
KIRILLOV MODELS AND INTEGRAL STRUCTURES IN p-ADIC
SMOOTH REPRESENTATIONS OF GL2(F )

DAVID KAZHDAN AND EHUD DE SHALIT

Abstract. Let F be a local …eld of residual characteristic p, and ½ a smooth
irreducible representation of GL2(F ); realized over the algebraic closure of Qp:
Studying its Kirillov model, we exhibit a necessary and su¢cient criterion for
the existence of an integral structure in ½: We apply our criterion to tamely
rami…ed principal series, and get a new proof of a theorem of M.-F. Vigneras.

1. Introduction

1.1. Background. Let F be a local …eld of residual characteristic p; and G the
group GL2(F ): Let C be a …xed algebraic closure of the …eld Qp (or its completion).
A smooth representation (V; ½) of G over C is a C-vector space V equipped with a
homomorphism ½ : G! GL(V ); for which the stabilizer of every v 2 V is open in
G.

At least when F has characteristic 0, so can be embeded in C; a good reason
to realize smooth representations of G over C rather than over C is that we can
put them in a much larger tensor category that encompasses the …nite dimensional
rational representations as well. This has been recognized early on by Schneider
and Teitelbaum, and became crucial with the the emergence of the (yet largely
conjectural) theory of p-adic local Langlands correspondence [B-B-C].

A key natural question that arises in this context is the existence and classi…-
cation of integral structures. Although the question makes perfect sense for any
reductive p-adic group, and for a much larger class of representations (see, for ex-
ample, the paper by M.Emerton [E]) we shall adhere to the simplest case of smooth
representations of GL2(F ): Let OC be the ring of integers in C.

De…nition 1.1. An integral structure in (V; ½) is an OC-submodule V0 of V; stable
under ½(G); spanning V over C; which contains no C-line. Two integral structures
are commensurable if each of them is contained in a scalar multiple of the other.

Remark 1.1. Any algebraic isomorphism ¶ : C ' C carries smooth representations
over C to smooth representations over C, but the existence of integral structures is
in general sensitive to the choice of ¶, as is already evident for characters of GL1(F ):

Remark 1.2. If (V; ½) is irreducible it is enough to assume that the OC[G]-module
V0 is neither 0 nor the full V . Indeed, CV0, as well as the union of all the C-lines
in V0; are then subrepresentations of V; so by irreducibility the …rst must be V; and
the second 0: In the irreducible case V admits an integral structure if and only if
the OC [G]-span of any non-zero vector is not the whole space. The OC [G]-span of
any two such vectors are then commensurable, but not every integral structure is
necessarily commensurable with such a “minimal” one.
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The question of existence of integral structures tends to be, in the words of M.-F.
Vigneras [Vig], either “obvious” or “very hard”. Assume from now on that (V; ½) is
irreducible, and let !½ : F£ ! C£ be its central character. We assume that !½ is
unitary, namely j!½j = 1, since otherwise V has no chance of admitting an integral
structure.

If ½ is supercuspidal, integral structures are abundant. Let v0 be any smooth
linear functional on V; and consider, for v 2 V; the matrix coe¢cient cv;v0(g) =
v0(½(g)v); which, for ½ supercuspidal, is compactly supported modulo the center.
Since the central character is unitary, this is a bounded function on G. The map
v 7! cv;v0 embeds (V; ½) in the space of bounded smooth functions on G, the group
acting by right translation. Pulling back the obvious integral structure induced by
the sup norm on functions, we get an integral structure on V .

If V is a twist of the Steinberg representation by a unitary character, an integral
structure can be exhibited explicitly.

There remains the case of irreducible principal series, for which integral struc-
tures need not exist, in general. A necessary condition for their existence is easily
established, but its su¢ciency has only been proved by Vigneras [Vig] when the rep-
resentation is tamely rami…ed. See Theorem 1.2 below for the precise statement.
Only when F = Qp the question of su¢ciency is completely settled, by round-about
methods, as a result of Colmez’ proof of the p-adic local Langlands correspondence.

