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Abstract. This is a largely expository paper, providing a self-contained ac-
count on the results of [Sch-Si1, Sch-Si2], in the cases denoted there 2Q and
2M. These papers of Schäfke and Singer supplied new proofs to the main the-
orems of [Bez-Bou, Ad-Be], on the rationality of power series satisfying a pair
of independent q-di�erence, or Mahler, equations.

We emphasize the language of Γ-di�erence modules, instead of di�erence
equations or systems. Although in the two cases mentioned above this is only
a semantic change, we also treat a new case, which may be labeled 1M1Q.
Here the group Γ is generalized dihedral rather than abelian, and the language
of equations is inadequate.

In the last section we explain how to generalize the main theorems in case
2Q to �nite characteristic.

Introduction

Adamczewski and Bell proved in 2017 the following theorem, conjectured some
30 years earlier by Loxton and van der Poorten [vdPo].

Theorem 1. [Ad-Be] Let p and q be multiplicatively independent natural numbers.
Consider the endomorphisms

σf(x) = f(xp), τf(x) = f(xq)

of the �eld of rational functions K = C(x) and of its completion at 0, the �eld of
Laurent series k = C((x)). If f ∈ k satis�es the two Mahler equations

n∑
i=0

aiσ
n−i(f) = 0,

m∑
i=0

biτ
m−i(f) = 0,

with ai, bi ∈ K, then f ∈ K.

For an account on Mahler's equations and their role in transcendence theory, see
the survey paper [Ad]. A similar theorem has been proved by Bézivin and Boutabaa
in 1992.

Theorem 2. [Bez-Bou] Let p and q be multiplicatively independent complex num-
bers. Consider the automorphisms

σf(x) = f(px), τf(x) = f(qx)

of the �elds K = C(x) and k = C((x)). If f ∈ k satis�es the two q-di�erence
equations

n∑
i=0

aiσ
n−i(f) = 0,

m∑
i=0

biτ
m−i(f) = 0
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with ai, bi ∈ K, then f ∈ K.
The proofs of these two theorems used a variety of techniques. In the case of

Theorem 1 it relied on Cobham's theorem [Co] in the theory of automata. Theorem
2 was proved by p-adic techniques, for an auxiliary prime1 p, and involved, in its
original formulation, some unnecessary restrictions. Recently, Schäfke and Singer
[Sch-Si1, Sch-Si2] provided a uniform treatment of the two theorems, as well as of
other similar results. Besides emphasizing common features, they eliminated the
dependence, in the work of Adamczewski and Bell, on Cobham's theorem. In fact,
the latter could now be deduced from Theorem 1. In Theorem 2 they still required
p or q to be of absolute value di�erent than 1 (at least after some automorphism of
the complex numbers), but this restriction can be removed.

The goal of this largely expository paper is to provide yet another look at the
same theorems, leading to a third, new example. We give a self-contained treatment,
based on the notion of a Γ-di�erence module, which is introduced in Section 1, and
we shift the focus from equations to modules. This is similar to studying linear
partial di�erential equations via D-modules. The letter Γ signi�es the group of

automorphisms (of K or of some extension �eld K̃) generated by the operators
σ and τ, which, in the two examples cited above, is free abelian of rank 2. This
approach allows us to isolate, in Section 2, the formal aspects of the theory. Once we
globalize, in Section 3, our proof of Theorem 1 follows the line of [Sch-Si1, Sch-Si2].
In Theorem 2 we remove the unnecessary restriction that |p| 6= 1 or |q| 6= 1 (see
Step VI of �3.2).

We treat the above two theorems, corresponding to the cases 2M and 2Q in
[Sch-Si1]. In Section 4 we give a third example that might be denoted 1M1Q. In
this case the group Γ is no longer abelian, but rather generalized dihedral. As a
result, the main theorem does not lend itself to a simple-minded formulation in
terms of equations as above, but its formulation (and proof) in the language of
di�erence modules is completely analogous to the �rst two cases.

In the last section we explain how to generalize Theorem 2, as well as case 2Q of
our Main Theorem (Theorem 7), if an arbitrary �eld of constants, possibly of �nite
characteristic, is substituted for the �eld of complex numbers.

Finally we remark that in [dS1, dS2] a similar situation, not discussed in the
present paper, is studied, where the �eld of rational functions is replaced by a �eld
of elliptic functions. New issues arise there. One is the issue of periodicity. Another
one is the existence of non-trivial Γ-invariant vector bundles on the elliptic curve.
Nevertheless, these issues can be analyzed, and a theorem analogous to the two
theorems cited above, where the operators σ and τ are induced by isogenies of the
elliptic curve, and the coe�cients ai and bi are elliptic functions, is proved there.
We stress that in the elliptic case, a power series f satisfying two elliptic p- and
q-di�erence equations need not be elliptic. Instead, it belongs to a slightly larger
ring of functions, generated over the �eld of elliptic functions (in the variable z) by
z, z−1 and the Weierstrass zeta function of z.

Recent work of Adamczewski, Dreyfus, Hardouin and Wibmer established a far-
reaching strengthening of the above mentioned theorems. In [ADHW] they show
that if f, g ∈ C((x)) do not belong to C(x), f satis�es a σ-di�erence equation and
g a τ -di�erence equation, then f and g are algebraically independent over C(x).

1Having nothing to do with the complex number denoted by p in the statement of the theorem.
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Special cases of this result have been proved by various authors before. Our survey
raises two immediate questions: (a) Can a generalization of this type be phrased
(and proved) in the context of di�erence modules, that will apply for example in the
case 1M1Q, not amenable to a formulation in terms of two di�erence equations?
(b) Can the prerequisites for a such a theorem be axiomatized (and checked) to
include, for example, ground �elds of elliptic functions?

1. Γ-difference modules

1.1. De�nitions and examples. Let K be a �eld and Γ a group, acting on K
by automorphisms. We make no assumption whatsoever on the nature of Γ, nor
do we require the action to be faithful. In fact, the case of a trivial action is not
excluded. The �xed �eld C = KΓ is called the �eld of constants.

De�nition 3. A Γ-di�erence module over K is a �nite dimensional K-vector space
M equipped with a semi-linear action of Γ. In other words, for every γ ∈ Γ there
is a Φγ ∈ GLC(M) satisfying

Φγ(av) = γ(a)Φγ(v) (a ∈ K, v ∈M)

and

Φγδ = Φγ ◦ Φδ (γ, δ ∈ Γ).

If the action of Γ onK is trivial, this notion is nothing but a linear representation
of Γ over K. If K0 ⊂ K is a Γ-invariant sub�eld then we say that M descends to
K0, or has an underlying K0-structure, if there exists a Γ-di�erence moduleM0 over
K0 such thatM ' K⊗K0

M0, the Γ-action extended semi-linearly. This may apply
in particular to K0 = C. In general, if M descends to K0, M0 need not be unique,
not even up to an isomorphism over K0. If M descends to the trivial module over
C, i.e. if M ' Kr, Γ acting in the coordinates, we call M trivial.

Example 4. If Γ is a �nite group acting faithfully then K/C is a Galois extension
with Gal(K/C) = Γ, and Hilbert's theorem 90 says that every Γ-di�erence module
over K is trivial.

Denoting by K 〈Γ〉 the twisted group ring of Γ over K, a Γ-di�erence module
is nothing but a K 〈Γ〉-module, �nite dimensional over K. The category of Γ-
di�erence modules over K will be denoted ΓDiffK . The tensor product M ⊗N of
two Γ-di�erence modules is de�ned as the tensor product over K, with the usual
Γ-action, Φγ(u ⊗ v) = Φγ(u) ⊗ Φγ(v). The dual M∨ is de�ned as the space of
K-linear functionals λ : M → K with the action

Φγ(λ)(v) = γ(λ(Φ−1
γ v)),

and the internal hom is Hom(M,N) = M∨ ⊗N.
It is easily checked that with these de�nitions ΓDiffK becomes a rigid abelian

tensor category ([De-Mi], De�nition 1.15). The object 1 is the trivial Γ-module K
and End(1) = C. The Tannakian formalism applies to this category, as described
for example in the last section of the �rst chapter of [vdP-Si], but we shall not dwell
on this aspect here.

The following easy Proposition should be viewed as a generalization of Hilbert's
theorem 90.
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Proposition 5. Suppose that

1→ ∆→ Γ→ Γ→ 1

is a short exact sequence of groups, ∆ is �nite, and the action of ∆ on K is faithful.
Let K0 = K∆. Then the categories ΓDiffK and ΓDiffK0 are equivalent.

Proof. Consider the two functors α : ΓDiffK → ΓDiffK0
and β : ΓDiffK0

→ ΓDiffK
de�ned by

α(M) = M∆, β(M0) = K ⊗K0
M0.

Since ∆ is normal in Γ, the action of Γ on K induces an action of Γ on K0 and
α(M) becomes a Γ-di�erence module. Likewise, β(M0) becomes a Γ-di�erence
module if the action of Γ onM0 (which factors through Γ) is extended semi-linearly
to K ⊗K0

M0. Hilbert's Theorem 90 says that when we restrict the action from
Γ to ∆ these two functors give an equivalence beween ∆DiffK and ∆DiffK0

, the
latter being the category of �nite dimensional vector spaces over K0. In particular
dimK0 α(M) = dimK(M) and dimK β(M0) = dimK0(M0). Galois theory gives α ◦
β(M0) = M0. On the other hand there is an injective map K ⊗K0

α(M) → M
respecting the action of Γ, so by dimension counting it must be an isomorphism
and we also have β ◦ α(M) = M. �

Thus, when studying Γ-di�erence modules over a �eld K, we may always factor
out �nite normal subgroups of Γ, if they act faithfully on K. For example, if Γ is
a semisimple algebraic group acting faithfully on K, we may assume, without loss
of generality, that it is of adjoint type.

