• If ρ is �at, we let

H1
f (G`, Adρ) ⊂ H1(G`, Adρ)

be the subgroup classifying in�nitesimal deformations in the category of
pro�nite O/λn[G`]-modules that are also �at. Note that H1

f (G`, Adρ) is
a functor of ρ. We have not associated any meaning to H1

f (G`,M) for an
arbitrary (`-torsion or �nite) G`-module M . (For M a Q`-vector space this
may be done using Fontaine's ring Bcris and more generally, this is the
subject of integral p-adic Hodge theory, but we do not go into it.)

• If ρ is ordinary, we let

H1
ord(G`, Adρ) ⊂ H1(G`, Adρ)

be the subgroup classifying in�nitesimal deformations in the category of
pro�nite O/λn[G`]-modules that remain ordinary. Again, this is a functor
of ρ.

• If ρ is semistable (ordinary or �at) we let

H1
ss(G`, Adρ) ⊂ H1(G`, Adρ)

be the subgroup classifying in�nitesimal deformations in the category of
pro�nite O/λn[G`]-modules that are also semistable.

Regarding the relation between these three �tangent spaces�, we have:

• If ρ is both ordinary and �at,

H1
f ⊂ H1

ss = H1
ord
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because a �at deformation of an ordinary representation is ordinary. If ρ is
�at but not ordinary,

H1
ss = H1

f

and H1
ord does not make sense. If ρ is ordinary but not �at,

H1
ss = H1

ord

and H1
f does not make sense.

• We de�ne the same subgroups with coe�cients in Ad0ρ by intersecting with
H1(G`, Ad

0ρ).
• Finally, let E be the �eld of fractions of O. If ρ : G` → GL2(O) we de�ne

H1(G`, Adρ⊗ E/O) := lim
→
H1(G`, Adρ⊗ λ−nO/O)

and similarly the H1
f , H

1
ord, H

1
ss and the same groups for Ad0ρ, under the

usual assumptions.

3.5.3. Calculations. Suppose that ρ : G` → GL2(O/λn) is semistable (this includes
the assumption det ρ|I` = ε).

Proposition 47. (i) If ρ is �at

#H1
f (G`, Ad

0ρ) = #H0(G`, Ad
0ρ) ·#(O/λn).

If n = 1 and ρ is �at non-ordinary we have H0(G`, Ad
0ρ) = 0 and dimH1

f (G`, Ad
0ρ) =

1.
(ii) If ρ is ordinary, let χ1 and χ2 be the unrami�ed characters such that

ρ ∼
(
χ1ε ∗
0 χ2

)
.

Then

#H1
ord(G`, Ad

0ρ) ≤ #H0(G`, Ad
0ρ) ·#(O/λn) ·#(O/(λn, χ1χ

−1
2 (σ`)− 1)).

If ρ is also �at, equality holds.
(iii) If ρ is ordinary non-�at and n = 1 (so ρ = ρ)

#H1
ord(G`, Ad

0ρ) = #k

and H0(G`, Ad
0ρ) = 0.

Proof. (i) The �rst statement will be proved in the next section, using Fontaine-
La�aille theory. See also [Co], Main Theorem 3.3.

If n = 1 and ρ is not ordinary, then by Lemma 46(a) it is absolutely irreducible,
so H0(G`, Ad

0ρ) = 0 follows from Schur's lemma.
(ii) Let V be the underlying space of ρ and W = Ad0ρ = End0(V ). Let V1 be

the unique line in V on which I` acts via ε. Let

W1 = {w ∈W |w(V1) = 0, w(V ) ⊂ V1} ' Hom(V/V1, V1).

The group G` acts on W1 by the character εχ1χ
−1
2 . We claim that

H1
ord(G`,W ) = ker

(
H1(G`,W )→ H1(I`,W/W1)

)
.

Indeed, an in�nitesimal deformation ρ′ : G` → GL2(O/λn[ε]) of ρ belongs to the
subspace on the right if and only if, up to a strict equivalence, ρ′|I` is of the form(

ε ∗
1

)
,
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i.e. only the �upper right corner� gets deformed when we restrict to inertia at `, or
the deformation remains ordinary.

Consider the long exact sequence of G`-cohomology associated with

0→W1 →W →W/W1 → 0.

It gives

0→ H0(G`,W1)→ H0(G`,W )
α→ H0(G`,W/W1)

β→

H1(G`,W1)
γ→ H1(G`,W )

δ→ H1(G`,W/W1),

from where we get

#H1
ord(G`,W )

#H0(G`,W )
=

#H1
ord(G`,W )

#H0(G`,W1)#Imα
=

#H1
ord(G`,W ) ·#H1(G`,W1)

#H0(G`,W1)#Imα ·# ker γ#Imγ

=
#H1(G`,W1)

#H0(G`,W1)
· #H1

ord(G`,W )

# kerβ#Imβ#Imγ
=

#H1(G`,W1)

#H0(G`,W1)
· #H1

ord(G`,W )

#H0(G`,W/W1)#Imγ

=
#H1(G`,W1)

#H0(G`,W1)
· #H1

ord(G`,W )

#H1(G`/I`, (W/W1)I`)# ker δ
.

However, ker δ ⊂ H1
ord(G`,W ), so

#H1
ord(G`,W )

#H1(G`/I`, (W/W1)I`)# ker δ
=

#δ(H1
ord(G`,W ))

#H1(G`/I`, (W/W1)I`)
≤ 1

because

δ(H1
ord(G`,W )) ⊂ H1(G`/I`, (W/W1)I`)

by the very de�nition of H1
ord(G`,W ).

We conclude that (writing R = O/λn for brevity)

#H1
ord(G`,W )

#H0(G`,W )
≤ #H1(G`,W1)

#H0(G`,W1)
= #R ·#H2(G`,W1) =

= #R ·#H0(G`,W
∗
1 ) = #R ·# R

(χ1χ
−1
2 (σ`)− 1)R

.

Here the three equalities after the inequality follow from the local Euler character-
istic formula, Tate's local duality and the easy fact that

#H0(G`,W
∗
1 ) = #

R

(χ1χ
−1
2 (σ`)− 1)R

.

This gives the �rst statement.
If ρ is also �at, it can be shown that the inequality is an equality, as in [D-D-T],

end of section 2.4. This, however, will not be used (and in fact is not proved in
[W95]), so we skip it.

(iii) The proof is again somewhat technical. See Proposition 1.9(iv) of [W95],
�Choice 2� on p. 116 of [Wa], or section 4.3, p.440, in [dS] for a full proof. Wiles
calls �ordinary� by the name �Selmer�, and �ordinary non-�at� he calls �strict�. �
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3.6. Fontaine-La�aille theory. Fontaine-La�aille theory was an early attempt
(from 1982) to establish an integral p-adic Hodge theory. It worked under stringent
conditions on the absolute rami�cation index of the ground �eld, and the Hodge-
Tate numbers (required to be, up to a shift, in the range [0, p− 1), or, with a litte
more care, [0, p − 1]). In our case p = `, the ground �eld is Q` (so there are no
problems) and the Hodge numbers are {0, 1} (or rather {−1, 0} since we talk about
homology, not cohomology). This excludes only ` = 2, that was already excluded
for other reasons. Today, integral p-adic Hodge theory has been developed to its full
capacity by Breuil and Kisin, and from a perfectoid perspective by Bhatt, Morrow
and Scholze.

Recall that (rational) p-adic Hodge theory classi�es �good� p-adic representations
of Gp = Gal(Qp/Qp) by semi-linear objects. The basic example is that of crystalline
representations, i.e. Qp-representations of Gp �whose p-adic periods belong to the
ring Bcris�, encompassing all p-adic étale cohomologies of proper smooth varieties
with good reduction over Qp. On the semilinear algebra side Fontaine constructed
a category MFϕK (here K = Qp) of �ltered ϕ-modules and an exact functor

Dcris : RepcrisK →MFϕK .

The essential image of the functor are the so-called admissible �ltered ϕ-modules. A
theorem of Colmez and Fontaine identi�ed them as the weakly admissible modules,
de�ned in terms of a condition on the Hodge and Newton polygons of all sub-
objects. Almost by de�nition of what it means to be �crystalline�, Dcris becomes
an equivalence of categories between RepcrisK and the full subcategory of weakly
admissible modules, w.a.MFϕK . It should be remarked that while MFϕK is only
an additive category, w.a.MFϕK is abelian, and closed under tensor products (an
analogue of Totaro's theorem).

Integral p-adic Hodge theory tries to work integrally, not rationally. Assume
that the Hodge-Tate numbers (the breaks in the �ltration) are in the interval [0, n].
A strongly divisible lattice in a module D ∈ MFϕK is a Zp-lattice L ⊂ D such that
ϕ(FiliD ∩ L) ⊂ piL and ∑

p−iϕ(FiliD ∩ L) = L.

The prototypical example is this. Let X be a proper smooth scheme over OK = Zp
and V = Hn

et(XK ,Qp). Let κ = Fp so that Xκ is the special �ber. Let D =
Hn
cris(Xκ/W (κ))⊗W (κ) K. For ϕD take the crystalline Frobenius. The �ltration is

induced from the Hodge �ltration on Hn
dR(XK/K) and the canonical isomorphism:

Hn
cris(Xκ/W (κ))⊗W (κ) K ' Hn

dR(XK/K).

The p-adic comparison isomorphism is the statement that

Dcris(V ) = D

canonically. Letting L = Hn
cris(X/W (κ))/torsion (i.e. the image of the integral

crystalline cohomology in D), we get, under the assumption n < p − 1, a strongly
divisible lattice in D. An integral comparison isomorphism should relate lattices in
the representation V with strongly divisible lattices in D.

In this case the Fontaine-La�aille modules would be the groups L/prL. Since,
working with torsion coe�cients, we can no longer divide Frobenius by pi on the ith
step of the �ltration (even if its image is in pi× the module), we have to stipulate
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that the �p−iϕD� are part of the given structure. This leads to the following
de�nition.

De�nition 48. Let κ be a perfect �eld and W = W (κ) the ring of Witt vectors.
A Fontaine-La�aille module D over W is a W -module of �nite length, equipped
with a descending separated �ltration Fil• with Fil0D = D, and semilinear maps
ϕiD : FiliD → D satisfying (1) ϕiD|Fili+1D = pϕi+1

D and (2)
∑
ϕiD(FiliD) = D.

In their paper [F-L] Fontaine and La�aille consider the category of Fontaine-
La�aille modules with Hodge-Tate weights {0, 1}. Thus they are looking (writing
back ` for p) at pairs (D,D1 = Fil1D) and semilinear maps ϕD : D → D and
ϕ1
D : D1 → D such that (1) ϕD|D1 = `ϕ1

D and ϕD(D) + ϕ1
D(D1) = D. It is easily

seen that these axioms imply thatD1 is in fact a direct summand ofD (as an abelian
group). It is also clear how to endow everything with a structure of O-modules in
case O is a �nite extension of Z`. Furthermore, if D is a Fontaine-La�aille module
with Hodge-Tate numbers {0, 1} its Cartier dual D∗ is de�ned by letting

D∗ = Hom(D,Q`/Z`), (D∗)1 = (D1)⊥,〈
ϕD∗(h), ϕD(x) + ϕ1

D(y)
〉

= 〈h, `x+ y〉 (x ∈ D, y ∈ D1, h ∈ D∗)〈
ϕ1
D∗(h), ϕD(x) mod ϕ1

D(D1)
〉

= 〈h, x〉 (x ∈ D, h ∈ (D∗)1).

We denote the category of all such modules byMFO [0,1].

Theorem 49 (Fontaine-La�aille). There are O-additive equivalences between the
following categories:

(a) Finite �at group schemes G over Z` with O-action,
(b) Flat O[G`]-modules M of �nite cardinality,
(c) D ∈MFO [0,1].
The equivalences preserve orders (in (b) and (c) the order is just the cardinality)

and are compatible with Cartier duality G 7→ G ∗, M 7→M∗, D 7→ D∗. If M and D
correspond to each other, then M is unrami�ed if and only if D = D1.

Example. Take E, an elliptic curve with good supersingular reduction over Z`,
G = E [`] where E is its Néron model. Then the restriction of Mρ = E(Q`)[`] to I`
was described in Lemma 46(a). The Fontaine-La�aille module must be (exercise!)
of the shape

D = F`e1 ⊕ F`e2, D1 = F`e2

ϕD(e1) = e2, ϕD(e2) = 0,

ϕ1
D(e2) = ce1, c 6= 0.

In general, the special �ber of G is connected if and only if ϕD is nilpotent.
Using [F-L], Ramakrishna studied in his thesis [Ra] deformations of supersingular

representations, and calculated the tangent space H1
f (G`, Ad

0ρ). First, the previous
theorem gives the following result.

Lemma 50. Let ρ : G` → GL2(O/λn) be a �at representation (recall that this
means that Mρ is �at and det(ρ) = ε). The following groups are then isomorphic.

(a) H1
f (G`, Adρ) (here we do not �x the determinant in the extension).

(b) The group Ext1O/λn[G`],f
(Mρ,Mρ) of �at extensions of Mρ by itself in the

category of O/λn-Galois modules.
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(c) The group Ext1
MF [0,1]

O/λn
(Dρ, Dρ) where Dρ is the Fontaine-La�aille module

associated to the �nite �at group scheme whose generic �ber is Mρ. Note that the
extensions are in the category of Fontaine-La�aille modules killed by λn.

(d) Pairs (α, α1) where α ∈ HomO(Dρ, Dρ), α
1 ∈ HomO(D1

ρ, Dρ), `α1 = α|D1
ρ
,

taken modulo the group of pairs of the form (a◦ϕD−ϕD ◦a, a◦ϕ1
D−ϕ1

D ◦a), where
a ∈ Hom(Dρ, Dρ) satis�es a(D1

ρ) ⊂ D1
ρ.

The explicit description in (d) allows an explicit computation of the order of
H1
f (G`, Adρ) as

#H1
f (G`, Adρ) = #(O/λn)2 ·#H0(G`, Ad

0ρ).

As
Ad(ρ) = Ad0(ρ)⊕O/λn

and H1
f (G`,O/λn) = O/λn, one eventually gets part (i) of Proposition 47. Here

H1
f (G`,O/λn) refers to the �at in�nitesimal deformations of the character ε mod `n.

By the results of Raynaud quoted above they are all of the form (1 + εθ(σ))ε(σ)

with θ : G`/I` ' Ẑ→ O/λn.

3.7. A bound on the number of generators. We can now specify the local
conditions LΣ = {LΣ,v} �guring in deformations of type DΣ.

• At p = `, LΣ,` = H1
ord(G`, Ad

0ρ) if ` ∈ Σ (so ρ is �at and ordinary) or if
` /∈ Σ and ρ is not �at.

• LΣ,` = H1
f (G`, Ad

0ρ) if ` /∈ Σ and ρ is �at.
• At p 6= `, LΣ,p = H1(Gp, Ad

0ρ) if p ∈ Σ.
• LΣ,p = H1(Gp/Ip, (Ad

0ρ)Ip) if p 6= ` and p /∈ Σ.