1.2. Principal series. Let Â1; Â2 be smooth characters of F£; and B the Borel
subgroup of upper triangular matrices in G. The principal series

(V; ½) = IndGB(Â1; Â2)(1)

(smooth induction) is the space of all functions f : G! C for which (i)

f

µµ
t1 s
0 t2

¶
g

¶
= Â1(t1)Â2(t2)f(g)(2)

and (ii) there exists an open subgroup H ½ G; depending on f; such that f(gh) =
f(g) for all h 2 H: The group G acts on V by right translation:

(½(g)f)(g0) = f(g0g):(3)

Notice that unlike the classical case we prefer to work with non-normalized induc-
tion. This is to avoid the sign ambiguity in the choice of a square root of !(t1=t2);
where ! : F£ ! C£ is the unrami…ed character

!(a) = q¡v(a):(4)

Here, and in the rest of the paper, q is the cardinality of the residue …eld of
F , ¼ is a …xed prime element of OF ; and v, the valuation of F; is normalized by
v(¼) = 1: We emphasize that !(a) is C-valued, while the p-adic absolute value is
real. Properly normalized, the latter takes rational values and coincides with !;
but note that j!(¼)j > 1.

The contragredient of IndGB(Â1; Â2) is the representation IndGB(Â
¡1
1 !;Â¡12 !¡1):

The twist of IndGB(Â1; Â2) by Â is Â ± detIndGB(Â1; Â2) ' IndGB(ÂÂ1; ÂÂ2):
The center of G acts on IndGB(Â1; Â2) via the character Â1Â2: We assume that

it is unitary.
The Jacquet module VN of V is two-dimensional. The torus B=N acts on it via

the exponents Â1 and Â2!:
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If Â1 = Â2 our ½ is reducible, admitting Â2 ± det as a one-dimensional subspace,
the quotient being isomorphic to Â2±detSt: If Â1 = Â2!

2 then ½ is again reducible,
this time admitting a representation isomorphic to Â2!±detSt as a subspace, with
a 1-dimensional quotient isomorphic to Â2! ±det. We exclude these two cases from
now on. In all other cases ½ is irreducible.

Among the irreducible principal series we have IndGB(Â1; Â2) ' IndGB(Â2!;Â1!
¡1);

and no other isomorphisms.
For technical reasons we also exclude the “middle case” in which the two ex-

ponents of the Jacquet module of ½ coincide: Â1 = Â2!: In this case the Kirillov
model of ½, denoted by K below, has to be modi…ed, and with it all our arguments.

1.3. The main result. Studying the Kirillov model of the principal series repre-
sentation, we can easily exhibit a function-theoretic criterion for the existence of
an integral structure in IndGB(Â1; Â2): Fix once and for all a non-trivial additive
character

Ã : F ! C£;(5)

and write Ãb(x) = Ã(bx):
Let C1c (F ) be the space of smooth C-valued functions with compact support on

F: Let

K = Â1C
1
c (F ) + Â2!C

1
c (F );(6)

viewed as a space of smooth functions on F£ (if either f1 or f2 does not vanish at 0,
Â1f1+Â2!f2 does not extend to F ). The Kirillov model of ½ is given by an explicit
action of G on K (cf. Section 2). Let F 00 = Â1 ¢ 1OF and F 000 = Â2! ¢ 1OF ; where 1A
always denotes the characteristic function of the set A. Let F 0k(x) = F 00(¼

¡kx) and
likewise F 00k (x) = F 000 (¼

¡kx):1 Let

¤ = SpanOC fÃbF
0
k; ÃbF

00
k jk 2 Z; b 2 Fg ½ K:(7)

Proposition 1.1. The representation IndGB(Â1; Â2) admits an integral structure if
and only if ¤ 6= K.

The OC -module ¤ is by construction stable under B. It is …nitely generated as
an OC [B]-module, and spans K over C. From these facts the proposition follows
at once, since G=B is compact2.

Our main theorem is an application to the case where the characters Âi are at
most tamely rami…ed. We reprove the results found by Vigneras [Vig] by completely
di¤erent methods. To our regret, we have not been able, so far, to apply the criterion
to wildly rami…ed principal series.

