
NOTES ON THE CONJECTURE OF LOXTON AND VAN DER

POORTEN

EHUD DE SHALIT

These are notes for two talks in Kazhdan's �Basic Notions in Mathematics�
seminar at the Hebrew University. They are based on the preprint [Sch-Si] from
2016, but the presentation is somewhat di�erent. Except for Proposition 16, that
mimics part of what is being done here in a di�erent context (but is needed in the
proof), the notes are self-contained.

1. The main results

Denote by k = C(x) and k̂ = C((x)).

Theorem. (Ramis, 1992) Let q 6= 0 be a complex number which is not a root of
unity. Consider the two operators

σf(x) = f(qx), δf(x) = x
d

dx
f(x)

on k and k̂. If f ∈ k̂ satis�es a linear homogeneous polynomial equation with
coe�cients from k in each of the operators σ and δ, then f ∈ k.

Here is another theorem of a similar nature.

Theorem 1. (Loxton - van der Poorten conjecture, proved by Adamczewski and
Bell, 2013 [A-B]). Let p, q > 1 be two natural numbers which are multiplica-
tively independent, i.e. log p/ log q /∈ Q. Consider the operators σf(x) = f(xp),

τf(x) = f(xq) on k and k̂. If f ∈ k̂ satis�es the two linear homogeneous polyno-
mial equations

(1.1)

n∑
i=0

aiσ
n−if = 0,

m∑
j=0

bjτ
m−jf = 0

with coe�cients ai, bj ∈ k, a0 = b0 = 1, then f ∈ k.

Remarks

• The operators σ and τ are called Mahler operators because Kurt Mahler
was the �rst to study the consequences of equation (1.1).

• C can be any �eld of characteristic 0. It is an interesting question whether
one can substitute for C a �eld of positive characteristic (prime to pq ?)
because the proof uses Riemann surface theory and analytic continuation,
so is con�ned to characteristic 0.

• There are several more results of the same nature in the literature. Fursten-
berg's conjecture that if p and q are multiplicatively independent then the
only Borel measure on the unit circle which is invariant under both z 7→ zp

and z 7→ zq is the Lebesgue measure, is also of the same spirit, although
seems to be much more di�cult.
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• Schäfke and Singer [?] gave a uni�ed conceptual approach to the two the-
orems and many other results. Our goal is to describe their proof in the
context of Theorem 1.

• Adamczewski and Bell deduced Theorem 1 from Cobham's theorem in the
theory of automata, to be reviewed below. Cobham's proof (from 1969) is
combinatorial, tricky and not transparent. On the other hand, Cobham's
theorem can be deduced easily from Theorem 1, see section 2. Thus the
work of Schäfke and Singer gives a new conceptual proof to Cobham's
theorem.

• The theorem relates the algebraic group Gm and its formal counterpart

Ĝm. Indeed, the signi�cance of σ and τ is that they are endomorphisms of
Gm. Is there an analogue replacing Gm by an elliptic curve E? (Work of
Eran Assaf).

We �rst replace k and k̂ by

K =
⋃
s∈N

C(x1/s), K̂ =
⋃
s∈N

C((x1/s)).

Here by x1/s we denote some s-th root of x in a �xed algebraic closure, and for

s = rt we require (x1/s)r = x1/t. The �eld K̂, the �eld of Puiseaux series, is
well-known to be algebraically closed. It carries the valuation

ω(f) = ord0f

which is non-discrete (the value group is Q), and normalized by ω(x) = 1. We call

the multiplicative subgroup U(K̂) of elements f for which ω(f) = 0 (i.e. Puiseaux

series having neither a zero nor a pole at x = 0) the group of units of K̂. Every
unit may be evaluated at k = 0 and the kernel of the evaluation homomorphism is

the subgroup of principal units U1(K̂). We have the short exact sequence

0→ U1(K̂)→ U(K̂)→ C× → 0.

Note that K̂ is not complete.

Theorem 1 remains valid with (k, k̂) replaced by (K, K̂) throughout. In fact,

it is enough to prove it for (K, K̂) because if we know that f ∈ C((x)) and also
f ∈ C(x1/s) then f is �xed under Gal(C(x1/s)/C(x)) so we conclude that it lies in
C(x).

The advantage ofK and K̂ is that σ and τ are automorphisms of these two �elds,

while they are only endomorphisms of k or k̂. Observe that σ and τ commute. The
assumption that p and q are multiplicatively independent means that

Γ = 〈σ, τ〉 ⊂ Aut(K)

is free abelian of rank 2.

