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ON THE LIMITING VELOCITY OF HIGH-DIMENSIONAL
RANDOM WALK IN RANDOM ENVIRONMENT

By NoAM BERGER*
UCLA

We show that Random Walk in uniformly elliptic i.i.d. environ-
ment in dimension > 5 has at most one non-zero limiting velocity. In
particular this proves a law of large numbers in the distributionally
symmetric case and establishes connections between different conjec-
tures.

1. Introduction. Let d > 1. A Random Walk in Random Environment
(RWRE) on Z% is defined as follows: Let M? denote the space of all prob-

Zd
ability measures on {4e;}¢ ; and let Q = (Md> . An environment is a
point w € ). Let P be a probability measure on (). For the purposes of this
paper, we assume that P is an i.i.d. measure, i.e.

P=Q"

for some distribution @ on M? and that P is uniformly elliptic, i.e. there
exist € > 0 s.t. for every e € {#e;}¢,,

Q{d:d(e) <e})=0.

For an environment w € 2, the Random Walk on w is a time-homogenous
Markov chain with transition kernel

P,(Xp+1=z+4el X, =2) =w(ze).

N
The quenched law P7 is defined to be the law on (Zd> induced by the

kernel P, and P?(Xy = z) = 1. We let P = P ® PY be the joint law of
the environment and the walk, and the annealed law is defined to be its
marginal

P= /Q PYP(w).
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We consider the limiting velocity

v= lim ==,
n—oo n,
Based on the work of Zerner [Zer02] and Sznitman and Zerner [SZ99] we
know that v exists P-a.s. Furthermore, there is a set A of size at most two
such that almost surely v € A.

Zerner and Merkl [ZMO01] proved that in dimension two a 0-1 law holds
and therefore the set A is of size one, i.e. a law of large numbers hold in
dimension two (see also [Goe06] for a continuous version).

The main result of this paper is the following:

THEOREM 1.1. Ford > 5, there is at most one non-zero limiting velocity,
i.e. if A= {v1,v2} with v1 # ve and vy # 0 then ve = 0.

Theorem 1.1 has the following immediate corollary:

COROLLARY 1.2. Ford > 5, if Q is distributionally symmetric, then the
limiting velocity is an almost sure constant.

Remark about constants: As is common in most of the RWRE literature,
the value of the constant C' may vary from line to line. In addition, C may
implicitly depend on variables that are kept constant throughout the entire
calculation, in particular the dimension d or the distribution Q.

2. Backwards path - Construction. In this section we describe the
backwards path, the main object studied in this paper. The backwards path
is, roughly speaking, a path of the RWRE from —oo through the origin
to +00. Below we define it. In Section 3 we prove some basic facts about
it. Note that the backwards path appears, though implicitly, in [BS02] and
[Var03].

Throughout the paper we are assuming, for contradiction, that two dif-
ferent non-zero limiting velocities v; and v exist. Assume without loss of
generality that (¢,v1) > 0 for £ = e;. We let Ay be the event that the walk
is transient in the direction /, i.e.

Ay = {nli_{g()(Xn,E) — oo}.

By our assumptions, @Q is a distribution on M? s.t. both P(A;) and P(A_)
are positive.
We say that t is a regeneration time in the direction ¢ if
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1. (Xs,0) < (X4, 0) for every s < t, and
2. (X4, 0) > (Xy, L) for every s > t.

Remark: Note that in the special case of £ being a coordinate vector this
simple definition coincides with the more complex definition of a regenera-
tion time from [SZ99].

For every L > 0, let K, = {2]0 < (z,¢) < L}.

Let t; be the first regeneration time (if one exists), let ¢t be the second
(if exists), and so on. If ¢, exists, let L,, = (X3, ,,¢) — (X3,,£), let

W, :Kr, — M

be
Wi(2) = w(z + Xt,),

let u, = tpy1 —tn and let Ky, : [0, u,] — Z% be K, (t) = X3, 1+ — X3, . We let
Sh, the n-th regeneration slab, be the ensemble S,, = {L,,, W,,, un, K, }.

In [SZ99] Sznitman and Zerner proved that on the event Ay, almost surely
there are infinitely many regeneration times, and, furthermore, that the re-
generation slabs {S;}5°, form an i.i.d. process. Let A = \; be the distribution
of S7 conditioned on Ay.

