
ELLIPTIC CURVES AND MODULAR FORMS

EHUD DE SHALIT

1. Complex Elliptic functions

See scanned notes on my home page.

2. The Abel-Jacobi theorem

See scanned notes on my home page.

3. Elliptic Theta functions and periods

3.1. The Weierstrass σ function. The function

(3.1) ζ(z) =
1
z

+
′∑

ω∈Λ

(
1

z − ω
+

1
ω

+
z

ω2

)

(check that the series converges) is the unique odd primitive of −℘(z) (the minus
sign is there only for historical reasons; every other primitive will differ by a constant
and will not be odd). It is not Λ-periodic anymore, but for every ω ∈ Λ

(3.2) −
∫ z0+ω

z0

℘(z)dz = ζ(z0 + ω)− ζ(z0) = η(ω)

is independent of z0, because of the periodicity of ℘.
The function ζ(z) has simple poles at Λ with residue 1. It follows that for a fixed

z0, the integral
∫ z

z0
ζ(t)dt (along any path avoiding Λ) is well-defined modulo 2πi,

so

(3.3) σ(z) = C exp
(∫ z

z0

ζ(t)dt

)

is well-defined. A change in the choice of z0 or C results in rescaling σ by a
multiplicative constant. Observe that

(3.4) ζ =
σ′

σ
.

In other words, ζ is the logarithmic derivative of σ, so the divisor of σ can be read
from the residues of ζ at its poles: σ is everywhere analytic, and has simple zeros
at the points of the lattice Λ. We normalize C so that σ′(0) = 1.

Exercise 3.1. Check that

(3.5) σ(z) = z

′∏

ω∈Λ

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
.

and that σ(z) is odd.
1
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By the definition of σ,

σ(z + ω)
σ(z)

= exp
(∫ z+ω

z

ζ(t)dt

)

= exp (η(ω)z + ξ(ω))(3.6)

for some constants ξ(ω) (to see that the integral inside the exponent is of the
prescribed shape, differentiate it).

Lemma 3.1. We have

(3.7)
σ(z + ω)

σ(z)
= ± exp (η(ω)(z + ω/2))

with the sign being + if ω/2 ∈ Λ, and −1 otherwise.

Proof. We may write

(3.8)
σ(z + ω)

σ(z)
= C(ω) exp (η(ω)(z + ω/2))

for some constant C(ω) = exp (ξ(ω)− η(ω)ω/2) . If ω /∈ 2Λ, then we may substitute
z = −ω/2 and get from the fact that σ is odd that C(ω) = −1.

Next, calculating σ(z + ω1 + ω2)/σ(z) in two ways, first in one stroke, and then
in two steps, we get the relation

(3.9) C(ω1 + ω2) = C(ω1)C(ω2) exp
(

η(ω2)ω1 − η(ω1)ω2

2

)

for any two ωi ∈ Λ. Substituting ω1 = ω2 we get C(2ω) = C(ω)2, which concludes
the determination of the sign in the lemma (why?). ¤

3.2. The Abel-Jacobi theorem revisited. Using the Weierstrass σ function we
may give an alternative proof that a divisor D =

∑
np[p] for which deg(D) =

0 and s(D) = 0 is principal. Let p̃ be a representative for p in C. Rewriting
D with repetitions, so that all the np are ±1, and selecting the representatives
appropriately, we may assume that in fact

∑
npp̃ = 0 in C, not only in C/Λ.

Consider then the function

(3.10) f(z) =
∏
p

σ(z − p̃)np

whose divisor (modulo Λ) is D. As an easy consequence of the two assumptions
on D we get that f(z + ω) = f(z) for every ω ∈ Λ, hence f is elliptic, and D is
principal.

Exercise 3.2. Prove that there does not exist an elliptic function with one simple
pole and no other poles.

3.3. Homology, cohomology and periods. In this section we assume familiarity
with basic notions from the theory of complex manifolds. In fact, we only need them
in (complex) dimension 1. See for example the book by Farkas and Kra, or any
other book on Riemann surfaces. Let ω1 and ω2 be an oriented basis for Λ. The
straight paths from z0 to z0 + ωi, for a fixed z0, project in C/Λ to closed paths γi.
The homology classes [γi] form a basis for the homology H1(C/Λ,Z), which is free
of rank 2 over Z.
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A meromorphic differential form α on C/Λ is said to be of the first kind if it is
everywhere holomorphic, and of the second kind if all its residues vanish. Exact
forms (df for f in F(Λ)) are of the second kind, and so are of course the forms of
the first kind, but there are no exact forms of the first kind (except 0). The de
Rham cohomology of C/Λ is by definition the quotient space

(3.11) H1
dR(C/Λ) =

{differential forms of the second kind}
{exact forms} .

The differential form ω = dz = d℘/℘′ is of the first kind, and η = ℘dz = ℘d℘/℘′ is
of the second kind. Their classes in H1

dR are linearly independent: if aω + bη = df
then since ω has no poles and η has a second order pole at the origin but no others,
f must have only one simple pole. However, it is a consequence of the Abel-Jacobi
theorem that there are no such f ′s (see the exercise above).

Let α be a differential form of the second kind. We denote the class of α in H1
dR

by [α]. If γ and γ′ are homotopic closed paths on C/Λ,

(3.12)
∫

γ

α =
∫

γ′
α.

In fact, as long as the homotopy does not pass through a pole of α, this is obvious.
When the homotopy passes through such a pole p, the integral picks up ±2πiRespα,
but since by definition all the residues of α vanish, it is unchanged. It follows that
integration of α defines a linear functional∫

.

α : H1(C/Λ,Z) → C.

The integral
∫

γ
α is called the period of α along the closed path γ (or along the

homology class [γ]). If α is exact, all its periods vanish. Conversely, if the periods
of α along γ1 and γ2 vanish, f(z) =

∫ z

z0
α depends only on pΛ(z) ∈ C/Λ, is therefore

in F(Λ), and α = df is exact. This means that we have embedded H1
dR(C/Λ) in

Hom(H1(C/Λ,Z),C), which is a two dimensional space. But we have seen that
[ω] and [η] are linearly independent, so the de Rham cohomology is at least two
dimensional. Taken together we have the following.

Theorem 3.2. The first de Rham cohomology H1
dR(C/Λ) is two dimensional, and

[ω] and [η] form a basis for it. Integration identifies the de Rham cohomology as
Hom(H1(C/Λ,Z),C).

The periods of ω (resp. η) along γ1 and γ2 are just ω1 and ω2 (resp. η1 = η(ω1)
and η2 = η(ω2)). Linear independence of [ω] and [η] mean that η2ω1 − η1ω2 6= 0.
We can say more.

Proposition 3.3. We have

(3.13) η2ω1 − η1ω2 = 2πi.

