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Abstract

The paper studies Bayesian games which are extended by adding pre-play communication.

Let Γ be a Bayesian game with full support and with three or more players. The main result

is that if players can send private messages to each other and make public announcements

then every communication equilibrium outcome, q, that is rational (i.e., involves probabilities

that are rational numbers) can be implemented in a sequential equilibrium of a cheap talk

extension of Γ, provided that the following condition is satisfied: There exists a Bayesian

Nash equilibrium s in Γ such that for each type ti of each player i the expected payoff of ti

in q is larger than the expected payoff of ti in s.
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1 Introduction

In a classical paper Crawford and Sobel [7] examined the implications of cheap talk in

a game in which one player, the sender, has private information and another player, the

receiver, has to choose an action. Crawford and Sobel show that cheap talk extends the

set of outcomes that can be implemented in equilibrium by allowing for partial revelation of

information. This paper addresses a general question that their paper suggests and that is:

Given a general game Γ with incomplete information, what is the set of outcomes that can

be generated in an extension of Γ in which players can talk before they act?

One motivation for this enquiry is a situation in which players are interested in im-

plementing an outcome q which is not an equilibrium outcome in the original game Γ. For

example q can be an outcome which Pareto-dominates every (or some) equilibria in Γ. If

there exists a pre-play communication procedure which implements q in an equilibrium of

the extended game, then players would want to follow it.

We now define more precisely the model and the results. The starting point is a

Baynesian game Γ. We let ti, ti ∈ Ti, denote the private information of player i and Ai her
set of actions. The game Γ is played as follows: First nature moves and chooses a profile

of “types” t = (t1, ..., tn) according to some probability distribution µ ∈ ∆(T ). Each player

i learns her type ti and then in the second stage chooses an action in Ai. The choices of the

actions are simultaneous. We assume that Ai and Ti are finite. An outcome q is a function

which associates with each profile of types t a probability distribution on the set of profiles

of actions A, A ≡ Xn
i=1Ai.

A cheap talk extension of Γ, Γ̂, is a finite game in the extensive form in which after

players learn their types they communicate. The communication can take any finite number

of stages where in each stage players send simultaneously private or public messages. At the

last stage of Γ̂ the players choose simultaneously actions in Γ. This formulation allows, of

course, for the case where at a given stage only one player, or a subset of players, sends

messages (the messages of the rest are vacuous). A profile of strategies in Γ̂, τ , induces an

outcome q in the original game Γ. We say that q can be implemented by cheap talk if there

exists a cheap talk extension Γ̂ of Γ and a sequential equilibrium τ in Γ̂ such that τ induces
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q. Our question is what is the set of outcomes that can be implemented by cheap talk?

To describe our results we need to refer to the notion of a communication equilibrium

outcome, C.E.O. A C.E.O. is an outcome that can be generated in a Nash equilibrium of an

extension of Γ, Γd, that involves a mediator. A mediator is a device which receives private

messages from the players, performs a private lottery and then sends back private messages.

A C.E.O. is an extension of the notion of a correlated equilibrium distribution to games

with incomplete information.1 In particular, in a complete information game a C.E.O. is a

correlated equilibrium distribution and vice-versa. It follows from the revelation principle,

Myerson [15] that every C.E.O. can be generated in an equilibrium in which each player

reports to the mediator her true type and the mediator sends back a message which suggests

an action that the player follows. Now it is well known and easy to show that the set of

outcomes that can be implemented by cheap talk is contained in the set of C.E.O.’s. 2 We

will explain this claim in the description of the model in section 2. (In fact in section 2 we

will define a C.E.O. as an outcome which is immune to a class of deviations which cannot

be detected in any cheap talk extension of Γ and then show that this definition is equivalent

to the definition that we have given here).

Our main result, theorem 1, is that a C.E.O. q in a game Γ can be implemented by

cheap talk when the following conditions are satisfied:

(1) The number of players in Γ is three or more.

(2) The game Γ is a game with full support, that is, every profile of types has a

positive probability.

(3) q is rational, that is, for every profile of types t q(t) involves probabilities that

are rational numbers.

(4) There exists a Bayesian Nash equilibrium s such that the expected payoff of

each type ti of each player i in s is smaller than the expected payoff of ti in q. We call this

condition the “Nash domination” condition.

Consider first condition (1). It is well known that when there are two players then in

1The notion of a correlated equilibrium is due to Aumann [2] .
2This claim is not as trivial as it might seem because the cheap talk can be conducted in many stages

while the mediator operates in one stage.
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games with complete information the only outcomes that can be implemented by cheap talk

are convex combinations of Nash equilibria. Thus, even in the case of complete information

it is possible to implement only a particular subset of the set of C.E.O.’s. (Recall that in

complete information games a C.E.O. is a correlated equilibrium distribution).

Condition 2 ensures that every C.E.O. q can be implemented in a sequential equi-

librium of the mediation game.

Condition (3) is a technical condition which has to do with joint lotteries.

Condition (4), the ”Nash domination” condition, reflects the need for a credible pun-

ishment in case a player deviates from the prescriptions of the protocol of communication.

The Nash equilibrium s is played when it becomes public knowledge that some player has

deviated. Since the payoff in s is lower than in q the prospect of playing s keeps players in

line. 3 Now condition (4) can be weakened in several ways. First, it turns out that while the

equilibrium does not reveal the identity of the deviator it does reveal a pair (i, j) of players

from whom the deviation came. Thus, it is enough to have for every pair of players (i, j)

that are revealed in case of a deviation an equilibrium si,j such that each type of player i

and player j prefers q upon s. In general it might be possible to do even better than that,

that is, it might be possible for the players different from i and j to correlate their actions

and in this manner implement a more severe punishment on i and on j. This leads us to

the first extension of the main result, theorem 2, which establishes that when there are at

least five players then the “Nash domination” condition can be substituted by the following

(weaker) condition; For every pair of players (i, j) there exists a C.E.O. qij such that the

payoff of each type of players i and j in qij is lower than its payoff in q. The C.E.O. qij

is implemented if it turns out that someone from the pair (i, j), deviated. The reason for

the condition that there are at least five players in the game, (as opposed to three in our

main result), is that in the implementation of qij players i and j cannot play “active” roles

because there is no punishment that can be inflicted on them if one of them deviates from

the protocol which generates qij.

3 Of course, the equilibrium should have the property that given a deviation by some player i there is a
high probability that the fact that someone has deviated will be publicly revealed.
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Our second extension, theorem 3, establishes that if public revelation of the record

of communication is possible, that is, if it is possible at a predetermined point of time to

publicly and credibly expose the messages that each player sent, then the Nash domination

condition can be further weakened. We obtain that when the number of players is at least

four, then if for every player i there exists a C.E.O. qi such that the payoff of such type

of i in qi is lower than its payoff in q, then q can be implemented. The point here is

that public exposure of the past record reveals the player who has deviated. Therefore the

implementation of q can be supported by punishments that depend on the identity of the

deviator.

Barany [5] examined the implications of cheap talk in games with complete informa-

tion (i.e. games in the normal form). In games with complete information the only issue is

the possibility of correlating actions by cheap talk, while in games with incomplete informa-

tion there is in addition an issue of coordination on the basis of private information. Barany

obtains the following result: Let G be a game in which the number of players is at least four

and let q be a rational correlated equilibrium distribution in G. There exists a cheap-talk

extension Ĝ of G, which involves public verification of the record of communication, and a

Nash equilibrium τ̂ in Ĝ, such that τ̂ generates the distribution q.

Forges [9] shows that in a game in which the number of players is at least four, ev-

ery C.E.O. is a correlated equilibrium outcome of a cheap talk extension of Γ. Combining

Forge’s result with the construction of Barany gives a procedure of cheap talk which can

implement in a Nash equilibrium all rational C.E.O’s. The result of Forges relates to a situ-

ation where players receive messages from a correlation device before they know their types

and then after they learn their types communicate and take actions in Γ. Recently, Gerardi

[12] has shown that it is possible to obtain Forge’s result by performing the correlation at

the interim stage, that is, after players learn their types. So like in the current paper all the

communication takes place in the interim stage.

Comparing the results of Barany, Forges and Gerardi’s extension of Forge’s result, FG,

to theorem 1 in the current paper we note that the former have the advantage of providing a

protocol which can implement any rational C.E.O. while the protocol in the current paper

implements only C.E.O’s which dominate some Nash equilibrium. On the other hand, in
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the former papers the protocols that are used suffer from three drawbacks:

(1) The number of players is at least four (as opposed to three in the current paper).

(2) It is assumed that the record of the communication can be publicly verified. That

is, it is possible to check the content of each message that was sent.

(3) The equlibria are not sequential.

