
Happy Birthday
Yosi !



MODELING LIQUID METALS
and

BULK METALLIC GLASSES
Jean BELLISSARD

Georgia Institute of Technology, Atlanta
School of Mathematics & School of Physics

e-mail: jeanbel@math.gatech.edu

Sponsoring

This material is based upon work supported by the National Science Foundation

Grant No. DMS-1160962

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.



Teaching, Counseling, Support, Thanks

Takeshi Egami, (JINS, Oak Ridge & U. Tennessee, Knoxville)

James S. Langer, (Physics Department, UC Santa Barbara, California)



Main References
T. Egami, Atomic Level Stress, Prog. Mat. Sci., 56, (2011), 637-653.
W. H. Wang, C. Dong, C. H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng. Rep., 44, (2004), 45-89.

M. Miller, P. Liaw, Eds., Bulk Metallic Glasses: An Overview, Springer, (2007).
H. S. Chen and D. Turnbull, J. Chem. Phys., 48, 2560-2571, (1968).
Morrel H. Cohen & G. S. Grest, Phys. Rev. B, 20, 1077-1098, (1979).
D. J. Plazek, J. H. Magill, J. Chem. Phys., 45, 3757, (1967); J. H. Magill, ibid. 47, 2802, (1967).
J. Hafner, Phys. Rev. B, 27, 678-695 (1983).
M. L. Falk, J. S. Langer, L. Pechenik, Phys. Rev. E, 70, 011507, (2004).

J. D. Bernal, the Structure of Liquids, Proc. Roy. Soc., A280, (1964), 299-322.

D. B. Miracle, A structural model for metallic glasses, Nature Mat., 3, (2004), 697-702.

D. B. Miracle, W. S. Sanders, N. Senkov, Phil. Mag., 83, (2003), 2409-2428.

D. Ma, A. D. Stoica, X.-L. Wang, Nature Mat., 8, (2009), 30-34.
T. Egami, D. Srolovitz, J. Phys. F, 12, 2141-2163 (1982).
S.-P. Chen, T. Egami, V. Vitek, Phys. Rev. B, 37, 2440-2449, (1988).
T. Egami, S. J. Poon, Z. Zhang, V. Keppens, Phys. Rev. B, 76, 024203, (2007).



Content
1. Metal Liquids and Glasses

2. Delone Graphs

3. Conclusion



I - Metal Liquids and Glasses



Bulk Metallic Glasses

1. Examples (Ma, Stoica, Wang, Nat. Mat. ’08)

• ZrxCu1−x ZrxFe1−x ZrxNi1−x
• Cu46Zr47−xAl7Yx Mg60Cu30Y10

2. Properties (Hufnagel web page, John Hopkins)

•High Glass Forming Ability (GFA)
•High Strength, comparable or larger than steel
• Superior Elastic limit
•High Wear and Corrosion resistance
• Brittleness and Fatigue failure



Bulk Metallic Glasses
Applications (Liquidemetal Technology www.liquidmetal.com)

• Orthopedic implants and medical Instruments

•Material for military components

• Sport items, golf clubs, tennis rackets, ski, snowboard, ...

Pieces of Titanium-Based Structural
Metallic-Glass Composites

(Johnson’s group, Caltech, 2008)



Bulk Metallic Glasses

Smoothed values of specific
heats of Au.77Ge.136Si.094
signaling a glass-liquid

transition

“A” designates the amorphous state
“m” designates the mixture

“l” designates the liquid

taken from
H. S. Chen and D. Turnbull, J. Chem. Phys.,

48, 2560-2571, (1968)



Bulk Metallic Glasses

Viscosity vs temperature for
tri-anaphthylbenzene, with fits

coming from the free volume
theory

Solid curve fit from [1] below
Dashed curve: fit from [1] with a simplified

theory
Circles: data from [2] below

taken from
[1] Morrel H. Cohen & G. S. Grest, Phys.

Rev. B, 20, 1077-1098, (1979)
[2] D. J. Plazek and J. H. Magill, J. Chem.

Phys., 45, 3757, (1967); J. H. Magill, ibid. 47,
2802, (1967)



Bulk Metallic Glasses
Theoretical curves of tensile
stress versus strain for the

bulk metallic glass using the
STZ theory

Zr41.2Ti13.8Cu12.5Ni10Be22.5

at several different strain
rates as shown. The

temperature is T=643 K.