Proof. Consider a point z0 such that the (positively oriented) parallelogram whose
vertices are z0, z0 + ω2, z0 + ω1 + ω2 and z0 + ω1 does not pass through any lattice
points, and contains 0 in its interior. The quantity η2ω1− η1ω2 is just

∫
∂Π

z℘(z)dz

(recall the minus sign in the equation ηi = − ∫
γi

℘(z)dz). Since the only pole of
z℘(z) in Π is at the origin, and its residue there is 1, the integral comes out to be
2πi by the residuum principle. ¤
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Exercise 3.3. What is the relation between this formula and the formula for C(ω1+
ω2)/C(ω1)C(ω2) which was obtained in the calculation of the factor of automorphy
of the σ function?

3.4. Elliptic integrals. Elliptic functions derive their name from the formula for
the arc length of the ellipse. This is a little confusing. Elliptic curves (like C/Λ),
the geometric spaces on which elliptic functions live, are curves of genus 1, while
ellipses (like all other conic sections) are the real points of curves of genus 0.

Consider the standard ellipse

(3.14)
x2

a2
+

y2

b2
= 1,

where we assume b ≤ a. The arc length from (0, b) to a point (x, y) in the first
quadrant is given (check it!) by the formula

(3.15) s(x) = a

∫ x/a

0

1− e2u2

√
(1− u2)(1− e2u2)

du

where the eccentricity

(3.16) e =

√
1− b2

a2
.

Observe that for the unit circle (a = b = 1) we get s(x) = arcsin(x). The function
s(x) is an example of an elliptic integral. In general, an elliptic integral is an
indefinite function of the form

(3.17)
∫

R(u,
√

h(u))du

where R is any rational function and h a cubic or a polynomial of degree 4. Integrals
of this kind were studied intensively in the 18th century. As we know already from
the case of the arcsin function, such functions are best studied as functions of
a complex variable, and they are multiple-valued in general. At the beginning
of the 19th cnetury, Abel and Jacobi discovered that their inverse functions are
single valued, admit meromorphic continuation to the whole complex plane, and
are doubly-periodic. These functions became known as elliptic functions. For the
classical theory of elliptic integrals see the book by Whittaker and Watson.

4. Elliptic curves as plane projective curves

4.1. The elliptic curve. Fix a lattice Λ. The map

(4.1) ξ : C/Λ → P2(C)

where ξ(z) = (℘(z) : ℘′(z) : 1) if z /∈ Λ and ξ(0) = (0 : 1 : 0) = O is well-defined.
Its image is contained in the complex projective curve

(4.2) E(C) =
{
(x : y : z)| y2z = 4x3 − g2xz2 − g3z

3
}

where g2 = g2(Λ) and g3 = g3(Λ). Notice that the equation defining E(C) is
homogenous, so E(C) is well-defined, that in the affine piece

(4.3) A2 = {(x : y : z)| z 6= 0} ⊂ P2

we may put z = 1 and then the homogenous equation becomes just the inhomoge-
nous Weierstrass equation in the two variables x and y, and that the only point of
E(C) where z = 0 (the only point “at infinity”) is O.
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The map ξ is continuous, since when z tends to 0, ℘′ has a pole of order 3 while
℘ has only a pole of order 2, so ξ(z) approaches O.

Since the cubic h(x) = 4x3 − g2x− g3 is separable, the affine curve given by the
equation

(4.4) F (x, y) = y2 − 4x3 + g2x + g3 = 0

is non-singular: if F (x0, y0) = 0, then either ∂F/∂x or ∂F/∂y 6= 0 at (x0, y0). In fact
if x0 is not a root of h, y0 6= 0 so ∂F/∂y 6= 0 and by the implicit function theorem
x is a local coordinate on E near x0. If x0 is a root of h then ∂F/∂x = −h′(x) 6= 0
there by the separability of h.

Near O, change coordinates to u = x/y and v = z/y. The curve E is then given
in the affine piece y 6= 0 by the equation

(4.5) v = 4u3 − g2uv2 − g3v
3

and we see that the point O is also non-singular. Thus E(C) is everywhere non-
singular: it is a compact Riemann surface. So is C/Λ, and the map ξ is analytic,
so it is open. (Exercise: check that it is analytic near O by writing the formulas for
u and v). Since C/Λ is compact, the image of ξ must be both closed and open, so
it is the whole of E(C).

Theorem 4.1. The map ξ gives an isomorphism of Riemann surfaces between C/Λ
and E(C).

Proof. We have seen that it is onto. One checks directly that it is a local isomor-
phism (i.e. that the derivative, when expressed in terms of some local parameter,
is non-zero). Finally, let us see that it is one-to one. We have already seen that
O is only obtained once, as ξ(0). Suppose ξ(z1) = ξ(z2) and z1, z2 ∈ C\Λ. Since
℘(z1) = ℘(z2) we get that z1 = ±z2mod Λ. Since ℘′(z1) = ℘′(z2) = −℘′(−z2) we
get that if z1 = −z2modΛ then z1 is a zero of ℘′. But we have seen that in such a
case z1 is a half-period, so again z1 = z2modΛ. ¤

4.2. The addition law on the cubic. We now have two representations of our
Riemann surface, as C/Λ, and as the complex points of a smooth projective curve
given by the homogeneous Weierstrass equation, and the map ξ is an explicit iso-
morphism between them.

While the representation as a smooth projective curve is useful from an algebraic
point of view, it is not clear a priori how the group structure is reflected on E(C).
The only obvious thing is that the neutral element is the point O = ξ(0).

Theorem 4.2. Endow E(C) with the group structure coming from C/Λ through
the isomorphism ξ. Then three point P, Q and R on E(C) are colinear if and only
if

(4.6) P + Q + R = 0.

Proof. Suppose that none of the points is O, and that they are colinear. Let l(x, y, z)
be a linear form defining the line on which they lie. The function

(4.7) f(z) =
l

z
◦ ξ

is clearly meromorphic and Λ-periodic, so it is an elliptic function. If P = ξ(z1),
Q = ξ(z2) and R = ξ(z3) then f, which is a linear combination of 1, ℘ and ℘′, must
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have a divisor

(4.8) div(f) = [z1] + [z2] + [z3]− 3[0].

The Abel-Jacobi theorem then says that z1 + z2 + z3 = 0modΛ, so P + Q + R = 0.
Notice that if two of the points, say P and Q, coincide, then l should be a tangent
to E there, and if all three coincide, then l should be a tangent which agrees with
the curve to order 3 (the point is then called a flex ).

Conversely, suppose P, Q and R are as above and their sum is 0. Then the Abel-
Jacobi theorem produces for us a function f ∈ F(Λ) whose divisor is as above.
Exercise: prove that

(4.9) f = a℘ + b℘′ + c

(hint: kill the pole at 0 by subtracting a suitable linear combination of ℘ and ℘′,
and use the fact that there is no elliptic function with only one simple pole). Let
l = ax + by + cz. Then the line defined by l = 0 passes through P , Q and R.

The case where one of the points is O is similar and is left as an exercise. ¤

Corollary 4.3. On E(C) we have

(4.10) −(x0 : y0 : z0) = (x0 : −y0 : z0).