Let L∗Σ be the dual set of conditions. Note that if p 6= ` then
• L⊥Σ,p = H1(Gp/Ip, (Ad

0ρ)(1)Ip) if p /∈ Σ

• L⊥Σ,p = 0 if p ∈ Σ.

Finally, if ρ : GQ → GL2(O) is a lifting of ρ of type Σ we write H1
LΣ

(GQ, Ad
0ρ ⊗

E/O) for the direct limit of the groups H1
LΣ

(GQ, Ad
0ρ⊗ λ−n/O) and similarly for

the dual Selmer group.

Theorem 51. There exists a universal deformation (RΣ, ρ
univ
Σ ) of ρ of type Σ.

Moreover:
(a) If E′/E is a �nite extension and O′ its ring of integers, then R′Σ = RΣ⊗OO′.
(b) The universal deformation ring RΣ can be generated as an O-algebra by

dimH1
LΣ

(GQ, Ad
0ρ) elements.

(c) If φ : RΣ � O is a homomorphism and ρ = φ ◦ ρunivΣ , p = ker(φ), then

Hom(p/p2, E/O) ' H1
LΣ

(GQ, Ad
0ρ⊗O E/O).

Proof. The representability of the deformation problem DΣ by (RΣ,mΣ) ∈ CO was
proved in �3.2. That the tangent space is

tΣ = DΣ(k[ε]) ' H1
LΣ

(GQ, Ad
0ρ)

was proved in Proposition 43. Since its dual is mΣ/(m
2
Σ, λ) and has the same

dimension, point (b) follows from Nakayama's lemma.
Finally, for (c) it is enough to show that for n ≥ 1

Hom(p/p2,O/λn) ' H1
LΣ

(GQ, Ad
0ρ⊗O O/λn).
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This is done in a similar manner to the case n = 1. �

If ` ∈ Σ we let

d` = dimH1
ss(G`, Ad

0ρ)− dimH1
f (G`, Ad

0ρ).

Recall that ` ∈ Σ only if ρ|G` is �at and ordinary, and we consider deformations that
are ordinary but not necessarily �at. The integer d` measures then the discrepancy
between the tangent space of all ordinary deformations and the tangent space of
those that are �at (and ordinary).

If ` /∈ Σ, or if ` ∈ Σ and ρ is not �at, we let d` = 0.

Proposition 52. Assume that, if ` = 3, ρ is absolutely irreducible even when it is
restricted to the absolute Galois group of L = Q(

√
−3). The deformation ring RΣ

can be topologically generated, as an O-algebra, by

rΣ = dimH1
L∗Σ

(GQ, Ad
0ρ(1)) + d` +

∑
` 6=p∈Σ

dimH0(Gp, Ad
0ρ(1))

elements.

Proof. LetW = Adρ.We proved thatRΣ can be generated by rΣ = dimH1
LΣ

(GQ,W )
elements. By the Greenberg-Wiles formula (3.1),

rΣ − dimH1
L∗Σ

(GQ,W (1)) = dimH0(GQ,W )− dimH0(GQ,W (1))+

+
∑
v∈S

(
dimLv − dimH0(Gv,W )

)
.

(we should include v =∞ in S). We have:
• H0(GQ,W ) = 0. Indeed, by Schur's lemma, an endomorphism commuting
with the Galois action is a scalar, by the absolute irreducibility of ρ. But
there are no scalars of trace 0, since the characteristic is not 2.

• H0(GQ,W (1)) = 0. Here, if ` = 3, we need the irreducibility of ρ|GL . See
the proof of Lemma 40.

• If v = p 6= ` is �nite and p /∈ Σ then dim(Lp) = dimH0(Gp,W ) because
Lp = H1(Gp/Ip,W

Ip). See �3.4.
• If v = p 6= ` is �nite and p ∈ Σ then Dp is non-restricted (except for the
condition on the determinant), Lp = H1(Gp,W ), so

dim(Lp)− dimH0(Gp,W ) = dimH2(Gp,W ) = dimH0(Gp,W (1))

by the local Euler characteristic formula and local Tate duality.
• If v = ∞, then L∞ = 0 (because G∞ has order 2 and ` > 2) and

dimH0(G∞,W ) = 1 since ρ is odd.
• When v = ` and ` /∈ Σ we have

dimL` − dimH0(G`,W ) = 1.

Indeed, either ρ is �at and L` = H1
f (G`,W ), or ρ is ordinary and not

�at, in which case L` = H1
ord(G`,W ). In both cases, the formula follows

from Proposition 47. The �1� from this local computation cancels the �−1�
contribution from v =∞.

• Finally, if v = ` ∈ Σ so ρ is �at and ordinary, but L` = H1
ss(G`,W ) and

not H1
f (G`,W ), we should add d` to the previous computation.

�
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3.8. Taylor-Wiles primes (week 8).

3.8.1. Special auxiliary primes and deformations of type Q. We introduce a set of
auxiliary primes

Q = {q1, . . . , qr}
satisfying:

• q ≡ 1 mod `
• ρ is unrami�ed at q and ρ(σq) has distinct eigenvalues α, β ∈ k.

If k is too small to contain the eigenvalues of ρ(σq) for some q ∈ Q, replace it
by its quadratic extension and replace E and O by the correspodning unrami�ed
extension and its ring of integers. More assumptions on the set Q will be imposed
later on.

Lemma 53. Let ρ be a deformation of ρ|Gq to a homomorphism Gq → GL2(R),
R ∈ CO. Then there are tamely rami�ed characters ξ1, ξ2 : Gq → R× such that

ρ ∼
(
ξ1

ξ2

)
.

Proof. We may assume that

ρ(σq) =

(
α

β

)
.

Since ρ is unrami�ed, ρ(Iq) ⊂ 1 + M2(mR), so ρ|Iq factors through the maximal

pro-` quotient T (`)
q of Iq, which is pro-cyclic. Let τ be a topological generator of

T
(`)
q and σ ∈ Gq a lifting of the Frobenius σq. Recall that στσ−1 = τ q. Since α 6= β,

by a version of Hensel's lemma, we may assume that our basis for ρ has been chosen
so that

ρ(σ) =

(
α

β

)
is diagonal, with α and β in R lifting α and β. Write

ρ(τ) = 1 +

(
a b
c d

)
∈ 1 +M2(mR).

Calculating ρ(σ)ρ(τ)ρ(σ)−1 = ρ(τ)q we get that (αβ−1 − q)b and (α−1β − q)c lie
in mR · (b, c). Since q ≡ 1 mod mR and αβ−1 − 1 /∈ mR we get that

(b, c) = mR · (b, c).

By Nakayama's lemma b = c = 0. It follows that ρ(τ) is also diagonal, hence ρ is
given by two characters ξ1, ξ2 as above. �

Let ∆q be the `-Sylow subgroup of (Z/qZ)× and

χq : GQ � Gal(Q(ζq)/Q) ' (Z/qZ)× � ∆q.

Let ∆Q be the product of the ∆q for q ∈ Q, and χQ the product of the χq. Let aQ
be the augmentation ideal in O[∆Q]. Observe that

O[∆Q] ' O[S1, . . . Sr]/((1 + S1)`
n1 − 1, . . . , (1 + Sr)

`nr − 1)

where |∆qi | = `ni , and then aQ = (S1, . . . , Sr).
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Corollary 54. ξ1|Iq = ξ2|−1
Iq

factors through χq|Iq : there exists a unique character
φq : ∆q → R× so that

ξ1|Iq = φq ◦ χq, ξ2|Iq = (φq ◦ χq)−1.

Proof. That ξ1|Iq = ξ2|−1
Iq

follows from the fact that ε = det ρ is unrami�ed at q
(since q 6= `). Now ξ1(Iq) ⊂ 1 + mR since ρ is unrami�ed at q; it is therefore pro-`.
But ξ1|Iq factors through the inertia subgroup of Gal(Qabq /Qq), which is isomorphic
to Z×q via the q-adic cyclotomic character, by local class �eld theory (or the local
Kronecker-Weber theorem). Since its image is pro-`, it in fact factors through the
`-Sylow of Z×q , namely ∆q. �

Apply all this to the universal deformation of type Q, ρunivQ .We get the existence
of a unique character φq : ∆q → R×Q such that ρunivQ |Gq has the shape given by the
lemma, with the ξi,q as in the corollary. Grouping the r primes q ∈ Q we get a
character φQ : ∆Q → R×Q, which we use to give RQ the structure of a O[∆Q]-
algebra.

Proposition 55. Via φQ the universal deformation ring RQ is an O[∆Q]-algebra,
and

RQ/aQRQ = R∅.

Proof. Here R∅ is the minimal deformation ring, when Q is empty. Consider the
image of ρunivQ in GL2(RQ/aQRQ). By the de�nition of aQ and the previous corol-
lary, it is unrami�ed at each q ∈ Q. It is therefore �a deformation of type ∅�. By
the universal property of R∅ there exists a unique homomorphism R∅ → RQ/aQRQ
bringing ρuniv∅ to ρunivQ mod aQ. On the other hand, ρuniv∅ is clearly a �deformation
of type Q�, so by the universal property of RQ there exists a unique homomorphism
RQ → R∅ bringing ρunivQ to ρuniv∅ . Since ρuniv∅ is unrami�ed at each q ∈ Q, this
homomorphism factors through RQ/aQRQ. These two homomorphisms are inverse
to each other and yield the desired isomorphism between RQ/aQRQ and R∅. �

3.8.2. A bound on the number of generators of RQ.

Proposition 56. (a) If q ∈ Q then the spaces H0(Gq, Ad
0ρ), H0(Gq, Ad

0ρ(1)),
H1(Gq/Iq, Ad

0ρ) and H1(Gq/Iq, Ad
0ρ(1)) are all 1-dimensional.

(b) Let r = |Q|. Then the universal deformation ring RQ can be topologically
generated as an O-algebra by

r + dimH1
L∗Q

(GQ, Ad
0ρ(1))

elements.
(c) If the set Q is chosen so that, in addition, localization at the primes q ∈ Q

induces an isomorphism

H1
L∗∅

(GQ, Ad
0ρ(1)) '

∏
q∈Q

H1(Gq/Iq, Ad
0ρ(1))

then r = |Q| = dimH1
L∗∅

(GQ, Ad
0ρ(1)) and RQ can be generated as an O-algebra by

r elements.

Proof. In view of the explicit shape of ρ, we know that ρ is unrami�ed and σq
acts on Ad0ρ with eigenvalues x, 1, x−1 for some 1 6= x ∈ k×. The same is true for
Ad0ρ(1) because q ≡ 1 mod ` so the twist by ε, the cyclotomic character mod `,
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does not change Ad0ρ|Gq . The calculations of the cohomology classes in (a) become
an easy exercise.

Part (b) follows now from (a) and Proposition 52. Note that d` = 0 since ` /∈ Q.
For (c) note that in L∅ we had (for q ∈ Q) Lq = H1(Gq/Iq, Ad

0ρ) and L⊥q =

H1(Gq/Iq, Ad
0ρ(1)), while in LQ we relaxed the condition of being unrami�ed at

q to Lq = H1(Gq, Ad
0ρ), so L⊥q = 0. Thus the dual Selmer group �with conditions

at Q� is

(3.2) ker

H1
L∗∅

(GQ, Ad
0ρ(1))

locQ→
∏
q∈Q

H1(Gq/Iq, Ad
0ρ(1))

 .

If locQ is an isomorphism then the kernel vanishes, H1
L∗Q

(GQ, Ad
0ρ(1)) = 0 and (c)

follows from (b). Since each H1(Gq/Iq, Ad
0ρ(1)) is one-dimensional, we get also

that H1
L∗∅

(GQ, Ad
0ρ(1)) was r-dimensional. �

3.8.3. On the choice of Q: an application of �ebotarev's density theorem and some
group theory. We are left with the task of proving that a set Q as above, satisfying
also the condition

locQ : H1
L∗∅

(GQ, Ad
0ρ(1)) '

∏
q∈Q

H1(Gq/Iq, Ad
0ρ(1))

can be chosen. For the application we would like also that each q ∈ Q satis�es
q ≡ 1 mod `n for a �xed n ≥ 1. This will guarantee that the ring O[∆Q] is large.
In fact, �in the limit� on n, it will become O[[S1, . . . , Sr]], the formal power series
ring in r variables over O.

Theorem 57 (Existence of Taylor-Wiles primes). Assume that ρ remains absolutely
irreducible when restricted to GL, L = Q(

√
(−1)(`−1)/2`), the quadratic sub�eld of

Q(ζ`). Consider the minimal deformation problem �of type ∅� and let

r = dimH1
L∗∅

(GQ, Ad
0ρ(1))

be the dimension of its �dual Selmer group�. Fix n ≥ 1. Then there exists a set Qn
of r primes q such that

(1) Each q ≡ 1 mod `n,
(2) If q ∈ Qn then ρ is unrami�ed at q and ρ(σq) has distinct eigenvalues

(which we may assume, belong to k),
(3) The universal deformation ring RQncan be topologically generated as an
O-algebra by r elements.

Proof. It is enough to �nd a set Q satisfying the �rst two conditions, such that

H1
L∗Q

(GQ, Ad
0ρ(1)) = 0.

Since this dual Selmer group is given by (3.2) we may inductively �nd r primes q
such that the condition locq([ψ]) = 0 imposes each time a non-empty condition on
the common kernel of locq for the previous q's. Since H1(Gq/Iq, Ad

0ρ(1)) = 1, the
vanishing of locq for the new prime q will decrease the dimension of the kernel by
1, and after r steps we will be done.

Fix [ψ] ∈ H1
L∗∅

(GQ, Ad
0ρ(1)). Here ψ is a 1-cocycle representing the cohomology

class [ψ]. We may assume that [ψ] is in the common kernel of locq for the q's found
so far, and look for a new q satisfying (1) and (2) such that locq([ψ]) 6= 0. Write
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W = Ad0ρ, W ∗ = Ad0ρ(1). By �ebotarev's density theorem it is enough to �nd a
σ ∈ GQ such that

(1) σ|Q(ζ`n ) = 1,
(2) The eigenvalues of ρ(σ) are distinct,
(3) ψσ /∈ (σ − 1)W ∗.

LetM be a �nite Galois extension of Q, containing ζ`n , which is a splitting �eld for
ρ and the cocycle ψ. Let q be a prime, unrami�ed inM , such that σ|M = (Q,M/Q)
for a suitable prime Q|q of M . Then the �rst two conditions on σ imply the �rst
two conditions on q, and the third implies that ψ|Gq is not a coboundary, because
σ ∈ Gq (more precisely, in the decomposition group of Q/q).

Consider the tower of �elds
F
|
K
|H

Q(ζ`n)

where F is the splitting �eld of ρ|Gal(Q/Q(ζ`n )), and K is the splitting �eld of
Ad0ρ|Gal(Q/Q(ζ`n )). Note that F and K are Galois over Q, since they are the com-
positums of Q(ζ`n) with the splitting �elds of the corresponding representations on
the full GQ. We write

H = Gal(K/Q(ζ`n)) ' Ad0ρ(GQ(ζ`n )), H̃ = Gal(F/Q(ζ`n)) ' ρ(GQ(ζ`n )).

