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Harper operator

On `2(Z2)

H = U∗1 + U1 + U2 + U∗2

where U1 = e iϕX2S1 and U2 = S2 with ϕ ∈ R and S1,2 shifts

Jacobi operator with operator coefficients on H = `2(Z)

H = e−iϕX2 S∗1 + (S2 + S∗2 ) + e iϕX2 S1

Transfer operators on H⊕H at energy E ∈ R:

TE =

(
(E 1− S2 − S∗2 )e iϕX2 − e iϕX2

e iϕX2 0

)
For ψ = (ψn)n∈Z with ψn ∈ `2(Z) and Ψn =

(ψn+1
ψn

)
Hψ = Eψ ⇐⇒ TEΨn = Ψn+1
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Spectra of transfer operators

Proposition: E 6∈ σ(H) ⇐⇒ σ(TE ) ∩ S1 = ∅

Example: With flux ϕ = 2π 3
7 and E = 2.2 as well as E = 1.9
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The TE are J-unitary on H⊕H:

(TE )∗JTE = J J =

(
0 −1
1 0

)
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Half-space restirctions

Ĥ = H with Dirichlet conditions on `2(Z× N)

Ĥ = e−iϕX2 Ŝ∗1 + (Ŝ2 + Ŝ∗2 ) + e iϕX2 Ŝ1

with partial isometry Ŝ∗2 Ŝ2 = 1− |0〉〈0|

Discrete Fourier decomposition in 1-direction Ĥ ∼=
∫ π
−π dk1 Ĥ(k1)

where Ĥ(k1) = Ŝ2 + Ŝ∗2 + 2 cos(k1 + ϕX2) half-sided Jacobi matrix

Ĥ(k1)⊕ Ĥl(k1) compact perturbation of periodic H(k1) on `2(Z)

Definition: edge spectrum of Ĥ =
⋃

k1∈[−π,π] σdis(Ĥ(k1))

J-unitary transfer operators T̂E on Ĥ ⊕ Ĥ where Ĥ = `2(N)

T̂E ⊕ T̂E
l compact perturbation of TE

Proposition: T̂E has unit eigenvalue ⇐⇒ E in edge spect. of Ĥ
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Edge state calculation

TE
2 (k1) transfer matrices of H(k1) in 2-direction, J-unitary

θ(k1) = angle between the contracting direction of TE
2 (k1)

and the Dirichlet boundary condition

E ∈ σdis(Ĥ(k1)) ⇐⇒ θ(k1) = 0

Example: Harper flux ϕ = 2π 3
7 and E = 1.9
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-Π

0

Π

k1

Resumé: J-unitary transfer operators T̂E with eigenvalues on S1

linked to edge states
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Krein stability theory

Definition: Krein space (K, J) is a complex Hilbert space K with
fundamental symmetry J = J, J∗ = J−1, J2 = η 1 with η = ±1

Normal form: K = H⊕H′ and J =
(1 0

0 −1

)
or J =

(0 −1
1 0

)
Definition: T ∈ B(K) J-unitary ⇐⇒ T ∗JT = J

Example: K = Cn ⊕ Cm, J =
(1 0

0 −1

)
=⇒ {J-unitaries} = U(n,m)

Proposition: Then σ(T ) =
(
σ(T )

)−1
reflection on S1

Proof: J∗(T − λ1)J = (T ∗)−1 − λ 1 and spectral mapping

Krein stability analysis: Given a (continuous) path t 7→ Tt of
J-unitaries, discrete eigenvalues can leave S1 only during collisions
through eigenvalues with inertia of indefinite sign.
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Krein inertia

For λ ∈ σdis(T ), generalized eigenspace

Eλ = span

∮
∂Bε(λ)

dz

2πi
(z 1− T )−1

and Krein inertia for λ ∈ S1

ν(λ) = (ν+(λ), ν−(λ)) = # pos./neg. eigenvalues of
√
η J|Eλ

and signature Sig(λ) = ν+(λ)− ν−(λ)

Definite sign ⇐⇒ ν+(λ) = 0 or ν−(λ) = 0. Otherwise indefinite.