Proof. Take R = O, P = (x0 : y0 : z0) and Q = (x0 : −y0 : z0) and observe that
they all lie on the line z0x− x0z = 0. ¤

The theorem is often called the chord-tangent construction. It means that geo-
metrically, to add two points, one draws the line through them (the tangent to the
curve if they coincide), looks for the third point of intersection with the cubic, and
then reflects it in the x axis.

Exercise 4.1. Derive the following explicit formulas: If

(4.11) P = (x1 : y1 : 1) and Q = (x2 : y2 : 1)

and P 6= ±Q, let

(4.12) λ =
y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1
.

Then P + Q = (x3 : y3 : 1) where

(4.13) x3 = −x1 − x2 +
λ2

4
, y3 = −λx3 − µ.

If P = −Q then P + Q = O and if P = Q 6= −Q then let

(4.14) λ =
12x2

1 − g2

2y1
, µ = y1 − λx1

and

(4.15) x3 = −2x1 +
λ2

4
, y3 = −λx3 − µ.

Exercise 4.2. Let P = (2, 1) ∈ E, where E is given by y2 = 4x3 − 31. Show that
2P = (140,−3313), and 3P = ( 41,401

19,044 , 4,175,605
1,314,036 ). This should give you an idea about

how complicated the points nP get when n grows.
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4.3. Field of definition and rationality questions. Let F be a subfield of C.
The elliptic curve E given by the equation

(4.16) y2z = 4x3 − g2xz2 − g3z
3

is said to be defined over F if g2 and g3 belong to F . The chord-tangent construc-
tion, and more precisely the explicit formulas defined above immediately yield the
following.

Proposition 4.4. Let E be defined over F. Then E(F ), the set of points on E with
x, y, z ∈ F, is a subgroup of E(C).

In particular, E(Q) is a subgroup of E(C) if the elliptic curve is defined over
Q. For example, for any D ∈ Q, D 6= 0, there is a group structure on the rational
solutions of the diophantine equation

(4.17) y2 = x3 −D

(together with the point at infinity O taken as the origin).
This is how elliptic curves are connected with number theory.
There are several immediate questions now.
1) Which equations y2 = h(x) define complex elliptic curves (i.e. curves whose

projective completions are smooth projective curves isomorphic, as Riemann sur-
faces, to C/Λ for some lattice Λ)? We shall see that h may be any separable cubic.

2) What is so special about the equation y2 = h(x)? Is there a way to define
elliptic curves intrinsically, without any reference to an embeding in P2 or to specific
equations, and without any reference to the uniformization by the complex plane
via the map ξ? Is it possible to give a definition that will work over any field F,
even of positive characteristic?

The answer to the second question is of course positive, but to give the proper
formulation we shall have to develop some terminology from algebraic geometry.

3) What can be said about the group E(F ) if F is a reasonably small field, e.g.
a number field (a finite extension of Q)? Here one has the celebrated Mordell-Weil
theorem, which asserts that E(F ) is a finitely generated abelian group.

In the next section we shall answer question 1, and at the same time discuss
moduli (algebraic families) of elliptic curves.

5. Moduli

5.1. Homomorphisms and isomorphisms. Suppose ϕ : C/Λ1 → C/Λ2 is an
analytic map of Riemann surfaces. Following it by a translation we may assume
that it preserves the origin. By the homotopy lifting theorem we can lift ϕ to a
map ϕ̃ : C→ C, satisfying ϕ̃(0) = 0, which is entire because ϕ is analytic. Since for
every ω ∈ Λ1, ϕ̃(z + ω) − ϕ̃(z) ∈ Λ2, differentiating we see that ϕ̃′ is Λ1-periodic,
hence constant. It follows that ϕ̃(z) = αz where αΛ1 ⊂ Λ2. We summarize.

Proposition 5.1. An analytic map of C/Λ1 to C/Λ2 carrying 0 to 0 is necessarily
a group homomorphism, and is given by zmodΛ1 7→ αzmodΛ2 for a constant α
such that αΛ1 ⊂ Λ2.

Corollary 5.2. The group Hom(C/Λ1,C/Λ2) of elliptic curve homomorphisms
(preserving both the analytic structure and the group structure, or what is the same,
the origin) is isomorphic to

(5.1) {α ∈ C| αΛ1 ⊂ Λ2}
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as an abelian group. The isomorphism takes ϕ to ϕ′(0).

Corollary 5.3. The two elliptic curves C/Λi are isomorphic if and only if the
lattices Λi are homothetic.

Corollary 5.4. The ring End(C/Λ) is isomorphic to the subring of C given by

(5.2) {α ∈ C| αΛ ⊂ Λ} .

This ring is either Z or a subring of a quadratic imaginary field. The group
Aut(C/Λ) is cyclic of order 2,4 or 6.

Proof. We may assume that Λ = Zτ + Z for τ ∈ H. If the endomorphism ring is
not Z then there exists an α such that

(5.3) α · 1 = aτ + b, α · τ = cτ + d

where a, b, c and d are integers. This means that τ solves a quadratic polynomial
over Q, hence Q(τ) is quadratic imaginary (note that τ /∈ R). Now α 7→ α · 1 ∈ Z[τ ]
embeds the endomorphism ring as a subring of Q(τ) (check that addition and com-
position go to the ring operations). The structure of the group of automorphisms
comes form the structure of the group of units in rings of the form Z[τ ] for τ qua-
dratic imaginary. This is elementary number theory, the exceptions being Z[i] and
Z[ω] where ω = exp(2πi/3). ¤

Definition 5.1. If End(C/Λ) is not Z, we say that C/Λ (or the lattice) admits
complex multiplication (CM).

Exercise 5.1. Show that conversely, if τ is quadratic imaginary, C/Λ admits CM.

5.2. Moduli of lattices. The classification of complex elliptic curves is therefore
the classification of lattices up to homothety. Every lattice is represented by a
lattice of the form Zτ +Z and if there is an α such that α(Zτ + Z) = Zτ

′ +Z then
eliminating α from the equations we get

(5.4) τ ′ =
aτ + b

cτ + d

for some matrix

(5.5)
(

a b
c d

)
∈ SL2(Z).

The converse is also true. Now the group SL2(Z) acts on the upper half plane by
the above formula (check!), so we conclude that the space of lattices is identified
with the space of orbits of SL2(Z) in this action, denoted by

(5.6) Y = SL2(Z)\h.

5.3. Y as a Riemann surface and the fundamental domain. Let Ω be the
set of all complex numbers τ = x + iy where |τ | ≥ 1, −1/2 ≤ |x| < 1/2 and if
|τ | = 1 then −1/2 ≤ x ≤ 0. Let

(5.7) R =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
.

Note that R(τ) = −1/τ is the inversion in the unit circle and T (τ) = τ + 1 is
translation by one unit.
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Theorem 5.5. (1) R and T generate SL2(Z).
(2) Ω is a fundamental domain for the action of SL2(Z) on H (every orbit of

SL2(Z) has a unique representative in Ω).