Suppose therefore that f ∈ K̂ satis�es (1.1) with ai, bj ∈ K. Let

W = SpanK{σiτ jf | 0 ≤ i < n, 0 ≤ j < m}.

Thanks to the fact that σ, τ commute, equation (1.1) shows that W is a �nite-
dimensional K-vector space invariant under the semi-linear operators σ and τ. Let

d = dimKW.
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Let y = t(y1, . . . , yd) ∈ K̂d be a column vector whose entries form a basis for W
over K. Then there are matrices A,B ∈ GLd(K) such that

(1.2) σ(y) = Ay, τ(y) = By.

The relation στ = τσ yields the consistency equation

(1.3) σ(B) ·A = τ(A) ·B.
If we make a change of basis

ỹ = Cy

with C ∈ GLd(K) then we �nd the equations σ(ỹ) = Ãỹ, τ(ỹ) = B̃ỹ with

(1.4) Ã = σ(C) ·A · C−1, B̃ = τ(C) ·B · C−1.

We call a pair (Ã, B̃) related to (A,B) by (1.4) an equivalent pair. Note that since
σ and τ are semi-linear, equivalence is expressed by twisted conjugacy and not by
usual conjugacy.

Theorem 2. (Descent of coe�cients) Suppose A,B ∈ GLd(K) satisfy the consis-

tency equation (1.3). Then they are equivalent to a pair (Ã, B̃) of commuting scalar
(C-valued) matrices.

Remarks

• We shall later introduce a certain non-abelian cohomology. We shall then
interpret the consistency equation as the equation de�ning a 1-cocycle,
and the equivalence relation as the relation between two 1-cocycles being
cohomologous.

• Theorem 2 �lives� entirely in K and does not require the introduction of K̂

for its formulation. Its proof, however, will go through K̂.

Claim. Theorem 2 implies Theorem 1.

Proof. Let f be as in Theorem 1, let W and d = dimKW be as above, choose a
basis y of W over K and let the matrices A,B be de�ned via (1.2). Then they
satisfy the consistency equation so we may �nd a matrix C as in Theorem 2 and

produce an equivalent scalar pair (Ã, B̃). Letting ỹ = Cy we get the equations

σ(ỹ) = Ãỹ, τ(ỹ) = B̃ỹ. But then, since Ã is scalar,

ỹ = Ã−1σ(ỹ) = Ã−2σ2(ỹ) = · · ·
(feed in the expression for ỹ successively) so writing

ỹ =
∑

cnx
n

as a power series with coe�cients from Cd we see that this is a power series in xp
k

for every k, hence only c0 6= 0 and ỹ ∈ Cd. But the ỹi are linearly independent over
K, so d = 1 and W = K. This implies f ∈ K as desired. �

2. Application to the theory of automata

An automaton is a �nite-state deterministic machine that gets as an input a
natural number x ∈ N = {0, 1, 2, ...} and produces an output y = T (x) in a �nite
set of possible results. More precisely, a p-automaton (p > 1) consists of a �nite set
S equipped with a base point s0, and a function

T : {0, 1, ..., p− 1} × S → S.
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Here {0, 1, ..., p− 1} should be viewed as the set of digits in base p; S is the set of
states; s0 is called the initial state, and T (x, s) = s′ means that upon reading the
digit x, the machine moves from state s to state s′. The input is a number x ∈ N
given in base p as

x = x0p
k−1 + · · ·+ xk−2p+ xk−1

(0 ≤ xi ≤ p − 1). The machine reads x from left to right. De�ne successively (for
1 ≤ i ≤ k)

si = T (xi−1, si−1).

We say that T (x) = sk or that T computes sk on x.
A set N ⊂ N is called p-automatic if there exists a p-automaton T that decides

if x ∈ N . Without loss of generality we may require that T (x) = s0 (i.e. T returns
to its initial state) if x ∈ Nand T (x) 6= s0 otherwise.

It is easy to see that arithmetic progressions (including those of step 0, reduced
to a point) are p-automatic for every p > 1. This is just a formalization of the �rules
for divisibility� learned in school. So are �nite unions of arithmetic progressions.

Theorem 3. (Cobham, 1969). If N is p-automatic and also q-automatic for mul-
tiplicatively independent p and q then it is a �nite union of arithmetic progressions.

Proof. We deduce Theorem 3 from Theorem 1. For this it is enough to show: (1)
If N is p-automatic then its characteristic power series

fN =
∑
n∈N

xn

satis�es a p-Mahler equation (1.1) with the operator σ. (2) The set N is a �nite
union of arithmetic progressions if and only if fN is the power-series expansion of
a rational function.