It is worthwhile to elaborate on these differences a bit. The protocol which Barany

constructs and which is also used in Forges and FG deters players from deviating by using

the following structure: Each message is sent by two players. If one of the players deviates

and sends a message which is different from the one she should have sent then the receiver

gets two different messages and she realizes that a deviation has occurred. In this case the

receiver announces publicly that there is a deviation. All the messages are opened (here the

assumption of the possibility of public verification is used), the identity of the deviator is

revealed and the deviator is minmaxed by the other players. There are two non-sequential

elements in this equilibrium. First, the profile of actions which minmaxes a player i is

typically not a Nash equilibrium. (This also explains why Barany and FG do not need to

assume punishment payoffs as we do). Second, it might not be in the interest of player j to

announce a deviation when she receives two inconsistent messages (even if the punishment

of the deviator will be with a profile of actions that is a Nash equilibrium). Finally, we note

that a protocol in which each message is sent by two players requires at leat four players

(otherwise, one player would have known all the messages and that would make correlation

by the other players impossible).

In a recent and independent work, Gerardi [10] has shown that if the number of

players is greater or equal to five, then every C.E.O. can be implemented in a sequential

equilibrium of a cheap talk extension of Γ. Gerardi builds a cheap talk protocol which

mimics a correlation device and then uses Forges’ protocol to generate any given C.E.O.

The key idea in Gerardi’s construction is that every message is sent by three players. If

there are differences among the three senders the receiver uses a majority rule to determine

the “true” message. In this manner a deviation by a single player cannot affect the outcome

of the protocol. By contrast the construction in the current paper is based on a procedure

of random monitoring which reveals with a high probability a deviation from a protocol
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of communication. A revelation of a deviation is followed by a play of the punishment

equilibrium, s. More specifically, the equilibria which we construct in the proofs of our

results are composed of two ingredients:

1. A protocol of communication P which generates the given C.E.O. q.

2. A procedure of random monitoring which reveals with a high probability a de-

viation from the prescriptions of P and in this way ensures the execution of P in equilibrium.

The main novelty in our construction is the procedure of random monitoring which

deters players from deviating from the prescriptions of P.

The research on the effects of communication in games is by now quite extensive. The

following list mentions only the work that is closely related to ours and two papers which deal

with applications. The notion of a communication equilibrium was first studied by Forges [8]

and Myerson [15]. Aumann and Hart [4] use the notion of a bi-martingale4 to characterize

the set of equilibrium payoffs in a cheap talk extension of a two-player game in which only one

player has private information. Amitai [1] has provided a characterization of the payoff set in

a two-player game with a general structure of incomplete information. As we have pointed

out in a two-player game the set of payoffs that can be implemented by cheap-talk falls

short of the full set of C.E.O.’s. However, recently Urbano and Villa [18] have shown that if

players cannot perform computations which in the computer science literature are considered

to be practically impossible, then in a two-player game every C.E.O. can be implemented

in a Nash equilibrium of a cheap talk game. Lehrer and Sorin [14] approach the problem

of implementation from a different direction. They show that the mediation device can be

restricted without affecting its power. Specifically they show that a device which receives

private messages but is deterministic and can only send public messages can still implement

every C.E.O. In Ben-Porath [6] I used a procedure of repeated random verification to show

that in complete information games a large class of correlated equilibrium distributions can

be implemented in a sequential equilibrium of a cheap talk extension of the original game.

However, the procedure that was used there would not have worked here because it would

have involved revelation of private information. Furthermore, the procedure in the previous

4The notion of a bimartingale was first introduced in the study of repeated games with lack of information
on one side (Hart [13], Aumman and Hart [3]).
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paper involves public verification of the past record. Finally, I mention two papers which

examine the effects of cheap talk in specific games of economic interest. Matthews and

Postlewaite [16] characterize the set of equilibrium outcomes with cheap talk in a two-person

double auction. They showed that this set consists of all the allocation rules which satisfy

the following two conditions: 1. An ex-post individual rationality constraint which says that

each type of each player upon learning the transaction which the rule specifies would still

want to carry it out. 2. An adapted incentive constraint which says that each type will

not benefit from misrepresenting itself even when it has the option of rejecting ex-post a

transaction which the rule specifies. Furthermore, they show that every such allocation rule

can be implemented in a simple cheap talk extension in which there is only one round of

talk. Okuno-Fujiwara et. al [17] analyze Bayesian games in which there is one round of

pre-play talk where players are restricted to exogenously specified certifiable statements, i.e.

statements which do not stand in contradiction to the truth. The paper provides sufficient

conditions for full revelation of private information and applies the analysis to different

examples of Cournot and Bertrand duopolies.

The paper is organized as follows: The model is described in section 2. In section 3 we

present a simple example which demonstrates the main ideas in our construction. In section

4 the main result, theorem 1, is proved. Section 5 discusses the extensions, theorems 2 &

3. We also show that if players can use a continimum number of messages, then any C.E.O.

which satisfies the Nash domination condition and which is a convex combination of rational

C.E.O.’s can be implemented.

2 The Model and the Main Result

Let Γ,Γ = < N, Ti, Ai, ui, µ, i ∈ N > be a Bayesian game where N = {1, ..., n} is the set of
players, Ti is the set of possible types of player i, and Ai is the set of actions for player i.

Let T = Xn
i=1Ti and let A = X

n
i=1 Ai; ui : T ×A→ R is a V.N.M. utility function for player

i. So for σ ∈ ∆(A), ui(σ, t) is the utility of player i when the profile of types is t and the

probability distribution on the profiles of actions is σ. We assume w.l.o.g. that ui(a, t) ≥ 0
for every i ∈ N, a ∈ A, and t ∈ T. Finally, µ is a probability vector on T, i.e. µ ∈ ∆(T ).
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The sets T and A are assumed to be finite. We say that Γ is a game with full support if

µ(t) > 0 ∀ t ∈ T.
The interpretation of this model is that ti ∈ Ti represents the private information of

player i. Player i of type ti assigns a probability of µ(t−i | ti) to the event that the profile
of types of the other players is t−i. A strategy si for player i is a function si : Ti → ∆(Ai).

A profile of strategies s = (s1, ..., sn) is a Bayesian Nash equilibrium if for every player i and

type ti ∈ Ti. si(ti) maximizes the expected utility of player i given her information ti.
Formally,

si(ti) ∈ arg max
σi∈∆(Ai)

X
t−i∈T−i

µ(t−i | ti)ui(σi, s−i(t−i), (ti, t−i)).

Consider now some cheap talk extension of this game Γ̂. The game Γ̂ is a finite game

in the extensive form in which players communicate after they learn their types.The commu-

nication takes some finite number of stages5 where at each stage players send simultaneously

private or public messages. At the last stage of Γ̂ the players choose simultaneously actions

in the original game Γ. We note that this general formulation allows, of course, for the case

where at a given stage only one player, or a subset of players, sends messages (the messages

of the rest are vacuous). A profile of strategies τ = (τ 1, ..., τn) in Γ̂ induces an outcome

function qτ : T → ∆(A) where qτ(t) is the probability distribution on A that is generated

by τ in the state t. We say that an outcome function q can be implemented by cheap talk if

there exists a cheap talk extension Γ̂ of Γ and a sequential equilibrium τ in Γ̂ which induces

q i.e., if q = qτ . Now it is easy to see that type ti of player i can deviate and change the

outcome function qτ without being noticed in two ways; first, by playing as though she

is some other type t0i and second by changing her actions according to some function δi :

Ai → Ai. Therefore, if τ is an equilibrium such a deviation is not beneficial for player i of

type ti. This leads us to the following definition. Let q : T → ∆(A) be an outcome function.

We let q(t)[a] denote the probability that q assigns to a in the state t, and let ui[q | ti] denote

5The number of stages depends on the game Γ.
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the expected payoff of type ti w.r.t. q. That is,

ui [q | ti] ≡
X

t−i∈T−i
µ [t−i | ti]

X
a∈A

q(ti, t−i)[a]ui(a, (ti, t−i)). (1)

We say that q is a communication equilibrim outcome, henceforth C.E.O, if

∀i ∈ N ∀ti, t0i ∈ Ti and ∀δi, δi : Ai → Ai (2)

ui [q | ti] ≥
X

t−i∈T−i
µ [t−i | ti]

X
a∈A

q(t0i, t−i)[a]ui(δi(ai), a−i, (ti, t−i)).

If we set q = qτ then the L.H.S. is the expected payoff of type ti of player i in the

equilibrium τ , while the R.H.S. is the payoff of ti if she plays as though she is type t0i and

changes her actions according to the function δi. Thus it follows that if q can be implemented

by cheap talk then q is a C.E.O. We say that q is rational if for every t ∈ T q(t) is a vector
of probabilities that are rational numbers. The general question that motivates our inquiry

is what is the set of C.E.O’s that can be implemented by cheap talk. Before we state our

result formally we point out that the set of C.E.O.’s is equivalent to the set of outcome

functions that is generated in a Nash equilibrium of a communication game that involves

a mediator. Specifically, suppose that the players can use a mediator which can receive a

private message mi ∈ Mi from each player i, conduct a private lottery, and then send back

to player i a private message ri ∈ Ri. A mediation mechanism is defined by a “strategy” of

the mediator, that is a function d, d : M → ∆(R) where M = Xn
i=1Mi and R = Xn

i=1Ri.