We now construct an environment and a doubly infinite path in that
environment. Let {5, }nez be i.i.d. regeneration slabs sampled according to
A

We now want to glue the regeneration slabs to each other. Let Yy = 0,
and define, inductively, Y41 = Y, + Ky(u,) for n > 0 and Y, = Y, —
Ky 1(up_1) for n < 0. Almost surely Z¢ is the disjoint union of the sets
Y, +Kp,. For every z € Z% let n(z) be the unique n such that z € Y, + K, .
Let w be the environment

w(z) = Wn(z) (Z - Yn(z))

Let 7 C Z% be

o0

T= |J Y+ Kul0,u)).

n=—oo

Let p be the joint distribution of w and 7. 7 is called the backwards path
in direction £. We let i be the marginal distribution of w in pu.

3. Backwards path - Basic properties. In this section we prove two
simple properties of the measure pu.

PROPOSITION 3.1. There exists a coupling P on Q x Q x {0, I}Zd with
the distribution of w,&,T satisfying
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F1G 1. A path generated by gluing regenerations to each other.

1. w s distributed according to P.

2. (w0, T) is distributed according to (.

3. P-almost surely, w(z) = &(z) for every z € Z4\ T.
4. w and T are independent.

PROPOSITION 3.2.  Let @ be an environment sampled according to [i, and
let {X,} be a random walk on that environment. Then almost surely {X,}
is transient in the direction €.

Both Proposition 3.1 and Proposition 3.2 follow from the fact that the fi-
environment around zero is similar to the P-environment around the location
of the walker at a large regeneration time. More precisely, let w, { X, } be sam-
pled according to P conditioned on the event V>0 ((Xy, £) > 0) N Ay, which
is an event of positive probability. Let 1, t2,... be the regeneration times.
(Note that we conditioned on transience in the ¢ direction, and therefore
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infinitely many regeneration times exist). Let w; be the environment defined
by wi(2) = w(z + Xy,) and let 7; C Z¢ be defined as 7; = {X; — Xy,|t > 0}.
For X € Z¢ let H(X) be the half space

HX) ={z [ (0 = (X,0)}.
LEMMA 3.3.  For every i, the distribution of
(3.1) {_Xti s TINH(=X4,) Wi‘H(—Xti)}
is the same as the distribution of
(3.2) {Yois TR 5 Olupry )

PROOF. Let P be P conditioned on the event Y, ((Xn,¢) > 0)NAy. By
Theorem 1.4 of [SZ99], the distribution of

{@ho {Xilt > 0} }

according to P is the same as the distribution of

{‘HH(O)» yla H(O)}

according to p. The lemma now follows since the sequence {S,, }ncz is i.i.d.
O

We can now prove Propositions 3.1 and 3.2.

PROOF OF PROPOSITION 3.2. Let B be the event that the walk is tran-
sient in the direction of ¢ and never exits the half-space H(0), i.e.

B=A,n{¥ X, € H(0)}.
For a configuration w and z € Z¢, let
R,(z) = P;(B).
Note that R, (z) depends only on wly (), so by the Markov property
PXO(B|X1, Xa,..., Xs) = Ro(X¢) - 1x,,. x,e(0)-
In addition, B € o(Xj, X, ...) and therefore almost surely

lim Ry, (X;) > 1p.
t—o0
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In particular, P-almost surely,

lim Rw(Xt) = 1,

t—o0
and for the subsequence of regeneration times we get that P-almost surely
(33 Jim R(X,) =1,
and using the bounded convergence theorem, for

R, = E]_S (Rw(th))

we get

(3.4) lim R, = 1.

n—oo

Let {©,T,{Y,}} be sampled according to u and let X,, be a random walk
on the environment @, which is independent of {7, {Y},}} conditioned on &.
Let By be the event

nllrgo(Xn,€> =00 and V,(Xp,0) > (Y_n,{).
then by Lemma 3.3
(3.5) (14 ® P5)(By) = R
Remembering that
A= Bn
n=1
we get from (3.5) that
(0 ® P)(A) = lim R, =1.
as desired. 0

PROOF OF PROPOSITION 3.1. We define the coupling on every regen-
eration slab. Let A be the distribution on S = {L,W,W,u, K} so that
{L, W, u, K} is distributed according to A and W is defined as follows:

W(z) = { W(z) if z € K([0,u))

where ¢ : Z4 — M is sampled according to P, independently of {L, W,u, K}.
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CLAIM 3.4. Conditioned on L, the environment W is i.i.d. with marginal
distribution Q, and independent of u and K.