We leave (2) as an easy exercise, and outline (1). It is clear that Theorem 1 then
implies Cobham's theorem.

Number the states in S by 1 ≤ j ≤ m and let s0 be j = 1. For k ∈ {0, 1, . . . , p−1}
let vi,j,k = 1 if T (k, j) = i and 0 otherwise. The m×m matrix

Vk = (vi,j,k)

is the transition matrix for digit k. For n ∈ N let ui,n = 1 if T (n) = i and 0
otherwise. Let un = t(u1,n, . . . , um,n). Clearly

uhp+k = Vkuh.

Consider the power series (with vector coe�cients)

g(x) =

∞∑
n=0

unx
n.

We have

g(x) =

∞∑
h=0

p−1∑
k=0

uhp+kx
hp+k =

(
p−1∑
k=0

Vkx
k

) ∞∑
h=0

uhx
hp = C(x)g(xp)

where the entries ci,j of C(x) are polynomials. This is a matrix equation

g = C · σ(g)



NOTES ON THE CONJECTURE OF LOXTON AND VAN DER POORTEN 5

for g = t(g1, . . . , gm). Alternatively, in K̂ we get

σ−1(g) = A · g

with A = σ−1(C) ∈ Md(K). Inductively we get σ−i(g) = Ai · g. This gives a
polynomial relation with coe�cients from K between the σ−i(g). Applying some
high power of σ to this relation gives such a relation for σi(g) with coe�cients from
k. Since fN = g1 we are done. �

Cobham's theorem is fundamental in the theory of automata. The original pa-
per by Cobham was over 100 pages long and Samuel Eilenberg made a famous
remark that his theorem called for a more conceptual proof. There have been
many simpli�cations of the proof since it was �rst published in 1969, but none,
to my understanding, is as elegant as the one resulting from the work of Schäfke
and Singer. Automatic sequences have many relations to problems in ergodic the-
ory, fractals and of course, computer science. See the book by J.-P. Allouche and
J. Shallit, Automatic sequences: Theory, applications, generalizations, Cambridge
University Press, Cambridge, 2003. The converse of (1) is false. Not every power
series satisfying a p-Mahler equation is p-automatic. This led to the notion of p-
regular sequences and more work which is outside my knowledge and the scope of
the lectures.

3. Non-abelian cohomology and an analogue of Hilbert's theorem 90

Let Γ be an abstract group acting via automorphism on a �eld K. We stress
that Γ need not be �nite or pro�nite (acting through �nite quotients), so we are
not necessarily in the set-up for Galois theory. From now on write G = GLd. Recall
the de�nition of the pointed set H1(Γ, G(K)). A 1-cocycle is a map Γ → G(K),
denoted σ 7→ Aσ, satisfying for any σ, τ ∈ Γ

Aστ = σ(Aτ ) ·Aσ.

If C ∈ G(K) then

Ãσ = σ(C) ·Aσ · C−1

is another 1-cocycle, said to be cohomologous to A. The property of being cohomol-
ogous is an equivalence relation and H1(Γ, G(K)) is the set of equivalence classes.
If d = 1, it is even a group, under point-wise multiplication.

If Γ acts trivially on K then

H1(Γ, G(K)) = Hom(Γopp, G(K))/ ∼

is the set of anti-homomorphisms from Γ to G(K) up to conjugation by elements of
G(K). Any group is isomorphic, of course, to its opposite, so this may be identi�ed
also with Hom(Γ, G(K))/ ∼.

If F ⊂ K is a sub�eld preserved by Γ then we get a map

H1(Γ, G(F ))→ H1(Γ, G(K)).

Suppose now that Γ is �nite, acting faithfully, and F = KΓ. Then K/F is a �nite
Galois extension, Γ = Gal(K/F ), and we have the following celebrated theorem.

Theorem. (Hilbert's theorem 90) When Γ = Gal(K/F ), H1(Γ, GLd(K)) = 1.
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For the proof consult any text-book on algebra. Originally the name referred to
the case d = 1, and even then Hilbert considered cyclic extensions only. But the
proof for general d and Γ is not much di�erent.

In our situation we let K =
⋃
s∈N C(x1/s) and Γ = 〈σ, τ〉 ⊂ Aut(K) as in

Theorem 1. As remarked above, the assumption that p, q are multiplicatively inde-
pendent translates into the fact that

(i, j) 7→ σiτ j

is an isomorphism Z2 ' Γ.