A mediation mechanism defines a new Bayesian game Γd where an action for player i is a

pair (mi, δi) where δi : Ri → Ai. Now let q be a C.E.O, q can be generated in a Bayesian

equilibrium of a mediation game in whichMi = Ti, Ri = Ai and d = q. The strategy of player

i is simply to report her true type to the mediator and follow the action that the mediator

recommends. We will call this strategy the ‘straightforward’ strategy. It is easy to see that

the condition which makes the profile of straightforward strategies a Nash equilibrium in the
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mediation game is exactly the condition 2 which defines a C.E.O. The revelation principle

(Myerson [15]) establishes that any outcome function q : T → ∆(A) that is generated in

an equilibrium of some mediation game can be generated in a straightforward equilibrium.

Therefore, the set of outcome functions that can be generated in a Nash equilibrium of the

mediation game is the set of C.E.O’s.

The solution notion that we use is a sequential equilibrium. Gerardi [11] constructs

an example of a Bayesian game Γ without full support in which there is a C.E.O. that cannot

be implemented in a sequential equilibrium of the mediation game. The point is that without

full support it is possible to have a situation where player i learns from the report of the

mediator that some other player has deviated at the stage where messages were sent from

the players to the mediator. The notion of Nash equilibrium does not put any restriction

on the behavior of a player outside the equilibrium path while sequential equilibrium does.

When there is full support, player i cannot learn from the report of the mediator that a

deviation has occurred and therefore it is easy to see that every Nash equilibrium in the

mediation game is a sequential equilibrium as well.

We can now present our main result.

Theorem 1 Let Γ be a Bayesian game with three or more players and full support. Let q

be a rational C.E.O in Γ. If there exists an outcome function qs that is generated by some

Bayesian Nash equilibrium s, s =(s1, ..., sn) in Γ such that:

∀i ∈ N,∀ti ∈ Ti ui[q
s | ti] < ui[q | ti]

then q can be implemented by cheap talk.

We need some additional notation and definitions. The equilibrium τ involves the

execution of many private lotteries. In all the lotteries a player i selects an element at

random from some finite set D according to the uniform distribution. In such a case we

will simply say that player i picks at random an element d ∈ D. Given a set D we let Π(D)

denote the set of permutations (i.e., bijections) on D. In the construction of τ we make use
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of a joint lottery. A joint lottery is a mechanism that generates a distribution υ from private

lotteries so that a deviation by a single player from executing her private lottery does not

change υ. The equilibrium τ involves a joint lottery which generates the uniform distribution

on a set Z = {1, ..., z̄}. The mechanism is very simple, one player picks an element z ∈ Z
at random and another player picks a permutation π ∈ Π(Z) at random. Both players

announce their choices simultaneously and the outcome of the process is the element π(z).

It is easy to see that π(z) is uniformly distributed and that a deviation by one of the players

will not change that.

3 An Example

In this section we present a simple example which motivates and demonstrates the main ideas

in the construction of the mechanism, i.e. an extended game and a sequential equilibrium

in that game, which generates a given C.E.O. q.

There are three players, and to keep things as simple as possible, only player 1 acts

and this player has no private information. The formal definition is as follows:

N = {1, 2, 3}
| T1 |= 1 T2 = {−,+} T3 = {−,+}

µ(t) =
1

4
∀t ∈ T

A1 = {ao, a1, a+,−, a−,+}

1. ui(a0, t) = 0 ∀i ∈ N ∀t ∈ T

2. ui(a1, t) = 1 i = 2, 3 ∀t ∈ T

u1(a1, t) =

 1 t = (+,+), (−,−)
−2 t = (+,−), (−,+)
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3. u1(a
+,−, (+, −, )) = 1

ui(a
+,−, t) = −2 if i 6= 1 or t 6= (+,−)

4. u1(a
−,+, (−,+)) = 1

ui(a
−,+, t) = −2 if i 6= 1 or t 6= (−,+).

Thus, the action a0 gives everyone a moderate payoff, 0, with certainty. The action a1

always gives players 2 and 3 a high payoff 1. It gives player 1 a high payoff in states (+,+)

and (−,−) and a low payoff, -2, in states (−,+) and (+,−). The actions a+,− and a−,+ are
symmetric. The action a+,− gives player 1 a high payoff in state (+,−) and a low payoff in
every other state. For players 2 and 3 a+,− is always bad, i.e. it always gives a low payoff.

Similarly, a−,+ gives player 1 a high payoff in (−,+) and a low payoff in every other state.
For players 2 and 3 this action is always bad.

Note that the expected payoff for player 1 is negative for every action that is different

than a0. Therefore there is a unique Bayesian Nash equilibrium in this game in which player

1 plays a0. Consider now the outcome function q which is described in figure 1.

State Outcome

t=(t2,t3) q(t)

(+,+) a1

(+,−) a0

(−,+) a0

(—,−) a1

Figure 1
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Since the expected payoff of each type of each player is 0.5 q pareto dominates the

Nash equilibrium a0. We also claim that q is a C.E.O. To see that, it is convenient to think

of q as the rule which determines the recommendation of a mediator to player 1 as a function

of the reports of players 2 and 3 about their types. Now it is easy to verify that: 1. Given

that player 1 follows the recommendation of the mediator, it is in the interest of players 2

and 3 to truthfully reveal their types. (In fact in this example players 2 and 3 are indifferent

between lying and telling the truth.) 2. Given that players 2 and 3 truthfully report their

types it is in the interest of player 1 to follow the recommendation of the mediator.

Note that it is important that if player 1 receives the recommendation a0 she doesn’t

know the true state - she only knows that it is either (+,−), or (−,+). More precisely player
1 assigns a probability 0.5 to (+,−) and a probability 0.5 to (−,+). If player 1 would

have known that the true state is, say, (+,−), she would have played a+,−. This example
demonstrates a general issue in the implementation of communication equilibrium outcomes

and that is the need to reveal only part of the information. A mechanism will work in

general only if each player does not learn anything beyond the information that is revealed

by the action that is recommended to the player.

Can the players implement q without a mediator? Consider a simple cheap-talk

extension Γ̃ of Γ in which in the first stage players 2 and 3 make simultaneous announcements

and then in the second stage player 1 picks an action in A1. The following claim establishes

that q cannot be implemented in Γ̃.

Claim 1: There does not exist a sequential equilibrium τ in Γ̃ which induces the outcome

function q.

The proof, which is simple, is given in the appendix.

We note that there exists an equilibrium in which players 2 and 3 truthfully reveal

their types, but in this equilibrium player 1 plays a+,− in state (+,−) and a−,+ in state
(−,+). Now it turns out that in this example there exists a cheap talk mechanism which

implements q and which is simple in comparison to the general mechanism in that it involves

only two stages of communication. In the first stage players 2 and 3 reveal to each other

simultaneously, but not to player 1, their types. In the second stage each one of them sends

a private message to player 1 recommending a1 in case the announcements in the first stage
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were (+,+) and (−,−), and recommending a0 if the announcements were (+,−) or (−,+).
If the recommendations of players 2 and 3 are identical, player 1 follows them, and if the

recommendations are not identical, (which is an out-of-equilibrium event), player 1 plays

a0. It is straightforward to verify that these strategies constitute a sequential equilibrium.

However, note that during the play of the extended game player 2 learns the type of player

3 and player 3 learns the type of player 2. It is easy to construct an example of this sort

(player 1 acts and players 2 and 3 have private information), in which the knowledge of

players 2 and 3 about the type of the other will make the implementation of some C.E.O.’s

impossible. So again, the point is that the mechanism will work in general only if it does

not reveal to a player any information beyond the action that should be played.

We now turn to the construction of such a mechanism. The mechanism is composed

of two elements:

1. A protocol P which generates q.

2. A monitoring procedure which provides players with incentives to follow the

prescriptions of P.

We let t̂ = (t̂2, t̂3) denote the true state of nature, A1 : T → A1 is the function that

associates with each state t the action that is played by player 1 in t. So in our example

A1(t) = q(t).
We can now define the protocol .

THE PROTOCOL

I. Player 2 picks at random a permutation ψ ∈ Π(T2) and sends ψ(t̂2) to

player 3.

II. Player 2 picks at random a permutation σ ∈ Π(T ) = Π(T2×T3). Player
2 sends σ to player 3 and sends player 1 the function:

Aψ,σ
1 (t) ≡ A1(ψ−1 ◦ σ−12 (t), σ−13 (t)))
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Aψ,σ
1 is a “key” that will be used later on. Specifically player 1 can compute her

action in t̂, A1(t̂), by applying Aψ,σ
1 on σ(ψ(t̂2), t̂3).

III. Player 3 picks at random a permutation β ∈ Π(T ). She sends player

1 β ◦ σ(ψ(t̂2), t̂3) and sends player 2 β.