For clarity, all but the first of these
curves have been displaced by the same

amount along the strain axis.

taken from
[1] M. L. Falk, J. S. Langer &
L. Pechenik, Phys. Rev. E, 70,

011507, (2004)



Available Theories

1. Cluster Model: (T. Egami et al., ’80’s, D. Miracle ’04) gives a guide line to how
to produce glassy state, explains the diffraction spectrum and
the pair-distribution function. It introduces frustration

2. Free Volume Theory: (Morell H. Cohen, G.S. Grest ’79) gives a good account
for the viscosity

3. Shear Transformation Zone (STZ): (J. Langer et al. ’98-06) gives effective
continuum equation valid beyond the elasticity limit. Numer-
ical simulations give a convincing description of the dynamics
of cracks (C.H. Rycroft, E. Bouchbinder ’12)



Pair Potentials

An example of atom-atom pair
potential in the metallic glass

Ca70Mg30

Top: the pair creation function
Bottom: the graph of the pair potential

taken from
J. Hafner, Phys. Rev. B, 27, 678-695 (1983)



Dense Packing
1. The shape of the pair potential suggests that there is a minimal

distance between two atoms.

2. Liquid and solids are densely packed. This suggests that there is
a maximal size for vacancies.

3. However, Mathematics (ergodic theory) implies that, given an
ε > 0, with probability one

• there are pairs of atoms with distance less than ε
• there are vacancies with radius larger than 1/ε

4. But these rare events are not seen in practice because their
lifetime is negligibly small (Bennett et al. ‘79). Persistence theory give an
argument in this direction.



II - Delone Graphs



Delone Sets
• The set V of atomic positions is uniformly discrete if there is

b > 0 such that in any ball of radius b there is at most one atomic
nucleus.
(Then minimum distance between atoms is ≥ 2b)

• The set V is relatively dense if there is h > 0 such that in any ball
of radius h there is at least one atomic nucleus.
(Then maximal vacancy diameter is ≤ 2h)

• If V is both uniformly discrete and relatively dense, it is called
a Delone set.

• Delb,h denotes the set of Delone sets with parameters b, h.



Voronoi Cells
• Let V ∈ Delb,h. If x ∈ V its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ V , x′ , x}

V(x) is open. Its closure T(x) = V(x) is the Voronoi tile of x

Proposition: If V ∈ Delr0,r1 the Voronoi
tile of any x ∈ V is a convex polytope
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• Let V ∈ Delb,h. If x ∈ V its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ V , x′ , x}

V(x) is open. Its closure T(x) = V(x) is the Voronoi tile of x

Proposition: If V ∈ Delr0,r1 the Voronoi
tile of any x ∈ V is a convex polytope
containing the ball B(x; r0) and contained
in the ball B(x; r1)



The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.

An edge is a pair of nearest
neighbors. E denotes the set of
edges.

The family G = (V,E) is the
Delone graph.



The Delone Graph

taken from J. D. Bernal, Nature, 183, 141-147, (1959)



Properties of the D-graph

• A Delone graph is simple: one edge at most between two ver-
tices, no edge with one end point (tadpole).

• A graph map sends vertices to vertices, edge to edges and is
compatible with the edge boundaries

• Graphs are identified modulo graph isomoprhisms

• Given an integer N, the number of simple graphs modulo isomor-
phism with less than N vertices is finite

• Consequence: There are only finitely many D-Graphs repre-
senting a configuration of the glass in a ball of finite radius.
D-graphs discretize the information.



Properties of the D-graph

• The incidence number nx of a vertex x ∈ V is bounded by

d + 1 ≤ nx ≤

√
π Γ{(d − 1)/2}

Γ(d/2)
∫ θm
0 sind−1(θ) dθ

, sinθm = b/2h .

• A local patch of radius n ∈N is an isomorphism class of subgraphs
(x,Vx,Ex) of the Delone graph, such that x ∈ V, Vx is the set of
vertices at graph-distance at most n from x.