Lemma 4. Assume that A,B satisfy the consistency equation (1.3). Then there
exists a unique 1-cocycle A• with Aσ = A and Aτ = B. Conversely, if these are
the values of a 1-cocycle on the two generators of Γ, they satisfy the consistency
equation.

Proof. Since Γ is free abelian we need only check the commutativity constraint and
then the cocycle condition dictates the extension of A• from the two generators to
any element of Γ uniquely. We leave out the easy computation. �

We now see that Theorem 2 is equivalent to the following.

Theorem 5. (Descent, cohomological formulation) The map

H1(Γ, G(C))→ H1(Γ, G(K))

is a bijection.

4. Semilinear algebra

4.1. Factorization in twisted polynomial rings. Let K̂ and σ be as above. We

consider the twisted polynomial ring K̂
〈
Φ,Φ−1

〉
consisting of Laurent polynomials∑

aiΦ
i,

(ai ∈ K̂) where Φa = σ(a)Φ.

Lemma 6. (Factorization) Let
∑n
i=0 aiΦ

n−i ∈ K̂
〈
Φ,Φ−1

〉
, and assume a0 =

1, an 6= 0. Then there exist c ∈ C×, µ ∈ Q, b0, . . . , bn−1 ∈ K̂ such that b0 ∈ U1(K̂),
bn−1 6= 0 and

n∑
i=0

aiΦ
n−i = σ(b0)−1(Φ− cxµ)

n−1∑
i=0

biΦ
n−1−i.

[Compare Chapter IV, �4 Lemma 2 in Demazure's Lectures on p-divisible groups
LNM 302 (1972) Springer-Verlag. That lemma is key to the Manin-Dieudonné
classi�cation of F -isocrystals over an algebraically closed �eld of characteristic p,
or - what amounts to the same - the classi�cation of p-divisible groups over such a
�eld up to isogeny.]

Proof. To simplify the notation we write, in the proof of the lemma only, a(n) =

σn(a). Write also u = b
(1)
0 . We have to �nd µ, u, b1, . . . , bn−1 and c as in the lemma

satisfying the equations

(4.1) uai = b
(1)
i − cx

µbi−1 (0 ≤ i ≤ n)
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(b−1 = bn = 0). Solving successively for bi we get the equation

(4.2) (ua0)cn + (u(1)a
(1)
1 x−µp)cn−1 + · · ·+ (u(n)a(n)

n x−µ(p+···+pn)) = 0,

which we have to solve for u ∈ U1(K̂) and c ∈ C×. Let

µ = min
1≤i≤n

(
1− 1/p

1− 1/pi

)
ω(ai)

where ω is the valuation on K̂, normalized by ω(x) = 1. Note that

ω(a
(i)
i x−µ(p+···+pi)) = pi

(
ω(ai)− µ

(
1− 1/pi

1− 1/p

))
≥ 0

and there exists an index i ≥ 1 for which this is 0. This means that the expression

a
(i)
i x−µ(p+···+pi), appearing together with u(i) as the coe�cient of cn−i, is integral,
i.e. has no pole, and at least one such expression, besides the leading one, is a unit.
Replacing x by ξk for a new variable ξ and a suitable k, we may assume that all
the exponents of x appearing in (4.2) are integral. We solve (4.2) modulo higher
and higher powers of x, setting

u = 1 + d1x+ d2x
2 + · · ·

and choosing the dm successively. By what we have seen, there exists a c 6= 0 in C
solving (4.2) modulo x (i.e. substituting x = 0). Noting that

u(i) = 1 + d1x
pi + d2x

2pi + · · ·

it is then an easy matter to solve successively for the dm. �

Corollary 7. Every polynomial from K̂
〈
Φ,Φ−1

〉
factors as

u0(Φ− c1xµ1)u1(Φ− c2xµ2)u2 · · ·un−1(Φ− cnxµn)un

where the µj ∈ Q, µj ≤ pµj+1, cj ∈ C× and uj ∈ U1(K̂).

Proof. Apply the lemma inductively. The relation µj ≤ pµj+1 follows from the
inequality

pω(bi) ≥ µ(1 +
1

p
+ · · ·+ 1

pi−1
)

which is proved by induction on i, based on (4.1). �

4.2. Structure theorem for D-modules. We consider a �nite dimensional vector
space M over K̂, equipped with an invertible σ-linear map Φ. This is the same as

a module of �nite length over the twisted group ring K̂
〈
Φ,Φ−1

〉
. We call dimK̂M

the rank of M.

Corollary 8. (Existence of eigenvectors) Let M be as above Then there exists a
non-zero v ∈M and c ∈ C× such that Φv = cv.