Theorem 1.2. Suppose that Âi are at most tamely rami…ed, and that Â1Â2 is uni-
tary. Then IndGB(Â1; Â2) admits an integral structure if and only if

1 · jÂ1(¼)j · jq¡1j:(8)

The necessity of the estimate 1 · jÂ1(¼)j · jq¡1j is easy, and holds under no
rami…cation restriction. The proof that the same estimate is su¢cient to guarantee
an integral structure is somewhat tricky, and is carried out in the last section, …rst

1No confusion should arise from the use of the letter F to denote both the …eld and a function.
2We are indebted to C.Breuil for pointing this out to us. Previously we have used elaborate

computations involving an explicit description of ½(w) and the Bruhat decomposition to prove the
same result.
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in the unrami…ed case, and then in the tamely rami…ed case. It is interesting to
note that the proof eventually relies on the well-known properties of Gauss sums.
Vigneras’ approach makes use of them too.

In [Dat], Dat introduced the notion of a locally integral structure. Let H be an
open compact subgroup of G. The Hecke algebra H(G==H) of double cosets of G
modulo H; with Z coe¢cients, acts on the …nite dimensional space V H . We say
that V admits a locally integral structure if for every H there is an OC -lattice in
V H stable under H(G==H): Dat proves ([Dat], Prop.3.2) that the above estimate
on Â1(¼) is always a necessary and su¢cient condition for the existence of a locally
integral structure. In fact, his proof generalizes to smooth irreducible representa-
tions of any p-adic reductive group, where the estimates become estimates on the
p-adic valuations of the exponents of the Jacquet module of the representation. It
is not known however, even in the case of GL2(F ); if admitting a locally integral
structure is equivalent to admitting an integral structure, or is a strictly weaker
condition.

Let Vsm denote an irreducible smooth representation, and Valg an irreducible
algebraic representation of G. The tensor product

V = Vsm C Valg(9)

is then irreducible (an observation due to Prasad) and if its central character is
unitary, there is an estimate similar to the above which is necessary for the existence
of an integral model in V . It is likely that the study of a Kirillov model for V would
lead to generalizations of our results to the “locally algebraic” representation V .
We hope to pursue this direction in future work.

2. A criterion for the existence of an integral structure

2.1. Notation. F - a local …led of residual characteristic p; v the normalized val-
uation, q the cardinality of the residue …eld, ¼ a prime element, OF its ring of
integers, pF = ¼OF ; UF the units, Un

F = 1 + pnF the principal units of level n:
C - a …xed algebraic closure of Qp; or its completion. The absolute value on C

is normalized so that jpj = 1=p: All characters and functions are C-valued.
Ã - a non-trivial additive character on F of level 0, i.e. OF is its own annihilator

under the bilinear pairing (x; y) 7! Ã(xy):
! - the unrami…ed character on F£ with !(¼) = q¡1:
dx - C-valued Haar distribution on F; normalized by

R
OF dx = 1: Let d¤x =

!(x)¡1dx: Then d(ax) = !(a)dx, while d¤x is invariant under homotheties.
C1c (F ) - locally constant functions with compact support on F:
C1(F£) - locally constant functions on F£, C1c (F

£) the subspace of functions
with compact support.

Ák - the characteristic function of ¼kUF :
1k - the characteristic function of ¼kOF :
¡ - group of smooth characters: UF ! C£: If » 2 ¡; then we extend it to F£

by »(¼) = 1; so we regard ¡ also as the group of smooth characters on F£ which
are trivial on h¼i : We let n(») be the conductor of » : the smallest n such that » is
trivial on Un

F :
If a 2 F£; let ~a = a¼¡v(a). If Â : F£ ! C£ is a smooth character, we let

~Â(a) = Â(~a): Then ~Â 2 ¡:
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G = GL2(F ); B the Borel subgroup of upper triangular matrices, N its unipotent
radical.

For Á 2 C1c (F ); de…ne its Fourier transform bÁ 2 C1c (F ) by

bÁ(x) =
Z

F

Ã(xy)Á(y)dy:(10)

2.2. Gauss sums. If » : F£ ! C£ is any smooth character and n = n(»), we put

¿(») =
X

u2UF=Un
F

Ã(¼¡nu)»¡1(¼¡nu):(11)

This is independent of the choice of ¼ (but does depend, in an obvious way, on the
choice of Ã). It is well-known that

¿(»)¿(!»¡1) = »(¡1):(12)

Recall that Ák is the characteristic function of ¼kUF ; and 1k of ¼kOF : A direct
computation yields the following.