We now sample the environments and the path as we did in Section 2: Let
{5,352 ___ be ii.d. regeneration slabs sampled according to A Let Yo =0
and define, inductively, Y41 = Y, + Ky (u,) for n > 0 and Y, = Y, —
Ky 1(un_1) for n < 0. Almost surely Z¢ is the disjoint union of the sets
Y, +Kp,. For every z € Z% let n(z) be the unique n such that z € Y, + K, .
We let w be the environment

w(z) = Wn(z) (Z - Yn(z))u
we let @ be the environment
(:J(Z) = Wn(z) (Z - Yn(z))

and take 7 C Z? to be

o

T= |J (Ya+ K0, up)).

n=—oo

Clearly, {@, T} is distributed according to y and w and & agree on Z¢—7.
Therefore all we need to show is that w is distributed according to P and
is independent of the path 7. This follows from Claim 3.4: conditioned on
{un}2_, W is P-distributed and independent of the path 7. Therefore
it is P-distributed and independent of the path 7 as we integrate over
{’U,n}?f:_oo.

O

ProOF OF CLAIM 3.4. It is sufficient to show that conditioned on L, for
every finite set J = {x; : i =1,...,k} with J C K, the distribution of
{W(x;)}s;es is 1.i.d. with marginal @ and independent of w and K. This
will follow if we prove that for every finite set J = {z; | ¢ = 1,...,k} with
J C K, conditioned on L, on K and u and on the event J N K[0,u] = 0,
the distribution of {W(2;)}s.es is i.i.d. with marginal Q.

To this end, fix J and note that for every finite set U that is disjoint
of J, the event {K[0,u] = U} is independent of {W(z;)}s,cs. Therefore,
conditioned on the event {K[0,u] = U} (and thus implicitly conditioning
on K and u), the distribution of {W (;)}s,ey is i.i.d. with marginal Q. By
integrating with respect to U we get that {W (x;)}z,es is Q-distributed, and
by the fact that it was @-distributed conditioned on K and u we get the
independence. ]
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4. Intersection of paths. In this section we will see some interaction
between the backwards path and the path of an independent random walk.

Let @ be a uniformly elliptic distribution so that 0 < P(Ay) < 1 and let
(w,@,T) be as in Proposition 3.1. Let zy be an arbitrary point in Z¢, and
let {X;}°, be a random walk on the configuration w starting at zp, such
that

1. {X;} is conditioned on the (positive probability) event that lim; o (X;, £) =
—00.
2. Conditioned on w, {X;}32; is independent of @ and 7.

The purpose of this section is the following easy lemma:

LEMMA 4.1.  Under the conditions stated above, almost surely there exist
infinitely many values of i such that X; € T.

We will prove that almost surely there exists one such value of i. The
proof that infinitely many exist is very similar but requires a little more
care, and for the purpose of proving the main theorem of this paper one
such ¢ is sufficient.

PrROOF. We need to show that
(4.1) (PoPx) (hm (Xi,0) = —c0  and Vi (X, ¢ 7)> —0.

In order to establish (4.1), let {Y;}5°, be a random walk on the environ-
ment @, coupled to the rest of the probability space as follows:
Let
io=1nf{i: w(X;) #@0(X;)} >inf{i: X; € T}.

Now, for i < ig, we define Y; = X;. For ¢ > ig, Y; is determined based on
Y;_1 according to @(Y;_1) independently of X;, w and 7. Now, note that

Therefore,

(lim (X, 0) = 00 and Vi (X; ¢ T)) — Tim (Y, ) = —oo.

1—00 1—00

The proof is concluded if we remember that by Proposition 3.2,

(PoP) (ilggom,@ - —oo) ~0.
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5. Proof of main theorem.