1.2. Matrices and classi�cation. If we choose a basis e1, . . . , er ofM over K we
may associate to any γ ∈ Γ its matrix (aij), de�ned by

Φγ(ej) =

r∑
i=1

aijei.

It is customary to denote by Aγ the inverse of this matrix, namely A−1
γ = (aij).

The condition Φγ ◦ Φδ = Φγδ gets translated to the consistency condition

Aγδ = γ(Aδ) ·Aγ ,

which must hold for every γ, δ ∈ Γ. Conversely, a collection of matrices {Aγ}
satisfying the above conditions, termed a consistent collection of matrices, de�nes
a Γ-di�erence module structure on Kr by letting

Φγ(v) = A−1
γ γ(v).

If e′1, . . . , e
′
r is another basis and C = (cij) is the transition matrix, i.e.

e′j =

r∑
i=1

cijei,

then the matrix A′γ corresponding to γ in the new basis is

(1.1) A′γ = γ(C)−1AγC.

The equivalence relation de�ned by (1.1) is called gauge equivalence. It follows that
Γ-di�erence modules of rank r over K are classi�ed by gauge equivalence classes
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of consistent collections of matrices Aγ ∈ GLr(K), or what is the same, by the
non-abelian cohomology

H1(Γ, GLr(K)).

Example 6. (i) Γ = 〈σ〉 is in�nite cyclic. In this case a consistent collection
is determined uniquely by Aσ, which may be chosen arbitrarily, and the gauge
equivalence classes correspond to the twisted conjugacy classes

B(GLr(K)) = GLr(K)/ ∼

where A′ ∼ A if there exists a C ∈ GLr(K) with A′ = σ(C)−1AC.
(ii) Let k be a perfect �eld of characteristic p and K = W (k)[1/p] where W (k) is

the ring of Witt vectors of k. Let σ denote the Frobenius automorphism of K and
Γ = 〈σ〉 . A Γ-di�erence module over K is called also an F -isocrystal. This notion
is central to p-adic Hodge theory.

(iii) Replacing the group GLr(K) by G(K) for an arbitrary linear algebraic group
G overK, one arrives at the notion of a Γ-di�erence module with G-structure. These
objects are classi�ed by H1(Γ, G(K)), and when Γ = 〈σ〉 by B(G(K)), de�ned as
above. In example (ii) they have been analyzed in [Kot].

(iv) Γ = 〈σ, τ〉 ' Z2 (i.e. σ and τ commute and are multiplicatively independent:
σaτ b = 1 if and only if a = b = 0). In this case a Γ-di�erence module is de�ned by
the pair (Aσ, Aτ ), subject to the consistency condition

(1.2) σ(Aτ )Aσ = τ(Aσ)Aτ ,

up to gauge equivalence. This is the example underlying the two theorems cited in
the introduction.

1.3. Di�erence modules and di�erence equations. From now on let, as in the
intoduction,

K = C(x), k = C((x)).

To give a uniform treatment of Theorem 1 (case 2M) and Theorem 2 (case 2Q) we
introduce also the �elds

K̃ =

∞⋃
s=1

C(x1/s)

and

k̃ =

∞⋃
s=1

C((x1/s)).

The �eld k̃ is the �eld of Puiseux series, and is the algebraic closure of k.
In both theorems, σ and τ are endomorphisms of the algebraic group G = Gm,C

or Ga,C, and can be extended to automorphisms of its universal covering G̃. In

the q-di�erence case (2Q) the additive group is simply connected, so G = G̃. In

the Mahler case (2M) the extension of σ or τ to an automorphism of G̃ depends
on the choice of a compatible sequence of sth roots of the function x, namely
σ(x1/s) = xp/s and τ(x1/s) = xq/s.We �x such a choice once and for all. Replacing
x1/s by ζsx

1/s where ζs is an sth root of 1 (and, to maintain the compatibility,
ζtst = ζs) results in twisting the action of σ on x1/s by ζp−1

s and the action of τ

on the same element by ζq−1
s . The �eld K̃ is the function �eld of G̃, and σ and τ

induce automorphisms of K̃ and of k̃.
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In both cases we therefore let

Γ = 〈σ, τ〉 ,

acting via automorphisms on the �elds K, k in case 2Q, and on the �elds K̃, k̃ in
case 2M. The signi�cance of the assumption on the multiplicative independence of
p and q is that Γ ' Z2.

Theorem 7 (Main Theorem). In either case 2Q or case 2M, any Γ-di�erence

module M over K (in case 2Q) or K̃ (in case 2M) has an underlying C-structure
M0, i.e. there exists a Γ-invariant C-submodule M0 ⊂M , such that M = K⊗CM0

(case 2Q), or M = K̃ ⊗C M0 (case 2M).

Remark. (i) An equivalent formulation is that any pair (Aσ, Aτ ) of matrices from

GLr(K) (resp. GLr(K̃)) satisfying the consistency equation (1.2) is gauge-equivalent
to a pair (A0

σ, A
0
τ ) of constant matrices from GLr(C).

(ii) Equivalently, the natural map H1(Γ, GLr(C)) → H1(Γ, GLr(K)) (resp.

H1(Γ, GLr(K̃))) is surjective.
(iii) In case 2M the underlying complex structure is unique, equiv. the pair

(A0
σ, A

0
τ ) is unique up to conjugation in GLr(C), equiv. the map H1(Γ, GLr(C))→

H1(Γ, GLr(K)) is bijective. In the case 2Q this is false, already in rank 1. See
remark 16.

(iv) Note that in the formulation of the last theorem the �eld k or k̃ plays no
role. It will, however, reappear in its proof. Note also that the formulation of the
theorem is purely algebraic. By this we mean that if ι is an arbitrary automorphism
of C andM is a Γ-di�erence module, then so is the moduleM ι = C⊗ι,CM obtained
from it by transport of structure, and M descends to C if and only M ι descends
to C. The topological or dynamical nature of M ι may nevertheless be completely
di�erent, as ι is, in general, non-continuous.

Proposition 8. Theorem 7 implies Theorem 1 and Theorem 2.

Proof. Observe �rst that in the case 2M, to prove Theorem 1 it is enough to prove

the analogous theorem with K and k replaced by K̃ and k̃, where (the extended) σ

and τ become automorphisms. This is because k ∩ K̃ = K. To unify the notation,

in this proof only, we let the symbols k and K stand, in case 2M, for the �elds k̃

and K̃.
Let M ⊂ k be the K 〈Γ〉-span of f, and let Φσ = σ and Φτ = τ. The condition

imposed on f, that it simultaneously satis�es the two functional equations with
coe�cients from K, is equivalent to the condition

dimKM <∞.

Indeed, thanks to the commutativity of Γ, M is spanned by σiτ jf for 0 ≤ i < n
and 0 ≤ j < m.

Let e1, . . . , er be a basis over C of the submodule M0, whose existence is guar-
anteed by Theorem 7. Then

f ∈M =

r∑
i=1

Kei ⊂ k.
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Replacing x by x1/s for some s in the case 2M, we may assume that all the ei are
in C((x)). The column vector e = t(e1, . . . , er) satis�es

e(σx) = Be(x)

for an invertible constant matrix B ∈ GLr(C). (In the notation introduced above,
B = (tA0

σ)−1). Write e =
∑∞
n=n0

vnx
n with vn ∈ Cr. In case 2M this gives

∞∑
n=n0

vnx
pn =

∞∑
n=n0

Bvnx
n,

from where we deduce that vn = 0 for n 6= 0, so each ei ∈ C. In case 2Q the same
equation gives

∞∑
n=n0

vnp
nxn =

∞∑
n=n0

Bvnx
n,

from where we deduce that vn = 0 for n su�ciently large, since the matrix B can
have only �nitely many eigenvalues. Thus in this case, too, all the ei ∈ K. As
the ei are linearly independent over K, in both cases we must have r = 1 and
f ∈ Ke1 = K ⊂ k. �

2. The structure of formal Γ-difference modules

The results of this part appear in various variations in the literature, sometimes
over the �elds of Hahn series or of convergent power series replacing the �elds of
Puiseux or Laurent series. The ideas date back to works of Manin and Dieudonné
on formal groups. We prove all that we shall need later on in the global theory
from �rst principles. The reader may consult [Roq, Sau, vdP-Re] and the references
therein for the historical development of the subject, and for further results.

2.1. Formal (p, q)-di�erence modules.

2.1.1. Rank 1 formal q-di�erence modules. In this section we prove an analogue of
the Main Theorem over k instead of K, in the case 2Q of two q-di�erence operators.
The case of two Mahler operators will be discussed in the next section. One starts
by examining the structure of a Γ-di�erence module M , for Γ = 〈τ〉 in�nite cyclic.
Adding a second multiplicatively independent and commuting operator σ imposes
a serious restriction on the structure of M , and forces it to descend to C.

Let q ∈ C× and assume that q is not a root of unity. Fix once and for all a

compatible sequence of roots q1/s. Let Γ = 〈τ〉 act on the �eld k̃ =
⋃∞
s=1 C((x1/s))

via τf(x1/s) = f(q1/sx1/s). (To get the results below we have to work over k̃,
although τ is already an automorphism of k.) Write ks = C((x1/s)).