Proposition 2.1. Let » 2 F£ ! C£ be a smooth character.
(i) If » is rami…ed, n = n(») ¸ 1; then

\»¡1Ák = ¿(») ¢ »!¡1Á¡k¡n:(13)

(ii) If » is unrami…ed,

\»¡1Ák = !»¡1(¼)k ¢
µ
¡1
q
Á¡k¡1 +

q ¡ 1
q
1¡k

¶
:(14)

Corollary 2.2. Let 1 6= » 2 ¡, n = n(»): Then

(»¡1Ák)(x) =
¿(»)

qn
¢

X

u2UF =UnF

»(u) ¢ Ã(¡¼¡k¡nux)Ák(x):(15)

In particular, qn»¡1Ák is an integral linear combination of functions of the form
ÃbÁk:

2.3. Kirillov model of the principal series. Let (V; ½) = IndGB(Â1; Â2) be an
irreducible principal series representation, as in the introduction. Recall that we
have assumed that Â1 and Â2! are distinct, and that the central character Â1Â2 is
unitary.

Since the question of existence of integral structures is invariant under a unitary
twist, we may further assume

² Â1Â2(¼) = 1 and ~Â2 = 1 (Â2 is unrami…ed).

Write ~Â1 = ", º = n(") and

Â1(¼) = ¸ = Â2(¼)
¡1:(16)

Extend " to F£ letting "(¼) = 1; so that " = Â1Â2 2 ¡.
The Kirillov model of ½ is the space of functions

K = Â1C
1
c (F ) + Â2!C

1
c (F )(17)



6 DAVID KAZHDAN AND EHUD DE SHALIT

([Bump] Theorem 4.7.2(i), watch out for the di¤erent normalization). The group
G acts as follows (the action will depend on the choice of Ã). The center acts via
" = Â1Â2: The mirabolic subgroup acts via

½

µ
a b
0 1

¶
Á(x) = Ã(bx)Á(ax):(18)

To completely specify the action of G it remains to describe ½(w); where

w =

µ
1

¡1

¶
:(19)

This can be done explicitly, but we shall not need it.

2.4. A criterion for the existence of an integral structure. We now prove
Proposition 1.1. Let

F 0k = "
1X

l=k

¸l¡kÁl; F 00k =
1X

l=k

(
1

q¸
)l¡kÁl:(20)

Let ¤ be the module spanned over OC by

Ã(bx)F 0k(x) and Ã(bx)F 00k (x)(21)

for all b 2 F and k 2 Z. It is clearly stable under B, and …nitely generated as an
OC [B]-module, in fact by F 00 and F 000 : It is also clear that ¤ spans K over C.

Assume that K admits an integral structure. Then any …nitely generated OC [G]-
submodule of K is distinct from the whole space, and a-fortiori ¤ 6= K. Conversely,
suppose ¤ is not the whole space K. Since G = BK with K = GL2(OF ) compact,
and since the stabilizer in K of any non-zero Á is of …nite index, there is a constant
c such that OC [K]Á ½ c¤; hence OC [G]Á ½ c¤ 6= K, showing that K admits an
integral structure.

3. A study of the module ¤

In this section we prove Theorem 1.2. We have seen that (½; V ) admits an integral
structure if and only if the module

¤ = SpanOC fÃbF
0
k; ÃbF

00
k g(22)

does not coincide with the whole of K. Throughout the rest of this work we put
¹ = (q¸)¡1; so that

F 0k = "
1X

l=k

¸l¡kÁl; F 00k =
1X

l=k

¹l¡kÁl:(23)

3.1. Necessity of the condition 1 · j¸j · jq¡1j. When j¸j < 1, ¤ = K: Indeed,
for every x

Á0(x) =
q ¡ 1
q

Z

OF
Ã(xy)dy ¡ 1

q

Z

¼¡1UF

Ã(xy)dy(24)

so if v(x) ¸ ¡N (N ¸ 0)