LEMMA 5.1. Let d > 5, and assume that the set A of speeds contains
two mon-zero elements. Then there exists zy such that

(P p2) (,nm (X0 0) = —00  and Vi (Xi ¢ T)) > 0.
PRrROOF. Let 3
T={X, :i=12,.}
We use the following claim whose proof is deferred:
CLAIM 5.2. Let B be the event that (X;,0) < (Xo,€) for all i > 0. Note

that B has positive probability. Also, let T' =T N{z : (z,£) < 0}. Then, if
A contains two distinct non-zero elements then

(5.1) Z PzeT)? <
z€74
and
(5.2) Z P°(z € T|B)? < .
z€74

By Proposition 3.1, T’ and 7 are independent random sets and therefore
so are 7' and T|B. Therefore,

(BEeED) (IT'n ﬂ\ B) = Y P(zeT)P*(:cT|B)
Z€7Z4
= Z P(z € TP(z — 2y € T|B),
z€Z4

with the last equality following from translation invariance of the annealed
measure. Let
M=) P(zeT)
2€74
and
M= Y P T|BY,
2€74

let A be so small that AM + AM 4+ A2 < 1, and let R be so large that

Z P(zeT')? < X and Z P°(z € T|B)? < .
I=l>R l=I>R
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Taking zg such that ||zg]| > 2R and (z¢, /) < 0 we get, using Cauchy-Schwarz,
that

(EeED)(I1T'nT||B) = Y P(zeT)P(z-2cT|B)
2€74
= Z (ze TPz -2 € T|B) + > P(z € T")P°(2 — 2 € T|B)
€B(0 2€B(z0,R)
- > P(z e T"P'(z — z € T|B)

2€Z4—B(0,R)—B(z0,R)
< AM + MM + X\ < 1.

Therefore P ® PX(T'n T =0|B) > 0. P*(B) > 0 and by the choice of z,
conditioned on B, 7' N'T = 0 if and only if 7 N7 = @. Therefore 7 N 7T is

empty with positive probability.
O

PROOF OF CrLAIM 5.2. We will prove (5.1). (5.2) follows from the exact
same reasoning. First we get an upper bound on u(Y_,, = z). The sequence
{0, =Y_,, —Y_,_1} is an i.i.d. sequence. Furthermore, due to ellipticity
there exist d linearly independent vectors vy, ...,vqs and € > 0 such that for
every k =1,...,d, and every § € {+1, -1},

M(Ol = 2v +(5v;€) > €

(v1 is, approximately, in the direction of ¢, while the others are, approxi-
mately, orthogonal to ¢).
Let
A={2v +dv | k=1,...,d ; §e€{+1,—-1}}
and let p = u(O1 € A). Fix n, and let E™ be the event that at least
Ty = Epn-‘ of the O;-s, i = 1,...,n, are in A. For every subset H of
{1,...,n} of size m,, let Eg) be the event that the elements of H are the

smallest 7,, numbers i such that O; € A. Then from heat kernel estimates
for bounded i.i.d. random walks in Z¢ we get that for every z € Z¢,

(Zo =2z ><0 —d/2,

1€H

Conditioned on EJ(L?) ,

Z OZ and Z OZ

icH i¢H
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are independent, so remembering that Y_,, = >"1* ; O;, we get that
w (Y_n = z| E}?)) < Ccn92,
The events
{BP|H 1,0}

are mutually exclusive and
7 <U Egl)> >1—e O
H

Therefore, for every n and z € Z¢,
(5.3) w(Yo, = 2) < Cn~%2,

Now, for every n and z € Z% let Q(z,n) be the probability that z is
visited during the n-th regeneration, i.e. between Y;_,, and Y_,,. The n-th
regeneration is independent of Y7_,,, so

Q(zvn’}/l—n) = Q(Z - }/1—”’0)'

The fact that the speed of the walk in direction £ is positive yields
(5.4) > Q(2,0) < E(r — 1) < oo

2€74

From (5.3) we get that

Y n(Von=2) < O
z€Z4

Combined with (5.4) and remembering that Young’s inequality for convo-
lution says that || f * gll2 < [|fll2]lg]|x for all f and g, (and noting that
the next regeneration slab is independent of Y;_,, and thus the result is a
convolution), we get

> [Q(zn)? < Cn?

z€74

or

(5.5) > Q) < Cnm 1,
2€74

Noting that
pzeT) =3 Qzn),
n=1
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(5.5) and the triangle inequality tell us that

> e TP <Oy n i

z€7Z4

So for d > 5
> [u(zET')]2<oo

2€74

as desired. O

PrROOF OF THEOREM 1.1. The theorem follows immediately from Lemma
4.1 and Lemma 5.1. O
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