Proof. Let u be any non-zero vector from M, and n the minimal number such

that u,Φu, . . . ,Φnu are linearly dependent over K̂. Let
∑n
i=0 aiΦ

n−iu = 0 be
a linear dependence and decompose the polynomial as in the lemma. Let v =∑n−1
i=0 biΦ

n−1−iu. Note that v 6= 0 by our assumption on n. Then Φv = cxµv. If

µ 6= 0 replace v by x−µ/(p−1)v. �
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We now consider a pair of operators σ and τ as above

σf(x) = f(xp), τf(x) = f(xq).

Let Γ = 〈σ, τ〉 ⊂ Aut(K̂).We do not make yet the assumption that p and q are mul-
tiplicatively independent. In fact, for the structure theorem below we may assume

that Γ is any �nitely generated abelian group of automorphisms of K̂, containing σ.

Let D = K̂ 〈Γ〉 be the twisted group ring. For a character χ : Γ → C× we denote
by Cχ the underlying one-dimensional complex representation and by

Iχ = K̂ ⊗C Cχ
the corresponding D-module of rank 1, the group Γ acting diagonally.

Theorem 9. (Structure theorem) Let M be a D-module of �nite rank d.
(1) There exists a �ltration

0 = M0 ⊂M1 ⊂ · · · ⊂Md = M

by D-submodules, and characters χi such that

griM = Mi/Mi−1 ' Iχi
.

(2) The characters χi (with their multiplicities) are uniquely determined by M
up to a permutation.

Proof. Let c ∈ C× be such that

Vc = {v ∈M |σv = cv} 6= 0.

The existence of such a c is guaranteed by Corollary 8. Clearly Vc is a C-vector
space. We claim that if v1, . . . , vm ∈ Vc are linearly independent over C then they

are also linearly independent over K̂. Indeed, assume that
∑
aivi = 0 is a shortest

linear dependence with coe�cients from K̂. We may assume a1 = 1. Applying σ
and subtracting the original dependence we get a shorter dependence, unless all
ai ∈ C. But this contradicts the linear dependence over C. We conclude that Vc is
�nite dimensional over C. Since τ and σ commute, τ preserves Vc, hence has an

eigenvector there. Letting v be such an eigenvector, τv = dv, we put M1 = K̂v.
ThenM1 is a D-module of rank 1, isomorphic to Iχ1 where χ1(σ) = c and χ1(τ) = d.
Part (1) now follows by induction. Part (2) (Jordan-Hölder) is standard and we
omit it. �

Corollary 10. Let A,B ∈ G(K̂) be two matrices satisfying the consistency equation

(1.3). Then they are equivalent to a pair (Ã, B̃) of lower triangular matrices with
non-zero scalars along their diagonals.

Proof. Use A and B to de�ne a D-module structure on K̂d, and let C be the matrix

changing the given basis to a basis as in Theorem 9. Then the matrices Ã and B̃
(1.4) form an equivalent pair of the desired form. �

5. Proof of Theorem 5

We now assume, in addition, that p and q are multiplicatively independent.
Consider the diagram of pointed sets

H1(Γ, G(C))
α→ H1(Γ, G(K))

β→ H1(Γ, G(K̂)).

The strategy is to prove the following two claims.
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(1) β ◦ α is bijective [ = Proposition 23].
(2) β is injective [ = Proposition 19 and Corollary 20].

This will prove Theorem 5, but also the following corollary.

Corollary 11. The map H1(Γ, G(K))→ H1(Γ, G(K̂)) is a bijection.

Notice how far from true these claims are for Γ which is of rank 1 (i.e. a single
Mahler operator σ). The cohomology sets are then the σ-twisted conjugacy classes

in G(C), G(K) and G(K̂), and there is no reason for the natural maps between
them to be bijective.

The two claims are of a very di�erent nature. Point (1) is algebraic, and will
follow from Theorem 9. Point (2) requires complex function theory. Somehow we
have to descend from formal power series to rational functions. We shall �rst show
that we can pass from formal power series to convergent ones, then we shall use
analytic continuation to continue these convergent power series meromorphically

to the Riemann sphere Ĉ, and �nally we shall use the fact that an everywhere
meromorphic function on the Riemann sphere is rational algebraic.

5.1. Proof of Claim 1. The injectivity of β ◦ α is easy.

Lemma 12. The map β ◦ α is injective.