Proof. The two assertions are proved together. They sometime go under the name
reduction theory because they are equivalent to Gauss’ way of reducing a binary
quadratic form by means of a change of variables.

Let Γ′ be the subgroup of Γ = SL2(Z) generated by R and T .
(a) If τ ∈ Ω then for c, d ∈ Z, not both 0, we have |cτ + d| ≥ 1, with strict

inequality unless c = 0, d = ±1,or d = 0, c = ±1 and |τ | = 1, or τ = ω = exp(2πi/3)
and c = d = ±1 (prove these claims by direct examination). From

(5.8) Im(
aτ + b

cτ + d
) =

Im(τ)
|cτ + d|2

we get that if g =
(

a b
c d

)
∈ Γ then Im(g(τ)) < Im(τ) unless c = 0, or d = 0,

or τ = ω and c = d = ±1. It follows that no two points τ and τ ′ of Ω are in the
same Γ-orbit.

(b) On the other hand let τ ∈ H. Since for any M there are finitely many
pairs (c, d) with |cτ + d| < M, we can pick γ ∈ Γ′ with Im(γτ) maximal. We
can then follow γ by some power of T without changing Im(γτ) and assume that
−1/2 ≤ Re(γτ) < 1/2. We claim that |γτ | ≥ 1. Indeed,

(5.9) R(γτ) =
−γτ

|γτ |2
so if |γτ | < 1, Im(Rγτ) > Im(γτ), contradicting the choice of γ. Moreover, if
|γτ | = 1 and Re(γτ) > 0, then |Rγτ | = 1, Im(Rγτ) = Im(γτ), and Re(Rγτ) < 0.
This shows that γτ ∈ Ω for some γ ∈ Γ′.

The arguments in (a) and (b) clearly prove (2). They also prove (1): Let γ ∈ Γ,
and choose τ ∈ Ω different from ω and i, so that the stabilizer of τ in Γ is ±1. Then
by (b), applied to γ−1τ, there is a γ′ ∈ Γ′ such that γ′(γ−1τ) ∈ Ω. This implies
that γ′γ−1τ = τ , hence γ′γ−1 = ±1, and γ ∈ Γ′. ¤

We can now give Y = Γ\H the structure of a Riemann surface. Near every point
τ0 whose stabilizer is ±1 we use τ − τ0 as a local parameter. Near i (or points in its
Γ-orbit) we use as a local parameter a function z having a zero of order 2 at i and
satisfying z ◦R = z (prove that such a function exists; note that the isotropy group
of i in Γ̄ = Γ/± 1 is generated by R). Similarly near ω (or points in its Γ-orbit) we
use as a local parameter a function z having a zero of order 3 at ω and satisfying
z◦RT = z (note that RT is the generator of the isotropy group of ω in Γ̄). It is now
immediate that these are local homeomorphisms from neighborhoods of the points
where they are defined onto open disks, and that change of coordinates is analytic,
so we have endowed Y with a structure of a Riemann surface. Topologically, Y is
obtained by gluing Ω along the identifications supplied by R and T on its boundary.
With a little of imagination, we see that this is a once-punctured 2-sphere.

5.4. Modular forms for SL2(Z) and the j-function. We shall now construct a
certain holomorphic function j on H which induces a global isomorphism of Riemann
surfaces of Γ\H onto the affine line C.
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For a lattice Λ, the discriminant of the polynomial 4x3 − g2(Λ)x− g3(Λ) is non
zero. Up to an easily calculated constant, it is given by ∆ = ∆(Λ) :

(5.10) ∆ = g3
2 − 27g2

3 .

As usual we write ∆(τ) for ∆(Zτ +Z). Thus ∆(τ) is a nowhere vanishing holomor-
phic function in H. Let

(5.11) j =
1728g3

2

∆
.

Quite generally, a function f on the set of lattices is called a modular form of
weight k (k ∈ Z) if

(5.12) f(cΛ) = c−kf(Λ).

Taking c = −1 we see that if f is not identically 0, k must be even.

Exercise 5.2. A modular form of weight which is not divisible by 4 must vanish at
the lattice Zi+Z. A modular form of weight which is not divisible by 6 must vanish
on the lattice Zω + Z.

Exercise 5.3. The sum of two modular forms of the same weight is again a modular
form of the same weight. The product of modular forms of weights k and l is a
modular form of weight k + l.

For example, g2 is modular of weight 4, g3 is modular of weight 6, ∆ is of weight
12 and j is of weight 0.

Lemma 5.6. Put f(τ) = f(Zτ + Z) and assume that f is modular of weight k.

Then for every γ =
(

a b
c d

)
∈ Γ = SL2(Z)

f(γτ) = f(
aτ + b

cτ + d
)

= (cτ + d)kf(τ).(5.13)

We leave the easy proof as an exercise.
In particular, f(τ + 1) = f(τ), so (under the usual conditions of smoothness) f

has a Fourier expansion of the form (τ = x + iy)

(5.14) f ∼
∞∑

n=−∞
an(y) exp(2πinx).

If furthermore f is holomorphic, we have (prove!)

(5.15) f =
∞∑

n=−∞
an exp(2πinτ).

We call f holomorphic at infinity if an = 0 for n < 0 and a cusp form (or cuspidal)
if a0 = 0 as well. The space of holomorphic modular forms of weight k which are
also holomorphic at infinity (resp. cusp forms) is denoted by Mk(Γ) (resp. Sk(Γ)).
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5.5. Modular forms for other subgroups. For future reference we make the
following more general definition.

Definition 5.2. Let Γ be any subgroup of finite index in SL2(Z). A function f
on H is called a modular form of weight k on Γ if the conclusion of the lemma
is satisfied for γ ∈ Γ. It is said to be holomorphic, meromorphic, real analytic or
smooth, if f is such as a function on H.

Remark 5.1. If −1 /∈ Γ the weight may now be odd.

Remark 5.2. The definition of “holomorphic at infinity” or “cuspidal” has to be
modified as there are now more than one cusp in general in Γ\H. We shall address
this question later.

For general Γ there does not exist a modular interpretation for the space Γ\H, of
the sort we had for Γ = SL2(Z), namely as the moduli space of lattices. However,
as we shall see later, for a certain important class of Γ′s (the congruence subgroups),
such a modular interpretation exists and Γ\H classifies lattices with extra structure.

5.6. The j-line. We want to prove the following theorems.

Theorem 5.7. The function j(τ) induces an isomorphism of Riemann surfaces
between Γ\H and C.

Theorem 5.8. Let f be a holomorphic modular form of weight k (for SL2(Z))
which is meromorphic at infinity. Let ordτ (f) ≥ 0 be the order of (the zero) of f
at τ, and ord∞(f) = n if an is the lowest non-zero Fourier coefficient (thus n ≥ 0
if f is holomorphic at infinity and n > 0 if it is a cusp form). Then

(5.16)
∑

τ∈Ω, τ 6=i,ω

ordτ (f) +
1
2
ordi(f) +

1
3
ordω(f) + ord∞(f) =

k

12
.