A Γ-di�erence module over k̃ is the same as a k̃
〈
Φ,Φ−1

〉
-module which is �nite

dimensional over k̃. Here the twisted Laurent polynomials ring k̃
〈
Φ,Φ−1

〉
satis�es

the relation
Φa = τ(a)Φ

for a ∈ k̃. We shall call a Γ-di�erence module over k̃ or over k also a (formal)
q-di�erence module.

Rank-1 q-di�erence modules over k̃ are classi�ed by k̃×/(k̃×)τ−1, see (i) from

example 6 with r = 1. Every element f ∈ k̃× can be written uniquely as cxλf1

where c ∈ C×, f1 ∈ U1(ks) = 1 + x1/sC[[x1/s]] (the principal units of ks) for
some s ∈ N, and λ ∈ Q. Since f1 = gτ−1

1 for g1 ∈ U1(ks) (solve successively
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for the coe�cients of g1, using the fact that q is not a root of unity), and since

(xµ)τ−1 = qµ, we see that classes in k̃×/(k̃×)τ−1 are represented by cxλ, where λ
(the slope) is uniquely determined, and c ∈ C× is determined up to multiplication
by qα for some α ∈ Q. We therefore have the following easy Proposition.

Proposition 9. Let c ∈ C× and λ ∈ Q. Let Iλ,c = k̃e with Φ(e) = cxλe. Then

every rank-1 q-di�erence module over k̃ is isomorphic to some Iλ,c and Iλ,c ' Iµ,d
if and only if λ = µ and cd−1 = qα for some α ∈ Q.
2.1.2. Newton polygons. We review well-known facts about Newton polygons and

slopes. Let ν : k̃× → Q be the valuation of k̃, normalized by ν(x) = 1. If P ∈ k̃[T ],

P (T ) = a0T
r + · · ·+ ar−1T + ar

a0, ar 6= 0, we consider the points (i, ν(ai)) ∈ R2 (0 ≤ i ≤ r). The highest piecewise
linear convex graph lying on or below these points is called the Newton polygon
NP of P . It has two vertical edges, connecting (0,∞) to (0, ν(a0)), and (r, ν(ar))
to (r,∞). The other edges have rational slopes λ1 < λ2 < · · · < λs and integral
horizontal lengths r1, r2, . . . , rs with

∑
ri = r. The polynomial P has precisely ri

roots α in k̃× of valuation ν(α) = λi. If we make a change of variable Q(T ) =
P (a−1T ) then NQ has slopes λi + ν(a). After such a change of variables, we may
therefore assume, when dealing with Newton polygons, that the smallest slope of P

is 0. The de�nition of NP may be extended to an arbitrary non-zero P ∈ k̃[T, T−1]
so that NPT is obtained from NP by a horizontal shift one unit to the right. It has
the same slopes and the same horizontal lengths.

If P ∈ k̃[T ] is written as above we let P (Φ) =
∑r
i=0 aiΦ

r−i ∈ k̃
〈
Φ,Φ−1

〉
. Note

however that P (T ) 7→ P (Φ) is not a homomorphism, as Φ does not commute with

k̃.

Let M be a cyclic q-di�erence module, generated by the vector v. We shall later
see (Birkho�'s cyclicity lemma) that every q-di�erence module is cyclic, but at this
stage we do not know it yet. Let P (T ) be a monic polynomial of minimal degree
such that P (Φ)v = 0. Such a polynomial exists since the Φiv are linearly dependent

over k̃. Write

(2.1) P (T ) = T r + a1T
r−1 + · · ·+ ar−1T + ar.

Then ar 6= 0, since otherwise, as Φ−1P (Φ)v = 0, the polynomial Q = τ−1(P )/T

has degree r− 1 and still satis�es Q(Φ)v = 0. Let D = k̃
〈
Φ,Φ−1

〉
and consider the

left ideal DP (Φ). The homomorphism of D-modules

D/DP (Φ) �M,

sending Q(Φ) ∈ D to Q(Φ)v is surjective. As the module on the left is gener-

ated over k̃ by 1,Φ, . . . ,Φr−1 and M contains the linearly independent vectors
v,Φv, . . . ,Φr−1v, both sides have dimension r and this map is an isomorphism.

If we replace M by M ⊗ Iλ,1 (λ ∈ Q) and the cyclic vector v by v⊗ e where e is
the basis of Iλ,1, then Φi(v⊗e) = qλ(

i
2)xiλΦi(v)⊗e so the polynomial P is replaced

(up to a scalar multiple) by

Q(T ) = q−λ(
r
2)T r + q−λ(

r−1
2 )xλa1T

r−1 + · · ·+ x(r−1)λar−1T + xrλar

and the points (i, ν(ai)) by (i, ν(ai) + iλ). After such a twist of M we may assume
that the slopes of NP are ≥ 0 and that the �rst (smallest) slope is 0.
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Replacing the variable x by some x1/s we may therefore assume that all the roots
of P are in k = C((x)), that the slopes are integral, and that the smallest slope is
0. In particular, all the ai ∈ C[[x]].

2.1.3. Factorization in k 〈Φ〉.

Lemma 10. Assume that in (2.1) the ai ∈ C[[x]] (i ≥ 1), and at least one of them
is a unit (these conditions are equivalent to the smallest slope of P being 0). Then
there exists a unit b0 ∈ C[[x]]×,b1, . . . , br−1 ∈ C[[x]] and c ∈ C× such that in k 〈Φ〉
we have

P (Φ) = Φr + a1Φr−1 + · · ·+ ar = τ(b0)−1(Φ− c)(b0Φr−1 + b1Φr−2 + · · ·+ br−1).

Proof. We write a0 = 1, u = b0 and solve successively for the coe�cient of Φr−i.
De�ne

bi =

i∑
j=0

cjτ−j(u)τ−j−1(ai−j)

(0 ≤ i ≤ r − 1), where u ∈ C[[x]]× and c ∈ C× are still to be determined. These
equations guarantee that

τ(u)−1(τ(bi+1)− cbi) = ai+1

for 0 ≤ i ≤ r − 2. To get the last coe�cient we need

−cbr−1 = τ(u)ar

or, with τ(u) = v, all that remains is to �nd v ∈ C[[x]]× and c ∈ C× such that

r∑
j=0

cjτ−j(v)τ−j(ar−j) = 0.

Write v = 1 + t1x + t2x
2 + · · · and τ−j(ar−j) = aj,0 + aj,1x + aj,2x

2 + · · · . For c
we take a non-zero solution of

r∑
j=0

cjaj,0 = 0.

Here we use the fact that since the smallest slope is 0, there is j < r with aj,0 6= 0,
and of course ar,0 = 1. We also insist that for i ≥ 1 q−ic is not a root of the same
polynomial. This can be achieved because q is not a root of unity, so we may replace
c by the last element in the sequence c, q−1c, q−2c, . . . solving the equation.

We then solve successively for the ti. We get

ti

 r∑
j=0

cjq−jiaj,0

 = ri

where ri is an expression involving the aj,m, c and t` for ` < i. By our assumption
on c the term in paranthesis does not vanish, so we can solve for ti. �

Corollary 11. Assume that, after replacing x by x1/s for some s, the smallest
slope of P is an integer µ. Then

P (Φ) = τ(u)−1(Φ− cxµ)uP1(Φ)

where P1 is a monic polynomial of degree r − 1 and u ∈ C[[x]]×.



ON THE STRUCTURE OF CERTAIN Γ-DIFFERENCE MODULES 10

Proof. Let µ be the smallest slope of P and consider the module M ⊗ I−µ,1 with
the cyclic vector v ⊗ e. Since

(xµΦ)i(v ⊗ e) = Φiv ⊗ e

we deduce that if Q(T ) =
∑r
i=0 aiT

i is the monic minimal polynomial of v⊗e then

Q(Φ) = q−µ(r2)x−µrP (xµΦ)

(caution: it is not true that Q(T ) = q−µ(r2)x−µrP (xµT ); the variable T commutes
with xµ while Φ does not!). The polynomial Q has smallest slope 0, so by the
Lemma

q−µ(r2)x−µrP (xµΦ) = τ(b0)−1(Φ− c)Q1(Φ)

where Q1(Φ) =
∑r−1
i=0 biΦ

i. Consider the automorphism of the non-commutative
ring k 〈Φ〉 carrying Φ to x−µΦ and leaving k �xed. (Note that it is not obtained
by substituting Φ in a similar automorphism of k[T ].) Applying it to the above
identity we get

P (Φ) = qµ(r2)xµrτ(b0)−1(x−µΦ− c)Q1(x−µΦ)

= τ(b0)−1qµ(r2)−µ(r−1)(Φ− cqµ(r−1)xµ)xµ(r−1)Q1(x−µΦ)

= τ(b0)−1(Φ− cqµ(r−1)xµ)qµ(r−1
2 )xµ(r−1)Q1(x−µΦ)

= τ(b0)−1(Φ− cqµ(r−1)xµ)P1(Φ)

where the leading coe�cient of P1 is b0. The claim follows, with u = b0 and c
replaced by cqµ(r−1). Note that c is anyhow only determined by M up to a power
of q, since Iλ,c ' Iλ,qc. �

Consider the vector e1 = uP1(Φ)v 6= 0. Then

Φe1 = cxµe1

so k̃e1 ' Iµ,c.
It is easy to see that the slopes of P are the slopes of P1 and µ (with multiplici-

ties).

2.1.4. The structure theorem for a q-di�erence module over k̃.

Proposition 12. Let M be an arbitrary q-di�erence module over k̃. Then M has
an ascending �ltration with one-dimensional graded pieces of the form Iµi,ci with
rational slopes µ1 ≤ µ2 ≤ · · · ≤ µr.