Proof. A cohomology class [A•] in H
1(Γ, G(C)) is represented by a pair (A,B) =

(Aσ, Aτ ) of commuting matrices from G(C). Suppose (A′, B′) is another such pair

and there exists a C ∈ G(K̂) such that

A′ = σ(C)AC−1, B′ = τ(C)BC−1.

Then

C = A′−1σ(C)A = A′−2σ2(C)A2 = · · ·
so C is constant, and the 1-cocycle represented by (A′, B′) is cohomologous to the
one represented by (A,B) already in H1(Γ, G(C)). �

For the surjectivity of β ◦ α we remark that it is enough to prove that if (A,B)

is a pair of matrices from G(K̂) satisfying the consistency equation, then they are
equivalent to a pair where A ∈ G(C). Indeed, if A is scalar the consistency equation
takes the from

(5.1) B(xp)A = AB(x).

As usual replacing x by ξm for a new variable ξ and some m we may assume that
all the exponents of x in B are integral. As before this shows that

B(x) = A−1B(xp)A = A−2B(xp
2

)A2 = · · ·

so B, having its entries in C((xp
k

)) for every k, is constant.
We argue by induction on d. The induction will in fact give us that the pair

(A,B) is equivalent to a pair of scalar lower triangular matrices. By Theorem 9
and its corollary we may assume that A and B are lower triangular with scalars
along the diagonal. Write

A =

(
A11 0
A21 A22

)
, B =

(
B11 0
B21 B22

)
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where A11 ∈ C×, A22 ∈ GLd−1(K̂) and similarly for B. The consistency equation
for A and B implies the same equation for A22 and B22. By the induction hypothesis
we may therefore assume that A22 and B22 are scalar lower triangular. It remains
to descend the constants in A21 (and then B21 will follow suit, as explained above).

The consistency equation now takes the form

(5.2) A21(xq)B11 +A22B21(x) = B21(xp)A11 +B22A21(x).

Replacing x by ξm where ξ is a new variable we may assume that all the expo-
nents appearing in the equations are integers. For simplicity let us assume that p
and q are not only multiplicatively independent but relatively prime. The modi-
�cations needed to treat the general case are minor, and will be explained below.
We shall show that if A21(x) or B21(x) have a pole at 0, replacing the pair (A,B)
by an equivalent pair, we can reduce the order of the pole, until we get rid of the
polar parts altogether. This we will do without a�ecting the diagonal blocks.

Let Mx−m be the lowest term in A21(x) and Nx−n the lowest term in B21(x)
where M,N ∈ M(d−1)×1(C). Then looking at the lowest order terms in (5.2) gives
pn = qm and

MB11 = NA11.

By our assumption m/p and n/q are integers. Let

C(x) =

(
I 0

−MA−1
11 x

−m/p I

)
.

Then σ(C)AC−1 = Ã is of the same shape as A with

(5.3) Ã21(x) = A21(x) + C21(xp)A11 −A22C21(x).

Similarly τ(C)BC−1 = B̃ satis�es

B̃21(x) = B21(x) + C21(xq)B11 −B22C21(x).

Thus the pair (Ã, B̃) is equivalent to (A,B) but has a lower order pole at 0. Note
that we have not introduced fractional powers of x in the process. Continuing
inductively we can eliminate the polar parts altogether.

If p and q are not relatively prime and l = gcd(p, q) then a similar step would
result in a new pair of matrices with entries which are power series in x1/l. However,
a careful analysis of the new fractional exponents reveals that when we substitute
x = ξl to switch back to integral exponents, the order of pole (in ξ) is still lower
than the original order of pole (in x) so the induction can be carried out, in the
new variable.

We may therefore assume that A and B have no poles. To conclude the proof

of Claim 1 we must solve (5.3) for C21(x) so that the left hand side, Ã21(x), is
scalar. We take the LHS to be A21(0). Then we �nd C21 ∈ M(d−1)×1(xC[[x]]), by
successively solving for the coe�cients of xm, m ≥ 1. This completes the proof of
Claim 1.

5.2. Proof of Claim 2.
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5.2.1. A reduction lemma. Since we have already proved Claim 1, showing that β is
injective is the same as showing that α is surjective. Start with (A,B) from G(K)

satisfying the consistency equation. Going over to G(K̂) we know that there exist

a pair of commuting matrices (A0, B0) in G(C) and C ∈ G(K̂) such that

(5.4) C(xp)A(x)C(x)−1 = A0, C(xq)B(x)C(x)−1 = B0.

We have to show that C in fact lies in G(K).

Lemma 13. (Reduction Lemma) It is enough to prove that if A,B ∈ G(K) satisfy
the consistency equation and the system

(5.5) g(xp) = A(x)g(x), g(xq) = B(x)g(x)

has a non-zero solution g ∈ K̂d, then g ∈ Kd.

