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" For example, a clock, with a running time of a day and an
accuracy of 1078 second, must weigh almost a gram—for reasons
stemming solely from uncertainty principles and similar
considerations.”
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Accuracy of Clocks
Frequency w(t) =wo + ¢(t)
Clocktime  tejock = wio fotw(s)ds

Clocktime variance  (At)? = ((teock — t)?)

Random walk
of frequency
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Brief history of man made clocks

A
Year Clock Accuracy (de,)
1761 Harrison’s H4 0.2s
1930 Quartz 500 us
1955 Cs Atomic Clock 10 ps

2010 AIT Optical Clock 1079 us
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Theoretical Challenges

» Improvement of atomic clocks
» Employment of entangled states [Bollinger et. al. 96]

» Quantum logic spectroscopy [Schmidt et. al. 05]

» Fighting noise

> Limits of the atomic clock accuracy [Itano et. al. 93]
» Inclusion of decoherence [Huelga et. al. 97]

» Limits on size, mass, power, etc.
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Classical oscillator w(t) = wo + ¢(t)
~—~

frequency error

Quantum oscillator wg — frequency reference

Main idea:  want to adjust w(t) to wo (i.e. make ¢(t) small)
by means of repeated synchronization.
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Ramsey interferometry

Relative evolution of the state for time 7: pg — p
depends on the accumulated frequency error ., = fOT ©(s)ds

po — plpr) = e 7H pgelerH
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Detection and feedback

| w(t) = wo + Pnew(t) |I<

A POVM measurement on the final state Rgp

assigns a measurement outcome X to the accumulated frequency error @
p is an estimation of ¢,, based on the measurement outcome x.

A feedback uses ¢ to adjust the original frequency error .
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The Mathematical Model

v

The evolution of ¢(t) in absence of synchronization:

o(t+5) = w(t)+@\vv;

Wiener process

» Two fixed time scales:
T > T
time between two consecutive synchronizations interrogation time

v

A function ¢, — p(pr)

» An estimation strategy  {p(p;) — x, x — @}

v

A linear feedback  ¢(t) — p(t) — @.
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Repeated Synchronization

nT (n+1)T
— ©n cPn‘+1

-
Notation: ¢, := ¢((n+1)T—-).
Equation for the jump:
Pn+1=n— @n+ V2DWr
» The equation defines a non-linear Markovian process;

» We aim to study its stationary solutions;

> o, provides ¢(t), which gives the clock time;
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Unbiased clock

Unbiased clock is accurate in average, E[tcock] = t.
4
E[e(s)] =0 provided E[p(0)] = 0.
|} (variational argument)

For some ¢ € R, E[p — @lp] = (.

Definition ((-unbiased clock)

The clock is (-unbiased if the estimation procedure satisfies

Elp — @lo]l = Cp,  [¢] < 1.
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Fisher information

How much information about ¢ is in p(¢)?

F(p) == Tr(p(o)L3),

ML o)} = i)

For a pure state, F(¢) is the Fubini-Study metric.
Scaling: p(p) — p(T9),  F(p) = T2F(19).

Example (Coherent states)

1/4
<xible) = s exe (g (x = 1)

Fisher information is inversely proportional to the width .
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Theorem
Let v, be a stationary state of an (-unbiased clock. Then

1 1-¢ 2DT T
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Stationary states

Theorem
Let v, be a stationary state of an (-unbiased clock. Then

1 1-— 2DT
B2 > o + o € T
) T /(1 2DT T
IE[(tclock - t) ] > t;g <T2F + 3(1 — <)2 f(C, T)> )
where

_ ~p2
8(Cx) =+ 1T
FG x) =1+ C+C+ (1+20)(1 - Ox + (1 —¢)°X,

# |l
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Analysis of the clock operation

Qualitative analysis of the stationary state:
> The clock time diffuses;
> For D = 0 the diffusion does not depend on the correlation
length ¢;
Quantitative analysis, the case T = 7:

» The optimal interrogation time is determined by a balance of

the dissipation and estimation precision. For fixed (:
4DT = (1 — g)2i
N FT2

» For the optimal time, { =~ 0.35 minimize the variance of the
stationary state;
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Pieces of the Proof

> (o, is a supermartingale = existence of a stationary state;
» Cramer-Rao type inequality: Suppose E[p@] = CE[p?] then
. 1
E[(p — )71 = (1= )£ + CEl’);
Local CR, (=0 ~ Global CR, info = 1/(F + E[¢?] 1)

» Compute covariance of (), e.g. E[pninen] = C"E[¢2].
Integration gives variance of the clock time.
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Conclusions:
» Mathematically minded model of atomic clocks;

> Analysis of the stationary state;

Outlooks:
» " Central limit theorem*;
» Beyond unbiased clock, unbiased stationary state;

» Entropy production;



Happy Birthday
Yosi!



