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Abstract. If R is an integral domain and K is its field of fractions, we let
Int(R) stand for the subring of K[x] which maps R into itself. We show that
if R is the ring of integers of a p-adic field, then Int(R) is generated, as an
R-algebra, by the coefficients of the endomorphisms of any Lubin-Tate group
attached to R.

1. Introduction

For an integral domain R, with field of fractions K, we denote by Int(R) the
R-subalgebra of K[x] consisting of the polynomials which map R into itself. These
polynomials are called R-valued or, sometimes, by abuse of language, integer valued.
It is well-known, and easy, that Int(Z) is generated (in fact, linearly spanned) by
the binomial coefficients

(
x
n

)
. One “explanation” for the fact that these polynomials

are integer valued is the following. Consider the multiplicative formal group, as a
formal group over Z. Multiplication by x on the formal group is given by a power
series whose coefficients are

(
x
n

)
. Since for integral x these coefficients must be

integral, the binomial coefficients are integer-valued.
Our main theorem is a generalization of this fact to Lubin-Tate groups over the

ring of integers R of a p-adic field K (a finite extension of Qp). If F (t1, t2) is a
Lubin-Tate formal group law over R, then for every x ∈ R there is a unique power
series

(1.1) [x](t) = [x]F (t) =
∞∑

n=1

cn(x)tn

such that F ([x](t1), [x](t2)) = [x](F (t1, t2)) and c1(x) = x. It turns out that cn(x) ∈
K[x] is an integer valued polynomial of degree ≤ n and what we show is that they
generate Int(R) as an R-algebra:

(1.2) Int(R) = R[c1, c2, . . . ].

In fact, it follows from our proof that c1, cq, cq2,... is a minimal set of generators for
Int(R), where q is the cardinality of the residue field of R. For global applications
it is nevertheless better to keep all the cn.

The theory of elliptic curves with complex multiplication and an easy localization
argument allow us to apply our result to determine a system of “natural” generators
for Int(R) when R is the ring of S-integers in a quadratic imaginary field of class
number 1, and S is an explicit small set of primes.
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The ring Int(R) is in general non-noetherian, and has been studied by several
authors, beginning with Pólya and Ostrowski in 1919. The case of Int(Z) is of
course much older, and must have been known to Euler. For a comprehensive
survey, see the book [Ca-Ch1], and the recent paper [Ca-Ch2] by the same authors.
We thank the referee for calling our attention to past work, which we now briefly
summarize, in order to put our result in a historic perspective.

For R the ring of integers of a number field K, Int(R) is a free R-module, as
follows from a general theorem of Bass (see [Za], Section 2). Of special interest are
number fields K for which Int(R) admits an R-basis {fn} with deg(fn) = n. Such a
basis is called a regular basis. Pólya [Po] remarked that a regular basis exists if and
only if for every n ≥ 0, the fractional ideal an of leading coefficients of polynomials
of degree ≤ n in Int(R) is principal, and proved that if K is quadratic this happens
if and only if all the ramified primes in K are principal. In a paper published
back-to-back with Pólya’s paper, Ostrowski [Os] proved the following more general
criterion: Int(R) admits a regular basis if and only if for every rational prime power
q, the ideal

(1.3)
∏

Np=q

p

(the product extending over all the prime ideals of R of absolute norm q) is principal.
The subgroup of the ideal class group of K generated by the classes of these ideals
is called the Pólya-Ostrowski group of R, and may be regarded as the obstruction to
Int(R) possessing a regular basis. If K/Q is Galois, it is enough to check Ostrowski’s
criterion for q = pf where p is ramified in K. In this case Zantema [Za, Prop.
3.1] found an equivalent formulation of the criterion in terms of H1(G,U) where
G = Gal(K/Q) and U = R× is the group of units of K. Number fields of class
number 1 evidently admit a regular basis for Int(R), but so do many others, for
example all the cyclotomic fields Q(e2πi/m).

All of the above concerns bases of Int(R) as an R-module. The question of find-
ing generators as an R-algebra, addressed by us, seemed to have escaped attention.
So did, to the best of our knowledge, the relation with formal groups, although the
quantities wq(n), which play a key role in our proof, show up in various circum-
stances.

We end our brief historic survey with the remark that there are other aspects
of the ring Int(R) which make it an object worth studying. For example, if R is
the ring of integers of a number field, Int(R) is a two-dimensional Prüfer domain.
There are analogous results of Carlitz in the function-field case. We refer to the
paper of Cahen and Chabert for a list of known results and open problems.