Proof. It is enough to prove thatM contains a rank 1 submoduleM1, because then
we continue by induction on M/M1. For that we may assume that M is cyclic, and
the claim follows from what was done above. �

Since the Jordan-Hölder factors of M are intrinsic to M we deduce that if M is
cyclic the slopes are independent of the cyclic vector used in the proof.

Corollary 13 (Birkho�'s cyclic vector lemma ). Every q-di�erence module over k̃
has a cyclic vector.
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Proof. We prove the corollary by induction on the rank, the rank 1 case being
obvious. Let M1 ⊂M be a submodule of rank 1 and v ∈M a vector projecting to
a cyclic vector ofM/M1. Let e be a basis element ofM1. Let P (Φ) be a polynomial

in Φ with coe�cients in k̃ annihilating v. For an appropriate λ, P (Φ)(xλe) 6= 0.
Replacing e by xλe we may assume that P (Φ)e 6= 0. But then u = v + e is a cyclic
vector for M, as the module generated by it contains P (Φ)u = P (Φ)e, hence M1,
and modulo M1 it contains the image of v, hence projects onto M/M1. �

Theorem 14 (Structure theorem for formal q-di�erence modules). Let M be a

q-di�erence module over k̃. Let λ1 < λ2 < · · · < λm be the distinct slopes of M
in increasing order. Then there are C-vector spaces Ni ⊂ M with endomorphisms
φi ∈ GLC(Ni) so that

M =

m⊕
i=1

k̃ ⊗C Ni

and Φ(1 ⊗ vi) = xλi ⊗ φi(vi) for vi ∈ Ni. If M is de�ned over k then the same is
true if we extend scalars to ks where s is the least common denominator of the λi.

Proof. We may assume thatM is de�ned over k and that all the slopes are integral.
If this is not the case, simply replace the variable x by x1/s. In view of the last
corollary we may assume that M is generated by a cyclic vector v and we let P (T )
be the unique monic polynomial of degree r = rk(M) such that P (Φ)v = 0.

We shall prove the theorem in two stages. First, we show that there exists a
basis of M with respect to which Φ is represented by a matrix A = (aij) ∈ GLr(k)
where aii = cix

µi (ci ∈ C×, µ1 ≤ µ2 ≤ · · · ≤ µr are the λi with multiplicities), and
aij = 0 unless j = i or j = i+ 1. In particular, A is upper triangular.

Indeed, using Lemma 10 and its Corollary repeatedly we may write

P (Φ) = u0(Φ− c1xµ1)u1(Φ− c2xµ2)u2 · · ·ur−1(Φ− crxµr )ur

with ui ∈ C[[x]]×. Let

ei = {ui(Φ− ci+1x
µi+1)ui+1 · · ·ur−1(Φ− crxµr )ur} v.

Since v,Φv, . . . ,Φr−1v is a k-basis of M, so is e1, e2, . . . , er. For 1 ≤ i ≤ r

(Φ− cixµi)ei = u−1
i−1ei−1

(where e0 = 0) so the matrix of Φ in the basis {ei} satis�es aii = cix
µi and

ai−1,i = u−1
i−1, while all the other aij = 0.

We may assume, without loss of generality, that if µi = µj then ci/cj /∈ qZ,
unless ci = cj . Indeed, if this were the case, and say j > i, replace ej by some xnej ,
replacing cj by ci. We may no longer be able to assume that the ai−1,i are units,
but we shall not be using this.

It is now enough to prove the following. Let µ1 ≤ · · · ≤ µr be integers. Let
ci ∈ C× be such that whenever µi = µj , ci/cj /∈ qZ, unless ci = cj . Assume that
e1, . . . , er is a basis of M , 1 < n ≤ r and for all j < n

Φ(ej) = xµj

(
cjej +

j−1∑
i=1

aijei

)
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where aij ∈ C and aij = 0 unless (µi, ci) = (µj , cj). Assume that

Φ(en) = xµn

(
cnen +

n−1∑
i=1

giei

)
(gi ∈ k). Then there exists an

ẽn = en +

n−1∑
i=1

hiei

such that

Φ(ẽn) = xµn

(
cnẽn +

n−1∑
i=1

ainei

)
with ain ∈ C and ain = 0 unless (µi, ci) = (µn, cn). Using this inductively we
modify the basis with which we started until we get a basis w.r.t. which Φ has the
form described in the theorem.

Twisting M by I−µn,1 we may assume that µn = 0.
We consider the hi ∈ k and the ain as variables and solve for them inductively,

starting with i = n − 1 and going down. Collecting terms (including the terms
arising from the hj for j > i) we get that we have to solve

cnhi − ciτ(hi)x
µi = fi − ain

for some fi ∈ k. Recall that µi ≤ 0 = µn. Now if µi < 0 this has a solution hi, with
ain = 0. If µi = 0 but ci 6= cn then ciq

m 6= cn for all m by assumption and again
there is a solution with ain = 0. Finally, if µi = 0 and ci = cn we can cancel out all
the terms of fi except for the constant one, which we kill with ain. This concludes
the proof of the theorem. �

Corollary 15. A q-di�erence module over k (or k̃) descends to C if and only if all
its slopes are 0.

Borrowing terminology from di�erential equations, such a module is also called
regular-singular. We shall not be using this terminology.

Remark 16. The C-subspaces Ni are not unique. In fact, Ni can be replaced by
xµiNi (µi ∈ Q) and φi by qµiφi. Two C-subspaces related in this way will be
called resonants of each other. It can be checked that this is the only source of
non-uniqueness in Theorem 14.

2.1.5. The structure theorem for a (p, q)-di�erence module over k. We now intro-
duce a second operator σf(x) = f(px) for p ∈ C× such that p and q are multiplica-
tively independent. We let Γ = 〈σ, τ〉 ⊂ Aut(k) and call a Γ-di�erence module over
k a (formal) (p, q)-di�erence module. Such a module is clearly a q-di�erence mod-
ule, and we shall show that the introduction of the second operator Φσ, commuting
with Φτ , imposes serious restrictions on its structure, and forces it to descend to
C.

Theorem 17. Let M be a (p, q)-di�erence module over k, for multiplicatively in-
dependent p and q. Then M descends to C.
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Proof. Consider the extension of scalars Mk̃ and a decomposition

Mk̃ =

m⊕
i=1

k̃ ⊗C Ni,

as given by Theorem 14. Let λ be a slope of Mk̃. Then there exists a vector v with

Φτ (v) = cxλv, for some c ∈ C×. Applying Φσ we have

Φτ (Φσv) = Φσ(Φτv) = Φσ(cxλv) = cpλxλΦσ(v).

That is, Φσ(v) is an eigenvector with eigenvalue cpλxλ. Iterating we �nd that Iλ,cpnλ
appears as a Jordan-Hölder constituent of M for all n ∈ N. Since there are �nitely
many Jordan-Hölder factors, we have that for some n > m ≥ 0, Iλ,cpmλ ' Iλ,cpnλ .

Thus for some α ∈ Q we must have p(n−m)λqα = 1. It follows that λ = α = 0, since
p and q are multiplicatively independent, i.e. the only possible q-slope is 0.

Theorem 14 implies that there is a basis e1, . . . , er ofM over k such that [Φτ ]e =
A−1
τ , with Aτ ∈ GLr(C). Furthermore, the basis can be chosen so that if c and

c′ are two distinct eigenvalues of Aτ , c/c
′ /∈ qZ. Let A−1

σ be the matrix of Φσ in
the same basis. We claim that it is also a constant matrix. In fact, if we write
Aσ(x) =

∑
Bnx

n with Bn ∈Mr(C), the consistency equation

AτAσ(x) = Aσ(qx)Aτ

implies that

AτBnA
−1
τ = qnBn.

The eigenvalues of Aτ in its adjoint action are all of the form c/c′ for eigenvalues
c, c′ of Aτ . By our assumption c/c′ = qn only if n = 0. Hence Bn = 0 unless n = 0,
and Aσ is a constant matrix. We conclude that

M0 = ⊕ri=1Cei
is an underyling C-structure of M . �

As in theorem 14, the C-structure M0 is not unique, because of the existence of
resonants.

2.2. Formal (p, q)-Mahler modules.

2.2.1. Rank-1 formal q-Mahler modules. We turn our attention to the case of formal
Mahler modules. These are Γ-di�erence modules over the �eld of Puiseux series
k̃, where Γ = 〈τ〉 or Γ = 〈σ, τ〉, and σf(x) = f(xp), τf(x) = f(xq) are Mahler
operators for p, q ∈ N multiplicatively independent. We shall call such Γ-di�erence
modules (formal) q-Mahler modules, when Γ = 〈τ〉 , and (formal) (p, q)-Mahler
modules when Γ = 〈σ, τ〉 . As before, we start by studying the structure of q-
Mahler modules, and then examine the restriction imposed by the introduction of
the second operator Φσ.

Rank-1 q-Mahler modules are classi�ed by k̃×/(k̃×)τ−1. Once again, we pick

f ∈ k̃× and write f = cxλf1 where c ∈ C× and f1 ∈ U1(ks). This time both f1 and

xλ are in (k̃×)τ−1, as (xµ)τ−1 = xµ(q−1). We get the following easy Proposition.

Proposition 18. Every rank-1 q-Mahler module over k̃ descends to C. Let Ic, for
c ∈ C×, be the rank-1 module k̃e, with Φτ (e) = ce. Then every rank-1 module is
isomorphic to Ic for a unique c.
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2.2.2. Factorization in k̃ 〈Φ〉. We consider the twisted polynomial ring k̃ 〈Φ〉 con-
sisting of polynomials

n∑
i=0

aiΦ
n−i,

(ai ∈ k̃) where Φa = τ(a)Φ.