We similarly write G and G̃ for Ad0ρ(GQ) and ρ(GQ). Since ρ is absolutely irre-
ducible, Schur's lemma implies that G ' G̃k×/k× ⊂ PGL2(k) (when we regard
G̃ ⊂ GL2(k)). The group H̃ is a subgroup of G̃ and H is again its projective image

H = H̃k×/k× ⊂ PGL2(k).

Lemma 58. H1(Gal(K/Q),W ∗) = 0.

We postpone the proof of the lemma, and conclude the proof of the theorem. By
the lemma, and the in�ation-restriction exact sequence, the non-vanishing of [ψ]

implies that ResQK [ψ] 6= 0. But over K the Galois action on W ∗ is trivial, so

0 6= ψ|GK ∈ Hom(GK ,W
∗)Gal(K/Q).

It follows that ψ(GK) is a GQ-submodule ofW ∗. The absolute irreducibility of ρ|GL
implies the irreducibility of W ∗ (see the argument in the proof of Proposition 52).
Thus, 〈ψ(GK)〉 = W ∗. Here, for a subgroup A, we denote by 〈A〉 its k-linear span.

We claim that there exists a σ0 ∈ GQ(ζ`n ) such that ρ(σ0) has distinct eigenvalues.
If not, ρ(GQ(ζ`n )) is contained in a group conjugate to{(

a b
0 a

)}
.

If ρ(GQ(ζ`n )) consist of scalar matrices only, it is easily seen that ρ can not be
absolutely irreducible: any eigenvector of ρ(γ), where γ projects to a generator of
the cyclic group Gal(Q(ζ`n)/Q), would span a line invariant under ρ(GQ). If, on
the other hand, ρ(GQ(ζ`n )) contains non-scalar matrices, it has a unique invariant
line, which must then be invariant also under ρ(GQ). In both cases, this contradicts
the absolute irreducibility of ρ.
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Let α, β be the eigenvalues of ρ(σ0). The eigenvalues of Ad0ρ(σ0) are α/β, 1 and
β/α. These are also the eigenvalues of Ad0ρ(1)(σ0), since q ≡ 1 mod `. As one of
the eigenvalues is 1,

0 6= (σ0 − 1)W ∗ 6= W ∗ = 〈ψ(GK)〉 .

Let τ ∈ GK . It acts trivially on W and on W ∗, so ρ(τ) is a scalar matrix. It follows
that σ = τσ0 ∈ GQ(ζ`n ) still has distinct eigenvalues under ρ. But τ acts trivially
on W ∗ so

ψσ = τψσ0
+ ψτ = ψσ0

+ ψτ .

As the ψτ , for τ ∈ GK , span W ∗ over k, we can �nd a τ so that ψσ /∈ (σ0 − 1)W ∗.
However, (σ0 − 1)W ∗ = (σ − 1)W ∗ since τ acts trivially on W ∗. This shows that
(3) can be guaranteed too. �

The proof of the lemma is group-theoretic. It relies on the classi�cation of �nite
subgroups of PGL2(k). According to a classical theorem of Dickson, every such
�nite group is one of the following:

• Contained in a Borel subgroup of PGL2(k),
• Conjugate to PGL2(k′) or PSL2(k′) for a �nite �eld k′,
• Isomorphic to the dihedral group D2n for (n, `) = 1, or
• Isomorphic to A4, S4 or A5.

Let Z = ker(G̃ → G), the scalar matrices in Im(ρ). If Z 6= {±1} det(Z) 6= 1, so,
W = Ad0ρ being invariant under Z, W ∗Z = 0. Note Z is cyclic of order prime to `,
so in particular H1(Z,W ∗) = H2(Z,W ∗) = 0. If we denote by M ⊂ F the splitting
�eld of ρ, so that G̃ = Im(ρ) = Gal(M/Q), then

Q(ζ`) ⊂M ⊂ F ⊂M(ζ`n).

It follows thatGal(F/M) is a normal `-subgroup ofGal(F/Q). Thus Z ⊂ Gal(M/Q),
an abelian group whose order is prime to `, lifts to a subgroup of Gal(F/Q), which
we still denote by Z. From the in�ation-restriction exact sequence, the vanishing
of Hi(Z,W ∗) for i = 1, 2 and the vanishing of W ∗Z ,

0 = H1(Gal(F/Q)/Z,W ∗Z) ' H1(Gal(F/Q),W ∗).

A fortiori, H1(Gal(K/Q),W ∗) = 0.
When Z = {±1} but ` > 3, Z �xes Q(ζ`). The group ∆ = Gal(Q(ζ`)/Q)

is a quotient of G̃, because M , the splitting �eld of ρ, must contain Q(ζ`), the
splitting �eld of det ρ = ε. As Z acts trivially on Q(ζ`), ∆ is in fact a quotient
of G = G̃/Z ⊂ PGL2(k). Using Dickson's classi�cation theorem and the fact that
` ≥ 5, we see that G = Im(Ad0ρ) must be a subgroup of a Borel, or of order prime
to `. (The other subgroups do not have a cyclic quotient of order `− 1.) The �rst
option contradicts the irreducibility of ρ. The second implies that H, too, has order
prime to `. In�ation-restriction yields

H1(Gal(K/Q),W ∗) ' H1(Gal(Q(ζ`n)/Q,W ∗H).

However, W ∗H = 0, or else W ∗ would be reducible (the invariants would be sta-
ble under the full Gal(K/Q)), contradicting the absolute irreducibility of ρ|GL , as
before.

There remains the case Z = {±1} and ` = 3 (the prime ` that we end up using!).
Here one must resort to a case-by-case study and to a theorem of Cline, Parshal



MODULARITY OF ELLIPTIC CURVES 48

and Scott from 1975 on cohomology of �nite groups of Lie type. See the original
proof in Wiles' paper or [dS], Theorem 20, p.443-444, for details.

4. The Hecke algebra TΣ and the proof of RΣ ' TΣ

4.1. Modularity of the residual representation (Langlands-Tunnell) (week
9).

4.1.1. Artin conductors. Fix a residual mod-` representation

ρ : GQ → GLd(k).

For p 6= `, let {Iup | − 1 < u < ∞} be the (decreasing) upper �ltration of the
inertia group at p, so that Iup = Ip for −1 < u ≤ 0, Ivp =

⋂
u<v I

u
p , and the wild

inertia Pp =
⋃

0<u I
u
p . The prime-to-` Artin conductor of ρ is

N(ρ) =
∏
` 6=p

pmp(ρ)

where the exponent at p is given by

mp(ρ) =

∫ ∞
−1

codimV
Iup
ρ du = codimV

Ip
ρ +

∫ ∞
0

codimV
Iup
ρ du.

It is known that mp(ρ) is an integer, and vanishes if and only if ρ is unrami�ed at
p. If ρ : GQ → GLd(O) is a lifting of ρ then mp(ρ) is de�ned by the same formula.
As the kernel of GLd(O)→ GLd(k) is pro-`, ρ(Pp) ' ρ(Pp) is �nite, so the integral
de�ning mp(ρ) is �nite. Moreover, it follows from here that

mp(ρ) = mp(ρ) +
(

dimV
Ip
ρ − dimV Ipρ

)
,

because the part of the integral for u > 0 is the same for ρ and ρ.
Suppose now d = 2 and ρ satis�es the �running assumptions� of �3.1.1. It follows

that N(ρ) is square-free, i.e. if ρ is rami�ed (�type A�) at p 6= `, then mp(ρ) = 1,
because it is then tamely rami�ed and the inertia invariants are 1- dimensional. The
same holds true with any `-adic deformation ρ which is �minimal� (i.e. again type
A) at p. Thus if ρ is a �type Σ� `-adic deformation and p /∈ Σ then mp(ρ) = mp(ρ) :
either both are 0, in the unrami�ed case, or both are 1, in the rami�ed type A case.

If, on the other hand, p ∈ Σ, so ρ is not minimal at p, then 0 ≤ mp(ρ)−mp(ρ) ≤ 2.
These remarks become important when we look for newforms f that might give

rise to `-adic deformations ρ �of type Σ� of ρ. If there is such an f , and λ is the
prime above ` in Q(an(f)) giving rise to the deformation ρ = ρf,λ, then by Carayol's
theorem the analytic conductor Nf (i.e. the level of f) will be equal to the Artin
conductor of ρf,λ. Thus, for ` 6= p /∈ Σ, p - Nf if ρ were unrami�ed at p and p||Nf
if ρ were rami�ed there. On the other hand, if p ∈ Σ we would have ordpNf ≤ 2
if ρ were unrami�ed at p and ≤ 3 if ρ were rami�ed there. In practice, for the
application to modularity of elliptic curves, we shall only have to include p in Σ if
ρ is unrami�ed there.

A similar analysis takes place at `, where by assumption ρ is semistable (�at or
ordinary). Let δ(ρ) = 1 if ρ is (ordinary) non-�at at `, and 0 otherwise. Then,
by Deligne's theorem (based on the work of Deligne and Rapoport) we would have
`||Nf if either δ(ρ) = 1, or if ρ were �at and ordinary at `, but ` ∈ Σ and ρf,λ is
non-�at. At all other cases (where ρf,λ stays �at), ` - Nf .
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4.1.2. Modularity of ρ. Fix a (�nite, possibly empty) set of �nite primes Σ such
that

(a) if ` ∈ Σ then ρ is �at and ordinary at `,
(b) if ` 6= p ∈ Σ then ρ is unrami�ed at p.
The second assumption is not essential, but since it su�ces for the application

to modularity of elliptic curves, and it makes life somewhat easier, we impose it.
Let NΣ be the collection of triples (f, λf , ιf ) consisting of a newform f of weight

2, level Nf and trivial nebentypus, a prime λf above ` in Of , the ring of integers
of Kf = Q(an(f)), an embedding

ιf : Of,λf ↪→ O′f

into a �nite extension of O, with uniformizer λ′f and residue �eld k′f containing k,
such that:

(i) ρ and ιf ◦ ρf,λf become isomorphic over k′f ,
(ii) over O′f , ιf ◦ ρf,λf is a deformation of type Σ of ρ.
By the discussion of Artin conductors and assumptions (a) and (b), for any

f ∈ NΣ we have ordp(Nf ) ≤ 2 for p 6= `, ordp(Nf ) = 0 if ρ is unrami�ed at p
and p /∈ Σ, and ord`(Nf ) ≤ 1. Since the determinant of a deformation of type Σ
is the cyclotomic character, the nebentypus of f is trivial. We conclude that the
collection NΣ is �nite, at most.

Once we know that NΣ is �nite, we may assume, enlarging E,O and k, that
O = O′f for every f in NΣ, so that ιf becomes an embedding Of,λf ↪→ O, inducing
Of/λf ↪→ k.

The following theorem follows from the work of Langlands and Tunnell on the
Artin conjecture, the paper [De-Se74], and Ribet's theorem [Ri90].

Theorem 59. Assume that k = F3. Then the collection NΣ is not empty. In
other words, the representation ρ is modular, and moreover it is modular of level
`δ(ρ)N(ρ), weight 2 and trivial nebentypus, as predicted by Serre.6

Proof. (Sketch) As GL2(F3) is solvable, so is the image of ρ. Consider the reduction
map

GL2(Z[
√
−2])� GL2(F3)

modulo $ =(1 +
√
−2) (one of the primes above 3). One can check directly that it

admits a section

s : GL2(F3) ↪→ GL2(Z[
√
−2]) ⊂ GL2(C).

In fact, this s is one of the three cuspidal representations of GL2(F3). The represen-
tation s ◦ ρ is odd, irreducible (otherwise it would be abelian, and so would be ρ),
and its image is solvable. Applying the Langlands-Tunnell theorem on the Artin
conjecture to s◦ρ one obtains a weight 1 newform g (of some level and nebentypus)
whose associated Galois representation ρg is s◦ρ. In other words, for all but �nitely
many primes p we have ap(g) = tr(s ◦ ρ(σp)), so

ap(g) mod $ = tr(ρ(σp)).

6We might need here the assumption that ρ|GL remains absolutely irreducible. See remark in

the proof.
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The problem is that g has weight 1, not 2. Here comes an idea of Shimura. Let
χ(d) =

(−3
d

)
(Legendre symbol) and

E1,χ = 1 + 6

∞∑
n=1

(
∑
d|n

χ(d))qn ∈M1(Γ0(3), χ).

Then gE1,χ is a weight 2 cusp-form, and since the q-expansion of E1,χ is 1 mod 3,

ap(gE1,χ) mod $ = tr(ρ(σp)).

However, gE1,χ is not an eigenform. The Deligne-Serre Lemma solves this issue: it
guarantees the existence of a newform f (of weight 2, some level and nebentypus)
and a prime λ above $ in KfKg such that

ap(f) mod λ = tr(ρ(σp)).

Finally, Ribet's theorem on lowering the level (we might need the assumption on
ρ|GL being absolutely irreducible; it was needed in Ribet's original theorem, and it is
not clear to me if Diamond's work on the re�ned Serre conjecture really removed it
in the form needed here) guarantees that we can take f of weight 2, level `δ(ρ)N(ρ),
and trivial nebentypus. �

4.1.3. The Hecke algebra TΣ and the map RΣ → TΣ. As remarked above, since
NΣ is �nite, we may enlarge O and k and assume that for each (f, λf , ιf ) ∈ NΣ,
ιf : Of,λf ↪→ O induces Of/λf ↪→ k. Associated to it we get a representation

ιf ◦ ρf,λf : GQ → GL2(k).

Let T be the abstract polynomial algebra generated over O by the variables Tp
for p a prime di�erent from `, the primes dividing N(ρ) or the primes in Σ. For
(f, λf , ιf ) ∈ NΣ the representation ιf ◦ρf,λf is unrami�ed at p and we consider the
homomorphism

T→ T̃Σ =
∏
f∈NΣ

O,

sending Tp to (..., ιf (ap(f)), ...). Let TΣ be its image. Since the reduction of
ιf (ap(f)) modulo λ is tr(ρ(σp)), independently of f , the ring TΣ is a local ring,
with residue �eld k, and maximal ideal generated by λ and Tp − ap, where ap ∈ O
is any lifting of tr(ρ(σp)), for all the �good� primes p as above. The ring TΣ is
evidently �nite �at (free as a module) over O, and belongs to CO. It is the ring ob-
tained by �gluing� the Of,λf , and the higher the congruences between the various
ρf,λf , the more �gluing� there is. When we tensor with Q we get

TΣ,Q = T̃Σ,Q =
∏
f∈NΣ

E,

because theQ-algebra generated by (ap(f1), ..., ap(fn)) for distinct newforms f1, ..., fn
and all p /∈ S (S �nite) is Kf1

× · · · ×Kfn .
The next lemma, due to Carayol, shows that not only the integral Hecke rings

Of,λf glue, but the representations glue as well.