2. Integer valued polynomials

2.1. General facts. As in the introduction, let R be an integral domain, K its
field of fractions, and

Int(R) = {f ∈ K[x]| f(R) ⊂ R}(2.1)
Intn(R) = {f ∈ Int(R)| deg(f) ≤ n}(2.2)

an(R) = {leading coefficients of f ∈ Intn(R)} .(2.3)

Clearly Int(R) is an R-subalgebra of K[x], and an(R) is an R-submodule (a frac-
tional ideal) of K. It is also clear that if R is a principal ideal domain then Int(R)
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has a basis {fn}n≥0 over R such that deg(fn) = n (a regular basis) and that fn is
unique up to multiplication by a unit of R and a linear combination of f0, . . . , fn−1.
In fact, any fn whose leading coefficient generates an(R) will do.

We next examine the effect of localization, under the mere assumption that R is
a noetherian domain. For any prime p of R,

(2.4) Int(R)p = Int(Rp)

(as submodules of K[x], see [Ca-Ch1], Theorem I.2.3). Let M be the collection of
maximal ideals of R. It follows that

(2.5) Int(R) =
⋂

p∈M
Int(Rp).

Indeed, let f belong to the right hand side, and let I be the ideal of all a ∈ R such
that af ∈ Int(R). For every p ∈ M, from the fact that f ∈ Int(Rp) = Int(R)p we
learn that there is an a ∈ I, a /∈ p. Thus I is contained in no maximal ideal, so
must contain 1.

We shall also need the following lemma, whose easy proof we leave out.

Lemma 2.1. Let Q ⊂ P ⊂ K[x] be two R-submodules and let an(Q) denote the
set of leading coefficients of polynomials of degree n in Q. If an(Q) = an(P ) for all
n ≥ 0, then Q = P.

2.2. Integer valued polynomials over discrete valuation ring. Assume now
that R is a discrete valuation ring, let π be a uniformizer, and v the normalized
valuation, so that v(π) = 1. If the residue field of R is infinite, it is easy to see that
Int(R) = R[x]. Assume therefore that the cardinality of R/πR is finite, and denote
it by q.

Let

(2.6) wq(n) =
⌊

n

q

⌋
+

⌊
n

q2

⌋
+

⌊
n

q3

⌋
+ · · ·

(see [Ca-Ch2] for the history of these numbers, going back to Legendre and ending
with recent work of Bhargava). Below we shall use the fact that

(2.7) wq(i1) + · · ·+ wq(il) ≤ wq(i1 + · · ·+ il),

and that the inequality is strict if l ≥ 2, all the ij ≥ 1 and i1 + · · · + il = qm for
some m.

Proposition 2.2. We have

(2.8) an(R) = π−wq(n)R.

Proof. See [Ca-Ch2], Proposition 1.3, or [Za], Lemma 2.2. ¤

3. Relation with Lubin Tate formal groups

Let K be a finite extension of Qp with ring of integers R. As before let π be
a uniformizer, and denote by q the cardinality of κ = R/πR. Let F be a Lubin-
Tate formal group law over R associated with the uniformizer π [L-T]. As in the
introduction, to every x ∈ R we can associate a unique endomorphism [x] of F of
the form

(3.1) [x](t) = xt + c2(x)t2 + c3(x)t3 + · · · ∈ R[[t]].
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Using the logarithm of the formal group F it is easy to see that cn(x) ∈ K[x] is a
polynomial of degree ≤ n. Since it is R-valued, cn ∈ Int(R).

In particular

(3.2) [π](t) = πt + a2t
2 + · · ·+ aqt

q + · · ·
lifts the Frobenius endomorphism: it satisfies ai ≡ 0modπ for i 6= q, and aq ≡
1modπ. Let u = aq.

Theorem 3.1. We have

(3.3) R[c1, c2, . . . ] = Int(R).

Moreover, {cqm |m ≥ 0} is a minimal set of generators of Int(R) as an R-algebra.

Proof. Let Q = R[c1, cq, cq2 , . . . ]. From the lemma and the proposition we deduce
that in order to prove that Q = Int(R) it is enough to show that

(3.4) π−wq(n)R ⊂ an(Q)

for every n ≥ 0.
If we expand n = bmqm + bm−1q

m−1 + · · ·+ b1q + b0 with 0 ≤ bi < q, we see that

(3.5) wq(n) = bmwq(qm) + bm−1wq(qm−1) + · · ·+ b1wq(q)

where wq(qm) = (qm− 1)/(q− 1) (m ≥ 1). Let λn be the coefficient of xn in cn(x).
Then the coefficient of xn in cbm

qmc
bm−1

qm−1 . . . cb1
q cb0

1 (which is a polynomial of degree n

in Q) is

(3.6) λbm
qmλ

bm−1

qm−1 . . . λb1
q λb0

1 .