Define:

X0 ≡ {(+,−), (−,+)}
X1 ≡ {(+,+), (−,−)}.

Thus, X0 is the set of states in which player 1 plays a0 and X1 is the set of states in

which she plays a1.

The important features of P are the following:

(1) When player 1 will learn β she will be able to compute her action in the true

state A1(t̂). She will do that by applying β−1 on β ◦σ(ψ(t̂2), t̂3) to get σ(ψ(t̂2), t̂3) and then
applying Aψ,σ

1 on σ(ψ(t̂2), t̂3) to get A1(t̂).
(2) Furthermore, player 1 will not learn anything beyond her action, A1(t̂).
More precisely if t̂ ∈ X0 then after learning β player 1 assigns to the state (−,+)

the probability µ((−,+)/X0) = 0.5 and to the state (+,−), she assigns the probability
µ((+,−)/X0) = 0.5. Similarly if t̂ ∈ X1 the probabilities that player 1 assigns to (+,+) and
(−,−) after learning β are 0.5 and 0.5.

(3) At the end of the protocol P (but, before player 1 learns β), each player

does not know anything beyond what she knew at the beginning of P. More precisely the

probability distribution of each player at the end of P about the state of nature and the

action of player 1 in it is the initial distribution.

Properties 2 and 3 are intuitive. Their proof relies on the following simple obser-

vation. Let Y be a set and let y ∈ Y be an element which is selected according to the
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probability µ ∈ ∆(Y ). Let σ ∈ Π(Y ) be a permutation on Y that is selected according to

the uniform distribution on Π(Y ). Then the value of σ(y) does not give any information on

the value of y.

A complete proof of property 2 is given in the appendix (Claim 2). The proof of

property 3 is similar.

It follows from properties (1) and (2) that if players 2 and 3 could have been trusted

to follow the prescriptions of the protocol and to announce β at the end then that would

have constituted a mechanism which implements q.6

The problem is that player 2 can benefit by manipulating the protocol. To see this,

suppose that t̂2 = +. Player 2 can induce player 1 to play a1 both at (+,+) and (+,−) in
the following manner: Player 2 sends to player 3 ψ = I and σ = I, (where I is the identity

permutation), but to player 1 she sends the function A01,A01 6= Aσ,ψ
1 , which is defined as

follows:

A01(t) =
 a1 t = (+,+), (+,−)
a0 t = (−,+), (−,−)

Since σ(ψ(t̂2), t̂3) = (t̂2, t̂3), this manipulation will indeed cause player 1 to play a1 in

(+,+) and in (+,−). Note that player 1 has no way of recognizing that she is manipulated
because there are permutations (ψ0,σ0) such that A01 = Aψ0,σ0

1 .

It follows that there is a need for a procedure which will provide incentives for the

players to follow the prescriptions of the protocol. We therefore now turn to the description

of the second component of the mechanism.

We start by noting that if at the end of the protocol all the players simultaneously

announce their private records, that is, each player announces all the messages that she

received and sent, then:

(a) If a player i lies about her record then, given that the other players are truth-

fully reporting their records it will become common knowledge that someone has lied. This

6In fact if that was the case we could have simplified things by omitting the selection of β, that is,
substituting step 3 with a move in which player 3 sends player 1 σ(ψ(t̂2), t̂3).
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follows because every message that is received or sent by player i is sent or received by some

other player j. So if player i lies about some message m there will be a mismatch between

his announcement and the announcement of the player j who sent or received m.

(b) If players truthfully report their records, then a deviation of player i, i = 2, 3,

from the prescriptions of the protocol, which involves sending to another player j a message

that is inconsistent with messages that i received from, or sent to, other players, will be

publicly revealed. In particular, the deviation of player 2 which we described above will be

exposed because A01 is inconsistent with σ = I. That is, A01 6= AI,ψ1 for ψ ∈ Π(T2). There

are two types of deviations which will not be revealed:

(1) Player i deviates in the way she conducts her private lottery, that is, she picks

a permutation according to a probability distribution which is different from the uniform

distribution.

(2) Player i of type t̂i plays as a type ti 6= t̂i.7
A deviation of the first kind does not change the outcome of the game, (the only

purpose of the private lotteries is to hide information from the other players), and it follows

from the definition of q as a C.E.O. that a deviation of the second kind will not benefit player

i.

Thus, it follows from (a) and (b) that simultaneous announcements of the private

records is a procedure which will reveal any deviation which could increase the payoff of the

player. So at first sight it might seem that the following mechanism implements q : First,

players play the protocol P. When the play of P is complete each player announces her

private record. The announcements are made simultaneously. If the announcements reveal

a deviation then the punishing Nash equilibrium s is played. If no deviation is revealed

player 1 proceeds to play the action that is suggested by the protocol. Since for each type of

each player the payoff in s is lower than the payoff in q it seems that this mechanism induces

players to follow the prescriptions of P. However, there is a problem with this mechanism:

The public revelation of the whole record exposes the private information of the players. In

our example the revelation of σ and Aψ,σ
1 reveals ψ. Once ψ is known t̂2 can be deduced

7A deviation by player 2 where she sends player 1 the function Aσ,ψ and sends player 3 at the first stage
the message ψ0(t̂2) where ψ0 6= ψ is, of course, equivalent to deviating by playing as a type t2 6= t̂2.
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from ψ(t̂2) and t̂3 can be deduced from σ(ψ(t̂2), t̂3). So the true state t̂ is revealed and we

have seen that when the true state is revealed player 1 will not play a0 in (+,−), and (−,+).
The main new idea in the paper is to “fix” this mechanism in the following way: The

players will play the protocol P many times and they will do that for each possible profile

of types. (Player 1, of course, does not yet act). When all the different plays of P are

complete the players conduct a joint lottery which selects a “big” subset B of the plays.

(B will be specified later). For each play of P, p, that belongs to B there is a stage in

which players publicly and simultaneously announce their private records in p.If, for some p,

p ∈ B, these public announcements reveal that there was a deviation from the prescriptions
of the protocol in the play of p then players proceed to play the punishment equilibrium

s.If, on the other hand, for every p, p ∈ B, the announcements reveal compliance with P
then a play p̂, p̂ /∈ B, which corresponds to the true profile of types t̂ = (t̂2, t̂3) is selected,
players 2 and 3 announce β, and the action A1(t̂) is played. (If one of the players deviates
and announces γ 6= β then there is mismatch in the announcements and the punishment s

is played. More on that later.) This is done without the players learning t̂. (The way in

which this is done will be specified in the formal description that follows.) Now, the point is

that when a player, say, player 2, contemplates a deviation from P in the play of some p she

does not know whether p will belong to the set B or not (because the set B is determined

later by a joint lottery). Since the number of plays in B is close to the total number of

plays and since B is chosen according to the uniform distribution the probability that p will

belong to B is high and therefore a deviation from P in the play of p will be revealed with

a high probability. Since the result of such a revelation will be the play of the punishment

equilibrium s player 2 will lose from deviating. We note that the public announcements of

the private records for each play p, p ∈ B, do not reveal the true profile of types t̂ because
players play the protocol P the same number of times for each possible profile of types.

We now turn to a precise description of this construction. Let W be the largest

expected payoff that some type ti of some player i can make by deviating from the prescrip-

tions of P assuming that that deviation will be unnoticed. In our example it is easy to see

that only player 2 can gain by deviating from P and that the maximal expected payoff that

she can get is 1. Therefore W = 1.
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Let Z = {1, ..., z̄} where z̄ satisfies the following inequality for each type ti of each
player i.

z̄ − 1
z̄

· ui[qs | ti] + 1
z̄
·W < ui[q | ti]. (3)

In our example the payoff of each type of each player in the Nash equilibrium s is

zero so that ui[qs | ti] = 0. The expected payoff of each type of each player in the C.E.O. q
is 0.5 so ui[q | ti] = 0.5. Since W = 1, z̄ can be 3.

With each z ∈ Z = {1, 2, 3} we associate | T | = 4 plays of the protocol P a play

p(z, t) for each profile of types t (so on the whole there are 12 plays of P ). It is important

that when p(z, t) is played t = (t2, t3) is not known, (that is, player i only knows ti.)