Lemma 60 (Carayol's Lemma). There is a continuous representation

ρmodΣ : GQ → GL2(TΣ)

such that if p - `N(ρ)Σ then ρmodΣ is unrami�ed at p, and tr(ρmodΣ (σp)) = Tp.
Moreover,
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(a) ρmodΣ is a lift of type Σ of ρ, and there is a unique surjection

φΣ : RΣ � TΣ

bringing ρunivΣ to ρmodΣ (up to strict equivalence).
(b) If Σ ⊂ Σ′ there is a unique surjection TΣ′ � TΣ bringing ρmodΣ′ to ρmodΣ , and

compatible with the images of Tp for p - `N(ρ)Σ′.
(c) The formation of TΣ is compatible with extensions of O.

Proof. Everything hinges on showing that the canonical representation

ρ̃modΣ : GQ → GL2(T̃Σ),

whose f -coordinate is ιf ◦ ρf,λf , can be conjugated so that it factors through TΣ.

Let c be a complex conjugation. It is possible to conjugate ρ̃modΣ so that

ρ̃modΣ (c) =

(
1
−1

)
.

Let {e+, e−} be the corresponding basis. For any γ ∈ GQ, both tr(γ) and tr(cγ)
belong to TΣ (which is generated by the traces), so if

ρ̃modΣ (γ) =

(
a b
c d

)
,

both a± d, hence also a, d ∈ TΣ.
By the irreducibility of ρ we can �nd a σ ∈ GQ with ρ(σ) having b 6= 0. Rescaling

e+ by a unit of T̃Σ we may assume that ρ̃modΣ (σ) has b = 1. For any γ ∈ GQ we
have

ρ̃modΣ (σγ) =

(
aσaγ + cγ ∗
∗ ∗

)
so also cγ ∈ TΣ. Similarly, bγ ∈ TΣ and we are done. �

4.2. Some results on the Hecke algebra. We shall need two deep results on
the structure of TΣ. They will be proved later on, and in the meanwhile we assume
them and continue with the proof of �R = T �.

4.2.1. Freeness over the diamond operators.

Theorem 61. Let Q be a set of Taylor-Wiles primes, consider the homomorphism
φQ : RQ → TQ and equip TQ with a structure of an O[∆Q]-algebra via φQ. Then
TQ is free of �nite rank over O[∆Q].

Corollary 62. T∅ = TQ/aQTQ.

Proof. By the theorem, if TQ ' O[∆Q]m, then TQ/aQTQ ' Om is O-torsion free.
It is therefore enough to show that TQ,Q/aQTQ,Q = T∅,Q when we consider the
rational Hecke algebras as modules over E[∆Q]. From the diagram

RQ,Q � RQ,Q/aQRQ,Q = R∅,Q
↓ ↓

TQ,Q =
∏
f∈NQ E � TQ,Q/aQTQ,Q

of E-algebra homomorphisms, where the vertical arrows are surjective, we get that
a direct factor E labeled by an f ∈ NQ survives in the map to TQ,Q/aQTQ,Q
(the corresponding idempotent maps to a non-zero idempotent) if and only if the
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corresponding ρf,λf factors through ρuniv∅ , if and only if ρf,λf is unrami�ed at the
primes of Q. But this holds if and only if f ∈ N∅. Thus

TQ,Q/aQTQ,Q =
∏
f∈N∅

E = T∅,Q.

�

4.2.2. The congruence ideal ηΣ,f . Consider a homomorphism

πΣ,f : TΣ → O.
Such a homomorphism extends to a homomorphism TΣ,Q → E, so is equivalent to
giving the newform f ∈ NΣ, for which πΣ,f (Tp) = ap(f). If Σ ⊂ Σ′ is enlarged,
then πΣ′,f is obtained from πΣ,f by composing it with the canonical projection
TΣ′ � TΣ.

Recall the homomorphism
φΣ : RΣ � TΣ

between the universal deformation ring and the Hecke algebra, and the prime ideal

pΣ,f = ker(πΣ,f ◦ φΣ : RΣ → O).

Let ρf,λ = πΣ,f ◦ ρmodΣ = πΣ,f ◦ φΣ ◦ ρunivΣ . We observed before that the tangent
space of the deformation problem DΣ �along ρf,λ� is given by

(4.1) HomO(pΣ,f/p
2
Σ,f , E/O) ' H1

LΣ
(GQ, Ad

0ρf,λ ⊗O E/O).

De�ne
ηΣ,f = πΣ,f (AnnTΣ

(kerπΣ,f )).

This is called the congruence ideal (of f). To understand the terminology, suppose
for simplicity that O = Z`, that NΣ consists of only two newforms f, g and that
n ≥ 1 is the highest power of ` such that ap(f) ≡ ap(g) mod `n, or equivalently,
that ρf,` and ρg,` (in appropriate bases) are congruent modulo `n. Then

TΣ = {(a, b) ∈ Z2
` | a ≡ b mod `n},

πΣ,f is the projection on the �rst copy of Z`, its kernel is 0× `nZ`, its annihilator
is `nZ` × 0, and ηΣ,f = (`n).

As a more sophisticated example, suppose NΣ = {f1, f2, f3, f4}, all congruent
modulo ` and no higher power, but suppose that in addition f1 + f4 ≡ f2 + f3

mod `2. If �no further congruences exist�, then we might have

TΣ = {(a, b, c, d) ∈ Z4
` | a ≡ b ≡ c ≡ d mod `, a+ d ≡ b+ c mod `2}.

Check that this is a ring! Then ηΣ,f1
= (`2).

4.2.3. The quantities cp. Suppose Σ ⊂ Σ′. For every p ∈ Σ′−Σ, we de�ne canonical
elements cp ∈ TΣ. The importance of these elements is twofold, and serves to relate
the change in RΣ to the change in TΣ when we enlarge Σ. As such, these elements
become indispensable when Wiles boosts up his �R = T � theorem from the minimal
case (Σ = ∅) to the general case.

On the one hand, πΣ,f (cp) gives an upper bound for the growth of the tangent
space of the deformation problem �along ρf,λ�, when we relax the minimality con-
dition at p. More precisely, these elements (for all p ∈ Σ′−Σ) control (from above)
the di�erence between the Selmer groups H1

LΣ
(GQ, Ad

0ρf,λ ⊗ E/O) and the same
group with Σ′ replacing Σ.
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On the other hand, πΣ,f (cp) gives a lower bound for the growth of the congruence
ideal ηΣ,f , when we change Σ to Σ′.

Taken together, we shall deduce that the change in the Selmer group is bounded
above by the change in the congruence ideal. A fairly general commutative algebra
criterion will allow then to propagate the �R = T � result from Σ to Σ′.

We shall de�ne the cp now, and establish the relation to the tangent space of
the deformation problem. This is relatively easy, and boils down to calculations in
local cohomology groups, made possible by the relation between ρf,λ|Gp and ap(f).
[We use this relation at rami�ed primes p 6= ` and at ` as well!]

The relation between the same cp's and the congruence ideal is more subtle, and
is the topic of the second deep result we shall need about the Hecke algebra.

Finally we stress that for proving the main theorem in the minimal case only,
this whole section is unnecessary.

De�ne:
• If p 6= ` and ρ is unrami�ed at p, then cp = (p− 1)(T 2

p − (p+ 1)2).

• If p 6= ` and ρ is rami�ed at p, then cp = (p2 − 1).
• If ρ is �at and ordinary at `, let c` = T 2

` − (`+ 1)2.
• If ρ is either non-�at or non-ordinary, c` = 1.

Fix f ∈ NΣ, and let ρ = ρf,λ for brevity. If ` 6= p ∈ Σ′ − Σ let

Hp = H1(Gp, Ad
0ρ⊗ E/O)/H1(Gp/Ip, (Ad

0ρ⊗ E/O)Ip).

If ` ∈ Σ′ − Σ (recall that then ρ is both �at and ordinary)

H` = H1
ss(G`, Ad

0ρ⊗ E/O)/H1
f (G`,Ad

0ρ⊗ E/O).

Lemma 63. The groups Hp and H` are �nite,

#Hp = #O/πΣ,f (cp),

and
#H` = #O/πΣ,f (c`).

Proof. Since, by our convention, only unrami�ed p 6= ` may appear in Σ′, and if
` ∈ Σ′ then ρ is both �at and ordinary, we shall give the proof only in these cases,
although it is valid also for rami�ed p (and holds trivially at ` if it is either non-�at
or non-ordinary). Observe that we may take c` = (` − 1)(T 2

` − (` + 1)2), just like
cp, because `− 1 is a unit.

Assume p 6= ` and ρ is unrami�ed at p. Since p /∈ Σ and ρf,λ is of type DΣ, it
is also unrami�ed at p (in the rami�ed case, the minimality condition p /∈ Σ would
mean that it stays �type A� at p, but as agreed above, we shall not need to relax this
condition; practically, because in the application to semistable elliptic curves this
situation will occur only if the elliptic curve had multiplicative reduction at p, and
then the `-adic representation stays �type A�.) Let α, β be the two eigenvalues of
ρf,λ(σp).We �rst note that H1(Gp/Ip, (Ad

0ρ⊗λ−n/O)Ip) has the same cardinality
as H0(Gp, Ad

0ρ⊗λ−n/O), so by the Euler characteristic formula H(n)
p (where E/O

is replaced by λ−n/O) has the same cardinality as

H2(Gp, Ad
0ρ⊗ λ−n/O),

or, by Tate local duality, ofH0(Gp, Ad
0ρ⊗λ−n/O(1)). To prove that this cardinality

is bounded in n we observe that pα/β, p and pβ/α are all di�erent from 1. Indeed,
if not, since αβ = p, we must have {α, β} = ±{1, p}. This would violate, however,
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Hasse's theorem that α and β are p-Weil numbers. The same argument shows that
cp 6= 0. It is now an easy matter to show (writing

cp,f = πΣ,f (cp) = (p− 1)(ap(f)2 − (p+ 1)2)

that
#H0(Gp, Ad

0ρ⊗ λ−n/O(1)) = #O/(λn, cp,f ).

It boils down to the identity

(p− 1)(pαβ−1 − 1)(pβα−1 − 1) = (p− 1)((α+ β)2 − (p+ 1)2).

The computation at ` is identical, because Proposition 47(i),(ii) gives

#H
(n)
` = #O/(λn, χ2χ

−1
1 (σ`)− 1))

where χi are the unrami�ed characters �guring in

ρ|G` ∼
(
εχ1 ∗

χ2

)
.

Note that χ1 = χ−1
2 . As we have seen before in the �at and ordinary case (δ = 0

in previous notations), a`(f) ∈ O×, and the work of Deligne and Rapoport implies
that u = χ2(σ`) is the unit root (in O) of

X2 − a`(f)X + ` = 0.

The lemma therefore boils down, if ` ∈ Σ′ − Σ, to the identity

a`(f)2−(`+1)2 = (u+`u−1)2−(`+1)2 = (u2−1)(1−u−2`2) ∼ u2−1 = χ2χ
−1
1 (σ`)−1.

Note that, as in the case of p 6= `, u2 6= 1, because a`(f) 6= ±(`+1). This is because
` /∈ Σ is a prime of good reduction for f , where ρf,ν for some prime ν not above `
is unrami�ed, so the roots of X2 − a`(f)X + ` are `-Weil numbers and can not be
±{1, `}. �

Corollary 64. There is an exact sequence

0→ H1
LΣ

(GQ, Ad
0ρf,λ ⊗ E/O)→ H1

LΣ′
(GQ, Ad

0ρf,λ ⊗ E/O)→
∏

p∈Σ′−Σ

Hp.

We have

#
(
H1
LΣ′

(GQ, Ad
0ρf,λ ⊗ E/O)/H1

LΣ
(GQ, Ad

0ρf,λ ⊗ E/O)
)
≤ #O/(

∏
p∈Σ′−Σ

cp,f )

with equality if ad only if the sequence is also exact on the right.

We now state the second theorem on the structure of the Hecke algebras that
we shall prove later.

Theorem 65. Let Σ ⊂ Σ′ be �nite sets of primes such that if ` 6= p ∈ Σ′ then ρ is
unrami�ed at p, and if ` ∈ Σ′ then ρ is �at and ordinary at `. Let f ∈ NΣ. Then

ηΣ′,f ⊂ ηΣ,f · (
∏

p∈Σ′−Σ

cp,f ).

Corollary 66. With the above notation,

#
(
H1
LΣ′

(GQ, Ad
0ρf,λ ⊗ E/O)/H1

LΣ
(GQ, Ad

0ρf,λ ⊗ E/O)
)
≤ #(ηΣ,f/ηΣ′,f ).

4.3. The two commutative algebra criteria (week 10).
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4.3.1. Local complete intersections and the �rst criterion. Let A ∈ CO be �nite free
as an O-module. A is called a local complete intersection (l.c.i.) if

A ' O[[X1, . . . , Xr]]/(f1, . . . , fr)

(same number of variables and relations). This notion is clearly invariant under
�nite base change O′/O, but it is also true that if A⊗O O′ is a l.c.i., so is A. We
shall study l.c.i.'s and their relation to singualrity types (Cohen Macaulay-ness and
Gorenstein-ness) in the later chapter on commutative algebra, and also see some
examples.

The following commutative algebra criterion will serve to pass from the proof of
the Main Theorem in the minimal case, to a proof in the general case.

Theorem 67 (Wiles' �rst criterion). Suppose that

φ : R� T

is a surjection of O-algebras in CO. Suppose also that T is �nite free as an O-
module and is equipped with a homomorphism π : T � O. Let p = ker(π ◦ φ), so
that R ' O ⊕ p as an O-module. Let

η = π(AnnT (kerπ)) ⊂ O,

and suppose that η 6= 0. Then the following are equivalent:
(i) φ : R ' T and these rings are l.c.i.
(ii) #p/p2 = #O/η.
(iii) #p/p2 ≤ #O/η.

A-priori, we do not assume that R is �nite over O, nor that it is O-torsion free.

4.3.2. J-structures and the second criterion. Fix an integer r ≥ 1 (in practice,
r = #Q for a set of Taylor-Wiles primes). Let J / O[[S1, . . . , Sr]] be an ideal
contained in (S1, . . . , Sr) (in practice, the ideal generated by (1+Si)

`n−1 for some
large n, and O[[S1, . . . , Sr]]/J will be a quotient of the rings of diamond operators
O[∆Q] if q ≡ 1 mod `n for all q ∈ Q). By a J-structure for the surjection R � T
in CO we mean a commutative diagram

O[[S1, . . . , Sr]]
↓ ↘

O[[X1, . . . Xr]] � R′ � T ′

↓ ↓
R � T

in CO satisfying:
• T ′ is �nite and free as an O-module,
• T ′/(S1, . . . , Sr)T

′ = T and R′/(S1, . . . , Sr)R
′ = R,

• For any ideal I ⊃ J, the map from O[[S1, . . . , Sr]]/I to T ′/IT ′ is injective.
We make a few remarks concerning the de�nition. First, there is no relation between
the Si and the Xi, and the Xi do not �gure out in the properties of the J-structure,
except for the fact that R′ can be generated as an O-algebra by r variables. Instead
of speci�ying the homomorphism from O[[X1, . . . Xr]] we may simply say that the
k-dimension of the reduced cotangent space mR′/(m

2
R′ , λ) is ≤ r, where r is the

number of Si. The second remark is that we may replace R′ and T ′ by R′/JR′ and
T ′/JT ′, so without loss of generality we may assume that J is the kernel of both
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homomorphisms O[[S1, . . . , Sr]] → T ′ and O[[S1, . . . , Sr]] → R′. Finally, for any
ideal J ′ ⊃ J, a J-structure is clearly also a J ′-structure.