Since g0 = C(x)g(x) satis�es the same system with A0 and B0 instead of A(x)
and B(x), g0 will lie in Cd, and will be a �xed vector of both A0 and B0. The
existence of a full set of solutions of (5.5), i.e. d independent solutions, is equivalent

to A0 = B0 = I, or to the cohomology class represented by (A,B) in H1(Γ, G(K̂))
being trivial. But this would be a too strong assumption to make.

Proof. We let N = d2 and identify V = End(Kd) with KN and similarly over

K̂. Suppose C(x) ∈ G(K̂) ⊂ VK̂ = K̂N satis�es (5.4). De�ne S, T ∈ GL(V ) '
GLN (K) as the linear transformation taking Z ∈ V to

S(Z) = A0ZA(x)−1, T (Z) = B0ZB(x)−1.

It is easy to see that S, T satisfy the consistency equation S(xq) ◦ T (x) = T (xp) ◦
S(x). The assumption (5.4) gets translated to C(xp) = S(x)(C(x)) and C(xq) =
T (x)(C(x)). Thus we �nd ourselves in the set-up of the Lemma, with d replaced by

N , A,B by S, T respectively and g by C ∈ K̂N . We conclude that C ∈ KN , hence
C(x) ∈ G(K). �

From now on we assume that g(x) ∈ K̂d is a non-zero solution of (5.5). The
proof will be �nished once we show that the entries of g are rational.

5.2.2. Convergence of C(x) and g(x). We are allowed to replace (A,B) by any

G(K)-equivalent pair (and g by the equivalent solution of the new system over K̂).

Since K is dense in K̂ we can approximate C as well as we wish by a matrix C ′ from
G(K). Applying twisted conjugation by C ′ to the pair (A,B) replaces C by CC ′−1,

which is close to I in the topology of K̂. We may therefore assume (changing the
variable x if necessary to guarantee that all the exponents are integral) that

C ∈ I + xMd(C[[x]]).

It follows that A(x) and B(x) are regular at 0, and A(0) = A0 as well as B(0) = B0

are invertible.

Lemma 14. There exists 0 < r < 1 such that C(x) and g(x) converge for |x| < r.

Proof. Take r small enough so that A(x) and B(x) are regular for |x| < r. From
the equation C(xp)A(x) = A0C(x) we get, iteratively,

C(x) = A−m0 C(xp
m

)A(xp
m−1

) · · ·A(xp)A(x).
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This shows that as a formal power series

C(x) = lim
m→∞

A−m0 A(xp
m−1

) · · ·A(xp)A(x)

(the coe�cient of xi in the RHS does not change as soon as pm > i). However, it is
an easy exercise to check that the power series in the RHS has a positive radius of
convergence. This shows that C(x) converges. As C(x)g(x) = g0 is a scalar vector,
g(x) converges too. �

Corollary 15. C(x) and g(x) have meromorphic continuation to |x| < 1.

Proof. Equation (5.4) may be used to boost the radius of meromorphicity of C(x)
from r to r1/p, hence all the way up to 1. �

5.2.3. Analytic continuation across the unit circle. To bypass the natural boundary
at |x| = 1 we have to use, for the �rst time in the proof of Claim 2, the assumption
that C satis�es both equations in (5.4), and that p and q are multiplicatively
independent. We also use Lemma 13.

Making the change of variables x = ez we arrive at a pair of matrices A(z) =
A(ez) and B(z) = B(ez) whose entries are everywhere meromorphic, with poles at
a discrete set of pointsM ⊂ C, which is 2πi periodic, and contained in a vertical
strip −R1 < Re(z) < R1. For the same price we include inM also the points z for
which A(x)−1 or B(x)−1 have a pole at x = ez.

The two matrices satisfy

(5.6) A(qz)B(z) = B(pz)A(z).

The vector g(z) = g(ez), de�ned and meromorphic for Re(z) < 0, satis�es

g(pz) = A(z)g(z), g(qz) = B(z)g(z).

Let Ê = C((z)) and view (5.6) as a new type of a consistency equation in G(Ê).

Proposition 16. (�Claim 1 for case 2Q�) There exists a matrix D(z) ∈ G(Ê) such
that

D(pz)A(z)D(z)−1 = A1, D(qz)B(z)D(z)−1 = B1

are commuting scalar matrices. Moreover, as the entries of A(z) and B(z) are
convergent in a punctured neighborhood of 0, so are the entries of D(z).