Proof. Clearly j(τ) = j(γτ) for ever γ ∈ Γ. Applying the second theorem (with
k = 12) for ∆(τ), and noting that ∆ does not vanish in H, we see that ∆ has a
simple zero at infinity. It follows that j has a simple pole at infinity, and so does
j(τ)− j0 for any j0. Applying the second theorem (for k = 0) for j− j0, we see that
j − j0 has one simple (double if j0 = j(i) = 1728, triple if j0 = j(ω) = 0) zero, and
none else. This shows that j is one-to-one and onto, and also that j(τ)− j(τ0) is a
local parameter near τ0 for any τ0 (recall how the Riemann surface structure was
defined!).

To prove the first theorem integrate df/2πif along a path which starts at (−1/2, Y )
and goes horizontally to (1/2, Y ) (for some Y >> 0), then follows ∂Ω clockwise
except for small circular loops around zeros of f which might fall on ∂Ω. For zeroes
lying on the vertical lines at x = ±1/2, the two circular loops should be one the
T -transform of the other (one sticking into the fundamental domain, the other out
of it). For zeroes lying on |τ | = 1 but different from i, ω, or ω + 1 the two circular
arcs should be one the R-transform of the other (again one sticking outside the unit
disk, the other one into it). The circular loop around i (if needed) should start at
some τ, |τ | = 1, go above the unit circle, meeting it again at −1/τ . The circular
loops around ω and ω +1 (when needed) should also start and end at points which
are related via R and T, and should both stick into Ω (leaving ω and ω+1 outside).
Now the integral over the horizontal segment gives ord∞(f), the integrals along
the vertical lines cancel out each other, the integral along the small circular arcs
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around i and ω, ω + 1, give (in the limit) 1
2ordi(f) + 1

3ordω(f), and the integral
over the rest of the path (on |τ | = 1), when we take the fact that

(5.17) f(
−1
τ

) = τkf(τ)

into account, gives −k/12 (the 12 coming from the angle between i and ω which is
30◦). On the other hand, by Cauchy’s theorem, the same integral equals

(5.18) −
∑

τ∈Ω, τ 6=i,ω

ordτ (f).

Rearranging the terms on both sides of the equation we derive the formula. ¤

Because of the theorem the moduli space of lattices Γ\H is sometimes called the
j-line. We may compactify C to get P1(C). In terms of Γ\H this means adding the
point “i∞” with local parameter q = exp(2πiτ) around it. The notation q, like
τ, is well-established and used by everybody. The Fourier expansion is therefore
also called the q-expansion of the modular form f at infinity (it is nothing but the
Taylor expansion in terms of the local parameter q on the compactified j-line).

Corollary 5.9. Two elliptic curves given by two Weierstrass equations are iso-
morphic if and only if they have the same j-invariants.

Proof. Let the two elliptic curves be given by the lattices Λ and Λ′, and let j and
j′ be their j-invariants. We have seen that j = j′ if and only if they lattices are
homothetic. ¤

Corollary 5.10. For every separable cubic h(x) the curve y2 = h(x) has a non-
singular projective completion, which is an elliptic curve.

Proof. That the projective curve given by the homogenized equation is non-singular
is proved exactly as before (the only fact used in the proof was the separability of
h). Via a simple change of variables we may bring the equation to the form

(5.19) y2 = 4x3 − g2x− g3

for some g2 and g3 ∈ C. What we have to prove (since our starting point in the
definition of an elliptic curve was that of lattices) is that there exists a lattice Λ
with g2 = g2(Λ) and g3 = g3(Λ). First we find a lattice Λ such that

(5.20) j(Λ) =
1728g3

2

g3
2 − 27g2

3

.

Note that the denominator does not vanish by the assumption that h is separable.
The existence of Λ is guaranteed by the theorem (surjectivity of j). We now change
Λ by a homothety so that g2(Λ) = g2. Since this does not affect the j-invariant it
follows that g2

3(Λ) = g2
3 . If we are unlucky and g3(Λ) = −g3, multiply Λ by a fourth

root of unity (not changing g2(Λ)) to fix g3(Λ). ¤

5.7. More corollaries. There are many corollaries that can be drawn from the
second theorem. We leave most of the proofs as exercises.

Corollary 5.11. If k < 0, there are no modular forms of weight k that are also
holomorphic at infinity. In other words, Mk(Γ) = 0. Similarly, if k < 12, Sk(Γ) = 0.

Corollary 5.12. We have M2(Γ) = 0, M4(Γ) = Cg2, M6(Γ) = Cg3, M8(Γ) =
Cg2

2 , M10(Γ) = Cg2g3.
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To prove the last corollary, note that for small k the orders at all τ ′s are dictated
by the formula of the second theorem. If two modular forms of the same weight
have the same orders everywhere (including at infinity), then their ratio must be a
constant (why?).

Corollary 5.13. We have S12(Γ) = C∆, and M12(Γ) = C�
⊕
Cg2

3 . For every
weight k ≥ 12 we have

(5.21) Sk(Γ) = ∆.Mk−12(Γ).

For the last corollary recall that ∆ does not vanish anywhere in H and has a
simple zero at infinity so if we divide by it a given cusp form f , f/∆ is still a
modular form, of weight 12 less, which is holomorphic at infinity.

Corollary 5.14. As a graded ring (graded by the weight)
⊕

k≥0 Mk(Γ) = C[g2, g3]
and there are no relations between g2 and g3.

That the two modular forms g2 and g3 generate the ring of modular forms for
SL2(Z) follows from the previous corollary. That there are no relations is more
challenging. Prove first that any relation must be isobaric of a given weight. Then
look at orders at i and ω to get a contradiction.

Do not expect to get results of this sort for the corresponding spaces for general
subgroups Γ. The spaces of modular forms and cusp forms get much richer then
and the problem of constructing bases for them is difficult (although a lot of work
has been done on it). However, calculating their dimensions is relatively easy (look
it up in the literature).

5.8. Eisenstein Series. You may have asked yourself why not define modular
forms of weight k by the formula

(5.22) Gk(Λ) =
′∑

ω∈Λ

ω−k

for every even k ≥ 4. These are easily shown to be holomorphic modular forms (even
holomorphic at infinity) of weight k. They are called the (holomorphic) Eisenstein
series for SL2(Z). One clearly has

(5.23) Mk(Γ) = Sk(Γ)⊕ C.Gk.

When the space of modular forms is one-dimensional (k < 12 or k = 14) we may
deduce from this discussion that certain modular forms, e.g. G2

4 and G8, or G4G6

and G10, or G8G6, G2
4G6 and G14, must be all constant multiples of one another.

These constants can be easily worked out once we find the constant terms in the
Fourier expansion of the Gk. Comparing the higher Fourier coefficients (which turn
out to be expressible as sums of k− 1 powers of divisors of the integer n), one gets
fascinating combinatorial identities between the functions

(5.24) σk−1(n) =
∑

d|n
dk−1.