Facts: For λ 6∈ S1, inertia on Eλ ⊕ E(λ)−1 is (dim(Eλ), dim(Eλ))

Sum of inertia is continuous at eigenvalue collisions

(1,1)(0,1)
(1,0)

(1,0) (2,0)

(1,0)

(1,0)(1,0)
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Global signature

Definition: Essentially S1-gapped J-unitaries

G(K) = {T J-unitary |σess(T ) ∩ S1 = ∅}
with σess(T ) = σ(T ) \ σdis(T ). Then

Sig(T ) =
∑

λ∈σ(T )∩S1

Sig(λ)

Theorem: G(K) open and Sig homotopy invariant

Remarks: Similar to Fredholm index, each component non-trivial

Theorem: T ∈ G(K) has path in resolvent set ρ(T ) from ∞ to S1

K = −J∗KJ compact =⇒ TeK ∈ G(K)

Proof: analytic Fredholm theory
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S1-Fredholm operators

Example: K = `2(Z)⊕ `2(Z), J =
(0 −1

1 0

)
. For r < 1 and shift S

Tt =

(
r S 0
0 r−1 S

)
exp t

(
0 |0〉〈0|

−|0〉〈0| 0

)
Then

σ(Tt) =

{
filled ring , t = π

2 ,
3π
2 ,

r S1 ∪ r−1S1 , otherwise .

Definition: With σ′ess(T ) = {λ ∈ C |T − λ1 not Fredholm}

F(K) = {T J-unitary |σ′ess(T ) ∩ S1 = ∅}

Remarks: F(K) open and stable under compact perturbations,

G(K) ⊂ F(K) but not equal, Ind(T − λ1) = 0 for λ ∈ S1

Theorem: π1(F(K)) ⊃ Z, given by Conley-Zehnder index
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Spectral flow and calculation of signature

Theorem: J =
(1 0

0 −1

)
and T =

(a b
c d

)
J-unitary. Then

V (T ) =

(
(a∗)−1 bd−1

−d−1c d−1

)
is unitary on K and

(i) geom. mult. of 1 as EV of T = mult. of 1 as EV of V (T )

(ii) T ∈ F(K) ⇐⇒ 1 6∈ σess(V (T ))

Spectral flow of t 7→ V (Tt) by 1 = Conley-Zehnder index

(iii) For T ∈ G(K),

Sig(T ) = spectral flow of t ∈ [0, 2π) 7→ V (e−itT ) through 1
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Real symmetries on Krein space

Fundamental symmetry JF real unitary with J2
F = ηF 1

Real symmetry JR real unitary with J2
R = ηR 1 and JFJR = ηFRJRJF

kind (ηF, ηR, ηFR) ∈ {−1, 1}3

connection to Clifford groups

Fact: After real unitary basis change, normal forms (real Pauli)

Definition: JF-unitaries with Real symmetry JR

U(K, JF, JR) =
{

T JF-unitary
∣∣ J∗R T JR = T

}
G(K, JF, JR) =

{
T ∈ G(K, JF)

∣∣ J∗R T JR = T
}
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Invariants with Real symmetries

ηF ηR ηFR Class.Group π0 ⊃ Invariant

1 1 1 O(N,M) Z× Z2 Sig × Sec
−1 1 −1 Z× Z2 Sig × Sec

−1 1 1 SP(2N,R) 1
1 1 −1 1

−1 −1 1 SO∗(2N) Z2 Sig2

1 −1 −1 Z2 Sig2

1 −1 1 SP(2N, 2N) Z 1
2 -Sig

−1 −1 −1 Z 1
2 -Sig

Theorem: For T ∈ U(K, JF, JR).