Thus, we want the players to play P for every profile t ∈ T but without knowing
which t they are playing. This is done in the following way: Let R be some order on

T that is commonly known. For example R could be the order (+,+), (+,−), (−,+),
(−,−). For each z ∈ Z each player i, i = 2, 3 picks at random a permutation σzi ∈ P (Ti),
where the choices of the different σzi , z ∈ Z, are independent of each other. For each

z ∈ Z the four plays p(z, t), t ∈ T, are conducted in the following order. Players move

along the set T according to the order R and when the element t0 = (t02, t
0
3) is reached they

play p(z, (σz2(t
0
2), σ

z
3(t

0
3))). (So they start by playing p(z, (σ

z
2(+), σ

z
3(+))) and terminate by

playing p(z,σz2(−), σz3(−)). In this manner each p(z, t) is played but ti is not revealed to
the players different from i. When all the plays p(z, t) are complete there is a public joint

lottery in which an element ẑ is picked at random. Then all the plays (z, t), t ∈ T, z 6= ẑ,
are checked (there are eight such plays). That is, for each (z, t), z 6= ẑ the players announce
publicly and simultaneously their private records in the play (z, t). If the announcements

for some (z, t) reveal a deviation then the players play the punishing Nash equilibrium s

and the game terminates. If for each (z, t), z 6= ẑ, there is no deviation in the play of

the protocols then players select the protocol p(ẑ, t̂). The selection of (ẑ, t̂) is simple: Each

player i, i =, 2, 3 announces t̄i = (σẑi )
−1 ¡t̂i¢ . It follows from the definition of the process by

which the player plays the different protocols p(z, t) that the protocol which corresponds to
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(ẑ, t̄) is p(ẑ, t̂). Also, since the permutations σ
ˆ
z
i , i = 2, 3 were picked at random, no player

learns anything about the true state t̂ beyond what the player knew at the beginning (i.e.,

her type). Once p(ẑ, t̂) is selected, players 2 and 3 announce β simultaneously, and then

player 1 plays the action that is suggested by p(ẑ, t̂), namely A1(t̂). If players 2 or 3 deviates
and announces γ 6= β then there will be a mismatch in the announcements of players 2 and

3 and in such case the punishment s will be played.

To summarize the protocol is played | Z | × | T | times. When | Z | is large the
probability that a deviation from the prescriptions of the protocol will be revealed is high.

The reason that for every z ∈ Z there are | T | plays of the protocol, a play for each t ∈ T ,is
to avoid a situation where the public announcements of the private records reveal information

on the true types of the players.

We have completed the description of the mechanism that implements q. To verify

that the strategies of the players indeed constitute an equilibrium we note that:

(1) It follows from the inequality (3) that player i, i = 2, 3 will not gain by

deviating from the prescriptions of the protocol in one, or more, of the plays p(z, t). (The

l.h.s. of (3) is an upper bound on the expected payoff of player i of type ti if she deviates,

while the r.h.s. is her expected payoff if she complies).

(2) It follows from the properties of the protocol (page 15) and from the fact that the

permutations σẑi , i = 2, 3, are picked at random that:

(a) After the selection of p(ẑ, t̂), (which is done by the announcements of t̄i), and

before the announcements of the permutations β no player has obtained any information

(beyond, of course, her type), on the state of nature and the action of player 1.

(b) After the announcements of β player 1 learns her action A1(t̂) but nothing
beyond that.

It follows from (a) that it is not in the interest of player i, i = 2, 3, to deviate at the

last stage of the game by announcing a permutation γ 6= β. Such a deviation will lead to

the play of the punishment equilibrium s while the fact that player i has no new information

implies that her expected payoff if she sticks with the equilibrium and plays β is µi[q | t̂i].
Next, it follows from (b) and, of course, from the fact that q is a C.E.O. that it is in

the interest of player 1 to play A1(t̂).
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(3) Now, suppose that player i, i = 2, 3, deviates at the stage in which p(ẑ, t̂) is

selected by misrepresenting her type, i.e. by announcing a type t̃i 6= t̄i. This will lead to the
implementation of the action A1(σẑi (t̃i), t̂j). It follows from (a) and from the definition of q

as a C.E.O. that player i will not gain from this deviation. Finally, suppose player i deviates

at the stage in which the different plays of P are carried out by playing as a type t0i when

she is supposed to play as type ti. There are two possibilities. The deviation is exposed at

the stage in which the records are publicly announced. In this case the punishment s will

be played. Or, the deviation is not exposed, in which case the deviation affects the outcome

of the game only if it was done in the play p(ẑ, t̂), (so that the outcome is A1(t0i, t̂j) instead
of A1(t̂)). In this case the deviation is equivalent to the deviation we discussed previously.
Thus, in any case a deviation is not worthwhile.

4 The proof of Theorem 1

We turn now to a description of the equilibrium τ for the general case.

There are two differences between the example and the general case. First, in the

general case the outcome function q assigns with each profile of types t a probability distri-

bution on A and not necessarily a single action in A like in the example. Second, in the

general case each player acts and has private information. As we will see the protocol of

communication can be modified so that it can incorporate these two extensions. Thus the

difference between τ and the equilibrium in the example, henceforth τ e, is the protocol of

communication. Otherwise, the two equilibria are similar. In particular, the equilibrium

τ , like τ e, is built of two components: 1. A protocol of communication P which for a given

profile of types t generates the distribution q(t) ∈ ∆(A), and 2. A monitoring procedure

which provides players with incentives to follow the prescriptions of P. Furthermore, the

monitoring procedure in τ is similar to the one in τ e.

We now turn to a definition of the protocol P. Let q : T → ∆(A) be a rational outcome

function. First we note that since q is rational, there exists a natural number L such that for

every profile of types t = (t1, ..., tn) there exists a function At : Y → A where Y = {1, ..., L},
such that picking at random an element y ∈ Y and then applying At on y generates the
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distribution q(t) on A. Let t̃ = (t̃1, ..., t̃n) be a profile of types. We will describe the play of

the protocol where player i plays as though she is type t̃i. The protocol consists of 9 steps.

In steps (I)-(III) there is a mechanism which leads player n to implement a lottery on the set

A that corresponds to the distribution q(t̃), without any player obtaining any information

on the types of the other players and the profile of actions that was selected in this process.

This is done as follows:

I. For every i = 1, ..., n − 1 player 1 chooses at random a permutation Ψi ∈ Π(Ti). In

addition player 1 chooses at random a permutation α ∈ Π(Y ). The choices of Ψi and α

are independent of each other. Finally player 1 reveals to players 2, ..., n− 1, but not to n,
the permutations Ψi and α.

II. Player i, i = 1, ..., n− 1, sends to player n the message Ψi(t̃i).

III. Player n picks at random an element ȳ ∈ Y.
Define Ψ, Ψ : T → T by Ψ(t) ≡ (Ψ1(t1), ...,Ψn−1(tn−1), tn). Let t̄ = Ψ(t̃) and let

x̄ = (t̄, ȳ). The profile of actions that corresponds to x̄ is defined as:

AΨ−1(t̄) ◦ α(ȳ).

This is the profile of actions that will be played if the current protocol is selected as

the protocol to be implemented.

Note that:

1. A random choice of ȳ followed by an application of AΨ−1(t̄) ◦ α generates the distribution
q(t̃) because Ψ−1(t̄) = t̃ and because a random choice of ȳ generates a uniform distribution

of α(ȳ) on Y.

2. No player has obtained any information about the types of the other players or the

value of α(ȳ). Therefore no player has obtained any information about the profile of actions

a = AΨ−1(t̄) ◦ α(ȳ).
Let X ≡ T × Y. We thus define a function A : X −→ A as follows. Let x = (t, y)
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A(x) ≡ AΨ−1(t) ◦ α(y).

In steps (IV)-(VII) there are procedures which lead to a situation where for each

player i there is some message m̂i that is held by another player so that when player i learns

m̂i she can compute her action, ai. Also, players different from i do not learn anything about

ai. Step IV deals with players 1, ..., n− 1 and steps (V)-(VII) with player n.
IV. For each i, i = 2, ..., n− 1, player 1 picks at random a permutation σi ∈ Π(X). The

choices of the different σi are independent. Player 1 sends player i the function Ai◦σ−1i and

sends player n all the σi, i = 2, ..., n−1. Player 2 picks at random a permutation σ1 ∈ Π(X),

she sends σ1 to player n and sends A1 · σ−11 to player 1. (The function Aj, j = 1, ..., n− 1
is the projection of A on Aj).

At the end of step (IV) player i, i = 1, ..., n − 1 can compute her action, Ai(x̄),
once she learns σi(x̄) which is held by player n. Player i will be able to compute her action

by applying Ai ◦ σ−1i on σi(x̄). Also, the value σi(x̄) does not reveal to player i any new

information beyond her action in x̄ because the permutation σi was chosen at random.

In steps (V)-(VII) there is a procedure that terminates in a situation where player n

can learn her action An(x̄) if player 1 tells her the index ı̄ of An(x̄) in a sequence of actions
that player n receives from player 2. This is done as follows:

V. Player n picks a permutation σn ∈ Π(X) at random. Player n sends player 1 σn(x̄)

and sends player 2 σ−1n .

VI. Player 1 picks at random a permutation ϕ1 ∈ Π(X) and sends it to player 2 .

VII. Let R be some order on X that is common knowledge among the players. Player

2 sends to player n a message that consists of a sequence of | X | actions for player n that
is defined as follows. If xi is in place i, i = 1, ..., | X | according to the order R, then the
ith element in the sequence is the action of player n in the element σ−1n ◦ ϕ1(xi), that is,
An ◦ σ−1n (ϕ1(xi)).