Lemma 19. Let
∑n
i=0 aiΦ

n−i ∈ k̃ 〈Φ〉, and assume a0 = 1, an 6= 0. Then there

exist c ∈ C×, µ ∈ Q, b0, . . . , bn−1 ∈ k̃ such that b0 ∈ U1(k̃), bn−1 6= 0 and

n∑
i=0

aiΦ
n−i = τ(b0)−1(Φ− cxµ)

n−1∑
i=0

biΦ
n−1−i.

[Compare Chapter IV, �4 Lemma 2 in Demazure's Lectures on p-divisible groups
LNM 302 (1972) Springer-Verlag. That lemma is key to the Manin-Dieudonné
classi�cation of F -isocrystals over an algebraically closed �eld of characteristic p,
or - what amounts to the same - the classi�cation of p-divisible groups over such a
�eld up to isogeny.]

Proof. To simplify the notation we write, in the proof of the lemma only, a(i) =

τ i(a). Write also u = b
(1)
0 . We have to �nd µ, u, b1, . . . , bn−1 and c as in the lemma

satisfying the equations

(2.2) uai = b
(1)
i − cx

µbi−1 (0 ≤ i ≤ n)

(b−1 = bn = 0). Solving successively for bi we get the equation

(2.3) (ua0)cn + (u(1)a
(1)
1 x−µq)cn−1 + · · ·+ (u(n)a(n)

n x−µ(q+···+qn)) = 0,

which we have to solve for u ∈ U1(k̃) and c ∈ C×. Let

µ = min
1≤i≤n

(
1− 1/q

1− 1/qi

)
ν(ai)

where ν is the valuation on k̃, normalized by ν(x) = 1. Note that

ν(a
(i)
i x−µ(q+···+qi)) = qi

(
ν(ai)− µ

(
1− 1/qi

1− 1/q

))
≥ 0

and there exists an index i ≥ 1 for which this is 0. This means that the expression

a
(i)
i x−µ(q+···+qi), appearing together with u(i) as the coe�cient of cn−i, is integral,
i.e. has no pole, and at least one such expression, besides the leading one, is a
unit. Replacing x by xs for a suitable s, we may assume that all the exponents of
x appearing in (2.3) are integral. We solve (2.3) modulo higher and higher powers
of x, setting

u = 1 + d1x+ d2x
2 + · · ·

and choosing the dm successively. By what we have seen, there exists a c 6= 0 in C
solving (2.3) modulo x (i.e. substituting x = 0). Noting that

u(i) = 1 + d1x
qi + d2x

2qi + · · ·
it is then an easy matter to solve successively for the dm. �

Corollary 20. (Compare with Theorem 15 in [Roq].) Every monic polynomial

from k̃ 〈Φ〉 factors as
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u0(Φ− c1xµ1)u1(Φ− c2xµ2)u2 · · ·un−1(Φ− cnxµn)un

where the µj ∈ Q, µj ≤ qµj+1, cj ∈ C× and uj ∈ U1(k̃).

Proof. Apply the lemma inductively. The relation µj ≤ qµj+1 follows from the
inequality

qν(bi) ≥ µ(1 +
1

q
+ · · ·+ 1

qi−1
)

which is proved by induction on i, based on (2.2). �

2.2.3. The structure theorem for a q-Mahler module over k̃. Let M be a q-Mahler

module over k̃. Similarly to Proposition 12 we get the following structure theorem
for M.

Theorem 21. (Compare with Theorem 9 in [Roq].) Let M be a q-Mahler module

over k̃. Then M has an ascending �ltration with one-dimensional graded pieces of
the form Ic.

Proof. It is enough to prove that any q-Mahler module over k̃ has a rank 1 sub-
module. Let u be any non-zero vector in M, and n the minimal number such that

u,Φu, . . . ,Φnu are linearly dependent over K̂. Let
∑n
i=0 aiΦ

n−iu = 0 be a linear
dependence with a0 = 1, and decompose the polynomial as in the lemma. Let
v =

∑n−1
i=0 biΦ

n−1−iu. Note that v 6= 0 by our assumption on n. Then Φv = cxµv.

If µ 6= 0 replace v by x−µ/(q−1)v. �

Contrary to Theorem 14 we do not have at our disposal a more re�ned structure
theorem describing the o�-diagonal entries in the resulting upper triangular matrix
associated with Φ. One can not expect to have all the entries in C, because a general
q-Mahler module need not descend to C. However, the theorem we have just proved
su�ces to obtain the Mahler analogue of Theorem 17.

2.2.4. The structure theorem for a (p, q)-Mahler module over k̃. We now consider
a pair of operators σ and τ as above

σf(x) = f(xp), τf(x) = f(xq)

for multiplicatively independent p, q ∈ N. Let Γ = 〈σ, τ〉 ⊂ Aut(k̃). A Γ-di�erence

module over k̃ will be called a (formal) (p, q)-Mahler module.

Theorem 22. Every (p, q)-Mahler module over k̃ admits a unique C-structure.

Proof. In terms of matrices, we have to show that any two matrices A = Aτ and

B = Aσ in GLr(k̃) satisfying the consistency condition

σ(A)B = τ(B)A

are gauge-equivalent to a pair of commuting constant matrices, unique up to con-
jugation.

The uniqueness is easy. Suppose (A,B) is a commuting pair of constant matrices

and C ∈ GLr(k̃) is such that

(A′, B′) = (τ(C)−1AC, σ(C)−1BC)
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are also constant. Replacing x by some xs we may assume that the entries of C are
all in k. Then

C = A−1τ(C)A′ = A−2τ2(C)A′2 = · · ·
so C ∈ GLr(C), because its Laurent expansion is supported in degrees divisible by
qn for every n.

We next remark that if (A,B) is a consistent pair in GLr(k̃) with A ∈ GLr(C)
then B ∈ GLr(C) as well. Indeed, if A is constant the consistency equation takes
the form

AB = τ(B)A.

Under a change of variable we may assume that the entries of B are all in k. As
above, this yields

B = A−1τ(B)A = A−2τ2(B)A2 = · · ·
so B ∈ GLr(C).

Let M be a (p, q)-Mahler module over k̃. Theorem 21 guarantees that for some
c ∈ C× the space

W = {v ∈M |Φτv = cv}
is non-zero. It is easily seen that vectors in W which are linearly independent over

C are also linearly independent over k̃. Indeed, if
∑m
i=1 aivi = 0 is a shortest linear

dependence over k̃ between some C-independent vectors in W , with a1 = 1, apply
Φτ to get (after dividing by c)

∑m
i=1 τ(ai)vi = 0. This shows that all τ(ai) = ai,

hence ai ∈ C, or else we get by subtraction a shorter linear dependence. But
this contradicts the linear independence of the vi over C. It follows that W is �nite
dimensional over C. It is evidently preserved by Φσ. Thus we may �nd an eigenvector

e ∈W for Φσ, namely Φσ(e) = de, for d ∈ C×. This means that k̃e = M1 is a rank-1
(p, q)-Mahler submodule of M. Continuing in this way with M/M1 etc. we arrive
at a �ltration of M by (p, q)-Mahler submodules, whose graded pieces are of rank
1 and admit a C-structure.

In terms of the matrices A,B with which we started, this means that we may
assume that they are lower triangular, with diagonal entries in C×. It remains to
prove that they are gauge-equivalent to a lower triangular pair (A′, B′) with A′

constant. As mentioned above, the fact that B′ is also constant will follow suit.
Write

A =

(
A11 0
A21 A22

)
, B =

(
B11 0
B21 B22

)
with A11 ∈ C×, A21 ∈ Mr−1,1(k̃), A22 ∈ GLr−1,r−1(k̃), and similarly for B. The
consistency equation for A and B implies the same equation for A22 and B22. Hence
by induction we may assume that A22 and B22 are constant lower triangular. It
remains to descend the constants in A21.

The consistency equation now takes the form

(2.4) A21(xp)B11 +A22B21(x) = B21(xq)A11 +B22A21(x).

After a change of variable we may assume that all the exponents appearing in
the equations are integers. We will show that if A21(x) or B21(x) have a pole at
0, replacing the pair (A,B) by an equivalent pair, without a�ecting the diagonal
blocks, we can reduce the order of the pole, until we get rid of the polar parts
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altogether. To simplify the argument we shall assume that (p, q) = 1. We shall
explain how to get rid of this assumption at the end of the proof.

Let Mx−m be the lowest term in A21(x) and Nx−n the lowest term in B21(x)
where M,N ∈ Mr−1,1(C). Assume that there is a pole, i.e. n,m ≥ 1 (otherwise
there is nothing to prove). Then looking at the lowest order terms in (2.4) gives
qn = pm and MB11 = NA11. By our assumption that (p, q) = 1, m/q = n/p is an
integer. Let

C(x) =

(
I 0

−MA−1
11 x

−m/q I

)
.

Then the pair (Ã, B̃) = (τ(C)AC−1, σ(C)BC−1) has the same shape of (A,B) with

Ã21(x) = −Mx−m +A21(x) +A22MA−1
11 x

−m/q,

B̃21(x) = −Nx−n +B21(x) +B22NB
−1
11 x

−n/p.

The order of the poles of Ã and B̃ is smaller than their order in A and B. Continuing
inductively we can eliminate the polar parts altogether.