It follows that it is enough to prove that

(3.7) v(λqm) = −wq(qm)

for every m ≥ 0. Since λ1 = 1, this holds for m = 0.
From [πx](t) = [π]([x](t)) we derive the basic identity

(3.8)∑
cn(πx)tn = π

(∑
cn(x)tn

)
+ a2

(∑
cn(x)tn

)2

+ · · ·+ u
(∑

cn(x)tn
)q

+ · · ·

Comparing coefficients of xqtq we get

(3.9) λq(πq − π) = a2(2λ1λq−1 + · · ·) + a3(· · ·) + · · ·+ u.

In this last equation, v(LHS) = v(λq) + 1. On the right hand side, each term is of
the form alλi1λi2 . . . λil

where l ≥ 2 and i1 + i2 + · · · + il = q. Since v(λij ) ≥ 0,
and v(al) ≥ 1, unless l = q and aq = u, we deduce that v(RHS) = v(u) = 0. Hence
v(λq) = −1, as we wanted to show.

We will now prove that v(λqm) = −wq(qm) by induction on m, the cases m = 0
and 1 having been proved above. Suppose that v(λqm−1) = −wq(qm−1). Note also:

• For each n, v(λn) ≥ −wq(n) (because λn ∈ an(R)).
• If i1 + i2 + · · ·+ il = qm then wq(i1) + · · ·+ wq(il) < wq(qm) (we assume

here that the ij ≥ 1 and l ≥ 2).
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Comparing the coefficients of xqm

tq
m

in the basic identity, as we did when m
was 1, yields

λqm(πqm − π) = a2(
∑

i1+i2=qm

λi1λi2) + a3(
∑

i1+i2+i3=qm

λi1λi2λi3) + · · ·

+u(
∑

i1+···+iq=qm

λi1λi2 . . . λiq
) + aq+1(· · ·) + · · ·(3.10)

The valuation of the left hand side, v(LHS) = v(λqm)+1. The right hand side is a
sum of terms of the form alλi1λi2 . . . λil

where l ≥ 2 and i1 + · · ·+ il = qm. We shall
show that the term uλq

qm−1 has strictly smaller valuation than any other term, so

(3.11) v(RHS) = v(uλq
qm−1) = −qwq(qm−1)

by the induction hypothesis, and v(λqm) = −1− qwq(qm−1) = −wq(qm).
To conclude the proof we examine a term of the form alλi1λi2 . . . λil

, other than
uλq

qm−1 , distinguishing two cases. If l 6= q

(3.12) v(alλi1λi2 . . . λil
) ≥ 1−wq(i1)− · · · −wq(il) > 1−wq(qm) = −qwq(qm−1).

If l = q but not all the ij are equal to qm−1, then without loss of generality
i1 < qm−1. We shall show shortly that in this case

(3.13) wq(i1) + · · ·+ wq(iq) < qwq(qm−1)

so that once again

(3.14) v(uλi1λi2 . . . λiq ) ≥ −wq(i1)− · · · − wq(iq) > −qwq(qm−1).

Assume therefore that i1+···+iq = qm and i1 < qm−1. This implies
⌊

i1
qm−1

⌋
= 0.

By definition

(3.15) wq(ij) =
⌊

ij
q

⌋
+

⌊
ij
q2

⌋
+ · · ·+

⌊
ij

qm−1

⌋
.

Therefore, recalling that
∑bxjc ≤ b∑ xjc,

wq(i1) + · · ·+ wq(iq) =
q∑

j=1

⌊
ij
q

⌋
+

q∑

j=1

⌊
ij
q2

⌋
+ · · ·+

q∑

j=1

⌊
ij

qm−2

⌋
+

q∑

j=2

⌊
ij

qm−1

⌋

≤
⌊

qm

q

⌋
+

⌊
qm

q2

⌋
+ · · ·+

⌊
qm

qm−2

⌋
+

⌊
qm − i1
qm−1

⌋

< qm−1 + qm−2 + · · ·+ q2 + q = qwq(qm−1).(3.16)

This concludes the proof that Q = Int(R). It remains to see that no cqm can be
eliminated from the set of generators of Q. Suppose bi ≥ 0 and

(3.17) qm = bm−1q
m−1 + bm−2q

m−2 + · · ·+ b1q + b0.