The proof of this Proposition is analogous to the proof of Claim 1 before, when
we substitute for σ and τ the operators

σ(f)(z) = f(pz), τ(f)(z) = f(qz).

This de�nes a group

Γ = 〈σ, τ〉 ⊂ Aut(Ê)

which is free abelian of rank 2, and the Proposition is the statement that

H1(Γ, G(C))→ H1(Γ, G(Ê))

is bijective. Note that in the proof of Claim 1 the matrices satisfying the consistency

equation could be taken to be any two matrices from G(K̂) (now from G(Ê)) and
the fact that they were rational (which no longer holds true after we substitute
x = ez) did not play a role. Of course, the analogous Claim 1 for the operators σ, τ
does not follow from Claim 1 for σ, τ , but the proof is similar and we shall skip
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it. From one aspect the situation is even simpler, since the operators σ, τ do not
require a passage to Puiseaux series.

Lemma 17. The matrices D(z) and D(z)−1 can be continued to meromorphic
functions everywhere in z, their poles are contained in

⋃∞
n=0 p

nM, and there exists

a δ > 0 such that they are analytic in the sector Σ
±

= {z ∈ C×| δ < arg(±z) < 2δ}.

Proof. By the equation D(pz) = A1D(z)A(z)−1 we extend D(z) to a meromorphic
function everywhere. Its poles, as well as the poles of D(z)−1, are in

⋃∞
n=0 p

nM. It
is easily seen that the prescribed sector is disjoint from this set for a suitable δ. �

Consider the vector-valued function

d(z) = D(z)g(z).

Since (i) g(x) is meromorphic for |x| < 1 and holomorphic in a punctured neigh-

borhood of 0, and (ii) D(z) is meromorphic everywhere and holomorphic in Σ
−
, we

conclude that d(z) is de�ned and meromorphic for Re(z) < 0 and holomorphic in

Σ
−
R = {z ∈ C×|π + δ < arg(z) < π + 2δ, |z| > R}

for some R > 0. It satis�es there

d(pz) = A1d(z), d(qz) = B1d(z).

This implies that d(z) is in fact analytic on the whole of Σ
−
.

We now introduce a second change of variables

z = ew

(so that x = ee
w

). The sector Σ
±
is the biholomorphic image of the two in�nite

horizontal strips

Σ± = {δ < Im(w) < 2δ} ∪ {π + δ < Im(w) < π + 2δ}.
Let L1 be a matrix such that pL1 = elog p·L1 = A1. The vector-valued function

(5.7) f(w) = e−wL1d(ew) = e−wL1D(ew)g(ew)

is holomorphic in Σ− and log p-periodic. It has a Fourier expansion

f(w) =

∞∑
l=−∞

ale
2πilw/ log p

convergent for w ∈ Σ−. The second equation satis�ed by d(z) (with respect to
z 7→ qz) yields

f(w + log q) = B̃1f(w), B̃1 = e− log q·L1B1

hence the Fourier coe�cients satisfy

ale
2πil·log q/ log p = B̃1al.

Since the matrix B̃1 can have only �nitely many eigenvalues and since log q/ log p
is irrational, only �nitely many Fourier coe�cients are non-zero. This implies that
f(w) can be analytically continued to all w ∈ C.

The function g(z) := g(ez) is meromorphic in Re(z) < 0 and clearly 2πi-periodic
there. Let w = log(z) be the principal branch of the logarithm on the complement
of the positive imaginary z-axis. Equation (5.7) de�nes a meromorphic continuation
of g(z) to the complement of the positive imaginary z-axis. Since it is 2πi periodic
for Re(z) < 0 it is 2πi periodic everywhere, but this gives now a 2πi-periodic
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meromorphic continuation of g(z) for every z ∈ C. Moreover, the same equation
shows that the poles of g(z), which can only come from the poles of D(z)−1, hence
lie in the set

⋃∞
n=0 p

nM, are �nite in number in any horizontal strip of width 2πi.
We now conclude that g(z) = g(ez) for a meromorphic function g(x) which is

everywhere de�ned in C and has �nitely many poles.

5.2.4. Growth at in�nity. To complete the proof of Claim 2, and with it the proof of
the main theorem, it remains to show that g(x) has polynomial growth as x→∞.
This will establish that g is meromorphic at ∞ too, hence rational. However, this
polynomial growth is an immediate consequence of the functional equation

g(xp) = A(x)g(x),

the fact that for |x| large enough, A and g are analytic, and the fact that ||A(x)||
grows polynomialy, as its entries are rational functions of x.
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