We may therefore assume that the pair (A,B) has no poles. To conclude we
need to solve the equation

Ã21(x) = A21(x) + C21(xq)A11 −A22C21(x),

for C21(x) so that Ã21(x) is constant. Taking the left hand side to be A21(0), we
can �nd C21 ∈Mr−1,1(xC[[x]]) solving succesively for the coe�cients of xn, n ≥ 1.
This concludes the proof under the assumption that (p, q) = 1.

If (p, q) = ` > 1 the Laurent expansions of Ã21 and B̃21 which were constructed
in the �rst step might have a term with fractional degree, with denominator dividing
` (the denominator in m/q = n/p). Ignore this issue and continue inductively as
before, each time removing the terms of lowest degrees. As long as we have not

reached the terms of degree −m/q in Ã21, the lowest terms in it will have integral
degree −m < −m′ < −m/q, and we will be able to remove these lowest terms
by a gauge transformation as above, introducing a term with fractional degree
with denominator at worst `, in degree −m/q < −m′/q. Symmetrically, we may

remove all the polar part of B̃21 up to degree −n/p, introducing at worst ` in the
denominators of the exponents of x. Once we reach the �rst fractional degree, we
substitute ξ` for x, getting new power series with integral degrees in ξ (i.e. matrix
entries in C((ξ))) satisfying (2.4)). If p = `p′ and q = `q′ then the lowest degree in
the new A21(ξ) will be −m/q′ and the lowest degree in the new B21 will be −n/p′.
As at least one of p′, q′ is > 1, we can continue by induction until we remove all
the polar part as before. �

Remark 23. A careful analysis of the proof of the theorem shows that the role of
the second Mahler operator Φσ in it was minor. It was only used to guarantee
that the process of reducing the matrix C to a constant matrix by means of gauge
equivalence transformations terminates after �nitely many steps. If we replace the
�eld of Puiseux series by the �eld of Hahn series we can get rid of the polar parts of
the entries in C in countably many steps that yield a convergent Hahn series (with
matrix coe�cients). Once the polar parts have been eliminated, the rest of the proof
is the same. Thus the above proof can be modi�ed to prove the main theorem
(Theorem 2) of [Roq], that any q-Mahler module over the �eld of Hahn series
descends to C. Moreover, if the original module was de�ned over C((x)) then the
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matrix C needed to descend its structure to C (i.e. to make C(xq)−1A(x)C(x) = A0

constant) would have entries in Hahn series whose supports are well-ordered subsets
of Z[1/q]. In essence, this is the approach taken by Julien Roques.

This remark should be contrasted with Theorem 17. In the case 2Q the second
(p-di�erence) operator was used in a more substantial way, to guarantee that the
slopes of the �rst (q-di�erence) operator were all 0, and vice versa.

3. The structure of rational Γ-difference modules

In this part we follow the method of [Sch-Si1, Sch-Si2].

3.1. (p, q)-Mahler modules. In this section we prove Theorem 7 in the case 2M.
Recall that

K̃ =

∞⋃
s=1

C(x1/s), k̃ =

∞⋃
s=1

C((x1/s)),

and the two Mahler operators are

σ(x1/s) = xp/s, τ(x1/s) = xq/s

where p and q are multiplicatively independent natural numbers.

Let Γ = 〈σ, τ〉 ⊂ Aut(K̃) (or Aut(k̃)). Then Γ is free abelian of rank 2. Let M

be a rank r Γ-di�erence module over K̃ (called also a (p, q)-Mahler module). Fix
a basis of M and let A = Aσ and B = Aτ be the matrices attached to Φσ and Φτ
in this basis as in �1.2. Changing variables, and writing x for x1/s if necessary, we
may assume that A,B ∈ GLr(K), where K = C(x).

Let i = 0, 1 or ∞. Let t0 = x, t1 = x − 1 and t∞ = 1/x be local parameters at
the corresponding point. At the point 1 we shall also use z = log(x) = log(1 + t1)
as a formal parameter. Let ki = C((ti)) be the completion of K = C(x) at the
point i. By base-change we may regard Mk̃i

for i = 0,∞ as formal (p, q)-Mahler

modules over k̃i, and Mk1 as a formal (p, q)-di�erence module over k1. In the latter
case we use the variable z, in terms of which σ(z) = pz and τ(z) = qz.

• Step I. After writing x for x1/s if necessary, there exist matrices Ci ∈
GLr(ki) (i = 0, 1,∞) such that{

σ(Ci)
−1ACi = Ai

τ(Ci)
−1BCi = Bi

are constant matrices.

By Theorems 17 and 21 there exist such matrices over k̃0, k̃∞ and k1. After a change
of variable, substituting x for x1/s, we may assume that C0 and C∞ have entries
in k0 and k∞. Such a move leaves the �eld k1 unchanged.

• Step II.We may assume that Ci ∈ GLr(Oi) whereOi is the ring of integers
of ki, and

Ci ≡ I mod ti

A global gauge transformation replaces (A,B) by (σ(C)−1AC, τ(C)−1BC) and Ci
by C−1Ci for some C ∈ GLr(K). The constant matrices (Ai, Bi) are unchanged.
By weak approximation in the �eld K, we may �nd a C ∈ GLr(K) such that C−1Ci
are, simultaneously, as close as we wish to I ∈ GLr(ki), and in particular are in the
open set GLr(Oi), and congruent to I modulo the maximal ideal.
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Observe that once Ci ∈ GLr(Oi), then also A ∈ GLr(Oi). Since A is mero-
morphic, it is holomorphic at the point i. The same applies to the matrix B.
Furthermore, the assumption Ci ≡ I mod ti implies A ≡ Ai mod ti, B ≡ Bi
mod ti.

• Step III. Each Ci is holomorphic at some neighborhood of the point i =
0, 1,∞.

To prove this we use estimates on the coe�cients in the formal Taylor exapnsion.
For example, at i = 0, write

C0(x) = M0 +M1x+M2x
2 + · · · , A(x) = A0 +N1x+N2x

2 + · · ·

(M0 = I). From A(x)C0(x) = C0(xp)A0 we get the recursion formula

A0Mn +

n∑
i=1

NiMn−i = Mn/pA0

where Mn/p = 0 if p does not divide n. Let ||.|| be any norm on the space of r × r
complex matrices (they are all equivalent). The analyticity of A(x) at 0 implies
that there exists a c1 > 0 such that ||Ni|| < ci1. It follows easily from this and from
the recursion formula that ||Mi|| < ci2 for some c2 > 0, hence that C0(x) converges
absolutely in |x| < c−1

2 . The point i =∞ is treated similarly.
At i = 1, using expansions in the local parameter z = log(x), we have

C1(x) = C1(ez) = C̃1(z) = M0 +M1z+M2z
2 + · · · , A(ez) = A1 +N1z+N2z

2 + · · ·

(M0 = I). From A(ez)C̃1(z) = C̃1(pz)A1 we now get the recursion formula

Mnp
n −A1MnA

−1
1 =

n∑
i=1

NiMn−iA
−1
1 .

Since for n >> 0

0.9pn||Mn|| ≤ ||Mnp
n −A1MnA

−1
1 || ≤ 1.1pn||Mn||,

we may conclude the proof of step III as before.

• Step IV. The matrix C0(x) admits meromorphic continuation to 0 ≤ |x| <
1, and the matrix C∞(x) admits meromorphic continuation to 1 < |x| ≤ ∞.

The functional equation C0(x) = A(x)−1C0(xp)A0 shows that if C0(x) has mero-
morphic continuation to the disk D(0, r) for some r < 1, then it has such a mero-
morphic continuation to D(0, r1/p). Since for r small enough C0(x) is in fact holo-
morphic in D(0, r), the claim follows. The same argument holds at ∞.

• Step V. The matrix C0(x) admits meromorphic continuation to 0 ≤ |x| <
∞. Similarly C∞(x) admits meromorphic continuation to 0 < |x| ≤ ∞.

Crossing the natural boundary at |x| = 1 is subtle. This is where the expansion
around i = 1 comes to our rescue. Recall that C1(x) is a-priori de�ned and analytic
only in |x−1| < ε for some 0 < ε. Trying to use one of the two functional equations{

A1 = C1(xp)−1A(x)C1(x)

B1 = C1(xq)−1B(x)C1(x)

to meromorphically continue it to 0 < |x| < ∞ as we did with C0 or C∞ leads
to issues of monodromy. The key idea, due to [Sch-Si1, Sch-Si2], is to use both



ON THE STRUCTURE OF CERTAIN Γ-DIFFERENCE MODULES 20

functional equations to overcome the monodromy. The arguments below constitute
a slight variation on the original arguments.

Write x = ez and de�ne, for i = 0, 1,

C̃i(z) = Ci(e
z).

By the previous step, C̃0(z) is meromorphic in {Re(z) < 0} and is 2πi-periodic

there, while C̃1(z) is a-priori de�ned and analytic only in a neighborhood of z = 0.
The functional equation

A1 = C̃1(pz)−1A(ez)C̃1(z)

gives a meromorphic continuation of C̃1(z) to all z ∈ C.
Let

C̃01(z) = C̃0(z)−1C̃1(z) (Re(z) < 0).

Then {
C̃01(pz) = A0C̃01(z)A−1

1

C̃01(qz) = B0C̃01(z)B−1
1 .

Lemma 24. There exist π/2 < α < β < 3π/2 such that C̃01(z) is analytic in the
sector {α < Arg(z) < β}.