Let ı̄ denote the index that satisfies ϕ1(xı̄) = σn(x̄). Note that An(x̄) is the ı̄th
element in the sequence that player 2 sends player n so when player n learns ı̄ she learns her
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action An(x̄). Player n does not learn anything beyond An(x̄) because the permutation ϕ

was picked at random by player 1. (Note, however, that currently player n does not know ı̄.

She will learn it later.)

Let m̂i = σi(x̄) for 1, ..., n− 1, (where σi(x̄) was defined in step IV) and let m̂n = ı̄.

At the end of step (VII) we are in a position where for each player i there is a message

m̂i, which is held by some other player, such that when player i will learn m̂i she will be

able to compute her action. The messages m̂i, i = 1, ..., n will be revealed in the last stage of

the communication just before players choose their actions. The problem is that the player

who holds the message m̂i (which is player n if i = 1, ..., n− 1 and player 1 if i = n) can

misrepresent it without the other players noticing that a deviation has occurred. To deal

with this problem each message m̂i is dispersed so that it is held by two players. This is

done in steps (VIII) and (IX). In step (VIII) the messages m̂i = σi(x̄) i = 1, ..., n− 1 are
dispersed. In step (IX) the message m̂n = ı̄ is dispersed.

VIII. For every i = 1, ..., n − 1 player n chooses at random a permutation βi ∈ Π(X).

Player n sends player i βi(σi(x̄)), in addition for i = 2, ..., n− 1 she sends βi to player 1

and she sends β1 to player 2 .

At the end of step (VIII) player i, i = 1, ..., n − 1, can compute her action if she
knows βi, (she applies β

−1
i on βi(σi(x̄)) to get σi(x̄) and then applies Ai ·σ−1i on σi(x̄) to get

Ai(x̄)). Define mi ≡ βi. Now mi is held by both player n and another player. So when

there are public announcements of mi no player can misrepresent mi without contradicting

another player and in this way publicly revealing a deviation.

IX. Player 1 chooses at random a permutation βn ∈ Π({1, ..., | X |}). Player 1 sends
βn(̄ı) to player n and sends βn to player 2.

At the end of step(IX) player n can compute her action if she knows βn . So we

define mn ≡ βn. Now the message mn is held by both players 1 and 2. So if and when they

are called to publicly announce mn neither one of them can deviate without contradicting

the other and revealing by this contradiction publicly that there was a deviation.

We have completed the description of the protocol. We now summarize its general

structure and list its important properties. These properties are similar to the properties of
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the protocol in the example. Given a profile of types t = (t1, ..., tn) a play of P generates a

distribution on profiles of messages m = (m1, ...,mn) such that:

1. When the messages {mj}j∈N will be made public each player i will learn her action ai
and nothing beyond this. More precisely the probability distribution of player i on the set

A−i × T−i after she learns {mj}j∈N is player i’s probability distribution at the beginning of
the protocol conditional on her action being ai.

2. The play of P generates the distribution q(t) on A via the correspondence between

m = (m1, ...,mn) and a = (a1, ..., an).

3. The protocol P does not include the public announcements of the messages {mj}j∈N .
These announcements are made at the final stage of the communication game after the

monitoring procedure. At the end of P the probability distribution of each player i on

A × T−i is her distribution at the beginning of P. In particular player i does not learn

anything about her own action ai. Thus, at the end of P each message mj, j ∈ N, is held
by some players but the set of messages that a player holds does not reveal to him anything.

There are two additional properties of P which have to do with the possibility to

recognize deviations.

4. If each player i truthfully announces her whole record, that is, the outcomes of her

private lotteries, the messages she received and sent and their timings, then it becomes

common knowledge whether players have followed the prescriptions of the protocol.8 If a

player i lies about her record then the fact that someone lied will be publicly revealed.

5. If a player i deviates at the final stage of the communication game by announcing mes-

sages that are different than the messages mj that she holds, then it will become common

knowledge that someone has deviated.

Properties (2) and (5) have been demonstrated during the description of the protocol.

Specifically property (2) follows because the application of the function A(x) generates the
distribution q(t̃) and property (5) follows because each messagemi is held by two players so a

misrepresentation of mi by one of the players will reveal a mismatch with the announcement

8There are stages in the protocol in which a player performs a private lottery. It is, of course, impossible
to verify that the player performed the correct lottery but since in such cases the player is indifferent among
the outcomes she has no incentive to deviate.
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of the other player that holds mi. Properties (1) and (3) are similar to properties (2) and

(3) of the protocol in section 3. In particular player i can compute her action ai given mi

(see steps (VIII) and (IX)), and she does not learn anything beyond her action ai from

the revelation of the message mj, j ∈ N. Also, the public announcement of the messages
mj, j ∈ N, is not part of the protocol P, it comes after the monitoring procedure. So at the
end of P, player i0s probability distribution on A× Ti is her probability at the beginning of
P. The formal proof of these properties is similar to the proof of Claim 2 in the appendix.

Finally, property (4) is similar to properties (a) and (b), (pages 16-17), in the discussion of

the example in section 3.

We can now turn to the final step and that is a precise definition of the structure of τ .

As we have pointed out at the beginning of the section the structure of τ given the protocol

P is similar to the structure of the equilibrium in section 3.

LetW be the largest payoff that some type ti of some player i can get from deviating

from the protocol. Let Z ≡ {1, ..., z̄} where z̄ satisfies inequality (3) for every type ti of
player i. That is,

z̄ − 1
z̄

· ui[qs | ti] + 1
z̄
·W < ui[q | ti].

With each z ∈ Z we associate | T | plays of the protocol, a play p(z, t) for each
profile of types t (so on the whole there are K = z̄ | T | plays). This is done as follows:
Let R be an order on T which is common knowledge between the players. For each z ∈ Z
each player i chooses at random a permutation σzi ∈ Π(Ti) where the choices of the different

σzi , z ∈ Z, are independent of each other. For each z ∈ Z the plays p(z, t), t ∈ T, are
conducted in the following way: Players move along the set T according to the order R

and when the profile t0 = (t01, ..., t
0
n) is reached they play p(z,σ

z(t0)), that is, player i plays

as type σzi (t
0
i). In this way when p(z, t) is played the players different from i do not know

the type ti that is played by player i. When all the plays p(z, t) have been completed there

is a public joint lottery in which an element ẑ ∈ Z is chosen at random. Then all the

plays p(z, t), t ∈ T, z 6= ẑ, are checked, that is, for each (z, t0), z 6= ẑ, t0 ∈ T the players
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announce publicly and simultaneously their records in the play p(z,σz(t0)). If for some (z, t0)

the announcements reveal a deviation then the players play the Nash equilibrium s and the

game terminates. If for each (z, t0), z 6= ẑ there is no deviation then each player i announces
t̄i = (σẑi )

−1(t̂i) where t̂i is the true type of player i. Those announcements select the play

p(ẑ, t̂) and now players announce simultaneously the messages mi that correspond to this

play. If these announcements reveal that someone is lying then the Nash equilibrium s is

played. If no deviation is observed then each player i plays the corresponding action ai.

We have completed the description of the structure of the equilibrium τ given the

protocol. We now show that:

(i) The strategies that were described indeed constitute an equilibrium, i.e., no

player has an incentive to deviate.

(ii) The equilibrium τ generates the C.E.O. q.

The proof is, in fact, identical to the proof in section 3. For the sake of a complete

and clear description we give it here as well.

Property (ii) is immediate: If there is no deviation then the profile of actions that is

played, a, is the profile of actions that is generated by an application of the protocol P on

the true profile of types t̂. It follows from property 2 of P that a is generated according to

the distribution q(t̂).

Consider now (i). When the plays, p(z, t), z ∈ Z, t ∈ T are conducted ẑ is uniformly
distributed. It follows from property (4) of the protocol that if some player i deviates

from the prescriptions of the protocol in one or more of the plays then the probability that

the existence of a deviation will be publicly revealed is at least
z̄ − 1
z̄
. When a deviation

is revealed the Nash equilibrium s is played. Now it follows from inequality (3) that the

expected payoff from the deviation is smaller than ui[q | ti] which is the expected payoff of
player i if she doesn’t deviate. (Here we are also using property 3 which implies that since

player i gets no information during the plays of the protocol the assessment of player i of

type ti of her payoff if she sticks to her equilibrium strategy is indeed ui[q | ti].) Thus, it is
not worthwhile to deviate from the prescriptions of P in any one of the plays p(z, t). It is also

not worthwhile to deviate in the final stage by announcing messages that are different from

the messages produced by the protocol p(ẑ, t̂) because such a deviation will be revealed by
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property 5, a play of s will follow, and since ui[qs | t̂i] < ui[q | t̂i] player i is worse off. Next,
it follows from the definition of q as a C.E.O. and from properties 1, 2 and 3 that player

i of type t̂i cannot gain from misrepresenting himself by announcing an element t0i, which

is different from (σẑi )
−1(t̂i), and, or by playing an action that is different from the action

suggested by the message mi that is generated by P . Finally, suppose player i deviates at

the stage in which the different plays of P are carried out by playing as a type t0i when she

is supposed to play as type ti. If the deviation is exposed at the stage in which the records

are publicly revealed then the punishment s will be played. If the deviation is not exposed

then the only case in which it affects the outcome of the game is when the play that is

implemented is p(ẑ, (t̂−i, t0i)) where t̂ = (t̂i, ..., t̂n) is the true profile of types and t
0
i 6= t̂i. As

we have just seen it follows from the definition of q as a C.E.O. and from properties 1, 2 and

3 that player i of type t̂i does not gain from such a deviation.

