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Topological insulators: first impressions

I Insulator in the Bulk: Excitation gap
For independent electrons: band gap at Fermi energy

I Time-reversal invariant fermionic system

spin down

E
dg

e

void Bulk

spin up

E
dg

e

void

I Topology: In the space of Hamiltonians, a topological
insulator can not be deformed in an ordinary one, while
keeping the gap open and time-reversal invariance.
Analogy: torus 6= sphere (differ by genus).

Contributors to the field: Kane, Mele, Zhang, Moore; Fröhlich
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Bulk-edge correspondence

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states

I State the (intrinsic) topological property distinguishing
different classes of insulators.

More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge.
I Bulk-edge duality: Can it be shown that the two indices

agree?
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Bulk-edge correspondence. Done?

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states
I State the (intrinsic) topological property distinguishing

different classes of insulators.
More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge. Yes, e.g. Kane and Mele.
I Bulk-edge duality: Can it be shown that the two indices

agree? Schulz-Baldes et al.; Essin & Gurarie



Bulk-edge correspondence. Today

E
dg

e

void Bulk

In a nutshell: Termination of bulk of a topological insulator
implies edge states
I State the (intrinsic) topological property distinguishing

different classes of insulators.
More precisely:
I Express that property as an Index relating to the Bulk,

resp. to the Edge. Done differently.
I Bulk-edge duality: Can it be shown that the two indices

agree? Done differently.
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Rules of the dance

Dancers
I start in pairs, anywhere
I end in pairs, anywhere (possibly elseways & elsewhere)
I are free in between
I must never step on center of the floor

I are unlabeled points
There are dances which can not be deformed into one another.

Which is the index that makes the difference?
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The index of a Rueda

A snapshot of the dance

Dance D as a whole

D

I(D) = parity of number of crossings of fiducial line
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Bulk Hamiltonian
Hamiltonian on the lattice Z× Z (plane)

Z

Z

−2 −1 0 1n = −3 2 3 4

I translation invariant in the vertical direction
I period may be assumed to be 1: sites within a period as

labels of internal d.o.f., along with others (spin, . . . ),
totalling N

I Bloch reduction by quasi-momentum k ∈ S1 := R/2πZ
End up with wave-functions ψ = (ψn)n∈Z ∈ `2(Z;CN) and Bulk
Hamiltonian(

H(k)ψ
)

n = A(k)ψn−1 + A(k)∗ψn+1 + Vn(k)ψn

with
Vn(k) = Vn(k)∗ ∈ MN(C) (potential)
A(k) ∈ GL(N) (hopping): Schrödinger eq. is the 2nd order
difference equation
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Edge Hamiltonian
Hamiltonian on the lattice N× Z (half-plane) with N = {1,2, . . .}

N

Z

0 1n = 2 3 4

I translation invariant as before (hence Bloch reduction)
Wave-functions ψ ∈ `2(N;CN) and Edge Hamiltonian(

H](k)ψ
)

n = A(k)ψn−1 + A(k)∗ψn+1 + V ]
n(k)ψn

which
I agrees with Bulk Hamiltonian outside of collar near edge

(width n0)
V ]

n(k) = Vn(k) , (n > n0)

I has Dirichlet boundary conditions: for n = 1 set ψ0 = 0
Note: σess(H](k)) ⊂ σess(H(k)), but typically
σdisc(H](k)) 6⊂ σdisc(H(k))
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General assumptions

I Gap assumption: Fermi energy µ lies in a gap for all
k ∈ S1:

µ /∈ σ(H(k))

I Fermionic time-reversal symmetry: Θ : CN → CN

I Θ is anti-unitary and Θ2 = −1;
I For all k ∈ S1,

H(−k) = ΘH(k)Θ−1

where Θ also denotes the map induced on `2(Z;CN).
Likewise for H](k)
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Elementary consequences of H(−k) = ΘH(k)Θ−1

I σ(H(k)) = σ(H(−k)). Same for H](k).