As in the �rst criterion, we do not know a-priori that R, let alone R′, is �nite or
torsion-free over O. These assumptions are only made on T and T ′. The following
commutative algebra criterion of Taylor-Wiles, slightly improved by Faltings, will
serve to prove the Main Theorem in the minimal case.

Theorem 68 (Faltings-Taylor-Wiles second criterion). Suppose that there exists a
sequence of ideals Jn / O[[S1, . . . , Sr]] such that J0 = (S1, . . . , Sr), Jn ⊃ Jn+1 and⋂
Jn = 0. Suppose that for each n there exists a Jn-structure for R � T . Then

R ' T and both are l.c.i.

4.4. The proof of the Main Theorem.

Theorem 69 (Main Theorem �R = T �). Let ρ be as in �3.1.1 and assume, in
addition, that ρ is modular. Let Σ be a �nite set of �nite primes such that, if
` 6= p ∈ Σ then ρ is unrami�ed at p, and if ` ∈ Σ then ρ is �at and ordinary at
`. Let RΣ be the universal deformation ring of type DΣ and TΣ the Hecke algebra
constructed in �4.1.3. Let

φΣ : RΣ � TΣ

be the surjective homomorphism bringing ρunivΣ to ρmodΣ . Then φΣ is an isomor-
phism, and RΣ ' TΣ is a l.c.i..

Corollary 70. Let E be an elliptic curve de�ned over Q. Assume that E is every-
where semistable and that ρE,3 is irreducible. Then E is modular.

Proof. Let ` = 3, k = F3, O = Z3 and observe that ρ = ρE,3 satis�es the running
assumptions: it is odd and irreducible, det ρ = ε, it is �type A� at the p 6= ` where it
is rami�ed (thanks to the assumption that E has multiplicative reduction), and is
�at if E has good reduction at `, or ordinary if E has multiplicative reduction there.
By Theorem 59 ρ is modular of weight 2, level `δ(ρ)N(ρ) and trivial nebentypus,
where δ(ρ) = 0 if ρ is �at at ` and = 1 if it is ordinary non-�at.

Let Σ be the set of primes p where ρ is unrami�ed but ρ = ρE,3 is rami�ed (if
p 6= `), as well as ` = 3 if ρ is �at there but ρ is not (i.e. E has bad reduction at
3). Enlarge O and k to contain all the Of,λf for (f, λf , ιf ) ∈ NΣ as before. By
the semi-stability assumption ρ is a deformation of type DΣ of ρ, so there exists
a unique homomorphism π : RΣ → O bringing ρunivΣ to ρ. The homomorphism
π ◦ φ−1

Σ : TΣ → O corresponds to an (f, λf , ιf ) ∈ NΣ such that

ρ ' ιf ◦ ρf,λf ,

as desired. �

We now prove the main theorem.

Proof. Assume �rst that Σ = ∅. According to Proposition 39, since ρ is modu-
lar, it satis�es condition (L), namely ρ|GL is absolutely irreducible, where L =

Q(
√

(−1)(`−1)/2`). Let
r = dimH1

L∗∅
(GQ, Ad

0ρ(1)).

By Theorem 57, for each n ≥ 1 there exists a set Qn of r �Taylor-Wiles primes�
q ≡ 1 mod `n, and RQn is topologically generated as an O-algebra by r elements,
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i.e. is a quotient of O[[X1, . . . , Xr]]. Let ni be the highest power of ` dividing qi−1,
so that ni ≥ n. Fix an isomorphism as before

O[∆Qn ] ' O[[S1, . . . , Sr]]/(..., (1 + Si)
`ni − 1, ...)

by mapping 1+Si to a generator of the `-Sylow subgroup of ∆qi ' (Z/qiZ)×. Then
for each n ≥ 1 we get a diagram

O[[S1, . . . , Sr]]
↓ ↘

O[[X1, . . . Xr]] � RQn � TQn
↓ ↓
R∅ � T∅

where:
• RQn/(S1, . . . , Sr)RQn = RQn/aQnRQn = R∅,
• TQn is �nite free over O[∆Qn ] (see Theorem 61),
• TQn/(S1, . . . , Sr)TQn = TQn/aQnTQn = T∅ (see Corollary 62).

We conclude that φ∅ : R∅ � T∅ admits a Jn-structure, where Jn = (..., (1 +Si)
`n −

1, ...). Indeed, letting
J ′n = (..., (1 + Si)

`ni − 1, ...),

TQn is �nite free as a module over O[[S1, . . . , Sr]]/J
′
n, so, all the more so, is �nite

free as an O-module. In addition, for any ideal I ⊃ Jn ⊃ J ′n we get that TQn/ITQn
is free over O[[S1, . . . , Sr]]/I, so the latter injects into the �rst. The statement of
the theorem follows now from the second commutative-algebra criterion, Theorem
68.

Next, we assume the theorem is proved for Σ = ∅, and prove the general case.
Let f ∈ N∅, and consider the homomorphism πf : T∅ → O. From the fact that
TΣ ⊗O E ' En it follows easily that we always have

ηΣ 6= 0,

so the �rst commutative-algebra criterion (Theorem 67) applies. Let p = ker(πf ◦φ)
where φ : R∅ ' T∅. Since we proved that R∅ ' T∅ are l.c.i., we know that

#p/p2 = #O/η∅.
In particular, p/p2 is a �nite group and not only a �nite O-module, something that
is not a-priori clear at all. By Corollary 66 and formula 4.1 we obtain that

#pΣ/p
2
Σ ≤ #O/ηΣ <∞

where ηΣ and pΣ refer now to the same f, but to the rings TΣ and RΣ. A second
application of Theorem 67 shows that φΣ : RΣ ' TΣ and the rings are l.c.i.. �

4.5. The 3-5 trick. The proof of modularity of semistable elliptic curves relied,
so far, on the irreducibility of ρE,3. To conclude the proof Wiles used a trick that
became known as the �3-5� trick.

Theorem 71. Let E be a semistable elliptic curve de�ned over Q. Then E is
modular.

Proof. If ρE,3 is irreducible then this follows from Corollary 70. Suppose ρE,3 was
reducible. We claim that ρE,5 is then irreducible. For otherwise, E would have a
rational subgroup of order 15 de�ned over Q, and would give rise to a non-cuspidal
rational point of X0(15). This curve is of genus 1, and is known to have only 4
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non-cuspidal rational points, which do not correspond to semi-stable elliptic curves
(and in any case correspond to modular elliptic curves).

We now prove that ρ = ρE,5 is modular. Consider the modular curve X(ρ)
parametrizing generalized elliptic curves A with A[5] ' E[5] (as �nite �at group
schemes over Q, i.e. as Galois modules), compatible with the Weil pairing. It is
a twisted form of a certain connected component of X(5), which is known to have
genus 0. (Recall that X(5) classi�es A[5] ' µ5 × Z/5Z.) Since it has a rational
point (correspodning to E), it is isomorphic to P1

Q. Consider the modular curve
X ′(ρ) which is the covering of X(ρ) classifying, in addition, a rational subgroup of
order 3. It is a twisted form of XΓ(5)∩Γ0(3), which has genus greater than 1, so by
Mordell's conjecture (Faltings' theorem) has �nitely many Q-rational points. Let
x ∈ X(ρ)(Q) be a rational point above which there does not lie any rational point
of X ′(ρ). Let A be the elliptic curve represented by x. By de�nition, A[5] ' E[5],
and A does not admit a rational subgroup of order 3, so ρA,3 is irreducible. For a
prime q 6= 5 (including q = 3, if needed), ρA,5 ' ρE,5. It follows from the lemma
below that A too is semistable at q. If we choose x, in addition, close to the point
representing E in the 5-adic topology, we can guarantee that A is also semistable
at 5. We can now apply the main theorem to A, and the prime ` = 3, to conclude
that A is modular. However, this shows that ρA,5 = ρE,5 is modular.

We now know that ρE,5 is both irreducible and modular. Applying the main
theorem to E and ` = 5, concludes the proof. �

Lemma 72. Let A and E be two elliptic curves over Qq (q 6= 5), such that A[5]
and E[5] are isomorphic as Gq-modules. If E is semistable, so is A.

Proof. We use the fact that an elliptic curve over Qq is semistable if and only if for
every τ ∈ Iq

(ρE,5(τ)− I)2 = 0,

if and only if 1 is the only eigenvalue of ρE,5(τ). By our assumption, (ρA,5(τ)−I)2 ∈
5M2(Z5), so for any eigenvalue α of ρA,5(τ), (α − 1)2 ≡ 0 mod 5Z5. However, by
potential semistability, α is a root of unity. Let m be its exact order, and assume
that m > 1. If m is not a power of 5, then α− 1 is a 5-adic unit. If m is a power of
5, then v5(α−1) = 1/n for n = [Q(α) : Q] ≥ 4, so we can not have v5((α−1)2) ≥ 1.
Therefore m = 1 and α = 1.

Note: The argument works with any prime r ≥ 5 di�erent from q replacing 5.
The same argument, with any prime r ≥ 3 di�erent from q replacing 5, shows that
if E has good reduction, so does A (instead of arguing on (ρA,r(τ)−I)2 ≡ 0 mod r,
argue, more simply, on ρA,r(τ)− I ≡ 0 mod r.) �

5. Complements on the Hecke algebra (weeks 11,12)

5.1. The geometry behind TQ.

5.1.1. Passing to the full Hecke algebra. Our construction of the Hecke algebra TΣ

was representation-theoretic, and included only the Hecke operators at good primes.
Let us recall it. We determined the collection NΣ of weight 2 newforms that give
rise to deformations ρ : GQ → GL2(O) of type Σ by looking at the prime-to-` Artin
conductors of such deformations. We noted that the power of any p 6= ` in it, under
our assumptions on ρ and Σ, is equal to 1 if ρ was rami�ed at p, or bounded by
2, if p ∈ Σ (in which case ρ was unrami�ed at p, but ρ was allowed to be rami�ed
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there). At `, we let δΣ(ρ) = 0 if ρ was �at at ` and ` /∈ Σ, and δΣ(ρ) = 1 otherwise
(in which case ρ could be ordinary but non-�at). This gave us, in view of Carayol's
theorem �arithmetic conductor = analytic conductor�, the level

NΣ = `δΣ(ρ)N(ρ)
∏

` 6=p∈Σ

p2.

We took (f, λf , ιf ) ∈ NΣ if and only if f was a newform of weight 2, trivial neben-
typus, and level Nf |NΣ, such that ιf ◦ ρf,λf = ρ.

Enlarging O, if necessary, to contain all the images ιf (Of,λf ), the Hecke algebra
TΣ was de�ned to be the O-subalgebra of T̃Σ =

∏
f∈NΣ

O generated by the images
Tp 7→ (..., ap(f), ...) for good p (p - `NΣ). Note that since we did not include Hecke
operators for primes dividing NΣ, the question of oldforms did not arise; every
f ∈ Nf was an eigenform of all the good Tp. In fact, we could omit any �nite set
of p's from the list of good primes, and still obtain exactly the same TΣ.

The ring TΣ was automatically local, since for any good p and all f ∈ NΣ,

ap(f) ≡ trρ(σp) mod λ,

independently of f . The ideal MΣ ⊂ TΣ consisting of vectors all of whose f -
coordinates are divisible by λ is therefore maximal, with residue �eld k. To show
that any element of TΣ outside MΣ is invertible, it is enough to show that any
element of the form 1 − x, with x ∈ MΣ, is invertible. But this follows from the
formula (1− x)−1 = 1 + x+ x2 + · · · , valid in T̃Σ, and the fact that TΣ is closed in
T̃Σ.

Alternatively, we may look at the ring of endomorphisms TO = T(S2(Γ0(NΣ)))⊗
O which is the image of the full abstract Hecke algebra T = Z[..., Tp, ...] (all p's !)
in End(S2(Γ0(NΣ))), base changed to O. If p|NΣ we denote by Tp (at level NΣ)
the Atkin-Lehner operator Up, as usual. This TO is a complete semi-local ring,
the direct product of its localizations at maximal ideals. However, because of the
existence of oldforms in S2(Γ0(NΣ)), it may not be reduced.

Proposition 73. There exists a maximal ideal m of TO and an isomorphism be-
tween TΣ and the localization Tm of TO at m, sending �Tp to Tp� for p - `NΣ.

Proof. We refer to [D-D-T], Proposition 4.7 and the Lemmas preceding it, or to
[W95], Proposition 2.15, for the construction of m and the proof of the Proposition.
It relies on the theory of old-forms, and the speci�cs of our situation, where the
primes p|N(ρ) must divide the level Nf of every newform f ∈ NΣ, ` appears to
order ≤ 1 in NΣ, and the primes p ∈ Σ to order at most 2. The essential part of
the proof is the surjectivity. For this one has to show that if p|`NΣ then the image
of Tp in Tm is already in the image of TΣ, although the latter is generated only by
the good Hecke operators. �

5.1.2. Trading o� the level and the nebentypus. When Σ = Q was a set of Taylor-
Wiles primes, we analyzed the universal deformation ρunivQ locally at q ∈ Q and
obtained that RQ, hence also TQ, acquired a structure of an O[∆Q]-algebra, and
the ∆Q-coinvariants were R∅ and T∅. We called the ∆Q �diamond operators�, but
their origin was not geometric, and as all our forms had trivial nebentypus, this
needs justi�cation and explanation.
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To get the �ner structure theorems on TQ we give another, more geometric,
construction of it, which also justi�es the name �diamond operators�. There is a
trade-o� between the level and the nebentypus. We shall sacri�ce the �trivial neben-
typus� assumption (or the cyclotomic determinant condition on the representation)
and gain that the level becomes square free. In other words, let

MQ =
∏
p|NQ

p

be the radical of
NQ = `δ(ρ)N(ρ)

∏
q∈Q

q2.

Then
(Z/MQZ)× �

∏
q∈Q

(Z/qZ)× � ∆Q

where ∆Q is the `-Sylow subgroup of
∏
q∈Q(Z/qZ)×. Let

Γ1(MQ) ⊂ ΓQ ⊂ Γ0(MQ)

be the subgroup for which Γ0(MQ)/ΓQ is ∆Q. Consider T(S2(ΓQ))⊗O where now
we include in the Hecke algebra, besides all the Tp, also the diamond operators 〈δ〉
for δ ∈ ∆Q.