We have verified that a player cannot gain by deviating. Thus, we have completed

the proof that τ is an equilibrium which implements the outcome q.

5 Extensions

Theorem 1 does not provide a complete characterization of the set of outcomes that can be

implemented by cheap talk. In this section we discuss three extensions of theorem 1 which

make an additional step in that direction. The first two results, theorems 2 and 3, show

that with additional assumptions it is possible to weaken the “Nash domination” condition

in theorem 1, that is the condition that there exists a Nash equilibrium s such that the payoff

of each type of each player in s is lower than her payoff in the C.E.O. to be implemented,

q. The third extension is technical. We show that if players an use a continimum number

of messages, then every C.E.O. q which is a convex combination of rational C.E.O’s and

which satisfies the Nash domination condition can be implemented by cheap talk. Our first

result, theorem 2, establishes that when there are at least five players a C.E.O. q can be

implemented if for every pair of players, i, j there is a C.E.O. qi,,j such that the payoff of

each type of players i and j in qi,j is lower than her payoff at q. Formally:
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Theorem 2 Let Γ be a Bayesian game with at least five players and let q̄ be a rational

C.E.O. in Γ such that for every pair of players i, j, there exists a C.E.O. qi,j which satisfies

∀tk ∈ Tk, k = i, j, uk[qij | tk] < uk[q̄ | tk]. Then q̄ can be implemented by cheap talk.

Note that the Nash domination condition in theorem 1 is weakened in two ways.

First, it is not necessary to have an equilibrium that punishes all the players. Second, the

punishments do not have to be Nash equilibria, they can be C.E.O.’s.

Our second result, theorem 3, assumes the possibility of public verification of the past

record. This means that at a given point of time, players can credibly reveal their records

so everyone sees the actual messages that were sent at each stage. We have:

Theorem 3 Let Γ be a Bayesian game and let q̄ be a rational C.E.O. in Γ such that for

every player i there exists a C.E.O. qi which satisfies:

∀ti ∈ Ti ui[qi | ti] < ui[q̄ | ti]..

If there are four or more players in Γ and if public verification of the record of com-

munication is possible then q̄ can be implemented by cheap talk.

Note that in theorem 3 the “Nash domination”condition has been further weakened

in that each player may have a different punishment.

The proofs of theorems 2 and 3 are similar. It is more convenient to start with

theorem 3. Since the construction of the equilibrium τ̄ which implements a C.E.O. q̄ that

satisfies the conditions of the theorem is a simple extension of the construction in section 4

we will not repeat all the details but just outline the main steps.

The first observation is that public exposure of the record of a play p of the protocol

P publicly reveals the identity of each player that has deviated from the prescriptions of the

protocol because in contrast to the case where there is only cheap talk here everyone learns

the actual messages that have been sent. The general structure of τ̄ is as follows: Let

Q = {q̄, q1, ..., qn}. Let P q, q ∈ Q, denote the protocol which implements q. For each q ∈ Q,
the protocol P q is played many times and for each profile of types just like in the proof of
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theorem 1. Specifically for each q ∈ Q the protocol P q is played z̄ | T | times where z̄ is
large enough so that it satisfies the following condition: For every i ∈ N and ti ∈ Ti :

z̄ − 1
z̄

· ui[qi | ti] + 1
z̄
·W < ui[q̄ | ti]. (4)

Thus, for every (q, z, t), q ∈ Q, z ∈ Z ≡ {1, ..., z̄}, t ∈ T there is a play p(q, z, t)
of the protocol P q. When all these plays are complete there is a joint lottery in which an

element ẑ ∈ Z is picked at random. Then all the records in all the plays p(q, z, t) z 6= ẑ,
q ∈ Q, t ∈ T, are publicly revealed. If there is no deviation in all the records that are

revealed then players proceed to implement the outcome of the play p(q, ẑ, t̂) where t̂ is the

true profile of types. This is done in a way which is similar to the play in the equilibrium τ .

Suppose now that the public exposure of the records reveals that some players have deviated.

Let i be the player who made the first deviation w.r.t. the order in which the different plays

p(q, z, t) were conducted. In this case players will proceed to implement the outcome of

the play p(qi, ẑ, t̂), that is, they will implement the C.E.O. qi which punishes player i. It

follows from inequality (4) that player i should not deviate. Now the reader who has not

been completely exhausted yet might notice that there are two difficulties that should be

addressed:

1. What happens if player i deviates in the plays that correspond to his punish-

ment qi? Maybe he can turn his punishment into a reward!

2. What if player i deviates at the stage in which the messages mj, j = 1, ..., n

are announced. As the equilibrium stands the identity of i is not revealed. The only thing

that is revealed is that player i contradicts some other player j.

Both these difficulties can be overcome if the number of players is at least four. To

see that, consider again the protocol P in section 4. Note that there are only three “active”

players - 1, 2 and n. While the only thing that other players do is report their respective

types (encoded) in step 1. In other words the only way in which a player j, j 6= 1, 2, n,

can effect the outcome of the protocol is by misrepresenting her type and/or following an

action which is different from the action that the protocol prescribes. It follows from the
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definition of a C.E.O. that such deviations are not beneficial. Now, since there are at least

four players we can assign roles to players in the protocol that implements qi so that the

“active” players are different from i. In such a protocol player i will have no incentive to

deviate. We have addressed the first difficulty. The second difficulty can also be easily

solved using again the fact that there are at least four players. This is done by modifying

the protocol as follows: In step 8 player n sends the message βi to two different players

(rather than just one). Similarly in step 9 player 1 sends βn to two different players. Now

in the final stage of the game each message mi = βi, i = 1, ..., n is held by three players.

Let i be a specific player and let j, k and ` denote the players which hold the message mi.

At the final stage of the game when player i hears the announcements of j, k and ` player i

takes the announcement that was made by the majority as the message mi. Since there are

three players which are announcing the message a deviation by one of them will not change

the fact that mi is announced by the majority.

We have completed the proof of theorem 3. The proof of theorem 2 is similar in

nature. The difference is that the identity of a deviator is not revealed. Specifically, if

a player i deviates by sending player j a message that is different from the message which

the protocol prescribes then, (assuming that player i will try to cover her deviation), public

revelation of the private records only reveals that the deviator is either player i or player j.

Therefore we construct an equilibrium τ̃ which implements q̄ as follows. With every

C.E.O. qi,j we assign a protocol P q
i,j
which implements qi,j and in which the “active” players

are different from i and j. This is possible because we are assuming that there are at least

five players. The structure of the equilibrium is now clear. Let Q̃ = {qi,j | i, j ∈ N} ∪ {q̄}.
For each q ∈ Q̃ the protocol which corresponds to q, P q is played z̃ | T | times where z̃
satisfies the following condition for every i, j ∈ N and ti ∈ Ti :

z̃ − 1
z̃

· ui[qi,j | ti] + 1
z̃
W < ui[q̄ | ti].

When all the plays p(q, z, t), q ∈ Q, z ∈ Z = {1, ..., z̃}, t ∈ T are complete there
is a joint lottery in which an element ẑ ∈ Z is picked at random. Then there are public
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announcements of all the private records in all the plays p(q, z, t), z 6= ẑ. If the announce-
ments do not reveal any deviation the players proceed to implement the outcome of p(q, ẑ, t̂)

where t̂ is the true profile of types. Otherwise, let i, j ∈ N be the first pair of players that

contradict each other according to the order of the moves in which the game was played. In

this case players will proceed to implement the outcome of the protocol p(qi,j, ẑ, t̂).

It is easy to see that the arguments which were given in the proof of theorem 2

establish that τ̃ is an equilibrium.

Finally, consider theorem 1 again. We will show now that if players can use a

continimum number of messages then any C.E.O. q̂ which is a convex combination of rational

C.E.O’s. and which satisfies the Nash domination condition can be implemented in cheap

talk. So suppose that q̂ =
Pk

`=1 α`q̂` where each q̂` is a rational C.E.O, 0 ≤ α` ≤ 1, ` = 1, ..., k
and

Pk
`=1 α` = 1. Let s be Bayesian Nash equilibrium which is dominated by q̂.