Proof. Since the poles of C̃01(z) have no accumulation point in {Re(z) < 0}, there
are no poles in

S = {z| p−1 ≤ |z| ≤ p, α < Arg(z) < β},
for suitable π/2 < α < β < 3π/2. The relation C̃01(pz) = A0C̃01(z)A−1

1 now yields
the lemma. �

Lemma 25. C̃0(z) has a meromorphic continuation to all z ∈ C and is 2πi-
periodic.

Proof. Assume that we prove

• C̃01(z) has an analytic continuation to C \ [0,∞).

Then C̃0(z) = C̃1(z)C̃01(z)−1 also admits a meromorphic continuation to C\[0,∞).

In {Re(z) < 0}, C̃0(z) was 2πi-periodic. It is therefore 2πi-periodic in the upper
half plane, so extends by periodicity to the whole complex plane, and the lemma is
veri�ed.

To prove that C̃01(z) has an analytic continuation to C \ [0,∞) consider

D(w) = C̃01(ew),

a-priori analytic in the strip {α < Im(w) < β}. It satis�es there{
D(w + log(p)) = A0D(w)A−1

1

D(w + log(q)) = B0D(w)B−1
1

.

Recall that A0 and B0 commute, and so do A1 and B1. Let L0 and L1 be matrices
commuting with B0 and B1 respectively, such that

A0 = eL0 , A1 = eL1 .

Then
E(w) = e−L0w/ log pD(w)eL1w/ log p

satis�es
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{
E(w + log(p)) = E(w)

E(w + log(q)) = F0E(w)F−1
1

,

with

Fi = Bie
−Li log q/ log p.

The �rst equation implies that in the strip {α < Im(w) < β} we have a Fourier
expansion

E(w) =
∑
n∈Z

Ene
2πinw/ log p

with constant matrices En. The second equation then implies

Ene
2πin log q/ log p = F0EnF

−1
1 .

As the linear transformationM 7→ F0MF−1
1 on the space of r×r matrices can have

only �nitely many eigenvalues, and as the numbers e2πin log q/ log p are all distinct
(thanks to the multiplicative independence of p and q), we deduce that En = 0 for
all but �nitely many n. This shows that E(w), and with it D(w), are entire.

Going back to the de�nition of D(w) we conclude that C̃01(z) = D(log(z)), a-
priori only analytic in the sector α < Arg(z) < β, has an analytic continuation to
C \ [0,∞). Here log(z) denotes the principal branch of log on the complement of
[0,∞). This concludes the proof of the lemma. �

The Lemma clearly implies that C0(x) may be meromorphically continued all
the way to the north pole. The matrix C∞(x) is treated in the same way. The
proof of Theorem 7 is concluded with the following (last) step.

• Step VI. The matrix C0(x) ∈ GLr(K).

Consider C0∞(x) = C0(x)−1C∞(x). This matrix is meromorphic in 0 < |x| < ∞
and satis�es

C0∞(xp) = A0C0∞(x)A−1
∞ .

In any annulus V (r1, r2) = {r1 < |x| < r2} where C0∞(x) is analytic, it has a power
series expansion

C0∞(x) =
∑
n∈Z

Mnx
n.

The functional equation relates the expansions on V (r1, r2) and V (rp1 , r
p
2), where

C0∞(x) is also analytic, and shows that Mn = 0 unless p|n. Iterating, we see that
Mn = 0 unless pk|n for k = 1, 2, . . . . It follows that the only non-zero coe�cient
is M0 and C0∞ is constant. Since C∞(x) is meromorphic (in fact analytic) at ∞,
C0(x) is meromorphic everywhere on P1(C), hence is a matrix of rational functions.

3.2. (p, q)-di�erence modules. In this section we prove Theorem 7 in the case
2Q. Recall that K = C(x) and the two di�erence operators are

σ(x) = px, τ(x) = qx,

where p and q are multiplicatively independent non-zero complex numbers. We
make the following assumption:

• (Hyp) At least one of p or q is of absolute value 6= 1.
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Without loss of generality (replacing σ by σ−1 or by τ±1, and afterwards replacing
τ by τ−1, if necessary), we may assume that |p| > 1 and |q| ≥ 1. At the end of the
proof we shall explain how to eliminate (Hyp).

Let Γ = 〈σ, τ〉 ⊂ Aut(K). Then Γ is free abelian of rank 2. Let M be a rank
r Γ-di�erence module over K (called also a (p, q)-di�erence module). Fix a basis
of M and let A = Aσ and B = Aτ be the matrices attached to Φσ and Φτ in this
basis as in �1.2.

For i = 0 or ∞ let t0 = x and t∞ = 1/x be local parameters at the point i. Let
ki = C((ti)) be the completion of K = C(x) at the point i. By base-change we may
regard Mki for i = 0,∞ as formal (p, q)-di�rence modules over ki. The proofs of
the �rst three steps below are exactly the same as in the case 2M, so we omit them.

• Step I. There exist matrices Ci ∈ GLr(ki) (i = 0,∞) such that{
σ(Ci)

−1ACi = Ai

τ(Ci)
−1BCi = Bi

are constant matrices.
• Step II.We may assume that Ci ∈ GLr(Oi) whereOi is the ring of integers
of ki, and

Ci ≡ I mod ti.

• Step III. Ci is holomorphic at some neighborhood of the point i = 0,∞.
• Step IV. The matrix C0(x) admits meromorphic continuation to 0 ≤ |x| <
∞, and the matrix C∞(x) admits meromorphic continuation to 0 < |x| ≤
∞.

As before, we use the functional equation C0(px) = A(x)C0(x)A−1
0 to meromorphi-

cally continue C0(x) from D(0, r) to D(0, pr). Here the assumption |p| > 1 is used.
A similar argument works for C∞(x).

• Step V. The matrix C0(x) ∈ GLr(K).

Consider the functional equations{
C0(px) = A(x)C0(x)A−1

0

C0(qx) = B(x)C0(x)B−1
0

.

Let R be large enough so that A(x) and B(x) and their inverses have no poles in
U = {R < |x| < ∞}. Let S be the set of poles of C0(x) in U . The functional
equations imply that if x and px, or x and qx, are both in U, then they are either
both in S or both not in S. As p and q are multiplicatively independent, we see
that if S is not empty then for a suitable R′ the compact subset Z = {R′ ≤ |x| ≤
p2R′} ⊂ U contains in�nitely many distinct points of the form p−aqbx0 for some
x0 ∈ S and a, b ≥ 0. Indeed, if |q| = 1 we may take the points qbx0 where R′ is
chosen so that Z ∩ S is non-empty, and x0 ∈ Z ∩ S. If |q| > 1 we take qbx0 (b ≥ 0)
and then �nd for each b an a such that p−aqbx0 ∈ Z. This implies however that
Z contains in�nitely many points in S. It follows that S is empty, and C0(x) is
analytic in U.

Consider, as in the case 2M, the function C0∞(x) = C0(x)−1C∞(x). By choosing
R large enough we see that C0∞(x) is analytic in U, so admits there a power series
expansion

C0∞(x) =
∑
n∈Z

Mnx
n.
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Furthermore, it satis�es in U the functional equation

C0∞(px) = A0C0∞(x)A−1
∞ ,

implying pnMn = A0MnA
−1
∞ . As the linear transformation M 7→ A0MA−1

∞ can
have only �nitely many eigenvalues, Mn = 0 for all but �nitely many values of
n. It follows that C0∞(x), and with it C0(x), is meromorphic at ∞. Thus the
entries of C0(x) are everywhere meromorphic on P1(C), so belong to K = C(x).
This concludes the proof of the last step, and with it of the main theorem, under
the assumption (Hyp).

• Step VI. Elimination of the assumption (Hyp).

As we have seen in Remark (iv) following Theorem 7, while the proof of Step IV
above used the dynamics of z 7→ pz (namely the fact that by iterating this map an
arbitrarily small open neighborhood of 0 eventually covered the whole of C), the
statement of the Main Theorem is purely algebraic. Thus (Hyp) can be weakened
to assume that under some abstract automorphism ι of C one of ι(p) or ι(q) does
not lie on the unit circle. There are still algebraic numbers for which this can not
be achieved. For example, if E is a CM �eld and p = P/P , q = Q/Q for some
P,Q ∈ E (it is an easy exercise that we can make such p and q multiplicatively
independent).

However, let ` be an auxiliary rational prime, let C` be the completion of an
algebraic closure of Q`, and consider an abstract algebraic isomorphism

ι : C ' C`.

Such a ι exists because both �elds have the same transcendence cardinality and are
algebraically closed. Now, the entire proof given above works, mutatis mutandis,
over C` instead of C, provided (Hyp) is replaced by (Hyp`): At least one of ι(p) or
ι(q) is of absolute value 6= 1. One should understand �analytic� or �meromorphic� in
the rigid analytic sense. Note that the only step where Calculus was used was Step
III, and this step becomes even easier over C` thanks to the ultrametric inequality.

It follows that the only case not covered by the above proof is when p, and
similarly q, maps to the unit circle under any �eld isomorphism ι : C ' C` for
any prime `, including ∞. It is well-known that this happens if and only if p and
q are both roots of unity, a case ruled out by the assumption on multiplicative
independence.

4. p-Mahler q-difference modules

In this part we illustrate the same approach used in cases 2M and 2Q in a third
example, where the group Γ is generated by one q-di�erence operator and one
Mahler operator, and turns out to be generalized dihedral. We therefore call this
Case 1M1Q.

4.1. Formal p-Mahler q-di�erence modules.

4.1.1. The group Γ. Let K̃ be as before, let p ≥ 2 be a natural number and q ∈ C×
a complex number which is not a root of unity. No assumption of independence is
made on p and q. Fix a compatible sequence of roots q1/s as before.