See for example J.-P. Serre, A Course in Arithmetic.
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6. Descent and the weak Mordell-Weil theorem

6.1. Multiplication by m on the elliptic curve. Up till now our approach to
elliptic curves has been very classical, and the methods we have been using were
mainly those of complex function theory.

We now begin the study of the arithmetic of elliptic curves which are defined
over a number field F . This requires some basic algebraic number theory, and
to minimize the necessary background we confine ourselves to the case F = Q.
Unfortunately, even if we want to stick to the analysis of E overQ we have to enlarge
Q occasionally and consider larger fields, in order to draw conclusions about E(Q).
Thus our proofs will be incomplete even for E which are defined over Q. However,
all the ideas will be present in our analysis, and the student with the necessary
background in algebraic number theory will be able to generalize our results and
fill in the gaps.

Consider an elliptic curve E such that E, and the four torsion points of order
2 on E are all defined over Q. We may therefore assume that E is given by the
equation

(6.1) Y 2 = (X − α)(X − β)(X − γ).

Here α, β, γ are three distinct rational numbers and the discriminant of the cubic

(6.2) ∆ = (α− β)2(α− γ)2(β − γ)2.

Let S be the smallest set of primes such that if p /∈ S then p > 2, α, β and γ are inte-
gral at p, and all of them are distinct modulo p. Thus S is finite, and ∆ ∈ Z×S where
ZS , the ring of S-integers, is the subring of rational numbers whose denominators
are divisible only by primes from S. The group Z×S is finitely generated.

Let m > 1 and denote by [m] multiplication by m on E(C).

Lemma 6.1. Em = ker([m]) is isomorphic to (Z/mZ)2 . We have a short exact
sequence of GQ-modules where GQ = Gal(Q̄/Q) :

(6.3) 0 → Em → E(Q̄)
[m]→ E(Q̄) → 0.

Proof. Everything is obvious if Q̄ is replaced by C, using the complex uniformiza-
tion. To see that E(Q̄) is m-divisible and that Em are algebraic over Q, use the
fact that (in projective coordinates) multiplication by m is given by

(6.4) [m](X : Y : Z) = (Fm(X, Y, Z) : Gm(X, Y, Z) : Hm(X, Y, Z))

where Fm, Gm and Hm are homogeneous polynomials of the same degree with
coefficients from Q with no common factor (use induction on the explicit addition
formulas). A priori, we can not rule out the possibility that Fm, Gm and Hm all
vanish at some (x : y : z) ∈ E, so that [m] is not defined at such a point by the
above formula.1 However, this can happen at most at finitely many points S. This
implies that for any σ ∈ Aut(C) (field automorphism) and for any P ∈ E(C)\S
(6.5) σ([m]P ) = [m](σP ).

1In general, a morphism of projective varieties need not be defined by a single collection of
polynomials not having a common zero. Instead, there are finitely many collections of this sort,
each defined in a Zariski open set, which agree where their domains of definition overlap. A more
careful analysis of multiplication by m on the elliptic curve will show that one such collections
suffices, but we do not go into it; see the series of papers by Cassels on the arithmetic of elliptic
curves from the 1960’s.
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If P ∈ S we apply this for Q and P + Q such that both Q and P + Q are not in S,
and subtract, to get that the equation still holds for P ∈ S.

In particular if P ∈ Em then σP ∈ Em as well (because σ fixes O = (0 : 1 :
0)). Thus a point from Em has only finitely many conjugates under Aut(C) so
must be algebraic. Similarly if [m]P = Q and Q ∈ E(F ), [F : Q] < ∞, for any
σ ∈ Aut(C/F ), σP − P ∈ Em, so again there are only finitely many possibilities
for σP, and P is algebraic. Finally we have just remarked that [m] is a Galois-
homomorphism. ¤

6.2. Galois cohomology. Let G be a topological group (e.g. GQ with the Krull
topology) and M a discrete G-module. Let

(6.6) Z1(G,M) =
{

c : G → M ; c is continuous (i.e. locally constant)
and c(στ) = σc(τ) + c(σ)

}

the group of “crossed homomorphisms”. Notice that if G acts trivially on M then
these are just the continuous homomorphisms from G to M . Let

(6.7) B1(G,M) = {c; for some m ∈ M , c(σ) = σm−m} .

If the action is trivial, this is 0. The quotient group

(6.8) H1(G,M) = Z1(G,M)/B1(G, M)

is called the first cohomology group of G in M (or with coefficients in M).
For a G-homomorphism f : M → N we get a natural group homomorphism

(6.9) f∗ : H1(G, M) → H1(G,N),

and (fg)∗ = f∗g∗. In other words, H1(G,−) is a functor from the category of G-
modules to abelian groups. For example, if M = N and f = [m] is multiplication
by m in the G-module M, then [m]∗ is multiplication by m in H1(G,M) (check!).
The importance of the functor H1 stems from the fact that it appears in long exact
sequences as a measure of the failure of the functor of ”taking invariants” to be
exact. More precisely we have the following.

Theorem 6.2. Let 0 → M → N → P → 0 be an exact sequence of discrete G-
modules. Denote by MG the G-invariants in M etc. For p ∈ PG define δ(p) ∈
H1(G,M) as follows. Lift p to n ∈ N (which need not be invariant under G
anymore) and consider

(6.10) c(σ) = σn− n ∈ M.

Then c is a crossed homomorphism and its cohomology class [c] = δ(p) is well
defined (does not depend on the choice of the lifting n). The ”long” sequence

(6.11) 0 → MG → NG → PG δ→ H1(G,M) → H1(G, N) → H1(G,P )

is exact.

Proof. We leave te proof as a ”no choice” exercise. ¤

Remark 6.1. This long exact sequence can be continued indefinitely with the in-
troduction of the higher group cohomology functors Hi(G,−) for all i ≥ 1. Thus
certain elements from H2(G,M) will measure the failure of H1(G,N) → H1(G, P )
to be surjective etc.
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6.3. Example: Hilbert’s theorem 90. Let F be any field, F̄ a separable closure,
and m an integer relatively prime to char.F. Let µm ⊂ F̄× be the group of m-th
roots of unity. It is cyclic of order m, and G = Gal(F̄ /F ) acts on it via the
cyclotomic character modulo m, χ : G → (Z/mZ)×, defined by the equation

(6.12) σ(ζ) = ζχ(σ) (ζ ∈ µm).

Consider the short exact sequence

(6.13) 0 → µm → F̄×
[m]→ F̄× → 0

where [m](x) = xm. The associated long exact sequence is

(6.14) 0 → µm(F ) → F×
[m]→ F× δ→ H1(G,µm) → H1(G, F̄×)

[m]∗→ H1(G, F̄×).

Here µm(F ) is the group of m-th roots of unity in F .

Theorem 6.3. (Hilbert’s Theorem 90) H1(G, F̄×) = 0.