If f is a newform of weight 2 and trivial nebentypus, whose level Nf divides NQ,
giving rise to a representation of type DQ (i.e. if f ∈ NQ), we saw that for q ∈ Q

ρf,λ|Gq ∼
(
εξq 0
0 ξ−1

q

)
where ξq : Gq → O× is a (rami�ed, in general) character such that θq = ξq|Iq
factors through Iq � ∆q. Let θQ : ∆Q → O× be the product of the θq and view
it also as a Dirichlet character, and as a Galois character of GQ by composition
with the cyclotomic character. As a Galois character, it is tamely rami�ed at every
q ∈ Q. Consider the newform

f ′ = f ⊗ θQ
whose Fourier coe�cients ap(f ′) = ap(f)θQ(p) (p - Q). It has weight 2 and neben-
typus χQ = θ2

Q. From now on we write θQ = χ
1/2
Q since the square root (in a cyclic

`-group) is uniquely de�ned.
The Galois representation associated to f ′ is ρf ′,λ = ρf,λ ⊗ χ1/2

Q , so that

ρf ′,λ|Gq ∼

(
εξqχ

1/2
Q 0

0 ξ−1
q χ

1/2
Q

)
.

Since ξ−1
q χ

1/2
Q is unrami�ed at q, the conductor of ρf ′,λ is divisible by q to the �rst

power only (the dimension of the Iq-coinvariants is 1 and not 2). Thus the level of
f ′ divides MQ and in fact f ′ ∈ S2(ΓQ). Since χ1/2

Q takes values in `-power roots
of unity, its image in k× is trivial, so the residual representation is unchanged by
twisting.

This procedure is reversible. Start with a newform f ′ in S2(ΓQ) giving rise to
a representation of the above shape at q ∈ Q, so that its nebentypus is χQ. Then
f = f ′ ⊗ χ−1/2

Q has a trivial nebentypus, gives rise to a deformation of ρ of type
DQ, and its level divides NQ. It therefore lies in NQ.
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Let T′O = T(S2(ΓQ),O) be the image of the full abstract Hecke algebra T ⊗ O
in End(S2(ΓQ,O)). This is the same as the image of T⊗O in End(T`JΓQ)⊗Z` O
(use the identi�cation of S2(Γ) with the cotangent space at 0 of the Jacobian JΓ).
We have proved the following.

Proposition 74. Suppose that ρ is modular of type D∅, let Q be a set of Taylor-
Wiles primes for ρ, and let Tm be the local component of the full Hecke algebra
TO = T(S2(Γ0(NQ),O) associated with ρ and the set Σ = Q as in the previous
Proposition. Then there exists a maximal ideal m′ of the full Hecke algebra T′O =
T(S2(ΓQ),O) and an isomorphism

Tm ' T′m′

carrying Tp on the left (p /∈ Q) to Tp · 〈p〉−1/2 on the right.

The reason for the square root is that ap(f ′) = ap(f)χ
1/2
Q (p) while the nebentypus

of f ′ is χQ. [Check: if f! f ′ then Tpf ′ = ap(f
′)f ′ = ap(f)χ

1/2
Q (p)f ′, so

Tp · 〈p〉−1/2
f ′ = ap(f)f ′.]

It can be checked that m′ is generated by the following. (The appearance of
quantities from k means: substitute any lift to O; since λ ∈ m′, it does not matter
which lift we choose.)

• λ
• Tp − tr(ρ(σp)) and 〈p〉 − 1 for p - NQ (including p = ` if δ(ρ) = 0),
• Up − ρIp(σp) for p|N(ρ), p 6= `. Here ρIp is the character of Gp/Ip on the
rank 1 Ip-coinvariants (recall that the local representation is �type A�),

• U` − ρI`(σ`) if `|N(ρ) with the same convention as before (recall that if
`|N(ρ) then ρ is ordinary non-�at at `),

• Uq − βq for q ∈ Q. Here βq is the eigenvalue of ρ(σq) which was used to
de�ne the action of ∆q on RQ, hence the structure of a module over O[∆Q].

The following Corollary, which we leave out as an exercise, follows easily from the
discussion above.

Corollary 75. Under the isomorphism constructed between TQ ' Tm ' T′m′ the
action of ∆Q on TQ gets translated to the standard diamond operators action on
T′m′ .

From now on we forget the two steps taken in the two propositions, namely (1)
including the Hecke operators for the bad primes, and (2) twisting to replace NQ by
MQ, at the expense of allowing a �partial� Γ1-level, via the action of the diamond
operators ∆Q. We write Tm for T′m′ and record the isomorphism

TΣ ' Tm

resulting from the two propositions.

5.1.3. The geometry of JΓQ and the proof of Theorem 61. Having given an alterna-
tive construction of TQ that sheds light on the geometric origin of the diamond op-
erators, we prove the freeness of TQ over O[∆Q].We follow the method of [T-W95],
although an alternative approach, based on q-expansions, was suggested later by
F. Diamond and is used in [D-D-T].

Write, for simplicity, JQ = JΓQ , and observe that it lies between J0(MQ) and
J1(MQ). Similarly, XQ = X(ΓQ), and YQ is the corresponding open modular curve.
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Write Γ̃Q = Γ0(MQ), X̃Q = X0(MQ) etc. We let m̃ be the maximal ideal of the
Hecke algebra of S2(Γ0(MQ),O) which is the image of m (the map being restriction
of Hecke operators), and T̃m the corresponding localization.

When we change Q we add the subscript Q (or ∅ if Q is the empty set) to the
maximal ideal and the Hecke algebra.

The following theorem is deep, and relies on work of Mazur and Tilouine. The
corresponding theorem for the rational Tate module V`JQ or the rational coho-
mology is easy, but the integral statement needed here invokes a multiplicity-one
statement for mod-` representations that appear in JQ[`], and is delicate. It re-
lies, crucially, on the irreducibility of ρ, which implies that the maximal ideal m is
�non-Eisenstein� in Mazur's language.

Theorem 76. (i) The `-adic Tate module (T`JQ)m (completed at m) is free of rank
2 over Tm.

(ii) H1(XQ,O)±m = H1(YQ,O)±m (± refers to complex conjugation) are equal and
free of rank 1 each.

Similar statements hold for localizations at m̃ of T`J̃Q, or the cohomologies of
the modular curves X̃Q, as modules over T̃m.

Recall that T∅ = T̃∅ is the localization of T(S2(Γ0(N),O)) at m = m∅, where
N = `δ(ρ)N(ρ) (when Q is empty there is no di�erence between the tilde and non-
tilde versions). While there is no map from T(S2(Γ0(MQ),O)) to T(S2(Γ0(N),O))
(the Hecke operators Uq for q ∈ Q do not preserve S2(Γ0(N),O) ⊂ S2(Γ0(MQ),O)),
the next lemma shows that after localizing at m such a map exists, and in fact is
an isomorphism.

Lemma 77. There exists an isomorphism T̃Q ' T̃∅ mapping the Hecke operators
Tp (p - NQ) and Up (p|N) in T̃Q to the corresponding operators in T̃∅.

Proof. See [dS], Lemma 13. In the �rst step one uses the assumption that the two
eigenvalues αq and βq of ρ(σq) are distinct, to show that (T`J̃Q)m̃Q is �Q-old�. By
this we mean that this direct summand of T`J̃Q⊗O is contained in the Tate module
of the Q-old subvariety of J̃Q, which is isogenous to a product of 2r copies of J0(N).

One way to prove this statement is to compute the module of fusion between
the Q-old and the Q-new parts of J̃Q. This computation, based on αq 6= βq tells us
that

J̃oldQ [m̃Q] ∩ J̃newQ [m̃Q] = {0}.

However, it follows from Theorem 76 that dimk J̃Q[m̃Q] = 2, or that the multiplicity
of ρ in it is 1. Since ρ appears in J̃oldQ [m̃Q] it can not appear in J̃newQ [m̃Q]. Therefore
ρ is not a constituent (i.e. a subquotient as a Galois module) of J̃newQ [`∞]m̃Q , so
this `-divisible group, and its Tate module as well, are 0.

Assume, for simplicity, that Q = {q} consists of a single prime. The Q-old Hecke
algebra is then isomorphic to

T0(N)[uq]/(u
2
q − Tquq + 〈q〉 q).

Since the roots of the quadratic polynomial are distinct modulo m = m∅, and since
Uq−βq ∈ m̃Q, Hensel's lemma shows that after we localize the Q-old Hecke algebra
at m̃Q, we get T∅ = T0(N)m. �
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We can now prove Theorem 61. Since H1(YQ,O)±m is free of rank 1 over TQ, it is
enough to show that it is free over O[∆Q].We shall in fact prove the stronger claim
that H1(YQ,O)− is free over O[∆Q]. Assume, for simplicity, that Γ̃Q had no elliptic
elements, or more generally, that the orders of its elliptic elements are invertible in
O (unfortunately, this might not be the case when ` = 3). Then

H1(YQ,O) ' H1(ΓQ,O) ' H1(Γ̃Q,O[∆Q]).

The �rst isomorphism comes from the relation between singular cohomology of
curves and group cohomology of their fundamental group. The second isomorphism
stems from Shapiro's lemma. The ∆Q action on the cohomology on the left gets
translated to its action on the coe�cients. The key point, now, is that Γ̃Q is a
free group, since it has no elliptic elements. The abelian group Z1(Γ̃Q,O[∆Q]) of
1-cocycles with values in O[∆Q] is therefore free over O[∆Q]. So are its ± parts
(this needs to be checked). If we focus on H1(YQ,O)− we need not worry about
the coboundarys because B1(Γ̃Q,O[∆Q]) all lie in the + eigenspace for complex
conjugation.

In case Γ̃Q has elliptic elements we have to introduce an auxiliary Γ1-level to get
rid of them, and then descend. See [dS], Proposition 14, how this is done.

In any case, we deduce that H1(YQ,O)−, and with it TQ, is free over O[∆Q].
Moreover, Shapiro's lemma tells us that the ∆Q-coinvariants, i.e. the module ob-
tained after we divide by the augmentation ideal aQ, is identi�ed with

H1(Γ̃Q,O)− ' H1(ỸQ,O)−.

When we localize at mQ we get

TQ/aQTQ ' TmQ/aQTmQ ' T̃mQ ' T∅.

The last isomorphism is a consequence of the last Lemma. We therefore conclude
that

rkO[∆Q]TQ = rkOT∅,
which gives another proof of Corollary 62. (One may say that the previous proof
was representation-theoretic, while the new one is based on the geometry of modular
Jacobians.)

5.2. Congruence ideals and Hecke algebras. We turn our attention to the
second major result about the Hecke algebra TΣ, Theorem 65. Recall the statement.

Theorem. Let Σ ⊂ Σ′ be �nite sets of primes such that if ` 6= p ∈ Σ′ then ρ is
unrami�ed at p, and if ` ∈ Σ′ then ρ is �at and ordinary at `. Let f ∈ NΣ. Then

ηΣ′,f ⊂ ηΣ,f · (
∏

p∈Σ′−Σ

cp,f ).

It is enough to prove the theorem, of course, when Σ′ = Σ ∪ {p}, which we
assume from now on. Recalling that

TΣ ⊂ T̃Σ =
∏
g∈NΣ

O,

and assuming that our f is the �rst �g� in NΣ, we let

℘ = ker(πΣ,f ), I = AnnTΣ
(℘)
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so that ηΣ,f = πΣ,f (I). Clearly

℘ = {(0, ∗, ..., ∗) ∈ TΣ}, I = {(∗, 0, ..., 0) ∈ TΣ}.
Note that

O/ηΣ,f ' (O ⊕ ℘)/(ηΣ,f ⊕ ℘) ' TΣ/(I ⊕ ℘).

Regarding the ideal pΣ,f ⊂ RΣ, we have

pΣ,f = φ−1
Σ (℘).

Let T be the Hecke algebra generated by all the Hecke operators acting on
S2(Γ0(NΣ),O) and m its maximal ideal for which we constructed an isomorphism
TΣ ' Tm sending �Tp to Tp� for p - NΣ (see Proposition 73). LetWΣ = (T`J0(NΣ)⊗
O)m, so that by Theorem 76, WΣ is free of rank 2 over TΣ. Fix an isomorphism
Z`(1) ' Z`. The Weil pairing, and the fact that the Hecke operators at Γ0-level are
self-adjoint, implies that there is an alternating pairing

〈, 〉Σ : WΣ ×WΣ → O,
inducing an isomorphism of TΣ-modules

WΣ ' HomO(WΣ,O).

Incidentally note that if we break WΣ into its ±-eigenspaces for complex conjuga-
tion, then Mazur's theorem 76 implies that each is free of rank 1 over TΣ, and the
Weil pairing induces a duality between W+

Σ and W−Σ . It follows that

TΣ ' HomO(TΣ,O)

as a TΣ-module, which is the Gorenstein property of TΣ.
At any rate, the Weil pairing induces a perfect pairing

〈, 〉Σ : WΣ[℘]×WΣ/℘WΣ → O.
Fix a symplectic isomorphism WΣ ' T2

Σ, where the pairing on the right is the
determinant pairing coupled with the self-duality of TΣ. Since WΣ[℘] = I2 ' η2

Σ

and WΣ/℘WΣ ' O2, it is easy to obtain from the above the following lemma (see
[D-D-T], Lemma 4.17, and put d = 2 there).

Lemma 78. The submodule WΣ[℘] is free of rank 2 over O = TΣ/℘. Let {x, y} be
a basis of WΣ[℘] over O. Then

ηΣ,f = (〈x, y〉Σ).

We now compare the quantities ηΣ,f and ηΣ′,f by comparingWΣ[℘] andWΣ′ [℘
′].

Recall Σ′ = Σ ∪ {p} and NΣ′ = NΣp
2 if p 6= ` (in which case we assumed that ρ

was unrami�ed at p), or NΣ′ = NΣ` if p = ` (in which case ρ was �at and ordinary
at `). There are 3 (if p 6= `) or 2 (if p = `) degeneracy maps

δi : X0(NΣ′)→ X0(NΣ)

coming from τ 7→ piτ (i = 0, 1, 2 or i = 0, 1 respectively) on H. They induce, by
Albanese functoriality, similar maps on Jacobians, hence maps

δi : T`J0(NΣ′)⊗O → T`J0(NΣ)⊗O � (T`J0(NΣ)⊗O)m = WΣ,

compatible with all the Hecke operators Tr (including the r|NΣ) except for Tp. It
follows from the way the ideals m and m′ were constructed that the homomorphism

β = δ0 − p−1Tp ◦ δ1 + p−1δ2 (p 6= `)
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β = δ0 − u−1
` ◦ δ1 (p = `),

where u` is the �unit root� in TΣ of X2−T`X+ ` (note that if p = ` it follows from
our running assumptions that ρ was �at and ordinary at `, hence all the a`(f), for
f ∈ NΣ, are in O×), is a homomorphism

β : WΣ′ →WΣ,

commuting with all the good Hecke operators, i.e. a TΣ′ -homomorphism, where we
let TΣ′ act on the target via the canonical homomorphism TΣ′ → TΣ.

Let β′ : WΣ → WΣ′ be the dual of β with respect to the Weil pairings 〈x, y〉Σ
and 〈x, y〉Σ′ . A computation of 3×3 or 2×2 determinants yields (in all cases) that
ββ′ ∈ End(WΣ) is, up to a unit, equal to the Hecke operator

cp = (p− 1)((1 + p)2 − T 2
p ) ∈ TΣ

(note that p is a good prime at level NΣ!). See [D-D-T], top of p.133.