First, we claim that we can assume w.l.o.g. that each q̂` dominates s.This follows

because we can choose the C.E.O.’s q̂` to be close to q̂. The formal proof of the claim is

omitted.9 To implement the C.E.O. q̂ we extend the mechanism which was described in the

proof of theorem 1 as follows: At the beginning of the extended game, players 1 and 2

conduct a joint public lottery which selects the C.E.O. q̂` with probability α`. This is done

as follows: Let 0 = x1 < x2, ..., < xk+1 = 1 be a partition of the segment [0, 1] to intervals

such that x`+1 − x` = α`, ` = 1, ..., k. Player i, i = 1, 2, conducts a private lottery in which

she chooses a number αi ∈ [0, 1] according to the uniform distribution. Then players 1 and

2 announce publicly and simultaneously the numbers α1,α2. If α1 + α2(mod 1)∈ [x`, x`+1)
then players will play the mechanism with implements q̂`. This procedure implements q̂.

9The proof can be obtained from the author upon request.
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APPENDIX

Proof of Claim 1 in Section 3: Let Γ̂ be an extended game in which in the first stage

players 2 and 3 make simultaneous announcements and then in the second stage player 1

picks an action in A1. Let Mi, i = 2, 3 be the set of messages of player i. A strategy for

player 1 is a function τ 1, τ 1 : M → ∆(A1), where M ≡ M2 ×M3 and a strategy for player

i, i = 2,3, is a function τ i : Ti → ∆(Mi). We want to show that if τ = (τ 1, τ 2 , τ 3) is a

sequential equilibrium then τ does not implement q. Assume by contradiction that it does.

First, we note that for every pair of announcements m = (m2,m3) which is made with a

positive probability τ 1(m) assigns probability 1 to one action in A1. (Otherwise τ would not

implement q). Let m be a pair of announcements such that τ 1(m) = a0. Let τ i(ti)[mi]

denote the probability assigned by τ i to mi when the type of i is ti.

If τ implements q then:

τ 2(+) [m2] · τ 3(+)[m3] = 0. (A.1)

Otherwise, player 1 plays a0 with a positive probability in (+,+). Similarly:

τ 2(−)[m2] · τ 3(−)[m3] = 0. (A.2)

Since m is played with a positive probability either:

τ 2(−)[m2] · τ 3(+)[m3] > 0 (A.3)

or

τ 2(+)[m2] · τ 3(−)[m3] > 0. (A.4)
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We claim that if τ is an equilibrium both inequalities should be satisfied. To see

this, assume w.l.o.g. that τ 2(+)[m2] · τ 3(−)[m3] = 0. In such a case the optimal action for

player 1 in m is a−,+ because m is announced only in the state (−,+). This contradicts our
assumption that τ is an equilibrium. It follows that inequalities ( A.3) and (A.4) are satisfied

but this implies that τ i(+)[mi] > 0 and τ i(−)[mi] > 0, i = 2, 3 which contradicts inequalities

( A.1 ) and (A.2). Thus, our assumption that there exists a sequential equilibrium τ that

implements q has been contradicted.

We turn now to Claim 2 (Section 3). To formulate the claim and prove it we

need to refer to a space Ω where an element w ∈ Ω describes not only the profile of types

of the players, but also the record that is generated by the play of the protocol, (where

by record we mean all the messages that are exchanged). Let Pr denote the probability

distribution on Ω that is generated by picking a profile of types t ∈ T according to the

distribution µ and then running the protocol, P. Let F denote the record of player 1 after

learning β. F is a random variable and a value of F, f, is a triple (A01, β,β(t0)) where
A01 = Aψ,σ

1 and t0 = σ(ψ(t̂2), t̂3). Now it is easy to see that since the permutation β is picked

at random the informational content of (A01, β,β(t0)) is equivalent to the information given
by the pair (A1, t0). So to simplify matters we can think of f as (A01, t0). Let A01(t0) = α

where α ∈ {ao, a1}. We want to show that after learning β player 1 does not know anything

beyond her action α. To be completely formal our claim 2 is:

Claim 2: Let f = (A01, t
0) if A01(t

0) = ao, then Pr(t | f) = µ(t | Xo) for every t ∈ T.
Similarly, if A01(t

0) = a1, then Pr(t | f) = µ(t | X1) for every t ∈ T.
Proof: We will prove the proposition for the case where A01(t0) = ao. The proof for the

case A01(t0) = a1 is similar. Now it is clear from the definition of the protocol that if t ∈ X1,
then Pr(t | f) = 0 = µ(t | Xo). So what we need to show is that for t ∈ Xo :

Pr(t | f) = µ(t | Xo) = 0.5 (A.5)

We will show that:
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Pr(f | (+,−)) = Pr(f | (−,+)) (A.6)

(A.5) follows from (A.6) by Bayes law (recall that Xo = {(+,−), (−,+)}).

We will prove (A.6) by showing that given any A01 and t0 such that A01(t0) = a0 there is

a one-to-one correspondence λ between pairs of permutations (ψ̂, σ̂) which give rise to the

record f = (A01, t0) in the state (+,−). and pairs of permutations (ψ̄, σ̄) which give rise to f
in the state (−,+). More formally we will show that there is a one-to-one correspondence λ
between pairs (ψ̂, σ̂) such that:

Aψ̂,σ̂
1 = A01 and σ̂(ψ̂(+),−) = t0.

and pairs (ψ̄, σ̄) such that:

Aψ̄,σ̄
1 = A01 and σ̄(ψ̄(−),+) = t0.

Since the permutations ψ and σ are picked independently according to the uniform

distribution establishing the correspondence λ proves (A.6).

The correspondence λ is simple. Let t̃ denote the state σ̂(ψ̂(−),+) :

λ(ψ̂, σ̂) ≡ (ψ̄, σ̄)

where ψ̄ ≡ ψ̂ and where σ̄ is defined as follows:
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σ̄(ψ̂(+),−) = t̃

σ̄(ψ̂(−),+) = t0.

On the two elements of T that are different from (ψ̂(+),−) and (ψ̂(−),+), σ̄ equals
σ̂.

36



References

[1] M. Amitai, Cheap talk with incomplete information on both sides, discussion paper

#90, Center for Rationality, The Hebrew University of Jerusalem, 1996.

[2] R. Aumann, Subjectivity and correlation in randomized strategies, J. Math. Econ. 1

(1974), 67-96.

[3] R. Aumann and S.Hart, Bi-Convexity and Bi-Martingales, Israel Journal of Mathemat-

ics vol.54 No.2 (1986), 159-180.

[4] R. Aumann and S. Hart, “Long negotiations, cheap talk,” Mimeo, Center for Rationality,

The Hebrew University of Jerusalem, 1996.

[5] I. Barany, Fair distribution protocols of how the players replace fortune, Math. Oper.

Res. 17 (1992), 329-340.

[6] E. Ben-Porath, Correlation without medication: Expending the set of equilibrium out-

comes by “cheap” pre-play procedures, J. Econ. Theory 80 (1998), 108-122.

[7] V. Crawford and J. Sobel, Strategic information transmission, Econometrica 50 (1982),

579-594.

[8] F. Forges, An approach to communication equilibria, Econometrica 54 (1986), 1375-

1385.

[9] F. Forges, Universal mechanisms, Econometrica 58 (1990), 1341-1364.

[10] D.Gerardi, Unmediated Communication in Games with Complete and Incomplete In-

formation, mimeo, Northwestern University, July, 2000.

[11] D.Gerardi, Communication equilibria and sequential rationality, mimeo, Northwestern

University, 2000.

[12] D.Gerardi, “Interim Pre-Play Communication,” mimeo, Northwestern University,

September, 2000.

37



[13] S.Hart, “Nonzero-sum two person repeated games with incomplete information,” Math.

Oper. Res. 10 (1985), 117-153.

[14] E. Lehrer and S. Sorin, One-shot public mediated talk, Games Econ. Behav. 20 (1997),

131-149.

[15] R. Myerson, Optimal coordination mechanisms in general principle-agent problems, J.

Math. Econ. 10 (1982), 67-82.

[16] S. Matthews and A. Postlewaite, Preplay communication in two-person sealed-bid dou-

ble auctions, J. Econ. Theory 48 (1989), 239-263.

[17] M. Okuno-Fujiwara, A. Postlewaite and K. Suzumura, Strategic information revelation,

Rev. Econ. Stud. 57 (1990), 25-47.

[18] A. Urbano and J. E. Villa, “Unmediated Talk under Incomplete Information”, Mimeo

1997, The Valencian Institute for Economic Research.

38



ABSTRACT

The paper studies Bayesian Games which are extended by adding pre-play commu-

nication. Let Γ be a Bayesian game with full support and with three or more players.

The main result is that if players can send private messages to each other and make pub-

lic announcements then every communication equilibrium outcome, q, that is rational (i.e.,

involves probabilities which are rational numbers), can be implemented in a sequential equi-

librium of a cheap talk extension of Γ, provided that the following condition is satisfied:

There exists a Bayesian Nash equilibrium s in Γ such that for each type ti of each player i

the expected payoff of ti in q is larger than the expected payoff of ti in s.