• If Pn denote the set of local patches of radius n then there is
C = C(b, h) > 0 such that

#Pn ≤ eC(2n+1)d



Likelyhood

• Likelyhood can be expressed in various ways such as topological
genericity or full measure (say w.r.t the Lebesgue measure)

• If X ⊂ Rn is closed and if P = F(x) dnx is “absolutely continuous”,
then a property valid of a dense open set U ⊂ X, with piecewise
smooth boundary, is both generic and almost sure.



Voronoi Points

The vertices of the Voronoi cells are called Voronoi Points.



Voronoi Points

• Theorem: A Voronoi point is at equal distance from every atom the
Voronoi tile of which it belongs to.

• Theorem: Generically and almost surely a Voronoi point belongs to
exactly d + 1 Voronoi tiles in dimension d.



Generic Local Patches

Shear modifies local patches. The middle one is unstable.
The transition from left to right requires transiting through a

saddle point of the potential energy.

The Voronoi cell boundaries are shown in blue.

At the bifurcation a Voronoi vertex touches one more Voronoi cell than in the generic case



Generic Local Patches
An example of a generic 3D

bifurcation.
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An example of a generic 3D

bifurcation.

Graph changes

• The graph edges are indicated in black.

• The grey dotted edges have disappeared
during the bifurcation.

• The colored plates are the boundaries of the
Voronoi cells.



Generic Local Patches
An example of a generic 3D

bifurcation.

Graph changes

• The graph edges are indicated in black.

• The grey dotted edges have disappeared
during the bifurcation.

• The colored plates are the boundaries of the
Voronoi cells.



Acceptance Domains
• Given a local patch G ∈ Pn its acceptance domain ΣG is the set

of all atomic configurations V ∈ Delb,h having G as their local
patch around the origin.

• A local patch is generic whenever a small local deformation of
the atomic configuration does not change the corresponding
graph. LetVn ⊂ Pn be the set of generic local patches of radius n.

• Theorem: G ∈ Vn if and only if ΣG is open and its boundary is
piecewise smooth.
The union of acceptance domains of the generic patches of size n is
dense.
In particular almost surely and generically an atomic configuration
admits a generic local patch.



Contiguousness

• The boundary of the acceptance domain of a generic graph con-
tains a relatively open dense subset of codimension 1.

•Definition: two generic graphs G,G′ ∈ Qn are contiguous whenever
their boundary share a piece of codimension one.

• The setVn itself can then be seen as the set of vertices of a graph

Gn = (Vn,En)

called the graph of contiguousness where an edge E ∈ En is a pair
of contiguous generic local patches.



Contiguousness

Theorem two contiguous generic graphs differ only by one edge



III - Conclusion



Degrees of Freedom

1. In the liquid phase, the short wave phonons are short lived.
They do not contribute to the heat capacity.

2. The only relevant degree of freedom is the bond motion. The
contiguousness relation expresses the combinatoric part of this
degree of freedom

3. Each bond comes with a local stress tensor. In the liquid phase
this stress tensor is Gaussian distributed (free Maxwell gas)
⇒ law of Dulong and Petit for the heat capacity.

4. The bond degrees of freedom are called anankeon.



The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.
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The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.

Behind the previous concept of bond degrees of freedom, there is the notion of stress, constraint, necessity,

unrest and even torture.

There is a a character of the Greek mythology that could fit with this concept:

the goddess Ananke

whose name comes from the greek word anagkeia meaning the stress of circumstances. Ananke was

representing a power above all including the Gods of the Olympe "even gods don’t fight against Ananke"

claims a scholar. This character presided to the creation of the world, in various versions of the Greek

mythology. It expresses the concepts of "force, constraint, necessity" and from there it also means

"fate, destiny" to lead to the concepts of compulsion, torture.(from Wikipedia)



The Anankeon Theory

For this reason the configurational degrees of freedom associated
with the stress tensor on each bond will be called

ANANKEONS



Modeling the Dynamics

1. A Markov dynamics can be built on the graph of contiguousness,
describing the time evolution of the D-graph of both liquid and
glasses, or the dynamics of the local bonds (anankeons)

2. Each D-graph is decorated by local degrees of freedom: local
stress (anankeon), local vibration (phonons).

3. In the liquid phase the anankeon are free, phonons are sup-
pressed, the theory gives a perfect gas solvable model.

4. The interaction phonon-anankeon is still ununderstood.
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