(i) σ(T ) = σ(T ) spectral quadrouples

(ii) ν±(λ) = ν±ηFηFR(λ) and Sig(λ) = ηFηFR Sig(λ)

(iii) ηR = −1 =⇒ Kramers degeneracy for real eigenvalues

(iv) Invariants labelling π0 = π0(G(K, JF, JR))
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Invariants for ηFηFR = −1

Krein collisions

(1,1)(0,1)
(1,0)

(1,0) (1,1)(0,1)

Tangent bifurcation prohibited for ηR = −1

(0,1)

(1,0)

(1,1)

prohibited by Kramers

Sig2(T ) =
∑

λ∈S1 ν+(λ)mod 2 ∈ Z2 .
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Invariants for ηFηFR = 1

Krein collisions

(1,1)(0,1)
(1,0)

(0,1) (1,1)(1,0)

Mediated tangent bifurcation for kind ηR = 1

(2,1)

(1,0)

(1,0)

(0,1)
(1,0)

Sec(T ) = Sig(1)mod 2 ∈ Z2 .
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Back to discrete Schrödinger operators

Next-nearest hopping and fiber CL (spin, isospin, particle-hole)

H =
4∑

i=1

(W ∗
i Ui + WiU

∗
i ) + V on `2(Z2)⊗ CL

with U3 = U∗1 U2 and U4 = U1U2, further Wi and V = V ∗ matrices

Jacobi operator with operator coefficients A,B on H = `2(Z)⊗CL

H = AS∗1 + B + A∗S1

If A invertible, transfer operators on H⊕H at energy E ∈ R:

TE =

(
(E 1− B)A−1 −A∗

A−1 0

)
∈ G(H⊕H) for E 6∈ σ(H)

Half-space restrictions: Ĥ and T̂E

T̂E 6∈ G(Ĥ ⊕ Ĥ) ⇐⇒ S1 ⊂ σp(T̂E ) ⇐⇒ flat band of edge states
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Calculation of unit eigenvalues of T̂ E

Ĥ =
∫ π
−π dk1 Ĥ(k1) with matrix-valued Jacobi operators

TE
2 (k1) transfer matrices of Ĥ(k1) in 2-direction, J-unitary

ΦE (k1) contracting directions of TE
2 (k1), J-Lagrangian in C2L

E ∈ σdis(Ĥ(k1)) ⇐⇒ intersect. ΦE (k1)∩ bound. cond. non-trivial

Bott-Maslov intersection theory for Lagrangian planes in C2L:

UE (k1) =

(
1

−ı1

)∗
ΦE (k1)

((
1

ı1

)∗
ΦE (k1)

)−1

L× L unitary

Proposition: e ik1 eigenvalue of T̂E ⇐⇒ 1 eigenvalue of UE (k1)

Proposition: Krein inertia of e ik1 = sign(∂k1θ(k1)|0)
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New technique for calculating the Chern numbers

Theorem: T̂E essentially gapped =⇒ Sig(T̂E ) = Ch(PE )

Ex: Harper model, p + ip wave supercond, Kane-Mele model
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Implementing symmetries

Time reversal symmetry:

even: H = H =⇒ TE = TE

odd: I ∗s HIs = H with Is = e iπs
y

=⇒ (1⊗ Is)
∗ TE (1⊗ Is) = TE

Example: Kane-Mele (Z2-topological insulator, quantum spin Hall)

Particle-hole symmetry (K 2
ph = ±1 even or odd):

K ∗ph H Kph = −H

=⇒ (J ⊗ Kph)∗ TE (J ⊗ Kph) = TE with J =
(1 0

0−1

)
Fundamental symmetry: (TE )∗(I ⊗1)TE = (I ⊗1) with I =

(0−1
1 0

)
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Majorana fermions at the edge

(p + ip)-wave superconductor in (Hartree-Fock) BdG-description:

H =

(
U1 + U∗1 + U2 + U∗2 − µ δp (S1 − S∗1 ± ı(S2 − S∗2 ))

δp (S∗1 − S1 ± ı(S2 − S∗2 )) −U1 − U
∗
1 − U2 − U

∗
2 + µ

)
Even particle-hole Kph =

(0 1
1 0

)
. For µ = δp = 0.2 and ϕ = 2π 1

3
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Eigenvector at ±1 is real =⇒ self-adjoint creation operators



AVRONFEST: CONGRATULATING YOSI Invariants for J-unitaries on Real Krein spaces and classification of transfer operators

Resumé

1) J-unitaries on Krein spaces with Real symmetries

2) Krein signatures lead to new homotopy invariants

3) Applied to transfer operators allow to distinguish different
phases of topological insulators
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