The leading coefficient of c
bm−1

qm−1 . . . cb1
q cb0

1 has valuation

(3.18) −bm−1wq(qm−1)− · · · − b1wq(q) > −wq(qm),

so we need cqm to guarantee that aqm(Q) = π−wq(qm)R. ¤
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4. Global applications

4.1. Applications to elliptic curves with complex multiplication. Let K
be a quadratic imaginary field of class number 1. Let OK be its ring of integers,
and E/K an elliptic curve with complex multiplication by the ring OK . Pick a
Weierstrass equation for E defined over K,

(4.1) Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

Let t = −X/Y be the local parameter at the origin as defined in [Si, chapter IV]
and

(4.2) [x]Ê(t) = xt + c2(x)t2 + c3(x)t3 + · · · (x ∈ OK)

the power series giving the multiplication by x in the formal group. Then cn(x) ∈
K[x] is of degree ≤ n. Let S be a finite set of primes such that if p /∈ S the chosen
Weierstrass model is integral and has good reduction at p. Let R = OK,S be the
ring of S-integers in K. At a prime p /∈ S the formal group of E is Lubin-Tate, and
cn(x) ∈ Rp = OK,p. Our main theorem yields

(4.3) Int(Rp) = Rp[c1, c2, c3, ...].

From Int(R) =
⋂

p/∈S Int(Rp) we deduce:

Corollary 4.1. Under the conditions mentioned above, Int(R) is generated over
R by the cn(x).

In fact it is enough to take cn for n′s which are powers of cardinalities of residue
fields of R.

Example. Let E be the elliptic curve given, in Weierstrass form, by Y 2 = X3−
X. This model has complex multiplication by Z[i] and good reduction everywhere
away from 2. We may therefore apply the corollary to the ring Z[i, 1

2 ]. By a simple
computation we find that the polynomials cn(x) vanish for n 6= 1mod4. The first
few non-vanishing polynomials are

c1(x) = x

c5(x) = 2
5 (x5 − x)

c9(x) = 2
15x9 − 4

5x5 + 2
3x

c13(x) = 44
975x13 − 12

25x9 + 148
75 x5 − 20

13x

c17(x) = 39422
27625x17 − 88

375x13 + 196
125x9 − 26648

4875 x5 + 46
17x

Note that the next in line, c21(x), is redundant, according to the remark following
the corollary.

4.2. Formal globalization. As pointed out by the referee, the use of complex
multiplication, as much as it points to a relation between our problem and geometry,
is not essential. We only need to know a one-dimensional formal group over R,
admitting R as endomorphisms, all of whose localizations are Lubin-Tate formal
groups. This can be done much more generally with little effort.

Let K be any number field, and S a finite set of primes such that R = OK,S is of
class number 1 (S may be empty). For any prime p /∈ S let πp ∈ R be a generator
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of pR. Consider the formal Dirichlet series

L(s) =
∏

p/∈S

(
1− π−1

p Np−s
)−1

=
∞∑

n=1

ann−s.(4.4)

Clearly a1 = 1 and an ∈ K. For every p /∈ S, the Dirichlet series
(
1− π−1

p Np−s
)
L(s)

has p-integral coefficients. Consider the formal power series

(4.5) f(X) =
∞∑

n=1

anXn

and the group law

(4.6) F (X, Y ) = f−1(f(X) + f(Y ))

for which f is a logarithm. A priori F is defined over K, but we claim that it is in
fact defined over R. For every p /∈ S

(4.7) f(X)− π−1
p f(XNp) ∈ OK,p[[X]].

To see this, we must show that, if Np = q, an − π−1
p an/q ∈ OK,p (if q does not

divide n, we understand an/q = 0). But this is guaranteed by the fact that(
1− π−1

p Np−s
)
L(s) has p-integral coefficients. The functional equation lemma

[Haz, I.2.2] implies now that F has coefficients in OK,p, and that so does the
endomorphism

(4.8) [x]F (t) = f−1(xf(t))

for every x ∈ OK,p. Furthermore, by [Haz, I.8.3.6] F is a Lubin-Tate formal group
law associated with the prime πp.

It follows that F, as well as the endomorphisms [x]F , for x ∈ R, are defined
over R, and therefore that the Taylor coefficients cn(x) in [x]F belong to Int(R).
Moreover, by our main theorem, they generate Int(Rp) at each maximal ideal p,
so we may deduce as before that they generate Int(R) globally.
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