Á0(x) =
q ¡ 1
qN+1

X

y2OF =¼NOF

Ã(xy)¡ 1

qN+1

X

y2¼¡1UF =UN+1
F

Ã(xy):(25)
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Since Á0 = (q¸)
NF 00¡NÁ0 and F 00¡N is supported on v(x) ¸ ¡N;

q¸¡NÁ0(x) = (q ¡ 1)
X

y2OF =¼NOF

Ã(xy)F 00¡N(x)¡
X

y2¼¡1UF =UN+1F

Ã(xy)F 00¡N (x)

(26)

belongs to ¤: Since N can be arbitrarily large and j¸j < 1; from the B-invariance
of ¤ we deduce that ¤ contains C1c (F

£); hence coincides with K: A similar com-
putation, using F 0¡N instead of F 00¡N ; works if 1 < jq¸j.

3.2. The unrami…ed case. We shall …rst prove Theorem 1.2 in the case " = 1.
Assume

1 · j¸j · jq¡1j:(27)

Pick a typical function in ¤, which, after a shift by the torus, may be assumed to
be of the form

Á(x) =
1X

k=0

X

¯2F=OF

c0k(¯)Ã¯(¼
¡kx)F 0k(x) + c00k(¯)Ã¯(¼

¡kx)F 00k (x)(28)

=
1X

l=0

X

¯2F=OF

Cl(¯)Ã¯(¼
¡lx)Ál(x):

Here all the coe¢cients denoted c0k(¯) and c00k(¯) are integral, and only …nitely
many do not vanish. By Ã¯(¼

¡kx) we mean Ãb(¼
¡kx) for any representative b of

¯: Since F 0k(x) is supported in ¼kOF ; Ãb(¼
¡kx)F 0k(x) depends only on bmodOF ,

and similarly for the double-primed terms.
In the second expression we have collected the coe¢cients “by annuli”, so we

put

Cl(¯) = C0l(¯) + C00l ¯)(29)

C 0l(¯) =
lX

k=0

¸l¡k
X

®2F=OF ; ¼l¡k®=¯

c0k(®)(30)

and similarly

C00l (¯) =
lX

k=0

¹l¡k
X

®2F=OF ; ¼l¡k®=¯

c00k(®):

We shall show that if Á vanishes on ¼lUF for 0 · l · l0 then jÁ(x)j · jq¡1j for
x 2 ¼l0+1UF : This implies that q¡NÁm =2 ¤ if N ¸ 2 and m 2 Z; and su¢ces to
conclude the proof. Indeed, had q¡NÁm been a member of ¤; for a large enough
m0; Á = q¡NÁm+m0 would be of the above shape, violating the conclusion with
l0 = m+m0 ¡ 1:

First note that Áj¼lUF = 0 if and only if Cl(¯); a-priori de…ned for ¯ 2 F=OF ;
depend only on ¯mod¼¡1OF : Then consider the recursive relation

C00(¯) = c00(¯)(31)

C0l(¯) = ¸
X

¼®=¯

C 0l¡1(®) + c0l(¯)
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and the corresponding relation for C 00l (¯) (with ¸ replaced by ¹). Put ck(¯) =
c0k(¯) + c00k(¯): We assume

(Hyp): Cl(¯) depends only on ¯mod¼¡1OF for all 0 · l · l0;(32)

and prove by induction on l · l0 that jCl+1(¯)j · jq¡1j: That jC0(¯)j and jC1(¯)j
do not exceed jq¡1j is obvious. We now rearrange the recursive relations at level l
and l + 1; letting ®;¯ and ° range as usual over F=OF : We get

Cl(¯) = ¸
X

¼®=¯

Cl¡1(®) + (¹¡ ¸)
X

¼®=¯

C 00l¡1(®) + cl(¯)(33)

Cl+1(°) = ¸
X

¼¯=°

Cl(¯) + (¹¡ ¸)
X

¼¯=°

C 00l (¯) + cl+1(°):

We now assume that Cl¡1(®) and Cl(¯) are smaller than jq¡1j in absolute value
and note that the …rst sum in the expression for Cl+1(°) consists, in view of (Hyp),
of q equal terms, hence is integral, so since j¸j · jq¡1j we may ignore it, as well as
the last term cl+1(°): To deal with the middle sum we use the de…ning recursive
relation