Lemma 79. The homomorphism β′ : WΣ → WΣ′ has an O-torsion free cokernel
(i.e. it embeds WΣ as an O-direct summand of the larger module WΣ′). As a
consequence, it maps WΣ[℘] isomorphically onto WΣ′ [℘

′].

Recall that WΣ′ [℘
′] is the common kernel, in WΣ′ , of all the endomorphisms

T ∈ TΣ′ which act trivially on f (℘′ is the kernel of πΣ′,f : TΣ′ → O). A similar
interpretation exists for WΣ[℘]. Since β′ is a TΣ′ -homomorphism, it follows that
WΣ[℘] is in fact mapped by β′ to WΣ′ [℘

′]. It furthermore follows easily that after
tensoring with E over O it is an isomorphism. The fact that β′ has an O-torsion
free cokernel implies that it induces an isomorphism WΣ[℘] 'WΣ′ [℘

′].

Corollary 80. ηΣ′,f = cp,fηΣ,f .

Proof. Let {x, y} be a basis of WΣ[℘]. Then {β′x, β′y} is a basis of WΣ′ [℘
′]. We

have (up to a unit)

ηΣ′,f ∼ 〈β′x, β′y〉Σ′ = 〈ββ′x, y〉Σ = 〈cpx, y〉Σ .
Since x ∈ WΣ[℘], the Hecke operator cp acts on it via πΣ,f (cp) = cp,f ∈ O. It
follows that

ηΣ′,f ∼ cp,f 〈x, y〉Σ = cp,fηΣ,f .

�

It remains to prove the lemma (the fact that coker(β′) is torsion-free). This
follows from an argument from Ribet's theorem on �raising the level� known as
Ihara's Lemma. See Lemma 4.6 of [Di-Ri], or [D-D-T], Lemma 4.24.

6. Commutative Algebra (weeks 13,14)

6.1. The cotangent space and the congruence ideal.

6.1.1. The two invariants. Let O be the ring of integers in a �nite extension of
Q` and CO the category of local complete noetherian O-algebras with residue �eld
k, where the morphisms are local O-homomorphisms inducing the identity on k.
Let C·O be the category of pairs (A, πA) where πA : A → O is a morphism (such
a pair will be called a pointed, or augmented, O-algebra). Morphisms are local
homomorphims f : A → B of O-algebras such that πB ◦ f = πA. For example,
using the notation of the previous chapters, if f ∈ NΣ we may take (TΣ, πΣ,f ) or
(RΣ, πΣ,f ◦ φΣ).
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With (A, πA) ∈ C·O we associate two invariants. Let IA = ker(πA). De�ne

ΦA = IA/I
2
A, ηA = πA(AnnAIA).

The invariant ΦA is an O-module, the cotangent space along πA. The ideal
ηA ⊂ O is called the congruence ideal of πA.

Example 81. (i) A = O[[X,Y ]]/(XY,X(X−λ), Y (Y −λ)).We have an O-algebra
isomorphism

A ' {(a, b, c) ∈ O3| a ≡ b ≡ c mod λ}
under f 7→ (f(0, 0), f(0, λ), f(λ, 0)). To check that we get everything on the RHS
use the polynomials X+Y −λ,X and Y to get (−λ, 0, 0), (0, 0, λ) and (0, λ, 0). Let
πA be the projection to the �rst factor, i.e. f 7→ f(0, 0). Then

ΦA ' O/λ×O/λ, ηA = (λ).

(ii) A = O[[X,Y ]]/(X(X − λ), Y (Y − λ)). We have

A ' {(a, b, c, d) ∈ O4| a ≡ b ≡ c ≡ d mod λ, a+ d ≡ b+ c mod λ2}
under f 7→ (f(0, 0), f(0, λ), f(λ, 0), f(λ, λ)). To check that we get everything on the
RHS use the polynomials X+Y −λ, X, Y to get (−λ, 0, 0, λ), (0, 0, λ, λ), (0, λ, 0, λ),
and XY to get (0, 0, 0, λ2). Again, let πA be the projection to the �rst coordinate.

Here, in contrast to the �rst example,

ΦA ' O/λ×O/λ, ηA = (λ2).

Note that in this example A is a l.c.i. and #ΦA = #(O/ηA). Both assertions fail
for (i). Note also the the �rst A is a quotient of the second A.

(iii) A = O[[X]]/(X2), πAf = f(0). Here

ΦA ' O, ηA = {0}.
This example shows that ΦA and O/ηA need not be �nite, even if A is �nite �at
over O.

(iv) A = O[[X]]/(X(X − λn)) ' {(a, b) ∈ O2| a ≡ b mod λn} under f 7→
(f(0), f(λn)), πA being the �rst projection. This is a �good� example, like (ii), in
the sense that A is a l.c.i. and

ΦA ' O/λn, ηA = (λn)

have #ΦA = #(O/ηA).
(v) Quite generally, we can always assume that

A = O[[X1, . . . , Xn]]/(f1, . . . , fr)

with fi power series without constant term, and πA(h mod (fi)) = h(0, ..., 0).
Then, letting f i be the linear term in fi we have

ΦA '

(
n⊕
i=1

OXi

)
/

(
r∑
i=1

Ofi

)
.

If r < n it is of in�nite length. On the other hand IA = (X1, . . . , Xn), AnnAIA is
the image in A of the ideal

J = {h ∈ O[[X1, . . . , Xn]]| ∀iXih ∈ (f1, . . . , fr)}
and ηA is the ideal of O generated by the constant terms of all such h, equivalently,
ηA = (λm) where m is the smallest integer such that there exists an h in J with
vλ(h(0)) = m.
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6.1.2. The First Criterion. We state a version of Wiles' criterion that is due to
Lenstra. Recall that A ∈ CO is a l.c.i. if it is isomorphic to a ring of the form
O[[X1, . . . , Xn]]/(f1, ..., fn), where the fi form a regular sequence. If the Krull
dimension of A is 1, and it is given by such a presentation, with as many fi as Xj ,
then the fi necessarily form a regular sequence, and A is a l.c.i..

Theorem 82. Let (R, πR), (T, πT ) ∈ C·O and φ : R� T a surjective morphism of
pointed O-algebras. Then:

(i) ηR ⊂ ηT , hence #(O/ηR) ≥ #(O/ηT ).
(ii) ΦR � ΦT , hence #ΦR ≥ #ΦT .
(iii) #ΦR ≥ #(O/ηR) (and similarly of course for T )
(iv) (the main point) Assume that T is �nite and �at over O and that ηT 6= 0.

Then #ΦR ≥ #(O/ηT ) and equality holds if and only if φ is an isomorphism and
R ' T is a l.c.i..

Corollary 83. Assume that ηR 6= 0. Then R is a l.c.i. if and only if #ΦR =
#(O/ηR). (Take R = T and φ the identity.)

6.1.3. Fitting ideals and the proof of (i)-(iii). The assertion #ΦR ≥ #(O/ηT ) in
(iv) is a direct consequence of (i) and (iii) (or of (ii) and (iii)). Points (i) and (ii)
are easy. For (i) note that AnnR(IR) is mapped under φ to AnnT (IT ), because
φ : IR � IT by the surjectivity of φ. Therefore

ηR = πR(AnnR(IR)) = πT ◦ φ(AnnR(IR)) ⊂ πT (AnnT (IT )) = ηT .

For (ii) note that ΦR is functorial: φ induces a surjection IR � IT , hence a surjec-
tion ΦR � ΦT . In fact (this is not used here, but is good to know) by Nakayama,
if φ : ΦR � ΦT is surjective, so is φ : R� T.

Point (iii) is a little deeper, and requires the notion of (the zeroth) Fitting ideals.

De�nition 84. Let A be a noetherian ring and M a �nite A-module. If θ : An �
M , consider the ideal in A generated by all the determinants det(v1, . . . , vn) where
vi ∈ ker(θ). Denote it by FitA(M).

The following are easy:

• FitA(M) is generated by the determinants det(v1, . . . , vn) where the vi
range over a given set of generators of ker(θ). In particular, if this ker-
nel is generated by < n vectors in An, then FitA(M) = 0.

• If m1, . . . ,mn are the generators of M corresponding to θ(ei), and mn+1 =∑n
i=1 aimi, and if θ′ : An+1 �M sends ei tomi (1 ≤ i ≤ n+1) then ker(θ′)

is generated by (v, 0) where v ∈ ker(θ) and the extra vector (a1, . . . , an,−1).
Using the previous remark it follows that the Fitting ideal computed via θ
is the same as the Fitting ideal computed via θ′.

• It follows that for any two θ : An � M and θ′ : Am � M the Fitting
ideals computed via θ and θ′ agree. (Compare both to the Fitting ideal of
θ ⊕ θ′ : Am+n �M and use, inductively, the previous remark.) Hence the
Fitting ideal is well de�ned.

Proposition 85. (i) If M is generated over A by n elements, then

AnnA(M)n ⊂ FitA(M) ⊂ AnnA(M).

(ii) FitA(A/I) = I.
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(iii) If 0→M ′ →M →M ′′ → 0 is an exact sequence then

FitA(M ′)FitA(M ′′) ⊂ FitA(M),

and if the exact sequence splits, so that M 'M ′ ⊕M ′′, this is an equality.
(iii) If A is a PID and M = Ar ⊕ A/(f1) ⊕ · · · ⊕ A/(fs) then FitA(M) = 0

if r > 0 and FitA(M) = (f1 · · · fs) otherwise. If A is a DVR lengthA(M) =
lengthA(A/FitA(M)).

(iv) If B is an A-algebra, then FitB(B ⊗AM) = BFitA(M).

Proof. The only non-trivial claim is (i), from which (ii) follows letting n = 1. If
m1, . . . ,mn are generators of M and θ : An �M the corresponding surjection, let
ψ : An → An be any map with θ ◦ ψ = 0, and ψ† : An → An the adjoint map, so
that ψ ◦ ψ† is multiplication by det(ψ). Then

0 = θ ◦ ψ ◦ ψ† = θ ◦ detψ = detψ ◦ θ

so by the surjectivity of θ, det(ψ) ∈ AnnA(M). But FitA(M) is generated by all
such det(ψ). If a1, . . . , an ∈ AnnA(M) the map ψ : An → An, ψ(ei) = aiei, satis�es
θ ◦ ψ = 0, so

a1 · · · an = det(ψ) ∈ FitA(M)

and we get the other inclusion. �

We can now �nish the proof of (iii). Since

ΦR = IR/I
2
R = R/IR ⊗R IR = O ⊗πR,A IR

we have
FitO(ΦR) = πR(FitR(IR)) ⊂ πR(AnnR(IR)) = ηR,

so, O being a DVR, #ΦR = #O/FitO(ΦR) ≥ #O/ηR.

6.1.4. Koszul complexes. We shall need to work with Koszul complexes. If R is a
commutative ring and f1, ..., fn ∈ R we de�ne Ki(f,R) to be the complex where
for 0 ≤ m ≤ n

Km =

m∧
Rn =

⊕
1≤i1<···<im≤n

Rei1 ∧ · · · ∧ eim

and where d : Km → Km−1 is

d(ei1 ∧ · · · ∧ eim) =

m∑
j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eim .

The Km are free modules of rank
(
n
m

)
. The homologies of the complex are denoted

Hm(f,R). Clearly H0(f,R) = R/I where I = (f1, . . . , fn).
If M is an R-module we let Km(f,M) = Km(f,R) ⊗R M and denote by

Hm(f,M) the corresponding homologies. Clearly H0(f,M) = M/IM.

Proposition 86. (i) The homologies Hm(f,M) are annihilated by I.
(ii) If (f1, . . . , fn) is an M -regular sequence (i.e. multiplication by fi on the

quotient M/(f1, ..., fi−1)M is injective for i = 1, ..., n), or, more generally, if I
contains an M -regular sequence of length n, then Hi(f,M) = 0 for i > 0.

(iii) If (f1, ..., fn) is a regular sequence in R, then K·(f,R) is a free resolution
of R/I.
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Proof. (i) Assume that x =
∑
xi1i2...imei1 ∧ · · ·∧ eim satis�es dx = 0.We must �nd

a y with, say, dy = f1x. Write x = e1 ∧ x′ − x′′ where x′ and x′′ are in Km−1 and
are supported in indices {2, ..., n}. From dx = 0 we get (separating the index sets
containing 1 from the rest) dx′ = 0 and dx′′ = f1x

′. It follows that y = −e1 ∧ x′′
solves our problem: dy = e1 ∧ dx′′ − f1x

′′ = f1(e1 ∧ x′ − x′′) = f1x.
(ii) Let p1, ..., pn be an M -regular sequence in I. For 0 ≤ j ≤ n we show, by

decreasing induction on j, that

Hi(f,M/(p1, ..., pj)M) = 0

for all i > j. For j = n this is trivial (all the homologies of K·(f,N) with i > n
vanish, for any module N). For j = 0 this is part (ii). Assume therefore that
the assertion had been proved for some j ≥ 1, and let us prove it for j − 1. Let
M ′ = M/(p1, ..., pj−1)M. Since the pi form an M -regular sequence,

0→M ′
pj→M ′ →M ′/pjM

′ → 0

is a short exact sequence. Since K·(f,R) is a complex of free modules we get, by
tensoring, a short exact sequence of complexes (with descending indices)

0→ K·(f,M
′)
pj→ K·(f,M

′)→ K·(f,M
′/pjM

′)→ 0.

Since, by (i), pj kills the homologies in positive degrees, we get from the long exact
sequence in homology, a bunch of short exact sequences (i ≥ 2)

0→ Hi(f,M
′)→ Hi(f,M

′/pjM
′)→ Hi−1(f,M ′)→ 0.

By the induction hypothesis the middle term vanishes for i > j, so Hi−1(f,M ′)
also vanishes for i > j, i.e. Hi(f,M

′) vanishes for i > j − 1.
(iii) This is a special case of (ii). �

6.2. Complete intersections and the Gorenstein property.

6.2.1. Tate's theorem on l.c.i. We continue to use the standard notation above. We
assume now that A ∈ CO is a l.c.i. and is also �nite and �at over O.

Theorem 87. Suppose that

A = O[[X1, ..., Xn]]/(f1, ..., fn)

where the fi have no constant term, and πA(h) = h(0), so that IA is the image in
A of (X1, ..., Xn). Assume that A is �nite �at over O. Write

fj =

n∑
i=1

Xigij

and let d be the image of D = det(gij) in A. Then:
(i) FitA(IA) = AnnA(IA) = (d) 6= 0,
(ii) As an O-module, (d) is a rank 1 direct summand of A.
(iii) #ΦA = #(O/ηA).