Proof. We shall deduce this fundamental theorem from another fundamental the-
orem, Artin’s theorem on the linear independence of characters of fields. See any
book on Galois theory for the latter. Let c ∈ Z1(G, F̄×). Since c is continuous,
it factors through a finite Galois extension L/F. Let GL/F be its Galois group, a
quotient of G by an open normal subgroup, so that c ∈ Z1(GL/F , L×). Consider
the equation

(6.15)
∑

τ∈GL/F

c(τ)τ(x) 6= 0.

By Artin’s theorem, there is an x ∈ L for which the left hand side is nonzero, and
we denote its reciprocal by b. Now

σ(b)−1 =
∑

τ

σc(τ)στ(x)

= c(σ)−1
∑

τ

c(στ)στ(x)

= c(σ)−1b−1(6.16)

yielding c(σ) = σ(b)/b. Thus c is a coboundary, so its class in H1 vanishes. ¤

Hilbert’s theorem 90 gives rise to the identification

(6.17) H1(G,µm) ' F×/F×m.

There is a special case worth special attention, and this is when µm ⊂ F. This is
always the case when m = 2. In this case, the Galois action on the roots of unity is
trivial, so we get

(6.18) Hom(G,µm) ' F×/F×m.

Tracing back the isomorphisms, and element amodF×m on the right yields the
homomorphism

(6.19) κa : σ 7→ σ(α)/α

where αm = a. This homomorphism indeed is independent of α. The assertion
that every homomorphism from G to µm is a κa is known as Kummer theory. In
different words it says that given a cyclic extension L/F of order m, it is obtained
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by extracting an m-th root from an element a of F. Moreover, any isomorphism of
Gal(L/F ) with a subgroup of µm is a κa for some a, unique up to mth powers.

Exercise 6.1. Prove that if the extension L/F is also obtained by extracting mth
roots of b, then for some i relatively prime to m, and some c ∈ F×,

(6.20) b = aicm.

6.4. The descent exact sequence. Let G = GQ be the Galois group of Q̄ over
Q. Applying Galois cohomology to the short exact sequence of multiplication by m
on E we get, since E(Q̄)G = E(Q), a new (long) exact sequence

0 → Em(Q) → E(Q)
[m]→ E(Q) δ→

→ H1(G,Em) → H1(G,E(Q̄))
[m]∗→ H1(G,E(Q̄))(6.21)

from where we get a short exact sequence (the descent exact sequence)

(6.22) 0 → E(Q)/mE(Q) → H1(G,Em) → H1(G,E)m → 0.

Here E is a short-hand for E(Q̄) and for any abelian group X, Xm denotes the m-
torsion in X. Notice the similarity with the previous example, on the multiplicative
group. However, the analogue of Hilbert’s theorem 90 does not hold anymore, and
this makes the elliptic curve case much more difficult.

This short exact sequence allows us to analyze E(Q)/mE(Q) via the much easier
module Em with the associated Galois action. We shall now see what it is for m = 2,
under the simplifying assumption that E2 is defined over Q (as above), so that

(6.23) H1(G,E2) = Hom(G, E2).

If we identify E2 with µ2
2 (where µ2 = {±1}) so that

(6.24) (α, 0) 7→ (−1, 1), (β, 0) 7→ (1,−1), (γ, 0) 7→ (−1,−1)

(this is an isomorphism of G-modules since the G action on E2 is trivial), we get
from Hilbert’s theorem 90

(6.25) H1(G, E2) = H1(G,µ2)2 = [Q×/(Q×)2]2.

6.5. Reduction modulo p. In preparation for the Mordel-Weil theorem, we have
to study elliptic curves over finite fields, and reduction modulo p.

Let us adopt the ad-hoc definition that an elliptic curve over any field of charac-
teristic 6= 2 is a plane projective curve of the form y2 = h(x) where h is a separable
cubic.

If we start with our rational example E : y2 = (x − α)(x − β)(x − γ) and take
p /∈ S, then reading this equation “modulo p” will give us an elliptic curve Ẽ over
Fp, the reduced elliptic curve. The polynomial equations defining the group law on
E define also a group law on Ẽ, after we clear denominators in the equations, which
is again associative and commutative, and has (0 : 1 : 0) for its neutral element.

If P = (x : y : z) is a point of E(Q), clearing denominators we may assume that
the coordinates are integral and not all divisible by p. Reducing modulo p we get
a point P̃ ∈ Ẽ(Fp). Reduction is a homomorphism, with respect to the group laws
on E and on Ẽ :

(6.26) (P + Q)˜ = P̃ + Q̃.

This needs a proof, which can be based on the explicit equations, and which we
omit.
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More generally, if L is a finite extension of Q, OL its ring of algebraic integers,
and p a prime whose intersection with Z is pZ (we say that p lies above, or divides,
p), then the same procedure defines the map “reduction modulo p” from E(L) to
Ẽ(OL/p), which is again a homomorphism, and which we continue to denote by
P 7→ P̃ .

In general, it is very much possible for two distinct points P and Q to undergo
the same reduction P̃ = Q̃. In fact, it should be intuitively clear that this is always
the case if P and Q are p-adically “close” to each other, e.g. if their coordinates,
after clearing denominators, are congruent modulo p. However, the fact that α, β
and γ remain distinct modulo p means that the four torsion points of order 2 remain
distinct in Ẽ(Fp), after reduction. The same is true for any m which is relatively
prime to p : the torsion points Em (once embedded in a field L, and once a prime p
above p has been chosen as above) reduce injectively modulo p. However, we shall
only need this fact for m = 2, where it becomes obvious from our assumptions.

6.6. The weak Mordell-Weil theorem. The weak Mordell-Weil theorem (for
m = 2) is the following statement.

Theorem 6.4. The group E(Q)/2E(Q) is finite.

Proof. All proofs go by showing that the image of E(Q)/2E(Q) inside H1(G,E2),
i.e. inside [Q×/(Q×)2]2, lies in a strictly smaller subgroup which is finite.

Let S be as above. Then Z×S ⊂ Q× is the finitely generated subgroup of rational
numbers all of whose prime factors belong to S. Clearly Z×S /(Z×S )2 is a finite group,
of order 2#S+1. We shall show that E(Q)/2E(Q) is contained in [Z×S /(Z×S )2]2.

For that purpose we fix a decomposition group Gp of the prime p in G and
consider the localization of the descent exact sequence with m = 2:

(6.27)
0 → E(Q)/2E(Q) → H1(G,E2) = [Q×/(Q×)2]2

↓ ↓ ↓
0 → E(Qp)/2E(Qp) → H1(Gp, E2) = [Q×p /(Q×p )2]2

where the rows are exact and the squares commute.
Let Ip be the inertia subgroup at p, so that Gp/Ip is (pro)cyclic, generated by

the Frobenius automorphism. The kernel of the restriction homomorphism

(6.28) H1(Gp, E2) → H1(Ip, E2)

is just H1(Gp/Ip, E2) (the inflation-restriction exact sequence). Since Gp/Ip is
identified with the absolute Galois group of the finite field Fp, we have, in the same
way as before

H1(Gp/Ip, E2) = [F×p /(F×p )2]2

= [Z×p /(Z×p )2]2 ⊂ [Q×p /(Q×p )2]2.(6.29)

If we show that for P ∈ E(Qp), δ(P ) ∈ H1(Gp, E2) has a trivial restriction to Ip (is
unramified), then δ(P ) ∈ H1(Gp/Ip, E2), so the mod 2 - valuation of δ(P ), viewed
as an element of [Q×p /(Q×p )2]2, is 0. For a global point P ∈ E(Q) this implies now
that δ(P ) ∈ [Z×S /(Z×S )2]2 as desired.