(¹¡ ¸)
X

¼¯=°

C00l (¯)

= (¹¡ ¸)
X

¼¯=°

0
@¹

X

¼®=¯

C00l¡1(®) + c00l (¯)

1
A :(34)

Here again, to get the desired estimate on Cl+1(°); we need only focus on the …rst
sum inside the paranthesis, which we express, using (33) as

(¹¡ ¸)¹
X

¼¯=°

X

¼®=¯

C 00l¡1(®)

= ¹
X

¼¯=°

8
<
:Cl(¯)¡ ¸

X

¼®=¯

Cl¡1(®)¡ cl(¯)

9
=
;

= ¹qCl(¯°)¡ ¹¸q
X

¼¯=°

Cl¡1(®¯)¡ ¹
X

¼¯=°

cl(¯):(35)

Here ¯° (resp. ®¯) is any ¯ (resp. ®) satisfying ¼¯ = ° (resp. ¼® = ¯). Since
¹¸q = 1 the induction assumption at levels l¡ 1 and l implies the desired estimate
at level l+ 1; namely that jCl+1(°)j · jq¡1j:

3.3. The rami…ed case. From now on assume that " is rami…ed, namely º ¸ 1;
and 1 · j¸j · jq¡1j: Let Á be given, as before, by

Á(x) =
1X

k=0

X

¯2F=OF

c0k(¯)Ã¯(¼
¡kx)F 0k(x) + c00k(¯)Ã¯(¼

¡kx)F 00k (x)(36)

=
1X

l=0

X

¯2F=OF

Cl(¯)Ã¯(¼
¡lx)Ál(x);
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collecting terms “by annuli”. Invoking the Fourier expansion of "(x)Ál (15) we get
the following formula

Cl(¯) =
¿("¡1)

qº

X

u2UF=Uº
F

"¡1(u)C0l(¯ + ¼¡ºu) + C00l (¯)(37)

where C 0l(¯) and C 00l (¯) are de…ned as in the unrami…ed case, and satisfy the same
recursive relations.

3.4. General facts on operators on functions on F=OF . At this point it is
helpful to introduce certain operators on …nitely supported functions on F=OF :
Let W = F=OF and Wn = ¼¡nOF =OF = ker(¼njW ): If f : W ! C has a …nite
support we de…ne
² The suspension of f

Sf(¯) =
X

¼®=¯

f(®):(38)

² The convolution of f with " and "¡1

Ef(¯) =
¿("¡1)

qº

X

u2UF =Uº
F

"¡1(u)f(¯ + ¼¡ºu)(39)

E0f(¯) =
¿(")

qº

X

u2UF=Uº
F

"(u)f(¯ + ¼¡ºu):

² The operator ¦

¦f(¯) = f(¼¯):(40)

We denote by C the space of functions on W with …nite support. We think of
them as Fourier coe¢cients of functions on OF ; where to f we associate its Fourier
transform bf =Pf(¯)Ã¯: We decompose

C = C0 © C1(41)

where

C0 =

(
f j 8¯;

X

t2W1

f(¯ + t) = 0

)
(42)

C1 = ff j 8¯8t 2W1; f(¯ + t) = f(¯)g :
The signi…cance of this decomposition is the following: f 2 C1 if and only if bf is
supported on ¼OF ; while f 2 C0 if and only if bf is supported on UF :

Lemma 3.1. (i) The projection onto C1 is

P1 =
1

q
¦S:(43)

(ii) The projection onto C0 is
P0 = EE0 = E0E:(44)

(iii) E0EE0 = E0 and EE 0E = E:

Proof. Part (i) is clear, (ii) follows from the fact that cEf = " bf , while dE0f = "¡1 bf:
For (iii) note that E0f 2 C0; hence is invariant under E0E:
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Corollary 3.2. We have SE = 0; and C0 = Im(E) = Im(E0) = ker(S); C1 =
ker(E) = ker(E0):

Proof. Indeed, since ¦S = q(I ¡ EE 0); we have ¦SE = q(E ¡ EE0E) = 0; but
¦ is injective so SE = 0: Now C0 = ker(q¡1¦S) = ker(S) since ¦ is injective.
As Im(E) ¾ Im(EE0) = C0 ¾ Im(EE0E) = Im(E); C0 = Im(E) and similarly it
is equal to Im(E0): Clearly ker(E) is contained in ker(E0E) = C1: If f 2 C1 it is
invariant under W1; so

Ef(¯) =
¿("¡1)

qº

X

u2UF =Uº
F

"¡1(u)f(¯ + ¼¡ºu) = 0(45)

because the sum over each coset of Uº¡1
F =Uº

F vanishes.