Let Γ = 〈σ, τ〉 ⊂ Aut(K̃) where

σ(x1/s) = xp/s, τ(x1/s) = q1/sx1/s.
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The easily veri�ed relation
σ−1 ◦ τ ◦ σ = τp

yields

Γ ' Z n Z[
1

p
]

where (−n, 0)(0, a)(n, 0) = (0, pna). Here σ 7→ (1, 0) and τ 7→ (0, 1). Thus Γ is
generalized dihedral rather than abelian.

Lemma 26. Every element of Γ is of the form σaτ bσc for a, b, c ∈ Z.

Proof. Every element of Γ is of the form σiτ j/p
n

for some i, j, n ∈ Z. But
σiτ j/p

n

= σi+nτ jσ−n.

�

4.1.2. p-Mahler q-di�erence modules. We shall call a Γ-di�erence module over K̃

(or k̃) a p-Mahler q-di�erence module. Let f ∈ k̃, and assume that the K̃ 〈Γ〉-
submodule of k̃ generated by f is �nite dimensional over K̃. Then this module is a

p-Mahler q-di�erence module over K̃, and arguments similar to those of Proposition
8 may be applied.

We label this new case by 1M1Q. Unlike cases 2M and 2Q, for M = K̃ 〈Γ〉 f
to be �nite dimensional over K̃, the (necessary) condition that f satis�es both a
σ-Mahler equation and a τ -di�erence equation is not su�cient. This is beacuse Γ
is not abelian anymore.

The best we can say with regard to equations is that since every element of Γ
is of the form σaτ bσc for a, b, c ∈ Z, a �nite number of equations will su�ce to
guarantee dimK̃M < ∞. One will need, for example, a σ-Mahler equation for f ,
say of degree n, then for each 0 ≤ c ≤ n− 1 a τ -di�erence equation for σcf, and if
m, say, is the maximum of the degrees of these equations, for each 0 ≤ c ≤ n−1 and
0 ≤ b ≤ m − 1 a σ-Mahler equation for the power series τ bσcf. This collection of
equations will guarantee that the elements σaτ bσcf, for a, b, c in a bounded range,

will span M over K̃.
The discussion above makes it clear that for our generalized dihedral Γ, the natu-

ral condition for a result in the style of Theorems 1 and 2 is the �nite dimensionality

of M = K̃ 〈Γ〉 f . Its formulation in terms of equations can be cumbersome.

4.1.3. Formal p-Mahler q-di�erence modules.

Theorem 27. Let M be a p-Mahler q-di�erence module over k̃. Then M has a
unique C-structure M0 preserved by both Φσ and Φτ , such that Φτ acts potentially
unipotently on M0.

Proof. Suppose λ ∈ Q is a slope of M , considered as a q-di�erence module. Then
there exists a c ∈ C×, uniquely determined up to multiplication by qα, α ∈ Q,
and a 0 6= v ∈ M , such that Φτv = cxλv. Since Φpτv = cpq(

p
2)λxpλv, the equation

Φτ ◦ Φσ = Φσ ◦ Φpτ yields

Φτ (Φσv) = cpq(
p
2)λxp

2λ · Φσv.
It follows that p2λ is also a slope of M as a q-di�erence module. We can repeat
this argument, and since the number of slopes is �nite, λ = 0. This means that M

descends to C, i.e. M = k̃⊗CM0, as a q-di�erence module. Furthermore, if c is an
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eigenvalue of Φτ on M, the above computation shows that so is cp. Since there are
only �nitely many eigenvalues modulo qQ it follows that for some m > n ≥ 1 and
α ∈ Q we must have

cp
m

= cp
n

qα.

This means that c = ζqµ for some rational number µ, and a root of unity ζ. Let
M0(c) be the direct summand of M0 with generalized Φτ -eigenvalue c. Replacing
it by its �resonant� x−µM0(c), we may assume that c = ζ. Going over all the
eigenvalues of Φτ on M0 in this way, we may assume that they have all been
replaced by roots of unity, so some power Φmτ acts unipotently on M0. This pins
down M0, namely

M0 = {v ∈M | ∃n (Φmτ − 1)nv = 0} .
Substituting ζ for c in the computation above we see that Φσ preservesM0[Φmτ −1],
hence by dévissage preserves also M0. This concludes the proof of the theorem. �

4.2. Rational p-Mahler q-di�erence modules. The analogue of Theorem 7 in
case 1M1Q is the following.

Theorem 28. Let M be a p-Mahler q-di�erence module over K̃. Then M has a
unique C-structure M0 preserved by both Φσ and Φτ , such that Φτ acts potentially
unipotently on M0.

Proof. As in cases 2Q and 2M, choose a basis of M over K̃ and let A = Aσ and
B = Aτ represent Φσ and Φτ in this basis. Our goal is to show that the pair (A,B)
is gauge-equivalent to a pair of constant matrices (A0, B0), and moreover that all
the eigenvalues of B0 are roots of unity.

Without loss of generality we may assume that |q| > 1. The reduction to this case
is done precisely as in case 2Q; see step VI in �3.2, elimination of the assumption
(Hyp).

We consider the points i = 0,∞ and proceed as in case 2Q. Invoking theorem
27 and repeating the arguments in steps I-IV there we get:
Steps I-IV: After a change of variables, writing x for x1/s for a suitable s, there

exists an invertible matrix C0(x), meromorphic in 0 ≤ |x| <∞ and holomorphic at
0, and constant matrices A0, B0, such that the following equations hold{

C0(xp)−1A(x)C0(x) = A0

C0(qx)−1B(x)C0(x) = B0

.

Furthermore, all the eigenvalues of B0 are roots of unity.
Likewise, there exists an invertible matrix C∞(x), meromorphic in 0 < |x| ≤ ∞

and holomorphic at ∞, and constant matrices A∞, B∞, such that{
C∞(xp)−1A(x)C∞(x) = A∞

C∞(qx)−1B(x)C∞(x) = B∞
.

Step V: The matrix C0(x) ∈ GLr(K).
Consider

C0∞(x) = C∞(x)−1C0(x),

which is meromorphic in 0 < |x| <∞. It satis�es there the functional equation

C0∞(xp)A0 = A∞C0∞(x).
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Arguing as in Step VI in case 2M, on the power-series expansions of C0∞(x) in
annuli of analyticity, we deduce that C0∞ is constant. It follows that C0(x) is
meromorphic also at ∞, hence is rational.

This concludes the proof of the theorem. �

As in Proposition 8 we can withdraw from the last theorem the following conse-
quence.

Theorem 29. Let f ∈ C((x)) and assume that f ∈ M ⊂ k̃ =
⋃
s∈N C((x1/s)),

where M is a �nite dimensional K̃-vector space closed under σ and τ . Then f ∈
C(x).

Note that the assumption on the �nite dimensionality of M replaces the (insuf-
�cient) assumption that f satis�es a p-Mahler equation and a q-di�erence equation
simultaneously. As remarked before, it is possible to encode this assumption in a
�nite number of equations, but their number will depend, in general, on the power
series f , and they will be of mixed type, iterations of both σ and τ �guring in the
same equation.

5. Finite characteristic

In this section we brie�y explain how to modify the proof of Theorem 2 and
Theorem 7 (in the case 2Q), when C is replaced by an arbitrary algebraically closed
�eld. We thus prove the following.

Theorem 30. Theorems 2 and 7 (case 2Q) remain valid as stated, when C is
replaced by an arbitrary algebraically closed �eld C.

Proof. If C has characteristic 0 one can apply the Lefschetz principle and assume
it is C. Let therefore char.(C) = ` > 0. The proof of Proposition 8, deducing
Theorem 2 from Theorem 7, did not use any property of C, besides it being a �eld.
We therefore only have to explain how to modify the proof of Theorem 7.

Theorem 17, giving the structure of a formal (p, q)-di�erence module, also did
not use any property of the �eld of constants, and works equally well if C has �nite
characteristic. This provides the starting point for the proof, and steps I-II of �3.2
hold true with C replacing C. We now use the following lemma.

Lemma 31. Let C be an algebraically closed �eld of characteristic ` and p ∈ C×
not a root of unity. Then there exists an algebraically closed complete valued �eld

(Ĉ, |.|) containing C, such that |p| > 1.

Proof. As p is transcendental over F` we can complete it to a transcendental basis
{zα} of C over F`, with z0 = p. Let F be the �eld generated over F` by the zα
for α 6= 0, and consider F (z0) with a valuation which is trivial on F and satis�es

|z0| > 1. Let Ĉ be an algebraically closed complete extension of F (z0) to which |.|
extends. Since C is algebraic over F (z0), it embeds in Ĉ. �

We continue as in �3.2, reserving the terms �holomorphic� and �meromorphic�

to mean �rigid holomorphic (resp. meromorphic) over Ĉ�. Steps III-V, concluding
the proof, are carried out now in the same way as over C, taking advantage of the
fact that |p| > 1. Compare with the use of C` to eliminate assumption (hyp) in
characteristic 0, in loc.cit., Step VI. �
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Remark 32. The extension of cases 2M and 1M1Q to �nite characteristic demands
special attention, for the following reason. The substitution z = log(x), which
allowed us to delegate the formal study of a rational Mahler module at the �xed
point x = 1 to the realm of q-di�erence modules, is no longer valid in �nite char-
acteristic. In fact, the formal multiplicative group is not isomorphic to the formal
additive group, and therefore the results of �2 have to be recast in a new setup.
Notwithstanding this remark, we believe that the main theorems in case 2M remain
valid in �nite characteristic `, at least if (`, pq) = 1.
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