All that remains to show is the following lemma. ¤

Lemma 6.5. Let p /∈ S. Then δ(P ), for any P ∈ E(Qp), is unramified.
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Proof. Let Q ∈ E(Q̄p) satisfy [2](Q) = P and pick σ ∈ Ip. We have to show that
σQ = Q. Let Ẽ be the elliptic curve over Fp obtained by reducing the equation of E

modulo p. Here we use the fact that p is not in S. Let Q̃ ∈ E(F̄p) be the reduction
of Q. Since σ acts trivially on F̄p, σQ̃− Q̃ = 0. This means that the 2-torsion point
σQ − Q reduces to 0. However, the four 2-torsion points reduce modulo p to four
distinct points (here we use the fact that p does not divide ∆) and so σQ = Q. ¤

7. Heights on elliptic curves and the strong Mordell-Weil theorem

7.1. Heights on abelian groups and finite generation. Let A be an abelian
group. A height function on A is a function h from A to R satisfying

(0) h(0) = 0.
(1) For every r, there are only finitely many P ∈ A with h(P ) ≤ r.
(2) Let Q ∈ A. Then there is a constant 0 < C1(Q) such that for any P ∈ A

(7.1) h(P −Q) ≤ 2h(P ) + C1(Q).

(3) There is an m ≥ 2 and an absolute constant 0 < C2 such that

(7.2) h(mP ) ≥ m2h(P )− C2.

Example 7.1. Suppose there is a symmetric bilinear form 〈., .〉 on A, whose kernel
K is finite, and such that on A/K the bilinear form is positive definite. Suppose
h(P ) − q(P ), where q(P ) = 〈P, P 〉 is bounded on A. Then from the parallelogram
law

(7.3) q(P −Q) + q(P + Q) = 2q(P ) + 2q(Q)

it is evident that (2) and (3) are satisfied.

Proposition 7.1. Suppose A/mA is finite and A admits a height function (with
the same m in (3)). Then A is finitely generated.

Proof. Let Q1, . . . , Qr be representatives for A/mA, and let C1 = max C1(Qi). For
P0 ∈ A write inductively (1 ≤ i)

(7.4) Pi−1 = Qji + mPi.

By (3) and (2)

h(Pn) ≤ m−2 (h(mPn) + C2)
≤ m−2 (h(Pn−1 −Qjn) + C2)

≤ m−2 (2h(Pn−1) + C)(7.5)

where C = C1 + C2. Now it is an easy exercise to show that there exists an r
depending only on C such that for n large enough h(Pn) ≤ r. Let R1, . . . , Rs be
all the points P with h(P ) ≤ r. Let A′ be the subgroup generated by the Qi and
the Rj . If n is such that h(Pn) ≤ r, then Pn is some Rj so belongs to A′. We now
deduce by descending induction on i that Pi ∈ A′, hence P0 ∈ A′ and A′ = A. ¤
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7.2. Heights on elliptic curves and on P1. If E is the elliptic curve

(7.6) y2 = (x− α)(x− β)(x− γ)

where α, β, γ ∈ Q we define a function h : A = E(Q) → R by writing the x-
coordinate of a point P in reduced terms as x(P ) = u/v (u, v ∈ Z relatively prime)
and letting

(7.7) h(P ) = max (log |u|, log |v|) .

We let h(O) = 0.

Theorem 7.2. h is a height function on A = E(Q), with m = 2.

Corollary 7.3. The group E(Q) is finitely generated.

Properties (0) and (1) are obvious. We have to show (2) and (3) with m = 2.
More generally, we define the height h(x : y) of any point (x : y) ∈ P1(Q) as
max (log |x|, log |y|) if x and y are both integers and relatively prime to each other.
Denoting by ℘ : E → P1 the morphism taking P = (x : y : z) to (x : z) (and
O = (0 : 1 : 0) to (1 : 0)) we have h(P ) = h(℘(P )).

Lemma 7.4. We have

(7.8) h(x : y) =
∑

p≤∞
max (log |x|p, log |y|p) .

Here p runs over all the primes and ∞, |x|∞ is the usual absolute value, and

(7.9) |x|p = p−ordp(x).

Proof. The lemma is obvious, because if x and y are relatively prime integers, then
at every p < ∞, max (log |x|p, log |y|p) = 0, so the right hand side reduces to the
definition given above. ¤

The formula given by the lemma has the advantage that the right hand side
remains unchanged even if x and y are not relatively prime integers. In fact, if
we replace them by cx and cy for some rational number c, then the summand
corresponding to p is changed by log |c|p, but the product fromula

(7.10)
∏

p≤∞
|c|p = 1

implies that the total sum is unchanged. The right hand side makes sense for
every number field, where lack of unique factorization does not allow us anymore
to assume that x and y are relatively prime integers. One simply replaces the set of
primes and ∞ by the set of all normalized valuations of the number field. Another
generalization is to higher dimensional projective spaces. Over Q, the (logarithmic)
Weil height of a point (x0 : · · · : xn) ∈ Pn(Q) is given by

(7.11) h(x0 : · · · : xn) =
∑

p≤∞
max

0≤i≤n
(log |xi|p) .

It is well-defined because of the product formula, as before.



ELLIPTIC CURVES AND MODULAR FORMS 21

7.3. Behaviour under morphism. A morphism ϕ of degree d from P1 to itself
(defined over Q) is given by a pair of homogenous polynomials of degree d without
a common zero

(7.12) ϕ(x : y) = (F (x, y) : G(x, y)).

The condition of not having a common zero is equivalent to the condition that for
some N, both xN and yN are in the ideal generated by F and G in Q[x, y]. This
is a special case of the Nullstellensatz. Clearly, we may assume that F and G are
both from Z[x, y].

Proposition 7.5. Let ϕ be a morphism of degree d from P1 to itself. Then there
is a constant 0 < C depending only on ϕ such that for every (x : y) ∈ P1(Q)

(7.13) dh(x : y)− C ≤ h(ϕ(x : y)) ≤ dh(x : y) + C.

Proof. ¤
Proposition 7.6. Let E be the elliptic curve as above. There is a morphism
ϕ : P1 → P1 of degree 4 such that

(7.14) ϕ ◦ ℘(P ) = ℘(2P ).

Corollary 7.7. If h is the height function on E, then |h(2P )− 4h(P )| is bounded
on E(Q).

This gives (3) with m = 2. (It seems that (3) uses only half of the corollary, but
this is the significant half - the other inequality is much easier).