For any function f 2 C we let jjf jj denote its sup norm.

3.5. Conclusion of the proof in the tamely rami…ed case. Assume now that
" is tamely rami…ed, i.e. º = 1: To prove that ¤ is not the whole of K we start with
a function Á as above and de…ne recursively elements of C by

C0l+1 = ¸SC0l + c0l+1; C 00l+1 = ¹SC 00l + c00l+1(46)

and

Cl = EC 0l +C 00l(47)
~Cl = C 0l +E0C 00l :

Thus

Á =
1X

l=0

X

¯2F=OF

Cl(¯)Ã¯(¼
¡lx)Ál(x)(48)

and, symmetrically,

"¡1Á =
1X

l=0

X

¯2F=OF

~Cl(¯)Ã¯(¼
¡lx)Ál(x):(49)

Assume that for 0 · l · l0, Áj¼lUF = 0; so that Cl and ~Cl lie in C1.
We claim that

R = max
0·l·l0+1

fjjC 0l jj; jjC00l jjg · jq¡1j:(50)

Note that this holds all the way up to l = l0+1; although our assumption concerns
l · l0 only.

We shall assume, to the contrary, that R > jq¡1j and arrive at a contradiction.
Clearly jjC 00jj = jjC000 jj = 1: Let 0 · l · l0 be the …rst index such that one of
jjC 0l+1jj or jjC 00l+1jj attains the value R. Without loss of generality we assume that
jjC 0l+1jj = R (the argument in the other case being similar). From

¦C 0l+1 = ¸¦SC 0l +¦c
0
l+1

= ¸¦S ~Cl +¦c
0
l+1 (since SE0 = 0)

= ¸q ~Cl +¦c
0
l+1 (since ~Cl 2 C1)(51)

and from the fact that jj¦f jj = jjf jj while jjc0l+1jj · 1 we conclude that

jjC 0l+1jj = j¸qj ¢ jj ~Cljj:(52)
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Note that for this step we only need jjC 0l+1jj = R > 1:As j¸qj · 1; jj ~Cljj ¸ jjC 0l+1jj =
R > jjC 0l jj; hence

jj ~Cljj = jjE0C00l jj(53)

· j¿(")
q
j ¢ jjC 00l jj (here we use º = 1).

This imples jjC 00l jj > 1 (as R > jq¡1j), so by the same argument that lead to (52)
we now …nd

jjC 00l jj = j¹qj ¢ jjCl¡1jj:(54)

Taken together with (53),

jj ~Cljj · j¿(")¹j ¢ jjCl¡1jj:
We conclude that

jjCl¡1jj ¸ j 1
¿(")¹

j ¢ jj ~Cljj = j
1

¿(")¹¸q
j ¢ jjC 0l+1jj by (52)

= j 1
¿(")
j ¢ jjC0l+1jj ¸ R > jjC 00l¡1jj(55)

so

jjCl¡1jj = jjEC 0l¡1jj · j
¿("¡1)

q
j ¢ jjC0l¡1jj:(56)

Putting everything together

jjC0l¡1jj ¸ j
q

¿("¡1)
j ¢ jjCl¡1jj ¸ j

q

¿("¡1)¿(")
j ¢ jjC 0l+1jj = jjC 0l+1jj = R:(57)

This contradicts the choice of the index l: Thus R · jq¡1j:
It now follows that Cl0+1 is bounded, in the sup norm, by jq¡º¡1j; hence

Áj¼l0+1UF can not be arbitrarily large. In other words, if Áj¼lUF = 0 for l · l0;

then on the next annulus ¼l0+1UF ; Á can not be arbitrarily large. We conclude
that ¤ 6= K as in the unrami…ed case.
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