Proof. Parts (ii) and (iii) are easy consequences of (i). The homomorphism πA
induces an isomorphism A/IA ' O, so A ' O⊕IA as O-modules. Thus (d) = Ad =
Od is rank-1 as an O-module. Since A is O-torsion free, AnnA(IA) is saturated as
an O-submodule, so it is a direct summand. This gives (ii). For (iii) note that the
proof of (iii) in Theorem 82 showed that if FitA(IA) = AnnA(IA) holds, then (iii)
holds too.
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To prove (i) let P = O[[X1, ..., Xn]], let f be the row vector (f1, ..., fn) and
X the row vector (X, ...,Xn), so that f : Pn → P and X : Pn → P are linear
transformations satisfying f = X ◦G with G = (gij). Let V = Pn. By functoriality,
we get a commutative diagram of augmented Koszul complexes

0 →
∧n

V → · · · → V
f→ P

εA→ A → 0 : K·(f, P )
D ↓ G ↓ || πA ↓

0 →
∧n

V → · · · → V
X→ P

εO→ O → 0 : K·(X,P )

where the horizontal arrows are the di�erentials constructed from the sequences f
andX. Since the rows are free resolutions of A (resp. O) as P -modules (f andX are
regular sequences!) we may use them to compute Torj(A,N) (resp. Torj(O, N))
on the category of P -modules by tensoring the resolutions on the right ⊗PN and
calculating the homology of the resulting complex. Taking N = A and j = n we
get, from the left-most column, a commutative diagram with exact rows

0 → Torn(A,A) →
∧n

VA
0→

∧n−1
VA

πA∗ ↓ d ↓ ↓
0 → Torn(O, A) →

∧n
VA

X†→
∧n−1

VA

.

Here the top arrow between
∧n

VA and
∧n−1

VA is 0 because all the fj map to 0
in A. The bottom arrow is the map

X† : e1 ∧ · · · ∧ en 7→
n∑
j=1

(−1)j−1Xje1 ∧ · · · ∧ êj ∧ · · · ∧ en

whereXj is the image ofXj inA. It follows that Torn(O, A) ' AnnA(IA).However,
πA ◦ ιA = idO where ιA : O → A is the structure map. It follows that the
composition of

Torn(O, A)
ιA∗→ Torn(A,A)

πA∗→ Torn(O, A)

is the identity, and in particular that πA∗ is onto Torn(O, A). Since Torn(A,A) '∧n
VA ' A we conclude that

AnnA(IA) = (d).

We claim that d 6= 0. In fact, the diagrams above can be reduced modulo λ, and
yield a similar result for the reduction A = k⊗OA, with d replacing d and mA = IA
replacing IA. But A is an artinian ring, so the annihilator of its maximal ideal is
non-zero. We conclude that d 6= 0, and a-fortiori d 6= 0.

But we have seen that, in general,

(d) = (det(G)) ⊂ FitA(IA) ⊂ AnnA(IA).

Thus equality holds throughout. This concludes the proof. �

6.2.2. The Gorenstein condition. Although this will not be needed in the sequel,
let us draw the following conclusion. Recall that a ring A ∈ CO which is �nite and
�at over O is called Gorenstein if

A ' HomO(A,O)

as A-modules.

Corollary 88. If A ∈ CO is �nite �at over O and is a l.c.i., then it is Gorenstein.
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[The example A = O[[X]]/(λX) ' O⊕kt⊕kt2⊕· · · (as an O-module) shows that
without the �nite �at assumption, the self-duality need not hold. The de�nition
of Gorenstein however, is more general, and a l.c.i. is always Gorenstein. See the
Stacks project.]

Proof. By Tate's theorem, part (ii), there exists a map of O-modules t : A → O
with t(d) = 1. We claim that

A→ HomO(A,O), a 7→ at,

where at(x) = t(ax), is an isomorphism.
Both sides are �nite free over O of the same rank. It is therefore enough to

show that the map is surjective. By Nakayama, it is enough to show that the
corresponding map is surjective after we reduce modulo λ, and since now we deal
with �nite dimensional k-vector spaces, it is enough to prove that it is injective,
namely that

AnnA(t) = 0.

Clearly (d) * AnnA(t). If AnnA(t) 6= 0 it must contain a minimal non-zero ideal
a. This a must annihilate IA (otherwise IAa is strictly smaller and still non-zero).
Thus a ⊂ (d), and since dimk(d) = 1, a = (d), contradicting (d) * AnnA(t). We
conclude that AnnA(t) = 0, as desired. �

6.3. Proof of the �rst criterion.

Lemma 89. Let f : A→ B be a homomorphism in CO and assume that B is �nite
�at over O. Let f : A→ B be its reduction modulo λ. Then f is an isomorphism if
and only if f is an isomorphism.

Proof. Assume f is an isomorphism. By Nakayama (applied to A and B as O-
modules), since f is surjective, so is f . Suppose J = ker(f). From the exact
sequence

0→ J → A→ B → 0

and the fact that B is O-torsion free, we get the exactness of

0→ J → A→ B → 0.

This shows that J = 0, and again by Nakayama, J = 0. �

We shall deduce Wiles' numerial criterion, Theorem 82, from the following.

Theorem 90. In the situation of Theorem 82, the map φ is an isomorphism be-
tween l.c.i. if and only if

φ(FitR(IR)) * λT.

Proof. Suppose �rst that φ is an isomorphism of l.c.i.. By Tate's theorem

φ(FitR(IR)) = FitT (IT ) = AnnT (IT )

is a rk 1 direct summand of T as an O-module, hence * λT.
For the converse, consider �rst the same statement with O replaced by k: a

homomorphism
φ : R→ T

in C·k (commuting with πR : R → k and πT : T → k), where dimk T < ∞, is an
isomorphism between l.c.i. if (and only if)

φ(FitR(IR)) 6= 0.
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Note that now IR = ker(πR) is the maximal ideal of R.
Write R = k[[X1, ..., Xn]]/JR in such a way that φ(Xi) generate IT as a k-vector

space (this is possible since dimk T <∞). Let JT = ker(k[[X1, ..., Xn]]� R� T ),
so that T = k[[X1, . . . , Xn]]/JT and JR ⊂ JT . The ideals IR and IT are the images
of I = (X1, ..., Xn) mod JR and JT respectively.

The assumption φ(FitR(IR)) 6= 0 means that there are gij ∈ k[[X1, ..., Xn]] such
that

∑n
j=1 gijXj ∈ JR but det(gij) /∈ JT .

Since the Xi span IT = I/JT over k, the monomials XiXj span I2/IJT . This
means that every element of k[[X1, ..., Xn]]/IJT is represented by a quadratic poly-
nomial in the Xi. Let pi and qi be quadratic polynomials such that

pi ≡
n∑
j=1

gijXj mod IJT ,

qi ≡ X3
i mod IJT .

Let
fi = X3

i − qi + pi.

Note that fi ∈ IJT + JR ⊂ JT (since the
∑n
j=1 gijXj ∈ JR), and that fi =∑n

j=1GijXj for Gij ≡ gij mod JT (since the di�erence fi −
∑n
j=1 gijXj , which

lies in IJT , can be written as
∑n
j=1HijXj with Hij ∈ JT , so we may put Gij =

gij +Hij).
Consider

B = k[[X1, ..., Xn]]/(f1, ..., fn)
ψ
� k[[X1, ..., Xn]]/JT = T.

Since every element of B is represented by a polynomial which is of degree ≤ 2 in
each Xi (X3

i is expressible as a quadratic polynomial modulo (f1, ..., fn)), dimk B <
∞. It follows from Tate's theorem that B is a l.c.i. and (d) = (det(Gij)) is the
unique minimal ideal of B. (It has dimension 1 over k and is the annihilator of the
maximal ideal IB ; any minimal non-zero ideal must annihilate IB , so is contained
in (d), hence must be equal to it.)

Now ψ(d) 6= 0 by our assumption since d = det(Gij) ≡ det(gij) mod JT . It
follows that (d) is not contained in ker(ψ). As it is the unique minimal ideal in B,
and must be contained in any non-zero ideal, kerψ = 0 and ψ is an isomorphism.

It follows that B ' T is a l.c.i.. It also follows that

JT = (f1, ..., fn) ⊂ IJT + JR ⊂ JT

so IJT + JR = JT . By Nakayama JR = JT and φ is an isomorphism.
This concludes the proof of the theorem with O replaced by k. Getting back to

the original formulation, assume that

φ(FitR(IR)) * λT.

Since R = IR ⊕ O as an O-module, the kernel of R → k is IR. We observe that
φ(FitR(IR)) 6= 0, so φ is an isomorphism between R and T and these rings are l.c.i..
It follows from the previous Lemma (thanks to the assumption that T is �nite �at
over O) that φ is an isomorphism too. Pick an isomorphism

k[[X1, ..., Xn]]/(f1, ..., fn) ' T .
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By Nakayama, we can lift it to a surjection O[[X1, ..., Xn]] � T whose kernel,
JT , reduces to (f1, ..., fn). We may therefore lift fi to f̃i ∈ JT . Consider now the
surjection

O[[X1, ..., Xn]]/(f̃1, ..., f̃n)� T.

Applying the Lemma, we �nd that it is an isomorphism, hence T is a l.c.i.. �

We now complete the proof of Theorem 82. Assume that

#ΦR = #O/ηT
and this number is �nite. We have seen that this means

πT ◦ φFitR(IR) = πRFitR(IR) = πTAnnT (IT ).

Let us show �rst that IT ∩AnnT (IT ) = 0. Pick a y ∈ AnnT (IT ) with πT (y) 6= 0. If
x ∈ IT ∩AnnT (IT ), then xy = 0 and x(y− πT (y)) = 0. This means xπT (y) = 0, so
x = 0 by our assumption that T is O-torsion free.

It follows that πT : AnnT (IT ) ' ηT . This means that φFitR(IR) = AnnT (IT ).
But AnnT (IT ) is O-saturated in T , so (as it is non-zero by the assumption that
ηT 6= 0), φFitR(IR) * λT. We therefore conclude from the previous theorem that
φ is an isomorphism between l.c.i..

6.4. J-structures and the second criterion. We shall now prove the Taylor-
Wiles patching criterion. We follow a version which is due to Rubin.

Lemma 91. Let k be a �eld, n ≥ 1. Suppose we are given k-algebra homomorphisms

k[[S1, ..., Sn]]→ k[[X1, ..., Xn]]
f
� A

with f surjective, write J = ker f, and suppose that dimk A/(S1, ..., Sn)A = d <∞.
Assume that for some N > nn−1dn the induced map

k[[S1, ..., Sn]]/(SN1 , ..., S
N
n )

g→ A/(SN1 , ..., S
N
n )A

is injective. Then J ⊂ (S1, ..., Sn), so that f induces an isomorphism

k[[X1, ..., Xn]]/(S1, ..., Sn) ' A/(S1, ..., Sn)A

and A/(S1, ..., Sn)A is a l.c.i..

Proof. Let I = (X1, ..., Xn) ⊂ k[[X1, ..., Xn]]. Since A/(S1, ..., Sn)A has a �nite
length d as a k[[X1, ..., Xn]]-module, it is killed by Id, so

Id + (S1, ..., Sn) ⊂ J + (S1, ..., Sn).

Claim: J ⊂ Id+1.
The claim will prove tha lemma, because we shall have

Id + (S1, ..., Sn) ⊂ J + (S1, ..., Sn) ⊂ Id+1 + (S1, ..., Sn),

so by Nakayama's Lemma Id ⊂ (S1, ..., Sn), hence J ⊂ (S1, ..., Sn).
To prove the Claim we suppose that there exists an α ∈ J, α /∈ Id+1, and reach

a contradiction. Consider the exact sequence of �nite dimensional k vector spaces

0→ ker→ k[[X1, ..., Xn]]/IndN
α→ k[[X1, ..., Xn]]/IndN → coker→ 0.

We shall compute
dimk ker = dimk coker

in two ways.



MODULARITY OF ELLIPTIC CURVES 74

On the one hand,

IndN ⊂ (J + (S1, ..., Sn))nN ⊂ J + (SN1 , ..., S
N
n ),

and α ∈ J, so coker = k[[X1, ..., Xn]]/(IndN + (α)) maps surjectively onto

k[[X1, ..., Xn]]/(J + (SN1 , ..., S
N
n )) = A/(SN1 , ..., S

N
n )A.

From this we get

dimk coker ≥ dimkA/(S
N
1 , ..., S

N
n )A ≥ Nn,

by the injectivity of g.
On the other hand, since α /∈ Id+1, we have ker ⊂ IndN−d/IndN . For this

note that if the lowest degree of a monomial in α is m, and the lowest degree of
a monomial in β is `, then the lowest degree of a monomial in αβ is m`. The
dimension of IndN−d/IndN is

ndN−1∑
`=ndN−d

(
`+ n− 1

n− 1

)
≤ d(ndN)n−1.

Combining the two calculations we get

Nn ≤ dimk coker = dimk ker ≤ d(ndN)n−1,

contradicting N > nn−1dn. �

We now use Nakayama's Lemma to get an analogous statement for O-algebras.

Corollary 92. Suppose we have O-algebra homomorphisms

O[[S1, ..., Sn]]→ O[[X1, ..., Xn]]
f
� A

with f surjective, such that A/(S1, ..., Sn)A is free of rank d over O. Let

Jm = ((1 + S1)`
m

− 1, ..., (1 + Sn)`
m

− 1).

Suppose for some m with `m > nn−1dn the quotient ring A/JmA is free as a module
over O[[S1, ..., Sn]]/Jm. Then the induced map

h : O[[X1, ..., Xn]]/(S1, ..., Sn)→ A/(S1, ..., Sn)A

is an isomorphism between l.c.i..

Proof. Let us use to denote reduction modulo λ. Note that Jm = (S`
m

1 , ..., S`
m

n ).
Using the Lemma with N = `m we deduce that h is an isomorphism. Since
A/(S1, ..., Sn)A is �nite �at over O, it follows that h is an isomorphism. But
being �nite over O, O[[X1, ..., Xn]]/(S1, ..., Sn) is necessarily a l.c.i. (the Si form a
regular sequence). �

We can now conclude the proof of Theorem 68. We start with our local homo-
morphism of local complete noetherian O-algebras

R� T

where T is known to be �nite and free, say of rank d, over O.
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Recall that for a �xed n and arbitrarily large m we had commutative diagrams
(dubbed �Jm-structures�)

O[[S1, . . . , Sn]]
↓ ↘

O[[X1, . . . Xn]] � Rm � Tm
↓ ↓
R � T

in CO satisfying:
• Tm is �nite and free as an O-module,
• Tm/(S1, . . . , Sn)Tm = T and Rm/(S1, . . . , Sn)Rm = R,
• Tm/JmTm is �nite free over O[[S1, . . . , Sn]]/Jm.

(The last bullet is stronger than the assumption that the map

O[[S1, . . . , Sn]]/Jm → Tm/JmTm

is injective, �guring in the conditions imposed on the Jm-structure in Theorem 68.
However, it is satis�ed in Wiles' patching contsruction, see Theorem 61, so we may
just as well impose it.)

Choose m with `m > nn−1dn and work with the corresponding Jm-structure.
Lift the homomorphism from O[[S1, . . . , Sn]] to Rm to a homomorphism from
O[[S1, . . . , Sn]] to O[[X1, . . . Xn]]. Let A = Tm and apply the Corollary. We de-
duce that the composite map

O[[X1, . . . Xn]]/(S1, ..., Sn)� Rm/(S1, ..., Sn)Rm � Tm/(S1, ..., Sn)Tm

is an isomorphism of l.c.i.'s. So is Rm/(S1, ..., Sn)Rm � Tm/(S1, ..., Sn)Tm, which
by the second bullet is the original surjection R� T .
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