I Time-reversal invariant points, k = −k , at k = 0, π. There

H = ΘHΘ−1 (H = H(k) or H](k))

Hence any eigenvalue is even degenerate (Kramers).

E ∈ R0

π

−π

k ∈ S1

µ

Bands, Fermi line (one half fat), edge states
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The edge index

The spectrum of H](k)
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µ

k

symmetric on −π ≤ k ≤ 0

0 π

Bands, Fermi line, edge states

Definition: Edge Index

I] = parity of number of eigenvalue crossings

At fixed k , map gap to S1 \ {1} and bands to 1 ∈ S1:
Edge Index is index of a rueda.
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Towards the bulk index

Let z ∈ C. The Schrödinger equation

(H(k)− z)ψ = 0

(as a 2nd order difference equation) has 2N solutions
ψ = (ψn)n∈Z, ψn ∈ CN .

Let z /∈ σ(H(k)). Then

Ez,k = {ψ | ψ solution, ψn → 0, (n→ +∞)}

has
I dim Ez,k = N.

I Ez̄,−k = ΘEz,k
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The bulk index

0

π

−π

k ∈ S1

µ E = Re z

Im z

Loop γ and torus T = γ × S1

Vector bundle E with base T 3 (z, k), fibers Ez,k , and involution
Θ.

Theorem In general, vector bundles (E ,T,Θ) can be classified
by an index I(E) = ±1 (besides of N = dim E)

Definition: Bulk Index
I = I(E)

What’s behind the theorem? How is I(E) defined? Aside . . .
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I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)
I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (Kramers degeneracy)
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Definition (Index): I(E) := I(D)

Remark: I(E) agrees (in value) with the Pfaffian index of Kane and Mele.
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Proof of Theorem (preliminary remark)

I For this slide only: N = 1.

Schrödinger (2nd order
difference) equation on the half-line

(H] − z)ψ] = 0 (no b.c. at n = 0)

with solution ψ]n ∈ C, (n = 0,1,2) decaying at n→∞

0 1−1

n

ψ#
0

2 3 4 5

ψ#
1

I Solution is unique up to multiples
I ψ]0 = 1 picks a unique solution, except if n = 0 is a node
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Proof of Theorem (sketch)
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µ E = Re z

Im z

Fermi line (one half fat)
edge states
torus

I ψ, ψ] solutions (bulk, edge) at z, k decaying at n→ +∞
I Bijective map ψ 7→ ψ], so that ψn = ψ]

n (n > n0)
I ∃ψ] 6= 0 | ψ]

n=0 = 0⇔ z ∈ σ(H](k))
I There is a section of the frame bundle F (E), global on T, except

at edge eigenvalue crossings
I Cut the torus along the Fermi line; let T (k) be the transition

matrix
I There T (k) = IN , except near eigenvalue crossings
I As k traverses one of them, T (k) has eigenvalues 1 (multiplicity

N − 1) and λ(k) making one turn of S1
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Bulk rueda: eigenvalues of T (k)

Ruedas share intersection points. Hence indices are equal �



Proof of Theorem: Dual ruedas

k = 0 k = π
k

S1

Edge rueda: edge eigenvalues

1

k = 0
k

k = π

S1

Bulk rueda: eigenvalues of T (k)

Ruedas share intersection points.

Hence indices are equal �



Proof of Theorem: Dual ruedas

k = 0 k = π
k

S1

Edge rueda: edge eigenvalues

1

k = 0
k

k = π

S1

Bulk rueda: eigenvalues of T (k)

Ruedas share intersection points. Hence indices are equal �



Final remarks

Further results:
I In case the Bulk Hamiltonian is doubly periodic:

Brillouin
zone serves as torus and (j-th pair of) Bloch solutions as
bundles Ej . Then

I =
∏

j

I(Ej)

with product over filled pairs
I A direct link between indices of Bloch bundles and the

edge index via Levinson’s theorem.
I 3d topological insulators (weak and strong indices: 3+1)

Open questions:
I No periodicity (disordered case)?
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Summary

Bulk = Edge

I = I]


